]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
usb-linux: Add support for buffering iso out usb packets
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30
31 /* This check must be after config-host.h is included */
32 #ifdef CONFIG_EVENTFD
33 #include <sys/eventfd.h>
34 #endif
35
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
38
39 //#define DEBUG_KVM
40
41 #ifdef DEBUG_KVM
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44 #else
45 #define DPRINTF(fmt, ...) \
46 do { } while (0)
47 #endif
48
49 typedef struct KVMSlot
50 {
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
54 int slot;
55 int flags;
56 } KVMSlot;
57
58 typedef struct kvm_dirty_log KVMDirtyLog;
59
60 struct KVMState
61 {
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
65 int coalesced_mmio;
66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
67 int broken_set_mem_region;
68 int migration_log;
69 int vcpu_events;
70 int robust_singlestep;
71 int debugregs;
72 #ifdef KVM_CAP_SET_GUEST_DEBUG
73 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
74 #endif
75 int irqchip_in_kernel;
76 int pit_in_kernel;
77 int xsave, xcrs;
78 int many_ioeventfds;
79 };
80
81 KVMState *kvm_state;
82
83 static const KVMCapabilityInfo kvm_required_capabilites[] = {
84 KVM_CAP_INFO(USER_MEMORY),
85 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
86 KVM_CAP_LAST_INFO
87 };
88
89 static KVMSlot *kvm_alloc_slot(KVMState *s)
90 {
91 int i;
92
93 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
94 if (s->slots[i].memory_size == 0) {
95 return &s->slots[i];
96 }
97 }
98
99 fprintf(stderr, "%s: no free slot available\n", __func__);
100 abort();
101 }
102
103 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
104 target_phys_addr_t start_addr,
105 target_phys_addr_t end_addr)
106 {
107 int i;
108
109 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
110 KVMSlot *mem = &s->slots[i];
111
112 if (start_addr == mem->start_addr &&
113 end_addr == mem->start_addr + mem->memory_size) {
114 return mem;
115 }
116 }
117
118 return NULL;
119 }
120
121 /*
122 * Find overlapping slot with lowest start address
123 */
124 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
125 target_phys_addr_t start_addr,
126 target_phys_addr_t end_addr)
127 {
128 KVMSlot *found = NULL;
129 int i;
130
131 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
132 KVMSlot *mem = &s->slots[i];
133
134 if (mem->memory_size == 0 ||
135 (found && found->start_addr < mem->start_addr)) {
136 continue;
137 }
138
139 if (end_addr > mem->start_addr &&
140 start_addr < mem->start_addr + mem->memory_size) {
141 found = mem;
142 }
143 }
144
145 return found;
146 }
147
148 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
149 target_phys_addr_t *phys_addr)
150 {
151 int i;
152
153 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
154 KVMSlot *mem = &s->slots[i];
155
156 if (ram_addr >= mem->phys_offset &&
157 ram_addr < mem->phys_offset + mem->memory_size) {
158 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
159 return 1;
160 }
161 }
162
163 return 0;
164 }
165
166 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
167 {
168 struct kvm_userspace_memory_region mem;
169
170 mem.slot = slot->slot;
171 mem.guest_phys_addr = slot->start_addr;
172 mem.memory_size = slot->memory_size;
173 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
174 mem.flags = slot->flags;
175 if (s->migration_log) {
176 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
177 }
178 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
179 }
180
181 static void kvm_reset_vcpu(void *opaque)
182 {
183 CPUState *env = opaque;
184
185 kvm_arch_reset_vcpu(env);
186 }
187
188 int kvm_irqchip_in_kernel(void)
189 {
190 return kvm_state->irqchip_in_kernel;
191 }
192
193 int kvm_pit_in_kernel(void)
194 {
195 return kvm_state->pit_in_kernel;
196 }
197
198 int kvm_init_vcpu(CPUState *env)
199 {
200 KVMState *s = kvm_state;
201 long mmap_size;
202 int ret;
203
204 DPRINTF("kvm_init_vcpu\n");
205
206 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
207 if (ret < 0) {
208 DPRINTF("kvm_create_vcpu failed\n");
209 goto err;
210 }
211
212 env->kvm_fd = ret;
213 env->kvm_state = s;
214 env->kvm_vcpu_dirty = 1;
215
216 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
217 if (mmap_size < 0) {
218 ret = mmap_size;
219 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
220 goto err;
221 }
222
223 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
224 env->kvm_fd, 0);
225 if (env->kvm_run == MAP_FAILED) {
226 ret = -errno;
227 DPRINTF("mmap'ing vcpu state failed\n");
228 goto err;
229 }
230
231 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
232 s->coalesced_mmio_ring =
233 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
234 }
235
236 ret = kvm_arch_init_vcpu(env);
237 if (ret == 0) {
238 qemu_register_reset(kvm_reset_vcpu, env);
239 kvm_arch_reset_vcpu(env);
240 }
241 err:
242 return ret;
243 }
244
245 /*
246 * dirty pages logging control
247 */
248 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
249 ram_addr_t size, int flags, int mask)
250 {
251 KVMState *s = kvm_state;
252 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
253 int old_flags;
254
255 if (mem == NULL) {
256 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
257 TARGET_FMT_plx "\n", __func__, phys_addr,
258 (target_phys_addr_t)(phys_addr + size - 1));
259 return -EINVAL;
260 }
261
262 old_flags = mem->flags;
263
264 flags = (mem->flags & ~mask) | flags;
265 mem->flags = flags;
266
267 /* If nothing changed effectively, no need to issue ioctl */
268 if (s->migration_log) {
269 flags |= KVM_MEM_LOG_DIRTY_PAGES;
270 }
271 if (flags == old_flags) {
272 return 0;
273 }
274
275 return kvm_set_user_memory_region(s, mem);
276 }
277
278 static int kvm_log_start(CPUPhysMemoryClient *client,
279 target_phys_addr_t phys_addr, ram_addr_t size)
280 {
281 return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
282 KVM_MEM_LOG_DIRTY_PAGES);
283 }
284
285 static int kvm_log_stop(CPUPhysMemoryClient *client,
286 target_phys_addr_t phys_addr, ram_addr_t size)
287 {
288 return kvm_dirty_pages_log_change(phys_addr, size, 0,
289 KVM_MEM_LOG_DIRTY_PAGES);
290 }
291
292 static int kvm_set_migration_log(int enable)
293 {
294 KVMState *s = kvm_state;
295 KVMSlot *mem;
296 int i, err;
297
298 s->migration_log = enable;
299
300 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
301 mem = &s->slots[i];
302
303 if (!mem->memory_size) {
304 continue;
305 }
306 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
307 continue;
308 }
309 err = kvm_set_user_memory_region(s, mem);
310 if (err) {
311 return err;
312 }
313 }
314 return 0;
315 }
316
317 /* get kvm's dirty pages bitmap and update qemu's */
318 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
319 unsigned long *bitmap,
320 unsigned long offset,
321 unsigned long mem_size)
322 {
323 unsigned int i, j;
324 unsigned long page_number, addr, addr1, c;
325 ram_addr_t ram_addr;
326 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
327 HOST_LONG_BITS;
328
329 /*
330 * bitmap-traveling is faster than memory-traveling (for addr...)
331 * especially when most of the memory is not dirty.
332 */
333 for (i = 0; i < len; i++) {
334 if (bitmap[i] != 0) {
335 c = leul_to_cpu(bitmap[i]);
336 do {
337 j = ffsl(c) - 1;
338 c &= ~(1ul << j);
339 page_number = i * HOST_LONG_BITS + j;
340 addr1 = page_number * TARGET_PAGE_SIZE;
341 addr = offset + addr1;
342 ram_addr = cpu_get_physical_page_desc(addr);
343 cpu_physical_memory_set_dirty(ram_addr);
344 } while (c != 0);
345 }
346 }
347 return 0;
348 }
349
350 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
351
352 /**
353 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
354 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
355 * This means all bits are set to dirty.
356 *
357 * @start_add: start of logged region.
358 * @end_addr: end of logged region.
359 */
360 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
361 target_phys_addr_t end_addr)
362 {
363 KVMState *s = kvm_state;
364 unsigned long size, allocated_size = 0;
365 KVMDirtyLog d;
366 KVMSlot *mem;
367 int ret = 0;
368
369 d.dirty_bitmap = NULL;
370 while (start_addr < end_addr) {
371 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
372 if (mem == NULL) {
373 break;
374 }
375
376 /* XXX bad kernel interface alert
377 * For dirty bitmap, kernel allocates array of size aligned to
378 * bits-per-long. But for case when the kernel is 64bits and
379 * the userspace is 32bits, userspace can't align to the same
380 * bits-per-long, since sizeof(long) is different between kernel
381 * and user space. This way, userspace will provide buffer which
382 * may be 4 bytes less than the kernel will use, resulting in
383 * userspace memory corruption (which is not detectable by valgrind
384 * too, in most cases).
385 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
386 * a hope that sizeof(long) wont become >8 any time soon.
387 */
388 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
389 /*HOST_LONG_BITS*/ 64) / 8;
390 if (!d.dirty_bitmap) {
391 d.dirty_bitmap = qemu_malloc(size);
392 } else if (size > allocated_size) {
393 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
394 }
395 allocated_size = size;
396 memset(d.dirty_bitmap, 0, allocated_size);
397
398 d.slot = mem->slot;
399
400 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
401 DPRINTF("ioctl failed %d\n", errno);
402 ret = -1;
403 break;
404 }
405
406 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
407 mem->start_addr, mem->memory_size);
408 start_addr = mem->start_addr + mem->memory_size;
409 }
410 qemu_free(d.dirty_bitmap);
411
412 return ret;
413 }
414
415 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
416 {
417 int ret = -ENOSYS;
418 KVMState *s = kvm_state;
419
420 if (s->coalesced_mmio) {
421 struct kvm_coalesced_mmio_zone zone;
422
423 zone.addr = start;
424 zone.size = size;
425
426 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
427 }
428
429 return ret;
430 }
431
432 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
433 {
434 int ret = -ENOSYS;
435 KVMState *s = kvm_state;
436
437 if (s->coalesced_mmio) {
438 struct kvm_coalesced_mmio_zone zone;
439
440 zone.addr = start;
441 zone.size = size;
442
443 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
444 }
445
446 return ret;
447 }
448
449 int kvm_check_extension(KVMState *s, unsigned int extension)
450 {
451 int ret;
452
453 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
454 if (ret < 0) {
455 ret = 0;
456 }
457
458 return ret;
459 }
460
461 static int kvm_check_many_ioeventfds(void)
462 {
463 /* Userspace can use ioeventfd for io notification. This requires a host
464 * that supports eventfd(2) and an I/O thread; since eventfd does not
465 * support SIGIO it cannot interrupt the vcpu.
466 *
467 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
468 * can avoid creating too many ioeventfds.
469 */
470 #if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
471 int ioeventfds[7];
472 int i, ret = 0;
473 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
474 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
475 if (ioeventfds[i] < 0) {
476 break;
477 }
478 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
479 if (ret < 0) {
480 close(ioeventfds[i]);
481 break;
482 }
483 }
484
485 /* Decide whether many devices are supported or not */
486 ret = i == ARRAY_SIZE(ioeventfds);
487
488 while (i-- > 0) {
489 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
490 close(ioeventfds[i]);
491 }
492 return ret;
493 #else
494 return 0;
495 #endif
496 }
497
498 static const KVMCapabilityInfo *
499 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
500 {
501 while (list->name) {
502 if (!kvm_check_extension(s, list->value)) {
503 return list;
504 }
505 list++;
506 }
507 return NULL;
508 }
509
510 static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
511 ram_addr_t phys_offset)
512 {
513 KVMState *s = kvm_state;
514 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
515 KVMSlot *mem, old;
516 int err;
517
518 /* kvm works in page size chunks, but the function may be called
519 with sub-page size and unaligned start address. */
520 size = TARGET_PAGE_ALIGN(size);
521 start_addr = TARGET_PAGE_ALIGN(start_addr);
522
523 /* KVM does not support read-only slots */
524 phys_offset &= ~IO_MEM_ROM;
525
526 while (1) {
527 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
528 if (!mem) {
529 break;
530 }
531
532 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
533 (start_addr + size <= mem->start_addr + mem->memory_size) &&
534 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
535 /* The new slot fits into the existing one and comes with
536 * identical parameters - nothing to be done. */
537 return;
538 }
539
540 old = *mem;
541
542 /* unregister the overlapping slot */
543 mem->memory_size = 0;
544 err = kvm_set_user_memory_region(s, mem);
545 if (err) {
546 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
547 __func__, strerror(-err));
548 abort();
549 }
550
551 /* Workaround for older KVM versions: we can't join slots, even not by
552 * unregistering the previous ones and then registering the larger
553 * slot. We have to maintain the existing fragmentation. Sigh.
554 *
555 * This workaround assumes that the new slot starts at the same
556 * address as the first existing one. If not or if some overlapping
557 * slot comes around later, we will fail (not seen in practice so far)
558 * - and actually require a recent KVM version. */
559 if (s->broken_set_mem_region &&
560 old.start_addr == start_addr && old.memory_size < size &&
561 flags < IO_MEM_UNASSIGNED) {
562 mem = kvm_alloc_slot(s);
563 mem->memory_size = old.memory_size;
564 mem->start_addr = old.start_addr;
565 mem->phys_offset = old.phys_offset;
566 mem->flags = 0;
567
568 err = kvm_set_user_memory_region(s, mem);
569 if (err) {
570 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
571 strerror(-err));
572 abort();
573 }
574
575 start_addr += old.memory_size;
576 phys_offset += old.memory_size;
577 size -= old.memory_size;
578 continue;
579 }
580
581 /* register prefix slot */
582 if (old.start_addr < start_addr) {
583 mem = kvm_alloc_slot(s);
584 mem->memory_size = start_addr - old.start_addr;
585 mem->start_addr = old.start_addr;
586 mem->phys_offset = old.phys_offset;
587 mem->flags = 0;
588
589 err = kvm_set_user_memory_region(s, mem);
590 if (err) {
591 fprintf(stderr, "%s: error registering prefix slot: %s\n",
592 __func__, strerror(-err));
593 abort();
594 }
595 }
596
597 /* register suffix slot */
598 if (old.start_addr + old.memory_size > start_addr + size) {
599 ram_addr_t size_delta;
600
601 mem = kvm_alloc_slot(s);
602 mem->start_addr = start_addr + size;
603 size_delta = mem->start_addr - old.start_addr;
604 mem->memory_size = old.memory_size - size_delta;
605 mem->phys_offset = old.phys_offset + size_delta;
606 mem->flags = 0;
607
608 err = kvm_set_user_memory_region(s, mem);
609 if (err) {
610 fprintf(stderr, "%s: error registering suffix slot: %s\n",
611 __func__, strerror(-err));
612 abort();
613 }
614 }
615 }
616
617 /* in case the KVM bug workaround already "consumed" the new slot */
618 if (!size) {
619 return;
620 }
621 /* KVM does not need to know about this memory */
622 if (flags >= IO_MEM_UNASSIGNED) {
623 return;
624 }
625 mem = kvm_alloc_slot(s);
626 mem->memory_size = size;
627 mem->start_addr = start_addr;
628 mem->phys_offset = phys_offset;
629 mem->flags = 0;
630
631 err = kvm_set_user_memory_region(s, mem);
632 if (err) {
633 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
634 strerror(-err));
635 abort();
636 }
637 }
638
639 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
640 target_phys_addr_t start_addr,
641 ram_addr_t size, ram_addr_t phys_offset)
642 {
643 kvm_set_phys_mem(start_addr, size, phys_offset);
644 }
645
646 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
647 target_phys_addr_t start_addr,
648 target_phys_addr_t end_addr)
649 {
650 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
651 }
652
653 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
654 int enable)
655 {
656 return kvm_set_migration_log(enable);
657 }
658
659 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
660 .set_memory = kvm_client_set_memory,
661 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
662 .migration_log = kvm_client_migration_log,
663 .log_start = kvm_log_start,
664 .log_stop = kvm_log_stop,
665 };
666
667 static void kvm_handle_interrupt(CPUState *env, int mask)
668 {
669 env->interrupt_request |= mask;
670
671 if (!qemu_cpu_is_self(env)) {
672 qemu_cpu_kick(env);
673 }
674 }
675
676 int kvm_init(void)
677 {
678 static const char upgrade_note[] =
679 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
680 "(see http://sourceforge.net/projects/kvm).\n";
681 KVMState *s;
682 const KVMCapabilityInfo *missing_cap;
683 int ret;
684 int i;
685
686 s = qemu_mallocz(sizeof(KVMState));
687
688 #ifdef KVM_CAP_SET_GUEST_DEBUG
689 QTAILQ_INIT(&s->kvm_sw_breakpoints);
690 #endif
691 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
692 s->slots[i].slot = i;
693 }
694 s->vmfd = -1;
695 s->fd = qemu_open("/dev/kvm", O_RDWR);
696 if (s->fd == -1) {
697 fprintf(stderr, "Could not access KVM kernel module: %m\n");
698 ret = -errno;
699 goto err;
700 }
701
702 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
703 if (ret < KVM_API_VERSION) {
704 if (ret > 0) {
705 ret = -EINVAL;
706 }
707 fprintf(stderr, "kvm version too old\n");
708 goto err;
709 }
710
711 if (ret > KVM_API_VERSION) {
712 ret = -EINVAL;
713 fprintf(stderr, "kvm version not supported\n");
714 goto err;
715 }
716
717 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
718 if (s->vmfd < 0) {
719 #ifdef TARGET_S390X
720 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
721 "your host kernel command line\n");
722 #endif
723 goto err;
724 }
725
726 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
727 if (!missing_cap) {
728 missing_cap =
729 kvm_check_extension_list(s, kvm_arch_required_capabilities);
730 }
731 if (missing_cap) {
732 ret = -EINVAL;
733 fprintf(stderr, "kvm does not support %s\n%s",
734 missing_cap->name, upgrade_note);
735 goto err;
736 }
737
738 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
739
740 s->broken_set_mem_region = 1;
741 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
742 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
743 if (ret > 0) {
744 s->broken_set_mem_region = 0;
745 }
746 #endif
747
748 s->vcpu_events = 0;
749 #ifdef KVM_CAP_VCPU_EVENTS
750 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
751 #endif
752
753 s->robust_singlestep = 0;
754 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
755 s->robust_singlestep =
756 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
757 #endif
758
759 s->debugregs = 0;
760 #ifdef KVM_CAP_DEBUGREGS
761 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
762 #endif
763
764 s->xsave = 0;
765 #ifdef KVM_CAP_XSAVE
766 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
767 #endif
768
769 s->xcrs = 0;
770 #ifdef KVM_CAP_XCRS
771 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
772 #endif
773
774 ret = kvm_arch_init(s);
775 if (ret < 0) {
776 goto err;
777 }
778
779 kvm_state = s;
780 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
781
782 s->many_ioeventfds = kvm_check_many_ioeventfds();
783
784 cpu_interrupt_handler = kvm_handle_interrupt;
785
786 return 0;
787
788 err:
789 if (s) {
790 if (s->vmfd != -1) {
791 close(s->vmfd);
792 }
793 if (s->fd != -1) {
794 close(s->fd);
795 }
796 }
797 qemu_free(s);
798
799 return ret;
800 }
801
802 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
803 uint32_t count)
804 {
805 int i;
806 uint8_t *ptr = data;
807
808 for (i = 0; i < count; i++) {
809 if (direction == KVM_EXIT_IO_IN) {
810 switch (size) {
811 case 1:
812 stb_p(ptr, cpu_inb(port));
813 break;
814 case 2:
815 stw_p(ptr, cpu_inw(port));
816 break;
817 case 4:
818 stl_p(ptr, cpu_inl(port));
819 break;
820 }
821 } else {
822 switch (size) {
823 case 1:
824 cpu_outb(port, ldub_p(ptr));
825 break;
826 case 2:
827 cpu_outw(port, lduw_p(ptr));
828 break;
829 case 4:
830 cpu_outl(port, ldl_p(ptr));
831 break;
832 }
833 }
834
835 ptr += size;
836 }
837 }
838
839 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
840 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
841 {
842 fprintf(stderr, "KVM internal error.");
843 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
844 int i;
845
846 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
847 for (i = 0; i < run->internal.ndata; ++i) {
848 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
849 i, (uint64_t)run->internal.data[i]);
850 }
851 } else {
852 fprintf(stderr, "\n");
853 }
854 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
855 fprintf(stderr, "emulation failure\n");
856 if (!kvm_arch_stop_on_emulation_error(env)) {
857 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
858 return EXCP_INTERRUPT;
859 }
860 }
861 /* FIXME: Should trigger a qmp message to let management know
862 * something went wrong.
863 */
864 return -1;
865 }
866 #endif
867
868 void kvm_flush_coalesced_mmio_buffer(void)
869 {
870 KVMState *s = kvm_state;
871 if (s->coalesced_mmio_ring) {
872 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
873 while (ring->first != ring->last) {
874 struct kvm_coalesced_mmio *ent;
875
876 ent = &ring->coalesced_mmio[ring->first];
877
878 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
879 smp_wmb();
880 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
881 }
882 }
883 }
884
885 static void do_kvm_cpu_synchronize_state(void *_env)
886 {
887 CPUState *env = _env;
888
889 if (!env->kvm_vcpu_dirty) {
890 kvm_arch_get_registers(env);
891 env->kvm_vcpu_dirty = 1;
892 }
893 }
894
895 void kvm_cpu_synchronize_state(CPUState *env)
896 {
897 if (!env->kvm_vcpu_dirty) {
898 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
899 }
900 }
901
902 void kvm_cpu_synchronize_post_reset(CPUState *env)
903 {
904 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
905 env->kvm_vcpu_dirty = 0;
906 }
907
908 void kvm_cpu_synchronize_post_init(CPUState *env)
909 {
910 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
911 env->kvm_vcpu_dirty = 0;
912 }
913
914 int kvm_cpu_exec(CPUState *env)
915 {
916 struct kvm_run *run = env->kvm_run;
917 int ret, run_ret;
918
919 DPRINTF("kvm_cpu_exec()\n");
920
921 if (kvm_arch_process_async_events(env)) {
922 env->exit_request = 0;
923 return EXCP_HLT;
924 }
925
926 cpu_single_env = env;
927
928 do {
929 if (env->kvm_vcpu_dirty) {
930 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
931 env->kvm_vcpu_dirty = 0;
932 }
933
934 kvm_arch_pre_run(env, run);
935 if (env->exit_request) {
936 DPRINTF("interrupt exit requested\n");
937 /*
938 * KVM requires us to reenter the kernel after IO exits to complete
939 * instruction emulation. This self-signal will ensure that we
940 * leave ASAP again.
941 */
942 qemu_cpu_kick_self();
943 }
944 cpu_single_env = NULL;
945 qemu_mutex_unlock_iothread();
946
947 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
948
949 qemu_mutex_lock_iothread();
950 cpu_single_env = env;
951 kvm_arch_post_run(env, run);
952
953 kvm_flush_coalesced_mmio_buffer();
954
955 if (run_ret < 0) {
956 if (run_ret == -EINTR || run_ret == -EAGAIN) {
957 DPRINTF("io window exit\n");
958 ret = EXCP_INTERRUPT;
959 break;
960 }
961 DPRINTF("kvm run failed %s\n", strerror(-run_ret));
962 abort();
963 }
964
965 switch (run->exit_reason) {
966 case KVM_EXIT_IO:
967 DPRINTF("handle_io\n");
968 kvm_handle_io(run->io.port,
969 (uint8_t *)run + run->io.data_offset,
970 run->io.direction,
971 run->io.size,
972 run->io.count);
973 ret = 0;
974 break;
975 case KVM_EXIT_MMIO:
976 DPRINTF("handle_mmio\n");
977 cpu_physical_memory_rw(run->mmio.phys_addr,
978 run->mmio.data,
979 run->mmio.len,
980 run->mmio.is_write);
981 ret = 0;
982 break;
983 case KVM_EXIT_IRQ_WINDOW_OPEN:
984 DPRINTF("irq_window_open\n");
985 ret = EXCP_INTERRUPT;
986 break;
987 case KVM_EXIT_SHUTDOWN:
988 DPRINTF("shutdown\n");
989 qemu_system_reset_request();
990 ret = EXCP_INTERRUPT;
991 break;
992 case KVM_EXIT_UNKNOWN:
993 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
994 (uint64_t)run->hw.hardware_exit_reason);
995 ret = -1;
996 break;
997 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
998 case KVM_EXIT_INTERNAL_ERROR:
999 ret = kvm_handle_internal_error(env, run);
1000 break;
1001 #endif
1002 default:
1003 DPRINTF("kvm_arch_handle_exit\n");
1004 ret = kvm_arch_handle_exit(env, run);
1005 break;
1006 }
1007 } while (ret == 0);
1008
1009 if (ret < 0) {
1010 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1011 vm_stop(VMSTOP_PANIC);
1012 }
1013
1014 env->exit_request = 0;
1015 cpu_single_env = NULL;
1016 return ret;
1017 }
1018
1019 int kvm_ioctl(KVMState *s, int type, ...)
1020 {
1021 int ret;
1022 void *arg;
1023 va_list ap;
1024
1025 va_start(ap, type);
1026 arg = va_arg(ap, void *);
1027 va_end(ap);
1028
1029 ret = ioctl(s->fd, type, arg);
1030 if (ret == -1) {
1031 ret = -errno;
1032 }
1033 return ret;
1034 }
1035
1036 int kvm_vm_ioctl(KVMState *s, int type, ...)
1037 {
1038 int ret;
1039 void *arg;
1040 va_list ap;
1041
1042 va_start(ap, type);
1043 arg = va_arg(ap, void *);
1044 va_end(ap);
1045
1046 ret = ioctl(s->vmfd, type, arg);
1047 if (ret == -1) {
1048 ret = -errno;
1049 }
1050 return ret;
1051 }
1052
1053 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1054 {
1055 int ret;
1056 void *arg;
1057 va_list ap;
1058
1059 va_start(ap, type);
1060 arg = va_arg(ap, void *);
1061 va_end(ap);
1062
1063 ret = ioctl(env->kvm_fd, type, arg);
1064 if (ret == -1) {
1065 ret = -errno;
1066 }
1067 return ret;
1068 }
1069
1070 int kvm_has_sync_mmu(void)
1071 {
1072 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1073 }
1074
1075 int kvm_has_vcpu_events(void)
1076 {
1077 return kvm_state->vcpu_events;
1078 }
1079
1080 int kvm_has_robust_singlestep(void)
1081 {
1082 return kvm_state->robust_singlestep;
1083 }
1084
1085 int kvm_has_debugregs(void)
1086 {
1087 return kvm_state->debugregs;
1088 }
1089
1090 int kvm_has_xsave(void)
1091 {
1092 return kvm_state->xsave;
1093 }
1094
1095 int kvm_has_xcrs(void)
1096 {
1097 return kvm_state->xcrs;
1098 }
1099
1100 int kvm_has_many_ioeventfds(void)
1101 {
1102 if (!kvm_enabled()) {
1103 return 0;
1104 }
1105 return kvm_state->many_ioeventfds;
1106 }
1107
1108 void kvm_setup_guest_memory(void *start, size_t size)
1109 {
1110 if (!kvm_has_sync_mmu()) {
1111 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1112
1113 if (ret) {
1114 perror("qemu_madvise");
1115 fprintf(stderr,
1116 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1117 exit(1);
1118 }
1119 }
1120 }
1121
1122 #ifdef KVM_CAP_SET_GUEST_DEBUG
1123 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1124 target_ulong pc)
1125 {
1126 struct kvm_sw_breakpoint *bp;
1127
1128 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1129 if (bp->pc == pc) {
1130 return bp;
1131 }
1132 }
1133 return NULL;
1134 }
1135
1136 int kvm_sw_breakpoints_active(CPUState *env)
1137 {
1138 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1139 }
1140
1141 struct kvm_set_guest_debug_data {
1142 struct kvm_guest_debug dbg;
1143 CPUState *env;
1144 int err;
1145 };
1146
1147 static void kvm_invoke_set_guest_debug(void *data)
1148 {
1149 struct kvm_set_guest_debug_data *dbg_data = data;
1150 CPUState *env = dbg_data->env;
1151
1152 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1153 }
1154
1155 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1156 {
1157 struct kvm_set_guest_debug_data data;
1158
1159 data.dbg.control = reinject_trap;
1160
1161 if (env->singlestep_enabled) {
1162 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1163 }
1164 kvm_arch_update_guest_debug(env, &data.dbg);
1165 data.env = env;
1166
1167 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1168 return data.err;
1169 }
1170
1171 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1172 target_ulong len, int type)
1173 {
1174 struct kvm_sw_breakpoint *bp;
1175 CPUState *env;
1176 int err;
1177
1178 if (type == GDB_BREAKPOINT_SW) {
1179 bp = kvm_find_sw_breakpoint(current_env, addr);
1180 if (bp) {
1181 bp->use_count++;
1182 return 0;
1183 }
1184
1185 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1186 if (!bp) {
1187 return -ENOMEM;
1188 }
1189
1190 bp->pc = addr;
1191 bp->use_count = 1;
1192 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1193 if (err) {
1194 qemu_free(bp);
1195 return err;
1196 }
1197
1198 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1199 bp, entry);
1200 } else {
1201 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1202 if (err) {
1203 return err;
1204 }
1205 }
1206
1207 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1208 err = kvm_update_guest_debug(env, 0);
1209 if (err) {
1210 return err;
1211 }
1212 }
1213 return 0;
1214 }
1215
1216 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1217 target_ulong len, int type)
1218 {
1219 struct kvm_sw_breakpoint *bp;
1220 CPUState *env;
1221 int err;
1222
1223 if (type == GDB_BREAKPOINT_SW) {
1224 bp = kvm_find_sw_breakpoint(current_env, addr);
1225 if (!bp) {
1226 return -ENOENT;
1227 }
1228
1229 if (bp->use_count > 1) {
1230 bp->use_count--;
1231 return 0;
1232 }
1233
1234 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1235 if (err) {
1236 return err;
1237 }
1238
1239 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1240 qemu_free(bp);
1241 } else {
1242 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1243 if (err) {
1244 return err;
1245 }
1246 }
1247
1248 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1249 err = kvm_update_guest_debug(env, 0);
1250 if (err) {
1251 return err;
1252 }
1253 }
1254 return 0;
1255 }
1256
1257 void kvm_remove_all_breakpoints(CPUState *current_env)
1258 {
1259 struct kvm_sw_breakpoint *bp, *next;
1260 KVMState *s = current_env->kvm_state;
1261 CPUState *env;
1262
1263 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1264 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1265 /* Try harder to find a CPU that currently sees the breakpoint. */
1266 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1267 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1268 break;
1269 }
1270 }
1271 }
1272 }
1273 kvm_arch_remove_all_hw_breakpoints();
1274
1275 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1276 kvm_update_guest_debug(env, 0);
1277 }
1278 }
1279
1280 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1281
1282 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1283 {
1284 return -EINVAL;
1285 }
1286
1287 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1288 target_ulong len, int type)
1289 {
1290 return -EINVAL;
1291 }
1292
1293 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1294 target_ulong len, int type)
1295 {
1296 return -EINVAL;
1297 }
1298
1299 void kvm_remove_all_breakpoints(CPUState *current_env)
1300 {
1301 }
1302 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1303
1304 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1305 {
1306 struct kvm_signal_mask *sigmask;
1307 int r;
1308
1309 if (!sigset) {
1310 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1311 }
1312
1313 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1314
1315 sigmask->len = 8;
1316 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1317 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1318 qemu_free(sigmask);
1319
1320 return r;
1321 }
1322
1323 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1324 {
1325 #ifdef KVM_IOEVENTFD
1326 int ret;
1327 struct kvm_ioeventfd iofd;
1328
1329 iofd.datamatch = val;
1330 iofd.addr = addr;
1331 iofd.len = 4;
1332 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1333 iofd.fd = fd;
1334
1335 if (!kvm_enabled()) {
1336 return -ENOSYS;
1337 }
1338
1339 if (!assign) {
1340 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1341 }
1342
1343 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1344
1345 if (ret < 0) {
1346 return -errno;
1347 }
1348
1349 return 0;
1350 #else
1351 return -ENOSYS;
1352 #endif
1353 }
1354
1355 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1356 {
1357 #ifdef KVM_IOEVENTFD
1358 struct kvm_ioeventfd kick = {
1359 .datamatch = val,
1360 .addr = addr,
1361 .len = 2,
1362 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1363 .fd = fd,
1364 };
1365 int r;
1366 if (!kvm_enabled()) {
1367 return -ENOSYS;
1368 }
1369 if (!assign) {
1370 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1371 }
1372 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1373 if (r < 0) {
1374 return r;
1375 }
1376 return 0;
1377 #else
1378 return -ENOSYS;
1379 #endif
1380 }
1381
1382 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1383 {
1384 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1385 }
1386
1387 int kvm_on_sigbus(int code, void *addr)
1388 {
1389 return kvm_arch_on_sigbus(code, addr);
1390 }