]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
kvm: Move kvm_allows_irq0_override() to target-i386, fix return type
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "qemu-option.h"
26 #include "qemu-config.h"
27 #include "sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/msi.h"
30 #include "gdbstub.h"
31 #include "kvm.h"
32 #include "bswap.h"
33 #include "memory.h"
34 #include "exec-memory.h"
35 #include "event_notifier.h"
36
37 /* This check must be after config-host.h is included */
38 #ifdef CONFIG_EVENTFD
39 #include <sys/eventfd.h>
40 #endif
41
42 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
43 #define PAGE_SIZE TARGET_PAGE_SIZE
44
45 //#define DEBUG_KVM
46
47 #ifdef DEBUG_KVM
48 #define DPRINTF(fmt, ...) \
49 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
50 #else
51 #define DPRINTF(fmt, ...) \
52 do { } while (0)
53 #endif
54
55 #define KVM_MSI_HASHTAB_SIZE 256
56
57 typedef struct KVMSlot
58 {
59 target_phys_addr_t start_addr;
60 ram_addr_t memory_size;
61 void *ram;
62 int slot;
63 int flags;
64 } KVMSlot;
65
66 typedef struct kvm_dirty_log KVMDirtyLog;
67
68 struct KVMState
69 {
70 KVMSlot slots[32];
71 int fd;
72 int vmfd;
73 int coalesced_mmio;
74 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
75 bool coalesced_flush_in_progress;
76 int broken_set_mem_region;
77 int migration_log;
78 int vcpu_events;
79 int robust_singlestep;
80 int debugregs;
81 #ifdef KVM_CAP_SET_GUEST_DEBUG
82 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
83 #endif
84 int pit_state2;
85 int xsave, xcrs;
86 int many_ioeventfds;
87 /* The man page (and posix) say ioctl numbers are signed int, but
88 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
89 * unsigned, and treating them as signed here can break things */
90 unsigned irqchip_inject_ioctl;
91 #ifdef KVM_CAP_IRQ_ROUTING
92 struct kvm_irq_routing *irq_routes;
93 int nr_allocated_irq_routes;
94 uint32_t *used_gsi_bitmap;
95 unsigned int gsi_count;
96 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
97 bool direct_msi;
98 #endif
99 };
100
101 KVMState *kvm_state;
102 bool kvm_kernel_irqchip;
103 bool kvm_async_interrupts_allowed;
104
105 static const KVMCapabilityInfo kvm_required_capabilites[] = {
106 KVM_CAP_INFO(USER_MEMORY),
107 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
108 KVM_CAP_LAST_INFO
109 };
110
111 static KVMSlot *kvm_alloc_slot(KVMState *s)
112 {
113 int i;
114
115 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
116 if (s->slots[i].memory_size == 0) {
117 return &s->slots[i];
118 }
119 }
120
121 fprintf(stderr, "%s: no free slot available\n", __func__);
122 abort();
123 }
124
125 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
126 target_phys_addr_t start_addr,
127 target_phys_addr_t end_addr)
128 {
129 int i;
130
131 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
132 KVMSlot *mem = &s->slots[i];
133
134 if (start_addr == mem->start_addr &&
135 end_addr == mem->start_addr + mem->memory_size) {
136 return mem;
137 }
138 }
139
140 return NULL;
141 }
142
143 /*
144 * Find overlapping slot with lowest start address
145 */
146 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
147 target_phys_addr_t start_addr,
148 target_phys_addr_t end_addr)
149 {
150 KVMSlot *found = NULL;
151 int i;
152
153 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
154 KVMSlot *mem = &s->slots[i];
155
156 if (mem->memory_size == 0 ||
157 (found && found->start_addr < mem->start_addr)) {
158 continue;
159 }
160
161 if (end_addr > mem->start_addr &&
162 start_addr < mem->start_addr + mem->memory_size) {
163 found = mem;
164 }
165 }
166
167 return found;
168 }
169
170 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
171 target_phys_addr_t *phys_addr)
172 {
173 int i;
174
175 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
176 KVMSlot *mem = &s->slots[i];
177
178 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
179 *phys_addr = mem->start_addr + (ram - mem->ram);
180 return 1;
181 }
182 }
183
184 return 0;
185 }
186
187 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
188 {
189 struct kvm_userspace_memory_region mem;
190
191 mem.slot = slot->slot;
192 mem.guest_phys_addr = slot->start_addr;
193 mem.memory_size = slot->memory_size;
194 mem.userspace_addr = (unsigned long)slot->ram;
195 mem.flags = slot->flags;
196 if (s->migration_log) {
197 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
198 }
199 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
200 }
201
202 static void kvm_reset_vcpu(void *opaque)
203 {
204 CPUArchState *env = opaque;
205
206 kvm_arch_reset_vcpu(env);
207 }
208
209 int kvm_init_vcpu(CPUArchState *env)
210 {
211 KVMState *s = kvm_state;
212 long mmap_size;
213 int ret;
214
215 DPRINTF("kvm_init_vcpu\n");
216
217 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
218 if (ret < 0) {
219 DPRINTF("kvm_create_vcpu failed\n");
220 goto err;
221 }
222
223 env->kvm_fd = ret;
224 env->kvm_state = s;
225 env->kvm_vcpu_dirty = 1;
226
227 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
228 if (mmap_size < 0) {
229 ret = mmap_size;
230 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
231 goto err;
232 }
233
234 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
235 env->kvm_fd, 0);
236 if (env->kvm_run == MAP_FAILED) {
237 ret = -errno;
238 DPRINTF("mmap'ing vcpu state failed\n");
239 goto err;
240 }
241
242 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
243 s->coalesced_mmio_ring =
244 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
245 }
246
247 ret = kvm_arch_init_vcpu(env);
248 if (ret == 0) {
249 qemu_register_reset(kvm_reset_vcpu, env);
250 kvm_arch_reset_vcpu(env);
251 }
252 err:
253 return ret;
254 }
255
256 /*
257 * dirty pages logging control
258 */
259
260 static int kvm_mem_flags(KVMState *s, bool log_dirty)
261 {
262 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
263 }
264
265 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
266 {
267 KVMState *s = kvm_state;
268 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
269 int old_flags;
270
271 old_flags = mem->flags;
272
273 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
274 mem->flags = flags;
275
276 /* If nothing changed effectively, no need to issue ioctl */
277 if (s->migration_log) {
278 flags |= KVM_MEM_LOG_DIRTY_PAGES;
279 }
280
281 if (flags == old_flags) {
282 return 0;
283 }
284
285 return kvm_set_user_memory_region(s, mem);
286 }
287
288 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
289 ram_addr_t size, bool log_dirty)
290 {
291 KVMState *s = kvm_state;
292 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
293
294 if (mem == NULL) {
295 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
296 TARGET_FMT_plx "\n", __func__, phys_addr,
297 (target_phys_addr_t)(phys_addr + size - 1));
298 return -EINVAL;
299 }
300 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
301 }
302
303 static void kvm_log_start(MemoryListener *listener,
304 MemoryRegionSection *section)
305 {
306 int r;
307
308 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
309 section->size, true);
310 if (r < 0) {
311 abort();
312 }
313 }
314
315 static void kvm_log_stop(MemoryListener *listener,
316 MemoryRegionSection *section)
317 {
318 int r;
319
320 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
321 section->size, false);
322 if (r < 0) {
323 abort();
324 }
325 }
326
327 static int kvm_set_migration_log(int enable)
328 {
329 KVMState *s = kvm_state;
330 KVMSlot *mem;
331 int i, err;
332
333 s->migration_log = enable;
334
335 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
336 mem = &s->slots[i];
337
338 if (!mem->memory_size) {
339 continue;
340 }
341 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
342 continue;
343 }
344 err = kvm_set_user_memory_region(s, mem);
345 if (err) {
346 return err;
347 }
348 }
349 return 0;
350 }
351
352 /* get kvm's dirty pages bitmap and update qemu's */
353 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
354 unsigned long *bitmap)
355 {
356 unsigned int i, j;
357 unsigned long page_number, c;
358 target_phys_addr_t addr, addr1;
359 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
360 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
361
362 /*
363 * bitmap-traveling is faster than memory-traveling (for addr...)
364 * especially when most of the memory is not dirty.
365 */
366 for (i = 0; i < len; i++) {
367 if (bitmap[i] != 0) {
368 c = leul_to_cpu(bitmap[i]);
369 do {
370 j = ffsl(c) - 1;
371 c &= ~(1ul << j);
372 page_number = (i * HOST_LONG_BITS + j) * hpratio;
373 addr1 = page_number * TARGET_PAGE_SIZE;
374 addr = section->offset_within_region + addr1;
375 memory_region_set_dirty(section->mr, addr,
376 TARGET_PAGE_SIZE * hpratio);
377 } while (c != 0);
378 }
379 }
380 return 0;
381 }
382
383 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
384
385 /**
386 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
387 * This function updates qemu's dirty bitmap using
388 * memory_region_set_dirty(). This means all bits are set
389 * to dirty.
390 *
391 * @start_add: start of logged region.
392 * @end_addr: end of logged region.
393 */
394 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
395 {
396 KVMState *s = kvm_state;
397 unsigned long size, allocated_size = 0;
398 KVMDirtyLog d;
399 KVMSlot *mem;
400 int ret = 0;
401 target_phys_addr_t start_addr = section->offset_within_address_space;
402 target_phys_addr_t end_addr = start_addr + section->size;
403
404 d.dirty_bitmap = NULL;
405 while (start_addr < end_addr) {
406 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
407 if (mem == NULL) {
408 break;
409 }
410
411 /* XXX bad kernel interface alert
412 * For dirty bitmap, kernel allocates array of size aligned to
413 * bits-per-long. But for case when the kernel is 64bits and
414 * the userspace is 32bits, userspace can't align to the same
415 * bits-per-long, since sizeof(long) is different between kernel
416 * and user space. This way, userspace will provide buffer which
417 * may be 4 bytes less than the kernel will use, resulting in
418 * userspace memory corruption (which is not detectable by valgrind
419 * too, in most cases).
420 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
421 * a hope that sizeof(long) wont become >8 any time soon.
422 */
423 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
424 /*HOST_LONG_BITS*/ 64) / 8;
425 if (!d.dirty_bitmap) {
426 d.dirty_bitmap = g_malloc(size);
427 } else if (size > allocated_size) {
428 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
429 }
430 allocated_size = size;
431 memset(d.dirty_bitmap, 0, allocated_size);
432
433 d.slot = mem->slot;
434
435 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
436 DPRINTF("ioctl failed %d\n", errno);
437 ret = -1;
438 break;
439 }
440
441 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
442 start_addr = mem->start_addr + mem->memory_size;
443 }
444 g_free(d.dirty_bitmap);
445
446 return ret;
447 }
448
449 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
450 {
451 int ret = -ENOSYS;
452 KVMState *s = kvm_state;
453
454 if (s->coalesced_mmio) {
455 struct kvm_coalesced_mmio_zone zone;
456
457 zone.addr = start;
458 zone.size = size;
459 zone.pad = 0;
460
461 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
462 }
463
464 return ret;
465 }
466
467 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
468 {
469 int ret = -ENOSYS;
470 KVMState *s = kvm_state;
471
472 if (s->coalesced_mmio) {
473 struct kvm_coalesced_mmio_zone zone;
474
475 zone.addr = start;
476 zone.size = size;
477 zone.pad = 0;
478
479 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
480 }
481
482 return ret;
483 }
484
485 int kvm_check_extension(KVMState *s, unsigned int extension)
486 {
487 int ret;
488
489 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
490 if (ret < 0) {
491 ret = 0;
492 }
493
494 return ret;
495 }
496
497 static int kvm_check_many_ioeventfds(void)
498 {
499 /* Userspace can use ioeventfd for io notification. This requires a host
500 * that supports eventfd(2) and an I/O thread; since eventfd does not
501 * support SIGIO it cannot interrupt the vcpu.
502 *
503 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
504 * can avoid creating too many ioeventfds.
505 */
506 #if defined(CONFIG_EVENTFD)
507 int ioeventfds[7];
508 int i, ret = 0;
509 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
510 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
511 if (ioeventfds[i] < 0) {
512 break;
513 }
514 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
515 if (ret < 0) {
516 close(ioeventfds[i]);
517 break;
518 }
519 }
520
521 /* Decide whether many devices are supported or not */
522 ret = i == ARRAY_SIZE(ioeventfds);
523
524 while (i-- > 0) {
525 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
526 close(ioeventfds[i]);
527 }
528 return ret;
529 #else
530 return 0;
531 #endif
532 }
533
534 static const KVMCapabilityInfo *
535 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
536 {
537 while (list->name) {
538 if (!kvm_check_extension(s, list->value)) {
539 return list;
540 }
541 list++;
542 }
543 return NULL;
544 }
545
546 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
547 {
548 KVMState *s = kvm_state;
549 KVMSlot *mem, old;
550 int err;
551 MemoryRegion *mr = section->mr;
552 bool log_dirty = memory_region_is_logging(mr);
553 target_phys_addr_t start_addr = section->offset_within_address_space;
554 ram_addr_t size = section->size;
555 void *ram = NULL;
556 unsigned delta;
557
558 /* kvm works in page size chunks, but the function may be called
559 with sub-page size and unaligned start address. */
560 delta = TARGET_PAGE_ALIGN(size) - size;
561 if (delta > size) {
562 return;
563 }
564 start_addr += delta;
565 size -= delta;
566 size &= TARGET_PAGE_MASK;
567 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
568 return;
569 }
570
571 if (!memory_region_is_ram(mr)) {
572 return;
573 }
574
575 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
576
577 while (1) {
578 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
579 if (!mem) {
580 break;
581 }
582
583 if (add && start_addr >= mem->start_addr &&
584 (start_addr + size <= mem->start_addr + mem->memory_size) &&
585 (ram - start_addr == mem->ram - mem->start_addr)) {
586 /* The new slot fits into the existing one and comes with
587 * identical parameters - update flags and done. */
588 kvm_slot_dirty_pages_log_change(mem, log_dirty);
589 return;
590 }
591
592 old = *mem;
593
594 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
595 kvm_physical_sync_dirty_bitmap(section);
596 }
597
598 /* unregister the overlapping slot */
599 mem->memory_size = 0;
600 err = kvm_set_user_memory_region(s, mem);
601 if (err) {
602 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
603 __func__, strerror(-err));
604 abort();
605 }
606
607 /* Workaround for older KVM versions: we can't join slots, even not by
608 * unregistering the previous ones and then registering the larger
609 * slot. We have to maintain the existing fragmentation. Sigh.
610 *
611 * This workaround assumes that the new slot starts at the same
612 * address as the first existing one. If not or if some overlapping
613 * slot comes around later, we will fail (not seen in practice so far)
614 * - and actually require a recent KVM version. */
615 if (s->broken_set_mem_region &&
616 old.start_addr == start_addr && old.memory_size < size && add) {
617 mem = kvm_alloc_slot(s);
618 mem->memory_size = old.memory_size;
619 mem->start_addr = old.start_addr;
620 mem->ram = old.ram;
621 mem->flags = kvm_mem_flags(s, log_dirty);
622
623 err = kvm_set_user_memory_region(s, mem);
624 if (err) {
625 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
626 strerror(-err));
627 abort();
628 }
629
630 start_addr += old.memory_size;
631 ram += old.memory_size;
632 size -= old.memory_size;
633 continue;
634 }
635
636 /* register prefix slot */
637 if (old.start_addr < start_addr) {
638 mem = kvm_alloc_slot(s);
639 mem->memory_size = start_addr - old.start_addr;
640 mem->start_addr = old.start_addr;
641 mem->ram = old.ram;
642 mem->flags = kvm_mem_flags(s, log_dirty);
643
644 err = kvm_set_user_memory_region(s, mem);
645 if (err) {
646 fprintf(stderr, "%s: error registering prefix slot: %s\n",
647 __func__, strerror(-err));
648 #ifdef TARGET_PPC
649 fprintf(stderr, "%s: This is probably because your kernel's " \
650 "PAGE_SIZE is too big. Please try to use 4k " \
651 "PAGE_SIZE!\n", __func__);
652 #endif
653 abort();
654 }
655 }
656
657 /* register suffix slot */
658 if (old.start_addr + old.memory_size > start_addr + size) {
659 ram_addr_t size_delta;
660
661 mem = kvm_alloc_slot(s);
662 mem->start_addr = start_addr + size;
663 size_delta = mem->start_addr - old.start_addr;
664 mem->memory_size = old.memory_size - size_delta;
665 mem->ram = old.ram + size_delta;
666 mem->flags = kvm_mem_flags(s, log_dirty);
667
668 err = kvm_set_user_memory_region(s, mem);
669 if (err) {
670 fprintf(stderr, "%s: error registering suffix slot: %s\n",
671 __func__, strerror(-err));
672 abort();
673 }
674 }
675 }
676
677 /* in case the KVM bug workaround already "consumed" the new slot */
678 if (!size) {
679 return;
680 }
681 if (!add) {
682 return;
683 }
684 mem = kvm_alloc_slot(s);
685 mem->memory_size = size;
686 mem->start_addr = start_addr;
687 mem->ram = ram;
688 mem->flags = kvm_mem_flags(s, log_dirty);
689
690 err = kvm_set_user_memory_region(s, mem);
691 if (err) {
692 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
693 strerror(-err));
694 abort();
695 }
696 }
697
698 static void kvm_begin(MemoryListener *listener)
699 {
700 }
701
702 static void kvm_commit(MemoryListener *listener)
703 {
704 }
705
706 static void kvm_region_add(MemoryListener *listener,
707 MemoryRegionSection *section)
708 {
709 kvm_set_phys_mem(section, true);
710 }
711
712 static void kvm_region_del(MemoryListener *listener,
713 MemoryRegionSection *section)
714 {
715 kvm_set_phys_mem(section, false);
716 }
717
718 static void kvm_region_nop(MemoryListener *listener,
719 MemoryRegionSection *section)
720 {
721 }
722
723 static void kvm_log_sync(MemoryListener *listener,
724 MemoryRegionSection *section)
725 {
726 int r;
727
728 r = kvm_physical_sync_dirty_bitmap(section);
729 if (r < 0) {
730 abort();
731 }
732 }
733
734 static void kvm_log_global_start(struct MemoryListener *listener)
735 {
736 int r;
737
738 r = kvm_set_migration_log(1);
739 assert(r >= 0);
740 }
741
742 static void kvm_log_global_stop(struct MemoryListener *listener)
743 {
744 int r;
745
746 r = kvm_set_migration_log(0);
747 assert(r >= 0);
748 }
749
750 static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
751 bool match_data, uint64_t data, int fd)
752 {
753 int r;
754
755 assert(match_data && section->size <= 8);
756
757 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
758 data, true, section->size);
759 if (r < 0) {
760 abort();
761 }
762 }
763
764 static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
765 bool match_data, uint64_t data, int fd)
766 {
767 int r;
768
769 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
770 data, false, section->size);
771 if (r < 0) {
772 abort();
773 }
774 }
775
776 static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
777 bool match_data, uint64_t data, int fd)
778 {
779 int r;
780
781 assert(match_data && section->size == 2);
782
783 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
784 data, true);
785 if (r < 0) {
786 abort();
787 }
788 }
789
790 static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
791 bool match_data, uint64_t data, int fd)
792
793 {
794 int r;
795
796 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
797 data, false);
798 if (r < 0) {
799 abort();
800 }
801 }
802
803 static void kvm_eventfd_add(MemoryListener *listener,
804 MemoryRegionSection *section,
805 bool match_data, uint64_t data,
806 EventNotifier *e)
807 {
808 if (section->address_space == get_system_memory()) {
809 kvm_mem_ioeventfd_add(section, match_data, data,
810 event_notifier_get_fd(e));
811 } else {
812 kvm_io_ioeventfd_add(section, match_data, data,
813 event_notifier_get_fd(e));
814 }
815 }
816
817 static void kvm_eventfd_del(MemoryListener *listener,
818 MemoryRegionSection *section,
819 bool match_data, uint64_t data,
820 EventNotifier *e)
821 {
822 if (section->address_space == get_system_memory()) {
823 kvm_mem_ioeventfd_del(section, match_data, data,
824 event_notifier_get_fd(e));
825 } else {
826 kvm_io_ioeventfd_del(section, match_data, data,
827 event_notifier_get_fd(e));
828 }
829 }
830
831 static MemoryListener kvm_memory_listener = {
832 .begin = kvm_begin,
833 .commit = kvm_commit,
834 .region_add = kvm_region_add,
835 .region_del = kvm_region_del,
836 .region_nop = kvm_region_nop,
837 .log_start = kvm_log_start,
838 .log_stop = kvm_log_stop,
839 .log_sync = kvm_log_sync,
840 .log_global_start = kvm_log_global_start,
841 .log_global_stop = kvm_log_global_stop,
842 .eventfd_add = kvm_eventfd_add,
843 .eventfd_del = kvm_eventfd_del,
844 .priority = 10,
845 };
846
847 static void kvm_handle_interrupt(CPUArchState *env, int mask)
848 {
849 env->interrupt_request |= mask;
850
851 if (!qemu_cpu_is_self(env)) {
852 qemu_cpu_kick(env);
853 }
854 }
855
856 int kvm_set_irq(KVMState *s, int irq, int level)
857 {
858 struct kvm_irq_level event;
859 int ret;
860
861 assert(kvm_async_interrupts_enabled());
862
863 event.level = level;
864 event.irq = irq;
865 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
866 if (ret < 0) {
867 perror("kvm_set_irq");
868 abort();
869 }
870
871 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
872 }
873
874 #ifdef KVM_CAP_IRQ_ROUTING
875 typedef struct KVMMSIRoute {
876 struct kvm_irq_routing_entry kroute;
877 QTAILQ_ENTRY(KVMMSIRoute) entry;
878 } KVMMSIRoute;
879
880 static void set_gsi(KVMState *s, unsigned int gsi)
881 {
882 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
883 }
884
885 static void clear_gsi(KVMState *s, unsigned int gsi)
886 {
887 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
888 }
889
890 static void kvm_init_irq_routing(KVMState *s)
891 {
892 int gsi_count, i;
893
894 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
895 if (gsi_count > 0) {
896 unsigned int gsi_bits, i;
897
898 /* Round up so we can search ints using ffs */
899 gsi_bits = ALIGN(gsi_count, 32);
900 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
901 s->gsi_count = gsi_count;
902
903 /* Mark any over-allocated bits as already in use */
904 for (i = gsi_count; i < gsi_bits; i++) {
905 set_gsi(s, i);
906 }
907 }
908
909 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
910 s->nr_allocated_irq_routes = 0;
911
912 if (!s->direct_msi) {
913 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
914 QTAILQ_INIT(&s->msi_hashtab[i]);
915 }
916 }
917
918 kvm_arch_init_irq_routing(s);
919 }
920
921 static void kvm_irqchip_commit_routes(KVMState *s)
922 {
923 int ret;
924
925 s->irq_routes->flags = 0;
926 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
927 assert(ret == 0);
928 }
929
930 static void kvm_add_routing_entry(KVMState *s,
931 struct kvm_irq_routing_entry *entry)
932 {
933 struct kvm_irq_routing_entry *new;
934 int n, size;
935
936 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
937 n = s->nr_allocated_irq_routes * 2;
938 if (n < 64) {
939 n = 64;
940 }
941 size = sizeof(struct kvm_irq_routing);
942 size += n * sizeof(*new);
943 s->irq_routes = g_realloc(s->irq_routes, size);
944 s->nr_allocated_irq_routes = n;
945 }
946 n = s->irq_routes->nr++;
947 new = &s->irq_routes->entries[n];
948 memset(new, 0, sizeof(*new));
949 new->gsi = entry->gsi;
950 new->type = entry->type;
951 new->flags = entry->flags;
952 new->u = entry->u;
953
954 set_gsi(s, entry->gsi);
955
956 kvm_irqchip_commit_routes(s);
957 }
958
959 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
960 {
961 struct kvm_irq_routing_entry e;
962
963 assert(pin < s->gsi_count);
964
965 e.gsi = irq;
966 e.type = KVM_IRQ_ROUTING_IRQCHIP;
967 e.flags = 0;
968 e.u.irqchip.irqchip = irqchip;
969 e.u.irqchip.pin = pin;
970 kvm_add_routing_entry(s, &e);
971 }
972
973 void kvm_irqchip_release_virq(KVMState *s, int virq)
974 {
975 struct kvm_irq_routing_entry *e;
976 int i;
977
978 for (i = 0; i < s->irq_routes->nr; i++) {
979 e = &s->irq_routes->entries[i];
980 if (e->gsi == virq) {
981 s->irq_routes->nr--;
982 *e = s->irq_routes->entries[s->irq_routes->nr];
983 }
984 }
985 clear_gsi(s, virq);
986
987 kvm_irqchip_commit_routes(s);
988 }
989
990 static unsigned int kvm_hash_msi(uint32_t data)
991 {
992 /* This is optimized for IA32 MSI layout. However, no other arch shall
993 * repeat the mistake of not providing a direct MSI injection API. */
994 return data & 0xff;
995 }
996
997 static void kvm_flush_dynamic_msi_routes(KVMState *s)
998 {
999 KVMMSIRoute *route, *next;
1000 unsigned int hash;
1001
1002 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1003 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1004 kvm_irqchip_release_virq(s, route->kroute.gsi);
1005 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1006 g_free(route);
1007 }
1008 }
1009 }
1010
1011 static int kvm_irqchip_get_virq(KVMState *s)
1012 {
1013 uint32_t *word = s->used_gsi_bitmap;
1014 int max_words = ALIGN(s->gsi_count, 32) / 32;
1015 int i, bit;
1016 bool retry = true;
1017
1018 again:
1019 /* Return the lowest unused GSI in the bitmap */
1020 for (i = 0; i < max_words; i++) {
1021 bit = ffs(~word[i]);
1022 if (!bit) {
1023 continue;
1024 }
1025
1026 return bit - 1 + i * 32;
1027 }
1028 if (!s->direct_msi && retry) {
1029 retry = false;
1030 kvm_flush_dynamic_msi_routes(s);
1031 goto again;
1032 }
1033 return -ENOSPC;
1034
1035 }
1036
1037 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1038 {
1039 unsigned int hash = kvm_hash_msi(msg.data);
1040 KVMMSIRoute *route;
1041
1042 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1043 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1044 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1045 route->kroute.u.msi.data == msg.data) {
1046 return route;
1047 }
1048 }
1049 return NULL;
1050 }
1051
1052 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1053 {
1054 struct kvm_msi msi;
1055 KVMMSIRoute *route;
1056
1057 if (s->direct_msi) {
1058 msi.address_lo = (uint32_t)msg.address;
1059 msi.address_hi = msg.address >> 32;
1060 msi.data = msg.data;
1061 msi.flags = 0;
1062 memset(msi.pad, 0, sizeof(msi.pad));
1063
1064 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1065 }
1066
1067 route = kvm_lookup_msi_route(s, msg);
1068 if (!route) {
1069 int virq;
1070
1071 virq = kvm_irqchip_get_virq(s);
1072 if (virq < 0) {
1073 return virq;
1074 }
1075
1076 route = g_malloc(sizeof(KVMMSIRoute));
1077 route->kroute.gsi = virq;
1078 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1079 route->kroute.flags = 0;
1080 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1081 route->kroute.u.msi.address_hi = msg.address >> 32;
1082 route->kroute.u.msi.data = msg.data;
1083
1084 kvm_add_routing_entry(s, &route->kroute);
1085
1086 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1087 entry);
1088 }
1089
1090 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1091
1092 return kvm_set_irq(s, route->kroute.gsi, 1);
1093 }
1094
1095 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1096 {
1097 struct kvm_irq_routing_entry kroute;
1098 int virq;
1099
1100 if (!kvm_irqchip_in_kernel()) {
1101 return -ENOSYS;
1102 }
1103
1104 virq = kvm_irqchip_get_virq(s);
1105 if (virq < 0) {
1106 return virq;
1107 }
1108
1109 kroute.gsi = virq;
1110 kroute.type = KVM_IRQ_ROUTING_MSI;
1111 kroute.flags = 0;
1112 kroute.u.msi.address_lo = (uint32_t)msg.address;
1113 kroute.u.msi.address_hi = msg.address >> 32;
1114 kroute.u.msi.data = msg.data;
1115
1116 kvm_add_routing_entry(s, &kroute);
1117
1118 return virq;
1119 }
1120
1121 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1122 {
1123 struct kvm_irqfd irqfd = {
1124 .fd = fd,
1125 .gsi = virq,
1126 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1127 };
1128
1129 if (!kvm_irqchip_in_kernel()) {
1130 return -ENOSYS;
1131 }
1132
1133 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1134 }
1135
1136 #else /* !KVM_CAP_IRQ_ROUTING */
1137
1138 static void kvm_init_irq_routing(KVMState *s)
1139 {
1140 }
1141
1142 void kvm_irqchip_release_virq(KVMState *s, int virq)
1143 {
1144 }
1145
1146 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1147 {
1148 abort();
1149 }
1150
1151 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1152 {
1153 return -ENOSYS;
1154 }
1155
1156 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1157 {
1158 abort();
1159 }
1160 #endif /* !KVM_CAP_IRQ_ROUTING */
1161
1162 int kvm_irqchip_add_irqfd(KVMState *s, int fd, int virq)
1163 {
1164 return kvm_irqchip_assign_irqfd(s, fd, virq, true);
1165 }
1166
1167 int kvm_irqchip_add_irq_notifier(KVMState *s, EventNotifier *n, int virq)
1168 {
1169 return kvm_irqchip_add_irqfd(s, event_notifier_get_fd(n), virq);
1170 }
1171
1172 int kvm_irqchip_remove_irqfd(KVMState *s, int fd, int virq)
1173 {
1174 return kvm_irqchip_assign_irqfd(s, fd, virq, false);
1175 }
1176
1177 int kvm_irqchip_remove_irq_notifier(KVMState *s, EventNotifier *n, int virq)
1178 {
1179 return kvm_irqchip_remove_irqfd(s, event_notifier_get_fd(n), virq);
1180 }
1181
1182 static int kvm_irqchip_create(KVMState *s)
1183 {
1184 QemuOptsList *list = qemu_find_opts("machine");
1185 int ret;
1186
1187 if (QTAILQ_EMPTY(&list->head) ||
1188 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1189 "kernel_irqchip", true) ||
1190 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1191 return 0;
1192 }
1193
1194 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1195 if (ret < 0) {
1196 fprintf(stderr, "Create kernel irqchip failed\n");
1197 return ret;
1198 }
1199
1200 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
1201 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1202 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
1203 }
1204 kvm_kernel_irqchip = true;
1205 /* If we have an in-kernel IRQ chip then we must have asynchronous
1206 * interrupt delivery (though the reverse is not necessarily true)
1207 */
1208 kvm_async_interrupts_allowed = true;
1209
1210 kvm_init_irq_routing(s);
1211
1212 return 0;
1213 }
1214
1215 static int kvm_max_vcpus(KVMState *s)
1216 {
1217 int ret;
1218
1219 /* Find number of supported CPUs using the recommended
1220 * procedure from the kernel API documentation to cope with
1221 * older kernels that may be missing capabilities.
1222 */
1223 ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1224 if (ret) {
1225 return ret;
1226 }
1227 ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1228 if (ret) {
1229 return ret;
1230 }
1231
1232 return 4;
1233 }
1234
1235 int kvm_init(void)
1236 {
1237 static const char upgrade_note[] =
1238 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1239 "(see http://sourceforge.net/projects/kvm).\n";
1240 KVMState *s;
1241 const KVMCapabilityInfo *missing_cap;
1242 int ret;
1243 int i;
1244 int max_vcpus;
1245
1246 s = g_malloc0(sizeof(KVMState));
1247
1248 /*
1249 * On systems where the kernel can support different base page
1250 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1251 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1252 * page size for the system though.
1253 */
1254 assert(TARGET_PAGE_SIZE <= getpagesize());
1255
1256 #ifdef KVM_CAP_SET_GUEST_DEBUG
1257 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1258 #endif
1259 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1260 s->slots[i].slot = i;
1261 }
1262 s->vmfd = -1;
1263 s->fd = qemu_open("/dev/kvm", O_RDWR);
1264 if (s->fd == -1) {
1265 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1266 ret = -errno;
1267 goto err;
1268 }
1269
1270 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1271 if (ret < KVM_API_VERSION) {
1272 if (ret > 0) {
1273 ret = -EINVAL;
1274 }
1275 fprintf(stderr, "kvm version too old\n");
1276 goto err;
1277 }
1278
1279 if (ret > KVM_API_VERSION) {
1280 ret = -EINVAL;
1281 fprintf(stderr, "kvm version not supported\n");
1282 goto err;
1283 }
1284
1285 max_vcpus = kvm_max_vcpus(s);
1286 if (smp_cpus > max_vcpus) {
1287 ret = -EINVAL;
1288 fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1289 "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1290 goto err;
1291 }
1292
1293 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1294 if (s->vmfd < 0) {
1295 #ifdef TARGET_S390X
1296 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1297 "your host kernel command line\n");
1298 #endif
1299 ret = s->vmfd;
1300 goto err;
1301 }
1302
1303 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1304 if (!missing_cap) {
1305 missing_cap =
1306 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1307 }
1308 if (missing_cap) {
1309 ret = -EINVAL;
1310 fprintf(stderr, "kvm does not support %s\n%s",
1311 missing_cap->name, upgrade_note);
1312 goto err;
1313 }
1314
1315 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1316
1317 s->broken_set_mem_region = 1;
1318 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1319 if (ret > 0) {
1320 s->broken_set_mem_region = 0;
1321 }
1322
1323 #ifdef KVM_CAP_VCPU_EVENTS
1324 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1325 #endif
1326
1327 s->robust_singlestep =
1328 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1329
1330 #ifdef KVM_CAP_DEBUGREGS
1331 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1332 #endif
1333
1334 #ifdef KVM_CAP_XSAVE
1335 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1336 #endif
1337
1338 #ifdef KVM_CAP_XCRS
1339 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1340 #endif
1341
1342 #ifdef KVM_CAP_PIT_STATE2
1343 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1344 #endif
1345
1346 #ifdef KVM_CAP_IRQ_ROUTING
1347 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1348 #endif
1349
1350 ret = kvm_arch_init(s);
1351 if (ret < 0) {
1352 goto err;
1353 }
1354
1355 ret = kvm_irqchip_create(s);
1356 if (ret < 0) {
1357 goto err;
1358 }
1359
1360 kvm_state = s;
1361 memory_listener_register(&kvm_memory_listener, NULL);
1362
1363 s->many_ioeventfds = kvm_check_many_ioeventfds();
1364
1365 cpu_interrupt_handler = kvm_handle_interrupt;
1366
1367 return 0;
1368
1369 err:
1370 if (s) {
1371 if (s->vmfd >= 0) {
1372 close(s->vmfd);
1373 }
1374 if (s->fd != -1) {
1375 close(s->fd);
1376 }
1377 }
1378 g_free(s);
1379
1380 return ret;
1381 }
1382
1383 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1384 uint32_t count)
1385 {
1386 int i;
1387 uint8_t *ptr = data;
1388
1389 for (i = 0; i < count; i++) {
1390 if (direction == KVM_EXIT_IO_IN) {
1391 switch (size) {
1392 case 1:
1393 stb_p(ptr, cpu_inb(port));
1394 break;
1395 case 2:
1396 stw_p(ptr, cpu_inw(port));
1397 break;
1398 case 4:
1399 stl_p(ptr, cpu_inl(port));
1400 break;
1401 }
1402 } else {
1403 switch (size) {
1404 case 1:
1405 cpu_outb(port, ldub_p(ptr));
1406 break;
1407 case 2:
1408 cpu_outw(port, lduw_p(ptr));
1409 break;
1410 case 4:
1411 cpu_outl(port, ldl_p(ptr));
1412 break;
1413 }
1414 }
1415
1416 ptr += size;
1417 }
1418 }
1419
1420 static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1421 {
1422 fprintf(stderr, "KVM internal error.");
1423 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1424 int i;
1425
1426 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1427 for (i = 0; i < run->internal.ndata; ++i) {
1428 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1429 i, (uint64_t)run->internal.data[i]);
1430 }
1431 } else {
1432 fprintf(stderr, "\n");
1433 }
1434 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1435 fprintf(stderr, "emulation failure\n");
1436 if (!kvm_arch_stop_on_emulation_error(env)) {
1437 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1438 return EXCP_INTERRUPT;
1439 }
1440 }
1441 /* FIXME: Should trigger a qmp message to let management know
1442 * something went wrong.
1443 */
1444 return -1;
1445 }
1446
1447 void kvm_flush_coalesced_mmio_buffer(void)
1448 {
1449 KVMState *s = kvm_state;
1450
1451 if (s->coalesced_flush_in_progress) {
1452 return;
1453 }
1454
1455 s->coalesced_flush_in_progress = true;
1456
1457 if (s->coalesced_mmio_ring) {
1458 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1459 while (ring->first != ring->last) {
1460 struct kvm_coalesced_mmio *ent;
1461
1462 ent = &ring->coalesced_mmio[ring->first];
1463
1464 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1465 smp_wmb();
1466 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1467 }
1468 }
1469
1470 s->coalesced_flush_in_progress = false;
1471 }
1472
1473 static void do_kvm_cpu_synchronize_state(void *_env)
1474 {
1475 CPUArchState *env = _env;
1476
1477 if (!env->kvm_vcpu_dirty) {
1478 kvm_arch_get_registers(env);
1479 env->kvm_vcpu_dirty = 1;
1480 }
1481 }
1482
1483 void kvm_cpu_synchronize_state(CPUArchState *env)
1484 {
1485 if (!env->kvm_vcpu_dirty) {
1486 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1487 }
1488 }
1489
1490 void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1491 {
1492 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1493 env->kvm_vcpu_dirty = 0;
1494 }
1495
1496 void kvm_cpu_synchronize_post_init(CPUArchState *env)
1497 {
1498 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1499 env->kvm_vcpu_dirty = 0;
1500 }
1501
1502 int kvm_cpu_exec(CPUArchState *env)
1503 {
1504 struct kvm_run *run = env->kvm_run;
1505 int ret, run_ret;
1506
1507 DPRINTF("kvm_cpu_exec()\n");
1508
1509 if (kvm_arch_process_async_events(env)) {
1510 env->exit_request = 0;
1511 return EXCP_HLT;
1512 }
1513
1514 do {
1515 if (env->kvm_vcpu_dirty) {
1516 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1517 env->kvm_vcpu_dirty = 0;
1518 }
1519
1520 kvm_arch_pre_run(env, run);
1521 if (env->exit_request) {
1522 DPRINTF("interrupt exit requested\n");
1523 /*
1524 * KVM requires us to reenter the kernel after IO exits to complete
1525 * instruction emulation. This self-signal will ensure that we
1526 * leave ASAP again.
1527 */
1528 qemu_cpu_kick_self();
1529 }
1530 qemu_mutex_unlock_iothread();
1531
1532 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1533
1534 qemu_mutex_lock_iothread();
1535 kvm_arch_post_run(env, run);
1536
1537 kvm_flush_coalesced_mmio_buffer();
1538
1539 if (run_ret < 0) {
1540 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1541 DPRINTF("io window exit\n");
1542 ret = EXCP_INTERRUPT;
1543 break;
1544 }
1545 fprintf(stderr, "error: kvm run failed %s\n",
1546 strerror(-run_ret));
1547 abort();
1548 }
1549
1550 switch (run->exit_reason) {
1551 case KVM_EXIT_IO:
1552 DPRINTF("handle_io\n");
1553 kvm_handle_io(run->io.port,
1554 (uint8_t *)run + run->io.data_offset,
1555 run->io.direction,
1556 run->io.size,
1557 run->io.count);
1558 ret = 0;
1559 break;
1560 case KVM_EXIT_MMIO:
1561 DPRINTF("handle_mmio\n");
1562 cpu_physical_memory_rw(run->mmio.phys_addr,
1563 run->mmio.data,
1564 run->mmio.len,
1565 run->mmio.is_write);
1566 ret = 0;
1567 break;
1568 case KVM_EXIT_IRQ_WINDOW_OPEN:
1569 DPRINTF("irq_window_open\n");
1570 ret = EXCP_INTERRUPT;
1571 break;
1572 case KVM_EXIT_SHUTDOWN:
1573 DPRINTF("shutdown\n");
1574 qemu_system_reset_request();
1575 ret = EXCP_INTERRUPT;
1576 break;
1577 case KVM_EXIT_UNKNOWN:
1578 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1579 (uint64_t)run->hw.hardware_exit_reason);
1580 ret = -1;
1581 break;
1582 case KVM_EXIT_INTERNAL_ERROR:
1583 ret = kvm_handle_internal_error(env, run);
1584 break;
1585 default:
1586 DPRINTF("kvm_arch_handle_exit\n");
1587 ret = kvm_arch_handle_exit(env, run);
1588 break;
1589 }
1590 } while (ret == 0);
1591
1592 if (ret < 0) {
1593 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1594 vm_stop(RUN_STATE_INTERNAL_ERROR);
1595 }
1596
1597 env->exit_request = 0;
1598 return ret;
1599 }
1600
1601 int kvm_ioctl(KVMState *s, int type, ...)
1602 {
1603 int ret;
1604 void *arg;
1605 va_list ap;
1606
1607 va_start(ap, type);
1608 arg = va_arg(ap, void *);
1609 va_end(ap);
1610
1611 ret = ioctl(s->fd, type, arg);
1612 if (ret == -1) {
1613 ret = -errno;
1614 }
1615 return ret;
1616 }
1617
1618 int kvm_vm_ioctl(KVMState *s, int type, ...)
1619 {
1620 int ret;
1621 void *arg;
1622 va_list ap;
1623
1624 va_start(ap, type);
1625 arg = va_arg(ap, void *);
1626 va_end(ap);
1627
1628 ret = ioctl(s->vmfd, type, arg);
1629 if (ret == -1) {
1630 ret = -errno;
1631 }
1632 return ret;
1633 }
1634
1635 int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
1636 {
1637 int ret;
1638 void *arg;
1639 va_list ap;
1640
1641 va_start(ap, type);
1642 arg = va_arg(ap, void *);
1643 va_end(ap);
1644
1645 ret = ioctl(env->kvm_fd, type, arg);
1646 if (ret == -1) {
1647 ret = -errno;
1648 }
1649 return ret;
1650 }
1651
1652 int kvm_has_sync_mmu(void)
1653 {
1654 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1655 }
1656
1657 int kvm_has_vcpu_events(void)
1658 {
1659 return kvm_state->vcpu_events;
1660 }
1661
1662 int kvm_has_robust_singlestep(void)
1663 {
1664 return kvm_state->robust_singlestep;
1665 }
1666
1667 int kvm_has_debugregs(void)
1668 {
1669 return kvm_state->debugregs;
1670 }
1671
1672 int kvm_has_xsave(void)
1673 {
1674 return kvm_state->xsave;
1675 }
1676
1677 int kvm_has_xcrs(void)
1678 {
1679 return kvm_state->xcrs;
1680 }
1681
1682 int kvm_has_pit_state2(void)
1683 {
1684 return kvm_state->pit_state2;
1685 }
1686
1687 int kvm_has_many_ioeventfds(void)
1688 {
1689 if (!kvm_enabled()) {
1690 return 0;
1691 }
1692 return kvm_state->many_ioeventfds;
1693 }
1694
1695 int kvm_has_gsi_routing(void)
1696 {
1697 #ifdef KVM_CAP_IRQ_ROUTING
1698 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1699 #else
1700 return false;
1701 #endif
1702 }
1703
1704 void *kvm_vmalloc(ram_addr_t size)
1705 {
1706 #ifdef TARGET_S390X
1707 void *mem;
1708
1709 mem = kvm_arch_vmalloc(size);
1710 if (mem) {
1711 return mem;
1712 }
1713 #endif
1714 return qemu_vmalloc(size);
1715 }
1716
1717 void kvm_setup_guest_memory(void *start, size_t size)
1718 {
1719 if (!kvm_has_sync_mmu()) {
1720 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1721
1722 if (ret) {
1723 perror("qemu_madvise");
1724 fprintf(stderr,
1725 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1726 exit(1);
1727 }
1728 }
1729 }
1730
1731 #ifdef KVM_CAP_SET_GUEST_DEBUG
1732 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
1733 target_ulong pc)
1734 {
1735 struct kvm_sw_breakpoint *bp;
1736
1737 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1738 if (bp->pc == pc) {
1739 return bp;
1740 }
1741 }
1742 return NULL;
1743 }
1744
1745 int kvm_sw_breakpoints_active(CPUArchState *env)
1746 {
1747 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1748 }
1749
1750 struct kvm_set_guest_debug_data {
1751 struct kvm_guest_debug dbg;
1752 CPUArchState *env;
1753 int err;
1754 };
1755
1756 static void kvm_invoke_set_guest_debug(void *data)
1757 {
1758 struct kvm_set_guest_debug_data *dbg_data = data;
1759 CPUArchState *env = dbg_data->env;
1760
1761 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1762 }
1763
1764 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1765 {
1766 struct kvm_set_guest_debug_data data;
1767
1768 data.dbg.control = reinject_trap;
1769
1770 if (env->singlestep_enabled) {
1771 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1772 }
1773 kvm_arch_update_guest_debug(env, &data.dbg);
1774 data.env = env;
1775
1776 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1777 return data.err;
1778 }
1779
1780 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1781 target_ulong len, int type)
1782 {
1783 struct kvm_sw_breakpoint *bp;
1784 CPUArchState *env;
1785 int err;
1786
1787 if (type == GDB_BREAKPOINT_SW) {
1788 bp = kvm_find_sw_breakpoint(current_env, addr);
1789 if (bp) {
1790 bp->use_count++;
1791 return 0;
1792 }
1793
1794 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1795 if (!bp) {
1796 return -ENOMEM;
1797 }
1798
1799 bp->pc = addr;
1800 bp->use_count = 1;
1801 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1802 if (err) {
1803 g_free(bp);
1804 return err;
1805 }
1806
1807 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1808 bp, entry);
1809 } else {
1810 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1811 if (err) {
1812 return err;
1813 }
1814 }
1815
1816 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1817 err = kvm_update_guest_debug(env, 0);
1818 if (err) {
1819 return err;
1820 }
1821 }
1822 return 0;
1823 }
1824
1825 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1826 target_ulong len, int type)
1827 {
1828 struct kvm_sw_breakpoint *bp;
1829 CPUArchState *env;
1830 int err;
1831
1832 if (type == GDB_BREAKPOINT_SW) {
1833 bp = kvm_find_sw_breakpoint(current_env, addr);
1834 if (!bp) {
1835 return -ENOENT;
1836 }
1837
1838 if (bp->use_count > 1) {
1839 bp->use_count--;
1840 return 0;
1841 }
1842
1843 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1844 if (err) {
1845 return err;
1846 }
1847
1848 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1849 g_free(bp);
1850 } else {
1851 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1852 if (err) {
1853 return err;
1854 }
1855 }
1856
1857 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1858 err = kvm_update_guest_debug(env, 0);
1859 if (err) {
1860 return err;
1861 }
1862 }
1863 return 0;
1864 }
1865
1866 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1867 {
1868 struct kvm_sw_breakpoint *bp, *next;
1869 KVMState *s = current_env->kvm_state;
1870 CPUArchState *env;
1871
1872 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1873 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1874 /* Try harder to find a CPU that currently sees the breakpoint. */
1875 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1876 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1877 break;
1878 }
1879 }
1880 }
1881 }
1882 kvm_arch_remove_all_hw_breakpoints();
1883
1884 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1885 kvm_update_guest_debug(env, 0);
1886 }
1887 }
1888
1889 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1890
1891 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1892 {
1893 return -EINVAL;
1894 }
1895
1896 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1897 target_ulong len, int type)
1898 {
1899 return -EINVAL;
1900 }
1901
1902 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1903 target_ulong len, int type)
1904 {
1905 return -EINVAL;
1906 }
1907
1908 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1909 {
1910 }
1911 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1912
1913 int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1914 {
1915 struct kvm_signal_mask *sigmask;
1916 int r;
1917
1918 if (!sigset) {
1919 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1920 }
1921
1922 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1923
1924 sigmask->len = 8;
1925 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1926 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1927 g_free(sigmask);
1928
1929 return r;
1930 }
1931
1932 int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1933 uint32_t size)
1934 {
1935 int ret;
1936 struct kvm_ioeventfd iofd;
1937
1938 iofd.datamatch = val;
1939 iofd.addr = addr;
1940 iofd.len = size;
1941 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1942 iofd.fd = fd;
1943
1944 if (!kvm_enabled()) {
1945 return -ENOSYS;
1946 }
1947
1948 if (!assign) {
1949 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1950 }
1951
1952 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1953
1954 if (ret < 0) {
1955 return -errno;
1956 }
1957
1958 return 0;
1959 }
1960
1961 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1962 {
1963 struct kvm_ioeventfd kick = {
1964 .datamatch = val,
1965 .addr = addr,
1966 .len = 2,
1967 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1968 .fd = fd,
1969 };
1970 int r;
1971 if (!kvm_enabled()) {
1972 return -ENOSYS;
1973 }
1974 if (!assign) {
1975 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1976 }
1977 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1978 if (r < 0) {
1979 return r;
1980 }
1981 return 0;
1982 }
1983
1984 int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
1985 {
1986 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1987 }
1988
1989 int kvm_on_sigbus(int code, void *addr)
1990 {
1991 return kvm_arch_on_sigbus(code, addr);
1992 }