]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
cpus: Fix pausing TCG CPUs while in vCPU thread
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/event_notifier.h"
36
37 /* This check must be after config-host.h is included */
38 #ifdef CONFIG_EVENTFD
39 #include <sys/eventfd.h>
40 #endif
41
42 #ifdef CONFIG_VALGRIND_H
43 #include <valgrind/memcheck.h>
44 #endif
45
46 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
47 #define PAGE_SIZE TARGET_PAGE_SIZE
48
49 //#define DEBUG_KVM
50
51 #ifdef DEBUG_KVM
52 #define DPRINTF(fmt, ...) \
53 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
54 #else
55 #define DPRINTF(fmt, ...) \
56 do { } while (0)
57 #endif
58
59 #define KVM_MSI_HASHTAB_SIZE 256
60
61 typedef struct KVMSlot
62 {
63 hwaddr start_addr;
64 ram_addr_t memory_size;
65 void *ram;
66 int slot;
67 int flags;
68 } KVMSlot;
69
70 typedef struct kvm_dirty_log KVMDirtyLog;
71
72 struct KVMState
73 {
74 KVMSlot slots[32];
75 int fd;
76 int vmfd;
77 int coalesced_mmio;
78 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
79 bool coalesced_flush_in_progress;
80 int broken_set_mem_region;
81 int migration_log;
82 int vcpu_events;
83 int robust_singlestep;
84 int debugregs;
85 #ifdef KVM_CAP_SET_GUEST_DEBUG
86 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
87 #endif
88 int pit_state2;
89 int xsave, xcrs;
90 int many_ioeventfds;
91 int intx_set_mask;
92 /* The man page (and posix) say ioctl numbers are signed int, but
93 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
94 * unsigned, and treating them as signed here can break things */
95 unsigned irq_set_ioctl;
96 #ifdef KVM_CAP_IRQ_ROUTING
97 struct kvm_irq_routing *irq_routes;
98 int nr_allocated_irq_routes;
99 uint32_t *used_gsi_bitmap;
100 unsigned int gsi_count;
101 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
102 bool direct_msi;
103 #endif
104 };
105
106 KVMState *kvm_state;
107 bool kvm_kernel_irqchip;
108 bool kvm_async_interrupts_allowed;
109 bool kvm_irqfds_allowed;
110 bool kvm_msi_via_irqfd_allowed;
111 bool kvm_gsi_routing_allowed;
112 bool kvm_allowed;
113
114 static const KVMCapabilityInfo kvm_required_capabilites[] = {
115 KVM_CAP_INFO(USER_MEMORY),
116 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
117 KVM_CAP_LAST_INFO
118 };
119
120 static KVMSlot *kvm_alloc_slot(KVMState *s)
121 {
122 int i;
123
124 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
125 if (s->slots[i].memory_size == 0) {
126 return &s->slots[i];
127 }
128 }
129
130 fprintf(stderr, "%s: no free slot available\n", __func__);
131 abort();
132 }
133
134 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
135 hwaddr start_addr,
136 hwaddr end_addr)
137 {
138 int i;
139
140 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
141 KVMSlot *mem = &s->slots[i];
142
143 if (start_addr == mem->start_addr &&
144 end_addr == mem->start_addr + mem->memory_size) {
145 return mem;
146 }
147 }
148
149 return NULL;
150 }
151
152 /*
153 * Find overlapping slot with lowest start address
154 */
155 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
156 hwaddr start_addr,
157 hwaddr end_addr)
158 {
159 KVMSlot *found = NULL;
160 int i;
161
162 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
163 KVMSlot *mem = &s->slots[i];
164
165 if (mem->memory_size == 0 ||
166 (found && found->start_addr < mem->start_addr)) {
167 continue;
168 }
169
170 if (end_addr > mem->start_addr &&
171 start_addr < mem->start_addr + mem->memory_size) {
172 found = mem;
173 }
174 }
175
176 return found;
177 }
178
179 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
180 hwaddr *phys_addr)
181 {
182 int i;
183
184 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
185 KVMSlot *mem = &s->slots[i];
186
187 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
188 *phys_addr = mem->start_addr + (ram - mem->ram);
189 return 1;
190 }
191 }
192
193 return 0;
194 }
195
196 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
197 {
198 struct kvm_userspace_memory_region mem;
199
200 mem.slot = slot->slot;
201 mem.guest_phys_addr = slot->start_addr;
202 mem.memory_size = slot->memory_size;
203 mem.userspace_addr = (unsigned long)slot->ram;
204 mem.flags = slot->flags;
205 if (s->migration_log) {
206 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
207 }
208 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
209 }
210
211 static void kvm_reset_vcpu(void *opaque)
212 {
213 CPUState *cpu = opaque;
214
215 kvm_arch_reset_vcpu(cpu);
216 }
217
218 int kvm_init_vcpu(CPUState *cpu)
219 {
220 KVMState *s = kvm_state;
221 long mmap_size;
222 int ret;
223
224 DPRINTF("kvm_init_vcpu\n");
225
226 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
227 if (ret < 0) {
228 DPRINTF("kvm_create_vcpu failed\n");
229 goto err;
230 }
231
232 cpu->kvm_fd = ret;
233 cpu->kvm_state = s;
234 cpu->kvm_vcpu_dirty = true;
235
236 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
237 if (mmap_size < 0) {
238 ret = mmap_size;
239 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
240 goto err;
241 }
242
243 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
244 cpu->kvm_fd, 0);
245 if (cpu->kvm_run == MAP_FAILED) {
246 ret = -errno;
247 DPRINTF("mmap'ing vcpu state failed\n");
248 goto err;
249 }
250
251 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
252 s->coalesced_mmio_ring =
253 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
254 }
255
256 ret = kvm_arch_init_vcpu(cpu);
257 if (ret == 0) {
258 qemu_register_reset(kvm_reset_vcpu, cpu);
259 kvm_arch_reset_vcpu(cpu);
260 }
261 err:
262 return ret;
263 }
264
265 /*
266 * dirty pages logging control
267 */
268
269 static int kvm_mem_flags(KVMState *s, bool log_dirty)
270 {
271 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
272 }
273
274 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
275 {
276 KVMState *s = kvm_state;
277 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
278 int old_flags;
279
280 old_flags = mem->flags;
281
282 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
283 mem->flags = flags;
284
285 /* If nothing changed effectively, no need to issue ioctl */
286 if (s->migration_log) {
287 flags |= KVM_MEM_LOG_DIRTY_PAGES;
288 }
289
290 if (flags == old_flags) {
291 return 0;
292 }
293
294 return kvm_set_user_memory_region(s, mem);
295 }
296
297 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
298 ram_addr_t size, bool log_dirty)
299 {
300 KVMState *s = kvm_state;
301 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
302
303 if (mem == NULL) {
304 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
305 TARGET_FMT_plx "\n", __func__, phys_addr,
306 (hwaddr)(phys_addr + size - 1));
307 return -EINVAL;
308 }
309 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
310 }
311
312 static void kvm_log_start(MemoryListener *listener,
313 MemoryRegionSection *section)
314 {
315 int r;
316
317 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
318 section->size, true);
319 if (r < 0) {
320 abort();
321 }
322 }
323
324 static void kvm_log_stop(MemoryListener *listener,
325 MemoryRegionSection *section)
326 {
327 int r;
328
329 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
330 section->size, false);
331 if (r < 0) {
332 abort();
333 }
334 }
335
336 static int kvm_set_migration_log(int enable)
337 {
338 KVMState *s = kvm_state;
339 KVMSlot *mem;
340 int i, err;
341
342 s->migration_log = enable;
343
344 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
345 mem = &s->slots[i];
346
347 if (!mem->memory_size) {
348 continue;
349 }
350 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
351 continue;
352 }
353 err = kvm_set_user_memory_region(s, mem);
354 if (err) {
355 return err;
356 }
357 }
358 return 0;
359 }
360
361 /* get kvm's dirty pages bitmap and update qemu's */
362 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
363 unsigned long *bitmap)
364 {
365 unsigned int i, j;
366 unsigned long page_number, c;
367 hwaddr addr, addr1;
368 unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
369 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
370
371 /*
372 * bitmap-traveling is faster than memory-traveling (for addr...)
373 * especially when most of the memory is not dirty.
374 */
375 for (i = 0; i < len; i++) {
376 if (bitmap[i] != 0) {
377 c = leul_to_cpu(bitmap[i]);
378 do {
379 j = ffsl(c) - 1;
380 c &= ~(1ul << j);
381 page_number = (i * HOST_LONG_BITS + j) * hpratio;
382 addr1 = page_number * TARGET_PAGE_SIZE;
383 addr = section->offset_within_region + addr1;
384 memory_region_set_dirty(section->mr, addr,
385 TARGET_PAGE_SIZE * hpratio);
386 } while (c != 0);
387 }
388 }
389 return 0;
390 }
391
392 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
393
394 /**
395 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
396 * This function updates qemu's dirty bitmap using
397 * memory_region_set_dirty(). This means all bits are set
398 * to dirty.
399 *
400 * @start_add: start of logged region.
401 * @end_addr: end of logged region.
402 */
403 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
404 {
405 KVMState *s = kvm_state;
406 unsigned long size, allocated_size = 0;
407 KVMDirtyLog d;
408 KVMSlot *mem;
409 int ret = 0;
410 hwaddr start_addr = section->offset_within_address_space;
411 hwaddr end_addr = start_addr + section->size;
412
413 d.dirty_bitmap = NULL;
414 while (start_addr < end_addr) {
415 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
416 if (mem == NULL) {
417 break;
418 }
419
420 /* XXX bad kernel interface alert
421 * For dirty bitmap, kernel allocates array of size aligned to
422 * bits-per-long. But for case when the kernel is 64bits and
423 * the userspace is 32bits, userspace can't align to the same
424 * bits-per-long, since sizeof(long) is different between kernel
425 * and user space. This way, userspace will provide buffer which
426 * may be 4 bytes less than the kernel will use, resulting in
427 * userspace memory corruption (which is not detectable by valgrind
428 * too, in most cases).
429 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
430 * a hope that sizeof(long) wont become >8 any time soon.
431 */
432 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
433 /*HOST_LONG_BITS*/ 64) / 8;
434 if (!d.dirty_bitmap) {
435 d.dirty_bitmap = g_malloc(size);
436 } else if (size > allocated_size) {
437 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
438 }
439 allocated_size = size;
440 memset(d.dirty_bitmap, 0, allocated_size);
441
442 d.slot = mem->slot;
443
444 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
445 DPRINTF("ioctl failed %d\n", errno);
446 ret = -1;
447 break;
448 }
449
450 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
451 start_addr = mem->start_addr + mem->memory_size;
452 }
453 g_free(d.dirty_bitmap);
454
455 return ret;
456 }
457
458 static void kvm_coalesce_mmio_region(MemoryListener *listener,
459 MemoryRegionSection *secion,
460 hwaddr start, hwaddr size)
461 {
462 KVMState *s = kvm_state;
463
464 if (s->coalesced_mmio) {
465 struct kvm_coalesced_mmio_zone zone;
466
467 zone.addr = start;
468 zone.size = size;
469 zone.pad = 0;
470
471 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
472 }
473 }
474
475 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
476 MemoryRegionSection *secion,
477 hwaddr start, hwaddr size)
478 {
479 KVMState *s = kvm_state;
480
481 if (s->coalesced_mmio) {
482 struct kvm_coalesced_mmio_zone zone;
483
484 zone.addr = start;
485 zone.size = size;
486 zone.pad = 0;
487
488 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
489 }
490 }
491
492 int kvm_check_extension(KVMState *s, unsigned int extension)
493 {
494 int ret;
495
496 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
497 if (ret < 0) {
498 ret = 0;
499 }
500
501 return ret;
502 }
503
504 static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val,
505 bool assign, uint32_t size, bool datamatch)
506 {
507 int ret;
508 struct kvm_ioeventfd iofd;
509
510 iofd.datamatch = datamatch ? val : 0;
511 iofd.addr = addr;
512 iofd.len = size;
513 iofd.flags = 0;
514 iofd.fd = fd;
515
516 if (!kvm_enabled()) {
517 return -ENOSYS;
518 }
519
520 if (datamatch) {
521 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
522 }
523 if (!assign) {
524 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
525 }
526
527 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
528
529 if (ret < 0) {
530 return -errno;
531 }
532
533 return 0;
534 }
535
536 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
537 bool assign, uint32_t size, bool datamatch)
538 {
539 struct kvm_ioeventfd kick = {
540 .datamatch = datamatch ? val : 0,
541 .addr = addr,
542 .flags = KVM_IOEVENTFD_FLAG_PIO,
543 .len = size,
544 .fd = fd,
545 };
546 int r;
547 if (!kvm_enabled()) {
548 return -ENOSYS;
549 }
550 if (datamatch) {
551 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
552 }
553 if (!assign) {
554 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
555 }
556 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
557 if (r < 0) {
558 return r;
559 }
560 return 0;
561 }
562
563
564 static int kvm_check_many_ioeventfds(void)
565 {
566 /* Userspace can use ioeventfd for io notification. This requires a host
567 * that supports eventfd(2) and an I/O thread; since eventfd does not
568 * support SIGIO it cannot interrupt the vcpu.
569 *
570 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
571 * can avoid creating too many ioeventfds.
572 */
573 #if defined(CONFIG_EVENTFD)
574 int ioeventfds[7];
575 int i, ret = 0;
576 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
577 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
578 if (ioeventfds[i] < 0) {
579 break;
580 }
581 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
582 if (ret < 0) {
583 close(ioeventfds[i]);
584 break;
585 }
586 }
587
588 /* Decide whether many devices are supported or not */
589 ret = i == ARRAY_SIZE(ioeventfds);
590
591 while (i-- > 0) {
592 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
593 close(ioeventfds[i]);
594 }
595 return ret;
596 #else
597 return 0;
598 #endif
599 }
600
601 static const KVMCapabilityInfo *
602 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
603 {
604 while (list->name) {
605 if (!kvm_check_extension(s, list->value)) {
606 return list;
607 }
608 list++;
609 }
610 return NULL;
611 }
612
613 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
614 {
615 KVMState *s = kvm_state;
616 KVMSlot *mem, old;
617 int err;
618 MemoryRegion *mr = section->mr;
619 bool log_dirty = memory_region_is_logging(mr);
620 hwaddr start_addr = section->offset_within_address_space;
621 ram_addr_t size = section->size;
622 void *ram = NULL;
623 unsigned delta;
624
625 /* kvm works in page size chunks, but the function may be called
626 with sub-page size and unaligned start address. */
627 delta = TARGET_PAGE_ALIGN(size) - size;
628 if (delta > size) {
629 return;
630 }
631 start_addr += delta;
632 size -= delta;
633 size &= TARGET_PAGE_MASK;
634 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
635 return;
636 }
637
638 if (!memory_region_is_ram(mr)) {
639 return;
640 }
641
642 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
643
644 while (1) {
645 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
646 if (!mem) {
647 break;
648 }
649
650 if (add && start_addr >= mem->start_addr &&
651 (start_addr + size <= mem->start_addr + mem->memory_size) &&
652 (ram - start_addr == mem->ram - mem->start_addr)) {
653 /* The new slot fits into the existing one and comes with
654 * identical parameters - update flags and done. */
655 kvm_slot_dirty_pages_log_change(mem, log_dirty);
656 return;
657 }
658
659 old = *mem;
660
661 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
662 kvm_physical_sync_dirty_bitmap(section);
663 }
664
665 /* unregister the overlapping slot */
666 mem->memory_size = 0;
667 err = kvm_set_user_memory_region(s, mem);
668 if (err) {
669 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
670 __func__, strerror(-err));
671 abort();
672 }
673
674 /* Workaround for older KVM versions: we can't join slots, even not by
675 * unregistering the previous ones and then registering the larger
676 * slot. We have to maintain the existing fragmentation. Sigh.
677 *
678 * This workaround assumes that the new slot starts at the same
679 * address as the first existing one. If not or if some overlapping
680 * slot comes around later, we will fail (not seen in practice so far)
681 * - and actually require a recent KVM version. */
682 if (s->broken_set_mem_region &&
683 old.start_addr == start_addr && old.memory_size < size && add) {
684 mem = kvm_alloc_slot(s);
685 mem->memory_size = old.memory_size;
686 mem->start_addr = old.start_addr;
687 mem->ram = old.ram;
688 mem->flags = kvm_mem_flags(s, log_dirty);
689
690 err = kvm_set_user_memory_region(s, mem);
691 if (err) {
692 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
693 strerror(-err));
694 abort();
695 }
696
697 start_addr += old.memory_size;
698 ram += old.memory_size;
699 size -= old.memory_size;
700 continue;
701 }
702
703 /* register prefix slot */
704 if (old.start_addr < start_addr) {
705 mem = kvm_alloc_slot(s);
706 mem->memory_size = start_addr - old.start_addr;
707 mem->start_addr = old.start_addr;
708 mem->ram = old.ram;
709 mem->flags = kvm_mem_flags(s, log_dirty);
710
711 err = kvm_set_user_memory_region(s, mem);
712 if (err) {
713 fprintf(stderr, "%s: error registering prefix slot: %s\n",
714 __func__, strerror(-err));
715 #ifdef TARGET_PPC
716 fprintf(stderr, "%s: This is probably because your kernel's " \
717 "PAGE_SIZE is too big. Please try to use 4k " \
718 "PAGE_SIZE!\n", __func__);
719 #endif
720 abort();
721 }
722 }
723
724 /* register suffix slot */
725 if (old.start_addr + old.memory_size > start_addr + size) {
726 ram_addr_t size_delta;
727
728 mem = kvm_alloc_slot(s);
729 mem->start_addr = start_addr + size;
730 size_delta = mem->start_addr - old.start_addr;
731 mem->memory_size = old.memory_size - size_delta;
732 mem->ram = old.ram + size_delta;
733 mem->flags = kvm_mem_flags(s, log_dirty);
734
735 err = kvm_set_user_memory_region(s, mem);
736 if (err) {
737 fprintf(stderr, "%s: error registering suffix slot: %s\n",
738 __func__, strerror(-err));
739 abort();
740 }
741 }
742 }
743
744 /* in case the KVM bug workaround already "consumed" the new slot */
745 if (!size) {
746 return;
747 }
748 if (!add) {
749 return;
750 }
751 mem = kvm_alloc_slot(s);
752 mem->memory_size = size;
753 mem->start_addr = start_addr;
754 mem->ram = ram;
755 mem->flags = kvm_mem_flags(s, log_dirty);
756
757 err = kvm_set_user_memory_region(s, mem);
758 if (err) {
759 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
760 strerror(-err));
761 abort();
762 }
763 }
764
765 static void kvm_region_add(MemoryListener *listener,
766 MemoryRegionSection *section)
767 {
768 kvm_set_phys_mem(section, true);
769 }
770
771 static void kvm_region_del(MemoryListener *listener,
772 MemoryRegionSection *section)
773 {
774 kvm_set_phys_mem(section, false);
775 }
776
777 static void kvm_log_sync(MemoryListener *listener,
778 MemoryRegionSection *section)
779 {
780 int r;
781
782 r = kvm_physical_sync_dirty_bitmap(section);
783 if (r < 0) {
784 abort();
785 }
786 }
787
788 static void kvm_log_global_start(struct MemoryListener *listener)
789 {
790 int r;
791
792 r = kvm_set_migration_log(1);
793 assert(r >= 0);
794 }
795
796 static void kvm_log_global_stop(struct MemoryListener *listener)
797 {
798 int r;
799
800 r = kvm_set_migration_log(0);
801 assert(r >= 0);
802 }
803
804 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
805 MemoryRegionSection *section,
806 bool match_data, uint64_t data,
807 EventNotifier *e)
808 {
809 int fd = event_notifier_get_fd(e);
810 int r;
811
812 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
813 data, true, section->size, match_data);
814 if (r < 0) {
815 abort();
816 }
817 }
818
819 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
820 MemoryRegionSection *section,
821 bool match_data, uint64_t data,
822 EventNotifier *e)
823 {
824 int fd = event_notifier_get_fd(e);
825 int r;
826
827 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
828 data, false, section->size, match_data);
829 if (r < 0) {
830 abort();
831 }
832 }
833
834 static void kvm_io_ioeventfd_add(MemoryListener *listener,
835 MemoryRegionSection *section,
836 bool match_data, uint64_t data,
837 EventNotifier *e)
838 {
839 int fd = event_notifier_get_fd(e);
840 int r;
841
842 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
843 data, true, section->size, match_data);
844 if (r < 0) {
845 abort();
846 }
847 }
848
849 static void kvm_io_ioeventfd_del(MemoryListener *listener,
850 MemoryRegionSection *section,
851 bool match_data, uint64_t data,
852 EventNotifier *e)
853
854 {
855 int fd = event_notifier_get_fd(e);
856 int r;
857
858 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
859 data, false, section->size, match_data);
860 if (r < 0) {
861 abort();
862 }
863 }
864
865 static MemoryListener kvm_memory_listener = {
866 .region_add = kvm_region_add,
867 .region_del = kvm_region_del,
868 .log_start = kvm_log_start,
869 .log_stop = kvm_log_stop,
870 .log_sync = kvm_log_sync,
871 .log_global_start = kvm_log_global_start,
872 .log_global_stop = kvm_log_global_stop,
873 .eventfd_add = kvm_mem_ioeventfd_add,
874 .eventfd_del = kvm_mem_ioeventfd_del,
875 .coalesced_mmio_add = kvm_coalesce_mmio_region,
876 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
877 .priority = 10,
878 };
879
880 static MemoryListener kvm_io_listener = {
881 .eventfd_add = kvm_io_ioeventfd_add,
882 .eventfd_del = kvm_io_ioeventfd_del,
883 .priority = 10,
884 };
885
886 static void kvm_handle_interrupt(CPUState *cpu, int mask)
887 {
888 cpu->interrupt_request |= mask;
889
890 if (!qemu_cpu_is_self(cpu)) {
891 qemu_cpu_kick(cpu);
892 }
893 }
894
895 int kvm_set_irq(KVMState *s, int irq, int level)
896 {
897 struct kvm_irq_level event;
898 int ret;
899
900 assert(kvm_async_interrupts_enabled());
901
902 event.level = level;
903 event.irq = irq;
904 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
905 if (ret < 0) {
906 perror("kvm_set_irq");
907 abort();
908 }
909
910 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
911 }
912
913 #ifdef KVM_CAP_IRQ_ROUTING
914 typedef struct KVMMSIRoute {
915 struct kvm_irq_routing_entry kroute;
916 QTAILQ_ENTRY(KVMMSIRoute) entry;
917 } KVMMSIRoute;
918
919 static void set_gsi(KVMState *s, unsigned int gsi)
920 {
921 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
922 }
923
924 static void clear_gsi(KVMState *s, unsigned int gsi)
925 {
926 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
927 }
928
929 static void kvm_init_irq_routing(KVMState *s)
930 {
931 int gsi_count, i;
932
933 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
934 if (gsi_count > 0) {
935 unsigned int gsi_bits, i;
936
937 /* Round up so we can search ints using ffs */
938 gsi_bits = ALIGN(gsi_count, 32);
939 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
940 s->gsi_count = gsi_count;
941
942 /* Mark any over-allocated bits as already in use */
943 for (i = gsi_count; i < gsi_bits; i++) {
944 set_gsi(s, i);
945 }
946 }
947
948 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
949 s->nr_allocated_irq_routes = 0;
950
951 if (!s->direct_msi) {
952 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
953 QTAILQ_INIT(&s->msi_hashtab[i]);
954 }
955 }
956
957 kvm_arch_init_irq_routing(s);
958 }
959
960 static void kvm_irqchip_commit_routes(KVMState *s)
961 {
962 int ret;
963
964 s->irq_routes->flags = 0;
965 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
966 assert(ret == 0);
967 }
968
969 static void kvm_add_routing_entry(KVMState *s,
970 struct kvm_irq_routing_entry *entry)
971 {
972 struct kvm_irq_routing_entry *new;
973 int n, size;
974
975 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
976 n = s->nr_allocated_irq_routes * 2;
977 if (n < 64) {
978 n = 64;
979 }
980 size = sizeof(struct kvm_irq_routing);
981 size += n * sizeof(*new);
982 s->irq_routes = g_realloc(s->irq_routes, size);
983 s->nr_allocated_irq_routes = n;
984 }
985 n = s->irq_routes->nr++;
986 new = &s->irq_routes->entries[n];
987 memset(new, 0, sizeof(*new));
988 new->gsi = entry->gsi;
989 new->type = entry->type;
990 new->flags = entry->flags;
991 new->u = entry->u;
992
993 set_gsi(s, entry->gsi);
994
995 kvm_irqchip_commit_routes(s);
996 }
997
998 static int kvm_update_routing_entry(KVMState *s,
999 struct kvm_irq_routing_entry *new_entry)
1000 {
1001 struct kvm_irq_routing_entry *entry;
1002 int n;
1003
1004 for (n = 0; n < s->irq_routes->nr; n++) {
1005 entry = &s->irq_routes->entries[n];
1006 if (entry->gsi != new_entry->gsi) {
1007 continue;
1008 }
1009
1010 entry->type = new_entry->type;
1011 entry->flags = new_entry->flags;
1012 entry->u = new_entry->u;
1013
1014 kvm_irqchip_commit_routes(s);
1015
1016 return 0;
1017 }
1018
1019 return -ESRCH;
1020 }
1021
1022 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1023 {
1024 struct kvm_irq_routing_entry e;
1025
1026 assert(pin < s->gsi_count);
1027
1028 e.gsi = irq;
1029 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1030 e.flags = 0;
1031 e.u.irqchip.irqchip = irqchip;
1032 e.u.irqchip.pin = pin;
1033 kvm_add_routing_entry(s, &e);
1034 }
1035
1036 void kvm_irqchip_release_virq(KVMState *s, int virq)
1037 {
1038 struct kvm_irq_routing_entry *e;
1039 int i;
1040
1041 for (i = 0; i < s->irq_routes->nr; i++) {
1042 e = &s->irq_routes->entries[i];
1043 if (e->gsi == virq) {
1044 s->irq_routes->nr--;
1045 *e = s->irq_routes->entries[s->irq_routes->nr];
1046 }
1047 }
1048 clear_gsi(s, virq);
1049 }
1050
1051 static unsigned int kvm_hash_msi(uint32_t data)
1052 {
1053 /* This is optimized for IA32 MSI layout. However, no other arch shall
1054 * repeat the mistake of not providing a direct MSI injection API. */
1055 return data & 0xff;
1056 }
1057
1058 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1059 {
1060 KVMMSIRoute *route, *next;
1061 unsigned int hash;
1062
1063 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1064 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1065 kvm_irqchip_release_virq(s, route->kroute.gsi);
1066 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1067 g_free(route);
1068 }
1069 }
1070 }
1071
1072 static int kvm_irqchip_get_virq(KVMState *s)
1073 {
1074 uint32_t *word = s->used_gsi_bitmap;
1075 int max_words = ALIGN(s->gsi_count, 32) / 32;
1076 int i, bit;
1077 bool retry = true;
1078
1079 again:
1080 /* Return the lowest unused GSI in the bitmap */
1081 for (i = 0; i < max_words; i++) {
1082 bit = ffs(~word[i]);
1083 if (!bit) {
1084 continue;
1085 }
1086
1087 return bit - 1 + i * 32;
1088 }
1089 if (!s->direct_msi && retry) {
1090 retry = false;
1091 kvm_flush_dynamic_msi_routes(s);
1092 goto again;
1093 }
1094 return -ENOSPC;
1095
1096 }
1097
1098 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1099 {
1100 unsigned int hash = kvm_hash_msi(msg.data);
1101 KVMMSIRoute *route;
1102
1103 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1104 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1105 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1106 route->kroute.u.msi.data == msg.data) {
1107 return route;
1108 }
1109 }
1110 return NULL;
1111 }
1112
1113 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1114 {
1115 struct kvm_msi msi;
1116 KVMMSIRoute *route;
1117
1118 if (s->direct_msi) {
1119 msi.address_lo = (uint32_t)msg.address;
1120 msi.address_hi = msg.address >> 32;
1121 msi.data = msg.data;
1122 msi.flags = 0;
1123 memset(msi.pad, 0, sizeof(msi.pad));
1124
1125 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1126 }
1127
1128 route = kvm_lookup_msi_route(s, msg);
1129 if (!route) {
1130 int virq;
1131
1132 virq = kvm_irqchip_get_virq(s);
1133 if (virq < 0) {
1134 return virq;
1135 }
1136
1137 route = g_malloc(sizeof(KVMMSIRoute));
1138 route->kroute.gsi = virq;
1139 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1140 route->kroute.flags = 0;
1141 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1142 route->kroute.u.msi.address_hi = msg.address >> 32;
1143 route->kroute.u.msi.data = msg.data;
1144
1145 kvm_add_routing_entry(s, &route->kroute);
1146
1147 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1148 entry);
1149 }
1150
1151 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1152
1153 return kvm_set_irq(s, route->kroute.gsi, 1);
1154 }
1155
1156 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1157 {
1158 struct kvm_irq_routing_entry kroute;
1159 int virq;
1160
1161 if (!kvm_gsi_routing_enabled()) {
1162 return -ENOSYS;
1163 }
1164
1165 virq = kvm_irqchip_get_virq(s);
1166 if (virq < 0) {
1167 return virq;
1168 }
1169
1170 kroute.gsi = virq;
1171 kroute.type = KVM_IRQ_ROUTING_MSI;
1172 kroute.flags = 0;
1173 kroute.u.msi.address_lo = (uint32_t)msg.address;
1174 kroute.u.msi.address_hi = msg.address >> 32;
1175 kroute.u.msi.data = msg.data;
1176
1177 kvm_add_routing_entry(s, &kroute);
1178
1179 return virq;
1180 }
1181
1182 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1183 {
1184 struct kvm_irq_routing_entry kroute;
1185
1186 if (!kvm_irqchip_in_kernel()) {
1187 return -ENOSYS;
1188 }
1189
1190 kroute.gsi = virq;
1191 kroute.type = KVM_IRQ_ROUTING_MSI;
1192 kroute.flags = 0;
1193 kroute.u.msi.address_lo = (uint32_t)msg.address;
1194 kroute.u.msi.address_hi = msg.address >> 32;
1195 kroute.u.msi.data = msg.data;
1196
1197 return kvm_update_routing_entry(s, &kroute);
1198 }
1199
1200 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1201 {
1202 struct kvm_irqfd irqfd = {
1203 .fd = fd,
1204 .gsi = virq,
1205 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1206 };
1207
1208 if (!kvm_irqfds_enabled()) {
1209 return -ENOSYS;
1210 }
1211
1212 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1213 }
1214
1215 #else /* !KVM_CAP_IRQ_ROUTING */
1216
1217 static void kvm_init_irq_routing(KVMState *s)
1218 {
1219 }
1220
1221 void kvm_irqchip_release_virq(KVMState *s, int virq)
1222 {
1223 }
1224
1225 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1226 {
1227 abort();
1228 }
1229
1230 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1231 {
1232 return -ENOSYS;
1233 }
1234
1235 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1236 {
1237 abort();
1238 }
1239
1240 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1241 {
1242 return -ENOSYS;
1243 }
1244 #endif /* !KVM_CAP_IRQ_ROUTING */
1245
1246 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1247 {
1248 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
1249 }
1250
1251 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1252 {
1253 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
1254 }
1255
1256 static int kvm_irqchip_create(KVMState *s)
1257 {
1258 QemuOptsList *list = qemu_find_opts("machine");
1259 int ret;
1260
1261 if (QTAILQ_EMPTY(&list->head) ||
1262 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1263 "kernel_irqchip", true) ||
1264 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1265 return 0;
1266 }
1267
1268 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1269 if (ret < 0) {
1270 fprintf(stderr, "Create kernel irqchip failed\n");
1271 return ret;
1272 }
1273
1274 kvm_kernel_irqchip = true;
1275 /* If we have an in-kernel IRQ chip then we must have asynchronous
1276 * interrupt delivery (though the reverse is not necessarily true)
1277 */
1278 kvm_async_interrupts_allowed = true;
1279
1280 kvm_init_irq_routing(s);
1281
1282 return 0;
1283 }
1284
1285 static int kvm_max_vcpus(KVMState *s)
1286 {
1287 int ret;
1288
1289 /* Find number of supported CPUs using the recommended
1290 * procedure from the kernel API documentation to cope with
1291 * older kernels that may be missing capabilities.
1292 */
1293 ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1294 if (ret) {
1295 return ret;
1296 }
1297 ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1298 if (ret) {
1299 return ret;
1300 }
1301
1302 return 4;
1303 }
1304
1305 int kvm_init(void)
1306 {
1307 static const char upgrade_note[] =
1308 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1309 "(see http://sourceforge.net/projects/kvm).\n";
1310 KVMState *s;
1311 const KVMCapabilityInfo *missing_cap;
1312 int ret;
1313 int i;
1314 int max_vcpus;
1315
1316 s = g_malloc0(sizeof(KVMState));
1317
1318 /*
1319 * On systems where the kernel can support different base page
1320 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1321 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1322 * page size for the system though.
1323 */
1324 assert(TARGET_PAGE_SIZE <= getpagesize());
1325
1326 #ifdef KVM_CAP_SET_GUEST_DEBUG
1327 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1328 #endif
1329 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1330 s->slots[i].slot = i;
1331 }
1332 s->vmfd = -1;
1333 s->fd = qemu_open("/dev/kvm", O_RDWR);
1334 if (s->fd == -1) {
1335 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1336 ret = -errno;
1337 goto err;
1338 }
1339
1340 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1341 if (ret < KVM_API_VERSION) {
1342 if (ret > 0) {
1343 ret = -EINVAL;
1344 }
1345 fprintf(stderr, "kvm version too old\n");
1346 goto err;
1347 }
1348
1349 if (ret > KVM_API_VERSION) {
1350 ret = -EINVAL;
1351 fprintf(stderr, "kvm version not supported\n");
1352 goto err;
1353 }
1354
1355 max_vcpus = kvm_max_vcpus(s);
1356 if (smp_cpus > max_vcpus) {
1357 ret = -EINVAL;
1358 fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1359 "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1360 goto err;
1361 }
1362
1363 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1364 if (s->vmfd < 0) {
1365 #ifdef TARGET_S390X
1366 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1367 "your host kernel command line\n");
1368 #endif
1369 ret = s->vmfd;
1370 goto err;
1371 }
1372
1373 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1374 if (!missing_cap) {
1375 missing_cap =
1376 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1377 }
1378 if (missing_cap) {
1379 ret = -EINVAL;
1380 fprintf(stderr, "kvm does not support %s\n%s",
1381 missing_cap->name, upgrade_note);
1382 goto err;
1383 }
1384
1385 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1386
1387 s->broken_set_mem_region = 1;
1388 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1389 if (ret > 0) {
1390 s->broken_set_mem_region = 0;
1391 }
1392
1393 #ifdef KVM_CAP_VCPU_EVENTS
1394 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1395 #endif
1396
1397 s->robust_singlestep =
1398 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1399
1400 #ifdef KVM_CAP_DEBUGREGS
1401 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1402 #endif
1403
1404 #ifdef KVM_CAP_XSAVE
1405 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1406 #endif
1407
1408 #ifdef KVM_CAP_XCRS
1409 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1410 #endif
1411
1412 #ifdef KVM_CAP_PIT_STATE2
1413 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1414 #endif
1415
1416 #ifdef KVM_CAP_IRQ_ROUTING
1417 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1418 #endif
1419
1420 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1421
1422 s->irq_set_ioctl = KVM_IRQ_LINE;
1423 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1424 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1425 }
1426
1427 ret = kvm_arch_init(s);
1428 if (ret < 0) {
1429 goto err;
1430 }
1431
1432 ret = kvm_irqchip_create(s);
1433 if (ret < 0) {
1434 goto err;
1435 }
1436
1437 kvm_state = s;
1438 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1439 memory_listener_register(&kvm_io_listener, &address_space_io);
1440
1441 s->many_ioeventfds = kvm_check_many_ioeventfds();
1442
1443 cpu_interrupt_handler = kvm_handle_interrupt;
1444
1445 return 0;
1446
1447 err:
1448 if (s->vmfd >= 0) {
1449 close(s->vmfd);
1450 }
1451 if (s->fd != -1) {
1452 close(s->fd);
1453 }
1454 g_free(s);
1455
1456 return ret;
1457 }
1458
1459 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1460 uint32_t count)
1461 {
1462 int i;
1463 uint8_t *ptr = data;
1464
1465 for (i = 0; i < count; i++) {
1466 if (direction == KVM_EXIT_IO_IN) {
1467 switch (size) {
1468 case 1:
1469 stb_p(ptr, cpu_inb(port));
1470 break;
1471 case 2:
1472 stw_p(ptr, cpu_inw(port));
1473 break;
1474 case 4:
1475 stl_p(ptr, cpu_inl(port));
1476 break;
1477 }
1478 } else {
1479 switch (size) {
1480 case 1:
1481 cpu_outb(port, ldub_p(ptr));
1482 break;
1483 case 2:
1484 cpu_outw(port, lduw_p(ptr));
1485 break;
1486 case 4:
1487 cpu_outl(port, ldl_p(ptr));
1488 break;
1489 }
1490 }
1491
1492 ptr += size;
1493 }
1494 }
1495
1496 static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1497 {
1498 CPUState *cpu = ENV_GET_CPU(env);
1499
1500 fprintf(stderr, "KVM internal error.");
1501 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1502 int i;
1503
1504 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1505 for (i = 0; i < run->internal.ndata; ++i) {
1506 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1507 i, (uint64_t)run->internal.data[i]);
1508 }
1509 } else {
1510 fprintf(stderr, "\n");
1511 }
1512 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1513 fprintf(stderr, "emulation failure\n");
1514 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1515 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1516 return EXCP_INTERRUPT;
1517 }
1518 }
1519 /* FIXME: Should trigger a qmp message to let management know
1520 * something went wrong.
1521 */
1522 return -1;
1523 }
1524
1525 void kvm_flush_coalesced_mmio_buffer(void)
1526 {
1527 KVMState *s = kvm_state;
1528
1529 if (s->coalesced_flush_in_progress) {
1530 return;
1531 }
1532
1533 s->coalesced_flush_in_progress = true;
1534
1535 if (s->coalesced_mmio_ring) {
1536 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1537 while (ring->first != ring->last) {
1538 struct kvm_coalesced_mmio *ent;
1539
1540 ent = &ring->coalesced_mmio[ring->first];
1541
1542 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1543 smp_wmb();
1544 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1545 }
1546 }
1547
1548 s->coalesced_flush_in_progress = false;
1549 }
1550
1551 static void do_kvm_cpu_synchronize_state(void *arg)
1552 {
1553 CPUState *cpu = arg;
1554
1555 if (!cpu->kvm_vcpu_dirty) {
1556 kvm_arch_get_registers(cpu);
1557 cpu->kvm_vcpu_dirty = true;
1558 }
1559 }
1560
1561 void kvm_cpu_synchronize_state(CPUArchState *env)
1562 {
1563 CPUState *cpu = ENV_GET_CPU(env);
1564
1565 if (!cpu->kvm_vcpu_dirty) {
1566 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1567 }
1568 }
1569
1570 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1571 {
1572 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1573 cpu->kvm_vcpu_dirty = false;
1574 }
1575
1576 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1577 {
1578 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1579 cpu->kvm_vcpu_dirty = false;
1580 }
1581
1582 int kvm_cpu_exec(CPUArchState *env)
1583 {
1584 CPUState *cpu = ENV_GET_CPU(env);
1585 struct kvm_run *run = cpu->kvm_run;
1586 int ret, run_ret;
1587
1588 DPRINTF("kvm_cpu_exec()\n");
1589
1590 if (kvm_arch_process_async_events(cpu)) {
1591 cpu->exit_request = 0;
1592 return EXCP_HLT;
1593 }
1594
1595 do {
1596 if (cpu->kvm_vcpu_dirty) {
1597 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1598 cpu->kvm_vcpu_dirty = false;
1599 }
1600
1601 kvm_arch_pre_run(cpu, run);
1602 if (cpu->exit_request) {
1603 DPRINTF("interrupt exit requested\n");
1604 /*
1605 * KVM requires us to reenter the kernel after IO exits to complete
1606 * instruction emulation. This self-signal will ensure that we
1607 * leave ASAP again.
1608 */
1609 qemu_cpu_kick_self();
1610 }
1611 qemu_mutex_unlock_iothread();
1612
1613 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1614
1615 qemu_mutex_lock_iothread();
1616 kvm_arch_post_run(cpu, run);
1617
1618 if (run_ret < 0) {
1619 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1620 DPRINTF("io window exit\n");
1621 ret = EXCP_INTERRUPT;
1622 break;
1623 }
1624 fprintf(stderr, "error: kvm run failed %s\n",
1625 strerror(-run_ret));
1626 abort();
1627 }
1628
1629 switch (run->exit_reason) {
1630 case KVM_EXIT_IO:
1631 DPRINTF("handle_io\n");
1632 kvm_handle_io(run->io.port,
1633 (uint8_t *)run + run->io.data_offset,
1634 run->io.direction,
1635 run->io.size,
1636 run->io.count);
1637 ret = 0;
1638 break;
1639 case KVM_EXIT_MMIO:
1640 DPRINTF("handle_mmio\n");
1641 cpu_physical_memory_rw(run->mmio.phys_addr,
1642 run->mmio.data,
1643 run->mmio.len,
1644 run->mmio.is_write);
1645 ret = 0;
1646 break;
1647 case KVM_EXIT_IRQ_WINDOW_OPEN:
1648 DPRINTF("irq_window_open\n");
1649 ret = EXCP_INTERRUPT;
1650 break;
1651 case KVM_EXIT_SHUTDOWN:
1652 DPRINTF("shutdown\n");
1653 qemu_system_reset_request();
1654 ret = EXCP_INTERRUPT;
1655 break;
1656 case KVM_EXIT_UNKNOWN:
1657 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1658 (uint64_t)run->hw.hardware_exit_reason);
1659 ret = -1;
1660 break;
1661 case KVM_EXIT_INTERNAL_ERROR:
1662 ret = kvm_handle_internal_error(env, run);
1663 break;
1664 default:
1665 DPRINTF("kvm_arch_handle_exit\n");
1666 ret = kvm_arch_handle_exit(cpu, run);
1667 break;
1668 }
1669 } while (ret == 0);
1670
1671 if (ret < 0) {
1672 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1673 vm_stop(RUN_STATE_INTERNAL_ERROR);
1674 }
1675
1676 cpu->exit_request = 0;
1677 return ret;
1678 }
1679
1680 int kvm_ioctl(KVMState *s, int type, ...)
1681 {
1682 int ret;
1683 void *arg;
1684 va_list ap;
1685
1686 va_start(ap, type);
1687 arg = va_arg(ap, void *);
1688 va_end(ap);
1689
1690 ret = ioctl(s->fd, type, arg);
1691 if (ret == -1) {
1692 ret = -errno;
1693 }
1694 return ret;
1695 }
1696
1697 int kvm_vm_ioctl(KVMState *s, int type, ...)
1698 {
1699 int ret;
1700 void *arg;
1701 va_list ap;
1702
1703 va_start(ap, type);
1704 arg = va_arg(ap, void *);
1705 va_end(ap);
1706
1707 ret = ioctl(s->vmfd, type, arg);
1708 if (ret == -1) {
1709 ret = -errno;
1710 }
1711 return ret;
1712 }
1713
1714 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1715 {
1716 int ret;
1717 void *arg;
1718 va_list ap;
1719
1720 va_start(ap, type);
1721 arg = va_arg(ap, void *);
1722 va_end(ap);
1723
1724 ret = ioctl(cpu->kvm_fd, type, arg);
1725 if (ret == -1) {
1726 ret = -errno;
1727 }
1728 return ret;
1729 }
1730
1731 int kvm_has_sync_mmu(void)
1732 {
1733 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1734 }
1735
1736 int kvm_has_vcpu_events(void)
1737 {
1738 return kvm_state->vcpu_events;
1739 }
1740
1741 int kvm_has_robust_singlestep(void)
1742 {
1743 return kvm_state->robust_singlestep;
1744 }
1745
1746 int kvm_has_debugregs(void)
1747 {
1748 return kvm_state->debugregs;
1749 }
1750
1751 int kvm_has_xsave(void)
1752 {
1753 return kvm_state->xsave;
1754 }
1755
1756 int kvm_has_xcrs(void)
1757 {
1758 return kvm_state->xcrs;
1759 }
1760
1761 int kvm_has_pit_state2(void)
1762 {
1763 return kvm_state->pit_state2;
1764 }
1765
1766 int kvm_has_many_ioeventfds(void)
1767 {
1768 if (!kvm_enabled()) {
1769 return 0;
1770 }
1771 return kvm_state->many_ioeventfds;
1772 }
1773
1774 int kvm_has_gsi_routing(void)
1775 {
1776 #ifdef KVM_CAP_IRQ_ROUTING
1777 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1778 #else
1779 return false;
1780 #endif
1781 }
1782
1783 int kvm_has_intx_set_mask(void)
1784 {
1785 return kvm_state->intx_set_mask;
1786 }
1787
1788 void *kvm_vmalloc(ram_addr_t size)
1789 {
1790 #ifdef TARGET_S390X
1791 void *mem;
1792
1793 mem = kvm_arch_vmalloc(size);
1794 if (mem) {
1795 return mem;
1796 }
1797 #endif
1798 return qemu_vmalloc(size);
1799 }
1800
1801 void kvm_setup_guest_memory(void *start, size_t size)
1802 {
1803 #ifdef CONFIG_VALGRIND_H
1804 VALGRIND_MAKE_MEM_DEFINED(start, size);
1805 #endif
1806 if (!kvm_has_sync_mmu()) {
1807 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1808
1809 if (ret) {
1810 perror("qemu_madvise");
1811 fprintf(stderr,
1812 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1813 exit(1);
1814 }
1815 }
1816 }
1817
1818 #ifdef KVM_CAP_SET_GUEST_DEBUG
1819 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1820 target_ulong pc)
1821 {
1822 struct kvm_sw_breakpoint *bp;
1823
1824 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1825 if (bp->pc == pc) {
1826 return bp;
1827 }
1828 }
1829 return NULL;
1830 }
1831
1832 int kvm_sw_breakpoints_active(CPUState *cpu)
1833 {
1834 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1835 }
1836
1837 struct kvm_set_guest_debug_data {
1838 struct kvm_guest_debug dbg;
1839 CPUState *cpu;
1840 int err;
1841 };
1842
1843 static void kvm_invoke_set_guest_debug(void *data)
1844 {
1845 struct kvm_set_guest_debug_data *dbg_data = data;
1846
1847 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1848 &dbg_data->dbg);
1849 }
1850
1851 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1852 {
1853 CPUState *cpu = ENV_GET_CPU(env);
1854 struct kvm_set_guest_debug_data data;
1855
1856 data.dbg.control = reinject_trap;
1857
1858 if (env->singlestep_enabled) {
1859 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1860 }
1861 kvm_arch_update_guest_debug(cpu, &data.dbg);
1862 data.cpu = cpu;
1863
1864 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1865 return data.err;
1866 }
1867
1868 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1869 target_ulong len, int type)
1870 {
1871 CPUState *current_cpu = ENV_GET_CPU(current_env);
1872 struct kvm_sw_breakpoint *bp;
1873 CPUArchState *env;
1874 int err;
1875
1876 if (type == GDB_BREAKPOINT_SW) {
1877 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1878 if (bp) {
1879 bp->use_count++;
1880 return 0;
1881 }
1882
1883 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1884 if (!bp) {
1885 return -ENOMEM;
1886 }
1887
1888 bp->pc = addr;
1889 bp->use_count = 1;
1890 err = kvm_arch_insert_sw_breakpoint(current_cpu, bp);
1891 if (err) {
1892 g_free(bp);
1893 return err;
1894 }
1895
1896 QTAILQ_INSERT_HEAD(&current_cpu->kvm_state->kvm_sw_breakpoints,
1897 bp, entry);
1898 } else {
1899 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1900 if (err) {
1901 return err;
1902 }
1903 }
1904
1905 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1906 err = kvm_update_guest_debug(env, 0);
1907 if (err) {
1908 return err;
1909 }
1910 }
1911 return 0;
1912 }
1913
1914 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1915 target_ulong len, int type)
1916 {
1917 CPUState *current_cpu = ENV_GET_CPU(current_env);
1918 struct kvm_sw_breakpoint *bp;
1919 CPUArchState *env;
1920 int err;
1921
1922 if (type == GDB_BREAKPOINT_SW) {
1923 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1924 if (!bp) {
1925 return -ENOENT;
1926 }
1927
1928 if (bp->use_count > 1) {
1929 bp->use_count--;
1930 return 0;
1931 }
1932
1933 err = kvm_arch_remove_sw_breakpoint(current_cpu, bp);
1934 if (err) {
1935 return err;
1936 }
1937
1938 QTAILQ_REMOVE(&current_cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1939 g_free(bp);
1940 } else {
1941 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1942 if (err) {
1943 return err;
1944 }
1945 }
1946
1947 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1948 err = kvm_update_guest_debug(env, 0);
1949 if (err) {
1950 return err;
1951 }
1952 }
1953 return 0;
1954 }
1955
1956 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1957 {
1958 CPUState *current_cpu = ENV_GET_CPU(current_env);
1959 struct kvm_sw_breakpoint *bp, *next;
1960 KVMState *s = current_cpu->kvm_state;
1961 CPUArchState *env;
1962 CPUState *cpu;
1963
1964 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1965 if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) {
1966 /* Try harder to find a CPU that currently sees the breakpoint. */
1967 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1968 cpu = ENV_GET_CPU(env);
1969 if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
1970 break;
1971 }
1972 }
1973 }
1974 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
1975 g_free(bp);
1976 }
1977 kvm_arch_remove_all_hw_breakpoints();
1978
1979 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1980 kvm_update_guest_debug(env, 0);
1981 }
1982 }
1983
1984 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1985
1986 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1987 {
1988 return -EINVAL;
1989 }
1990
1991 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1992 target_ulong len, int type)
1993 {
1994 return -EINVAL;
1995 }
1996
1997 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1998 target_ulong len, int type)
1999 {
2000 return -EINVAL;
2001 }
2002
2003 void kvm_remove_all_breakpoints(CPUArchState *current_env)
2004 {
2005 }
2006 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2007
2008 int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
2009 {
2010 CPUState *cpu = ENV_GET_CPU(env);
2011 struct kvm_signal_mask *sigmask;
2012 int r;
2013
2014 if (!sigset) {
2015 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2016 }
2017
2018 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2019
2020 sigmask->len = 8;
2021 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2022 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2023 g_free(sigmask);
2024
2025 return r;
2026 }
2027 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2028 {
2029 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2030 }
2031
2032 int kvm_on_sigbus(int code, void *addr)
2033 {
2034 return kvm_arch_on_sigbus(code, addr);
2035 }