]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
kvm: synchronize state from cpu context
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30
31 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
32 #define PAGE_SIZE TARGET_PAGE_SIZE
33
34 //#define DEBUG_KVM
35
36 #ifdef DEBUG_KVM
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41 do { } while (0)
42 #endif
43
44 typedef struct KVMSlot
45 {
46 target_phys_addr_t start_addr;
47 ram_addr_t memory_size;
48 ram_addr_t phys_offset;
49 int slot;
50 int flags;
51 } KVMSlot;
52
53 typedef struct kvm_dirty_log KVMDirtyLog;
54
55 struct KVMState
56 {
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int coalesced_mmio;
61 #ifdef KVM_CAP_COALESCED_MMIO
62 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
63 #endif
64 int broken_set_mem_region;
65 int migration_log;
66 int vcpu_events;
67 int robust_singlestep;
68 int debugregs;
69 #ifdef KVM_CAP_SET_GUEST_DEBUG
70 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
71 #endif
72 int irqchip_in_kernel;
73 int pit_in_kernel;
74 };
75
76 static KVMState *kvm_state;
77
78 static KVMSlot *kvm_alloc_slot(KVMState *s)
79 {
80 int i;
81
82 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
83 /* KVM private memory slots */
84 if (i >= 8 && i < 12)
85 continue;
86 if (s->slots[i].memory_size == 0)
87 return &s->slots[i];
88 }
89
90 fprintf(stderr, "%s: no free slot available\n", __func__);
91 abort();
92 }
93
94 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
95 target_phys_addr_t start_addr,
96 target_phys_addr_t end_addr)
97 {
98 int i;
99
100 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
101 KVMSlot *mem = &s->slots[i];
102
103 if (start_addr == mem->start_addr &&
104 end_addr == mem->start_addr + mem->memory_size) {
105 return mem;
106 }
107 }
108
109 return NULL;
110 }
111
112 /*
113 * Find overlapping slot with lowest start address
114 */
115 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
116 target_phys_addr_t start_addr,
117 target_phys_addr_t end_addr)
118 {
119 KVMSlot *found = NULL;
120 int i;
121
122 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
123 KVMSlot *mem = &s->slots[i];
124
125 if (mem->memory_size == 0 ||
126 (found && found->start_addr < mem->start_addr)) {
127 continue;
128 }
129
130 if (end_addr > mem->start_addr &&
131 start_addr < mem->start_addr + mem->memory_size) {
132 found = mem;
133 }
134 }
135
136 return found;
137 }
138
139 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
140 {
141 struct kvm_userspace_memory_region mem;
142
143 mem.slot = slot->slot;
144 mem.guest_phys_addr = slot->start_addr;
145 mem.memory_size = slot->memory_size;
146 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
147 mem.flags = slot->flags;
148 if (s->migration_log) {
149 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
150 }
151 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
152 }
153
154 static void kvm_reset_vcpu(void *opaque)
155 {
156 CPUState *env = opaque;
157
158 kvm_arch_reset_vcpu(env);
159 }
160
161 int kvm_irqchip_in_kernel(void)
162 {
163 return kvm_state->irqchip_in_kernel;
164 }
165
166 int kvm_pit_in_kernel(void)
167 {
168 return kvm_state->pit_in_kernel;
169 }
170
171
172 int kvm_init_vcpu(CPUState *env)
173 {
174 KVMState *s = kvm_state;
175 long mmap_size;
176 int ret;
177
178 DPRINTF("kvm_init_vcpu\n");
179
180 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
181 if (ret < 0) {
182 DPRINTF("kvm_create_vcpu failed\n");
183 goto err;
184 }
185
186 env->kvm_fd = ret;
187 env->kvm_state = s;
188
189 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
190 if (mmap_size < 0) {
191 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
192 goto err;
193 }
194
195 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
196 env->kvm_fd, 0);
197 if (env->kvm_run == MAP_FAILED) {
198 ret = -errno;
199 DPRINTF("mmap'ing vcpu state failed\n");
200 goto err;
201 }
202
203 #ifdef KVM_CAP_COALESCED_MMIO
204 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
205 s->coalesced_mmio_ring = (void *) env->kvm_run +
206 s->coalesced_mmio * PAGE_SIZE;
207 #endif
208
209 ret = kvm_arch_init_vcpu(env);
210 if (ret == 0) {
211 qemu_register_reset(kvm_reset_vcpu, env);
212 kvm_arch_reset_vcpu(env);
213 }
214 err:
215 return ret;
216 }
217
218 /*
219 * dirty pages logging control
220 */
221 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
222 ram_addr_t size, int flags, int mask)
223 {
224 KVMState *s = kvm_state;
225 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
226 int old_flags;
227
228 if (mem == NULL) {
229 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
230 TARGET_FMT_plx "\n", __func__, phys_addr,
231 (target_phys_addr_t)(phys_addr + size - 1));
232 return -EINVAL;
233 }
234
235 old_flags = mem->flags;
236
237 flags = (mem->flags & ~mask) | flags;
238 mem->flags = flags;
239
240 /* If nothing changed effectively, no need to issue ioctl */
241 if (s->migration_log) {
242 flags |= KVM_MEM_LOG_DIRTY_PAGES;
243 }
244 if (flags == old_flags) {
245 return 0;
246 }
247
248 return kvm_set_user_memory_region(s, mem);
249 }
250
251 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
252 {
253 return kvm_dirty_pages_log_change(phys_addr, size,
254 KVM_MEM_LOG_DIRTY_PAGES,
255 KVM_MEM_LOG_DIRTY_PAGES);
256 }
257
258 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
259 {
260 return kvm_dirty_pages_log_change(phys_addr, size,
261 0,
262 KVM_MEM_LOG_DIRTY_PAGES);
263 }
264
265 static int kvm_set_migration_log(int enable)
266 {
267 KVMState *s = kvm_state;
268 KVMSlot *mem;
269 int i, err;
270
271 s->migration_log = enable;
272
273 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
274 mem = &s->slots[i];
275
276 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
277 continue;
278 }
279 err = kvm_set_user_memory_region(s, mem);
280 if (err) {
281 return err;
282 }
283 }
284 return 0;
285 }
286
287 /* get kvm's dirty pages bitmap and update qemu's */
288 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
289 unsigned long *bitmap,
290 unsigned long offset,
291 unsigned long mem_size)
292 {
293 unsigned int i, j;
294 unsigned long page_number, addr, addr1, c;
295 ram_addr_t ram_addr;
296 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
297 HOST_LONG_BITS;
298
299 /*
300 * bitmap-traveling is faster than memory-traveling (for addr...)
301 * especially when most of the memory is not dirty.
302 */
303 for (i = 0; i < len; i++) {
304 if (bitmap[i] != 0) {
305 c = leul_to_cpu(bitmap[i]);
306 do {
307 j = ffsl(c) - 1;
308 c &= ~(1ul << j);
309 page_number = i * HOST_LONG_BITS + j;
310 addr1 = page_number * TARGET_PAGE_SIZE;
311 addr = offset + addr1;
312 ram_addr = cpu_get_physical_page_desc(addr);
313 cpu_physical_memory_set_dirty(ram_addr);
314 } while (c != 0);
315 }
316 }
317 return 0;
318 }
319
320 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
321
322 /**
323 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
324 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
325 * This means all bits are set to dirty.
326 *
327 * @start_add: start of logged region.
328 * @end_addr: end of logged region.
329 */
330 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
331 target_phys_addr_t end_addr)
332 {
333 KVMState *s = kvm_state;
334 unsigned long size, allocated_size = 0;
335 KVMDirtyLog d;
336 KVMSlot *mem;
337 int ret = 0;
338
339 d.dirty_bitmap = NULL;
340 while (start_addr < end_addr) {
341 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
342 if (mem == NULL) {
343 break;
344 }
345
346 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
347 if (!d.dirty_bitmap) {
348 d.dirty_bitmap = qemu_malloc(size);
349 } else if (size > allocated_size) {
350 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
351 }
352 allocated_size = size;
353 memset(d.dirty_bitmap, 0, allocated_size);
354
355 d.slot = mem->slot;
356
357 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
358 DPRINTF("ioctl failed %d\n", errno);
359 ret = -1;
360 break;
361 }
362
363 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
364 mem->start_addr, mem->memory_size);
365 start_addr = mem->start_addr + mem->memory_size;
366 }
367 qemu_free(d.dirty_bitmap);
368
369 return ret;
370 }
371
372 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
373 {
374 int ret = -ENOSYS;
375 #ifdef KVM_CAP_COALESCED_MMIO
376 KVMState *s = kvm_state;
377
378 if (s->coalesced_mmio) {
379 struct kvm_coalesced_mmio_zone zone;
380
381 zone.addr = start;
382 zone.size = size;
383
384 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
385 }
386 #endif
387
388 return ret;
389 }
390
391 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
392 {
393 int ret = -ENOSYS;
394 #ifdef KVM_CAP_COALESCED_MMIO
395 KVMState *s = kvm_state;
396
397 if (s->coalesced_mmio) {
398 struct kvm_coalesced_mmio_zone zone;
399
400 zone.addr = start;
401 zone.size = size;
402
403 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
404 }
405 #endif
406
407 return ret;
408 }
409
410 int kvm_check_extension(KVMState *s, unsigned int extension)
411 {
412 int ret;
413
414 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
415 if (ret < 0) {
416 ret = 0;
417 }
418
419 return ret;
420 }
421
422 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
423 ram_addr_t size,
424 ram_addr_t phys_offset)
425 {
426 KVMState *s = kvm_state;
427 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
428 KVMSlot *mem, old;
429 int err;
430
431 if (start_addr & ~TARGET_PAGE_MASK) {
432 if (flags >= IO_MEM_UNASSIGNED) {
433 if (!kvm_lookup_overlapping_slot(s, start_addr,
434 start_addr + size)) {
435 return;
436 }
437 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
438 } else {
439 fprintf(stderr, "Only page-aligned memory slots supported\n");
440 }
441 abort();
442 }
443
444 /* KVM does not support read-only slots */
445 phys_offset &= ~IO_MEM_ROM;
446
447 while (1) {
448 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
449 if (!mem) {
450 break;
451 }
452
453 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
454 (start_addr + size <= mem->start_addr + mem->memory_size) &&
455 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
456 /* The new slot fits into the existing one and comes with
457 * identical parameters - nothing to be done. */
458 return;
459 }
460
461 old = *mem;
462
463 /* unregister the overlapping slot */
464 mem->memory_size = 0;
465 err = kvm_set_user_memory_region(s, mem);
466 if (err) {
467 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
468 __func__, strerror(-err));
469 abort();
470 }
471
472 /* Workaround for older KVM versions: we can't join slots, even not by
473 * unregistering the previous ones and then registering the larger
474 * slot. We have to maintain the existing fragmentation. Sigh.
475 *
476 * This workaround assumes that the new slot starts at the same
477 * address as the first existing one. If not or if some overlapping
478 * slot comes around later, we will fail (not seen in practice so far)
479 * - and actually require a recent KVM version. */
480 if (s->broken_set_mem_region &&
481 old.start_addr == start_addr && old.memory_size < size &&
482 flags < IO_MEM_UNASSIGNED) {
483 mem = kvm_alloc_slot(s);
484 mem->memory_size = old.memory_size;
485 mem->start_addr = old.start_addr;
486 mem->phys_offset = old.phys_offset;
487 mem->flags = 0;
488
489 err = kvm_set_user_memory_region(s, mem);
490 if (err) {
491 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
492 strerror(-err));
493 abort();
494 }
495
496 start_addr += old.memory_size;
497 phys_offset += old.memory_size;
498 size -= old.memory_size;
499 continue;
500 }
501
502 /* register prefix slot */
503 if (old.start_addr < start_addr) {
504 mem = kvm_alloc_slot(s);
505 mem->memory_size = start_addr - old.start_addr;
506 mem->start_addr = old.start_addr;
507 mem->phys_offset = old.phys_offset;
508 mem->flags = 0;
509
510 err = kvm_set_user_memory_region(s, mem);
511 if (err) {
512 fprintf(stderr, "%s: error registering prefix slot: %s\n",
513 __func__, strerror(-err));
514 abort();
515 }
516 }
517
518 /* register suffix slot */
519 if (old.start_addr + old.memory_size > start_addr + size) {
520 ram_addr_t size_delta;
521
522 mem = kvm_alloc_slot(s);
523 mem->start_addr = start_addr + size;
524 size_delta = mem->start_addr - old.start_addr;
525 mem->memory_size = old.memory_size - size_delta;
526 mem->phys_offset = old.phys_offset + size_delta;
527 mem->flags = 0;
528
529 err = kvm_set_user_memory_region(s, mem);
530 if (err) {
531 fprintf(stderr, "%s: error registering suffix slot: %s\n",
532 __func__, strerror(-err));
533 abort();
534 }
535 }
536 }
537
538 /* in case the KVM bug workaround already "consumed" the new slot */
539 if (!size)
540 return;
541
542 /* KVM does not need to know about this memory */
543 if (flags >= IO_MEM_UNASSIGNED)
544 return;
545
546 mem = kvm_alloc_slot(s);
547 mem->memory_size = size;
548 mem->start_addr = start_addr;
549 mem->phys_offset = phys_offset;
550 mem->flags = 0;
551
552 err = kvm_set_user_memory_region(s, mem);
553 if (err) {
554 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
555 strerror(-err));
556 abort();
557 }
558 }
559
560 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
561 target_phys_addr_t start_addr,
562 ram_addr_t size,
563 ram_addr_t phys_offset)
564 {
565 kvm_set_phys_mem(start_addr, size, phys_offset);
566 }
567
568 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
569 target_phys_addr_t start_addr,
570 target_phys_addr_t end_addr)
571 {
572 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
573 }
574
575 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
576 int enable)
577 {
578 return kvm_set_migration_log(enable);
579 }
580
581 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
582 .set_memory = kvm_client_set_memory,
583 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
584 .migration_log = kvm_client_migration_log,
585 };
586
587 int kvm_init(int smp_cpus)
588 {
589 static const char upgrade_note[] =
590 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
591 "(see http://sourceforge.net/projects/kvm).\n";
592 KVMState *s;
593 int ret;
594 int i;
595
596 if (smp_cpus > 1) {
597 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
598 return -EINVAL;
599 }
600
601 s = qemu_mallocz(sizeof(KVMState));
602
603 #ifdef KVM_CAP_SET_GUEST_DEBUG
604 QTAILQ_INIT(&s->kvm_sw_breakpoints);
605 #endif
606 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
607 s->slots[i].slot = i;
608
609 s->vmfd = -1;
610 s->fd = qemu_open("/dev/kvm", O_RDWR);
611 if (s->fd == -1) {
612 fprintf(stderr, "Could not access KVM kernel module: %m\n");
613 ret = -errno;
614 goto err;
615 }
616
617 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
618 if (ret < KVM_API_VERSION) {
619 if (ret > 0)
620 ret = -EINVAL;
621 fprintf(stderr, "kvm version too old\n");
622 goto err;
623 }
624
625 if (ret > KVM_API_VERSION) {
626 ret = -EINVAL;
627 fprintf(stderr, "kvm version not supported\n");
628 goto err;
629 }
630
631 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
632 if (s->vmfd < 0) {
633 #ifdef TARGET_S390X
634 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
635 "your host kernel command line\n");
636 #endif
637 goto err;
638 }
639
640 /* initially, KVM allocated its own memory and we had to jump through
641 * hooks to make phys_ram_base point to this. Modern versions of KVM
642 * just use a user allocated buffer so we can use regular pages
643 * unmodified. Make sure we have a sufficiently modern version of KVM.
644 */
645 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
646 ret = -EINVAL;
647 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
648 upgrade_note);
649 goto err;
650 }
651
652 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
653 * destroyed properly. Since we rely on this capability, refuse to work
654 * with any kernel without this capability. */
655 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
656 ret = -EINVAL;
657
658 fprintf(stderr,
659 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
660 upgrade_note);
661 goto err;
662 }
663
664 s->coalesced_mmio = 0;
665 #ifdef KVM_CAP_COALESCED_MMIO
666 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
667 s->coalesced_mmio_ring = NULL;
668 #endif
669
670 s->broken_set_mem_region = 1;
671 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
672 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
673 if (ret > 0) {
674 s->broken_set_mem_region = 0;
675 }
676 #endif
677
678 s->vcpu_events = 0;
679 #ifdef KVM_CAP_VCPU_EVENTS
680 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
681 #endif
682
683 s->robust_singlestep = 0;
684 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
685 s->robust_singlestep =
686 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
687 #endif
688
689 s->debugregs = 0;
690 #ifdef KVM_CAP_DEBUGREGS
691 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
692 #endif
693
694 ret = kvm_arch_init(s, smp_cpus);
695 if (ret < 0)
696 goto err;
697
698 kvm_state = s;
699 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
700
701 return 0;
702
703 err:
704 if (s) {
705 if (s->vmfd != -1)
706 close(s->vmfd);
707 if (s->fd != -1)
708 close(s->fd);
709 }
710 qemu_free(s);
711
712 return ret;
713 }
714
715 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
716 uint32_t count)
717 {
718 int i;
719 uint8_t *ptr = data;
720
721 for (i = 0; i < count; i++) {
722 if (direction == KVM_EXIT_IO_IN) {
723 switch (size) {
724 case 1:
725 stb_p(ptr, cpu_inb(port));
726 break;
727 case 2:
728 stw_p(ptr, cpu_inw(port));
729 break;
730 case 4:
731 stl_p(ptr, cpu_inl(port));
732 break;
733 }
734 } else {
735 switch (size) {
736 case 1:
737 cpu_outb(port, ldub_p(ptr));
738 break;
739 case 2:
740 cpu_outw(port, lduw_p(ptr));
741 break;
742 case 4:
743 cpu_outl(port, ldl_p(ptr));
744 break;
745 }
746 }
747
748 ptr += size;
749 }
750
751 return 1;
752 }
753
754 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
755 static void kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
756 {
757
758 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
759 int i;
760
761 fprintf(stderr, "KVM internal error. Suberror: %d\n",
762 run->internal.suberror);
763
764 for (i = 0; i < run->internal.ndata; ++i) {
765 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
766 i, (uint64_t)run->internal.data[i]);
767 }
768 }
769 cpu_dump_state(env, stderr, fprintf, 0);
770 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
771 fprintf(stderr, "emulation failure\n");
772 }
773 /* FIXME: Should trigger a qmp message to let management know
774 * something went wrong.
775 */
776 vm_stop(0);
777 }
778 #endif
779
780 void kvm_flush_coalesced_mmio_buffer(void)
781 {
782 #ifdef KVM_CAP_COALESCED_MMIO
783 KVMState *s = kvm_state;
784 if (s->coalesced_mmio_ring) {
785 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
786 while (ring->first != ring->last) {
787 struct kvm_coalesced_mmio *ent;
788
789 ent = &ring->coalesced_mmio[ring->first];
790
791 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
792 smp_wmb();
793 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
794 }
795 }
796 #endif
797 }
798
799 static void do_kvm_cpu_synchronize_state(void *_env)
800 {
801 CPUState *env = _env;
802
803 if (!env->kvm_vcpu_dirty) {
804 kvm_arch_get_registers(env);
805 env->kvm_vcpu_dirty = 1;
806 }
807 }
808
809 void kvm_cpu_synchronize_state(CPUState *env)
810 {
811 if (!env->kvm_vcpu_dirty)
812 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
813 }
814
815 void kvm_cpu_synchronize_post_reset(CPUState *env)
816 {
817 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
818 env->kvm_vcpu_dirty = 0;
819 }
820
821 void kvm_cpu_synchronize_post_init(CPUState *env)
822 {
823 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
824 env->kvm_vcpu_dirty = 0;
825 }
826
827 int kvm_cpu_exec(CPUState *env)
828 {
829 struct kvm_run *run = env->kvm_run;
830 int ret;
831
832 DPRINTF("kvm_cpu_exec()\n");
833
834 do {
835 #ifndef CONFIG_IOTHREAD
836 if (env->exit_request) {
837 DPRINTF("interrupt exit requested\n");
838 ret = 0;
839 break;
840 }
841 #endif
842
843 if (env->kvm_vcpu_dirty) {
844 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
845 env->kvm_vcpu_dirty = 0;
846 }
847
848 kvm_arch_pre_run(env, run);
849 cpu_single_env = NULL;
850 qemu_mutex_unlock_iothread();
851 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
852 qemu_mutex_lock_iothread();
853 cpu_single_env = env;
854 kvm_arch_post_run(env, run);
855
856 if (ret == -EINTR || ret == -EAGAIN) {
857 cpu_exit(env);
858 DPRINTF("io window exit\n");
859 ret = 0;
860 break;
861 }
862
863 if (ret < 0) {
864 DPRINTF("kvm run failed %s\n", strerror(-ret));
865 abort();
866 }
867
868 kvm_flush_coalesced_mmio_buffer();
869
870 ret = 0; /* exit loop */
871 switch (run->exit_reason) {
872 case KVM_EXIT_IO:
873 DPRINTF("handle_io\n");
874 ret = kvm_handle_io(run->io.port,
875 (uint8_t *)run + run->io.data_offset,
876 run->io.direction,
877 run->io.size,
878 run->io.count);
879 break;
880 case KVM_EXIT_MMIO:
881 DPRINTF("handle_mmio\n");
882 cpu_physical_memory_rw(run->mmio.phys_addr,
883 run->mmio.data,
884 run->mmio.len,
885 run->mmio.is_write);
886 ret = 1;
887 break;
888 case KVM_EXIT_IRQ_WINDOW_OPEN:
889 DPRINTF("irq_window_open\n");
890 break;
891 case KVM_EXIT_SHUTDOWN:
892 DPRINTF("shutdown\n");
893 qemu_system_reset_request();
894 ret = 1;
895 break;
896 case KVM_EXIT_UNKNOWN:
897 DPRINTF("kvm_exit_unknown\n");
898 break;
899 case KVM_EXIT_FAIL_ENTRY:
900 DPRINTF("kvm_exit_fail_entry\n");
901 break;
902 case KVM_EXIT_EXCEPTION:
903 DPRINTF("kvm_exit_exception\n");
904 break;
905 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
906 case KVM_EXIT_INTERNAL_ERROR:
907 kvm_handle_internal_error(env, run);
908 break;
909 #endif
910 case KVM_EXIT_DEBUG:
911 DPRINTF("kvm_exit_debug\n");
912 #ifdef KVM_CAP_SET_GUEST_DEBUG
913 if (kvm_arch_debug(&run->debug.arch)) {
914 gdb_set_stop_cpu(env);
915 vm_stop(EXCP_DEBUG);
916 env->exception_index = EXCP_DEBUG;
917 return 0;
918 }
919 /* re-enter, this exception was guest-internal */
920 ret = 1;
921 #endif /* KVM_CAP_SET_GUEST_DEBUG */
922 break;
923 default:
924 DPRINTF("kvm_arch_handle_exit\n");
925 ret = kvm_arch_handle_exit(env, run);
926 break;
927 }
928 } while (ret > 0);
929
930 if (env->exit_request) {
931 env->exit_request = 0;
932 env->exception_index = EXCP_INTERRUPT;
933 }
934
935 return ret;
936 }
937
938 int kvm_ioctl(KVMState *s, int type, ...)
939 {
940 int ret;
941 void *arg;
942 va_list ap;
943
944 va_start(ap, type);
945 arg = va_arg(ap, void *);
946 va_end(ap);
947
948 ret = ioctl(s->fd, type, arg);
949 if (ret == -1)
950 ret = -errno;
951
952 return ret;
953 }
954
955 int kvm_vm_ioctl(KVMState *s, int type, ...)
956 {
957 int ret;
958 void *arg;
959 va_list ap;
960
961 va_start(ap, type);
962 arg = va_arg(ap, void *);
963 va_end(ap);
964
965 ret = ioctl(s->vmfd, type, arg);
966 if (ret == -1)
967 ret = -errno;
968
969 return ret;
970 }
971
972 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
973 {
974 int ret;
975 void *arg;
976 va_list ap;
977
978 va_start(ap, type);
979 arg = va_arg(ap, void *);
980 va_end(ap);
981
982 ret = ioctl(env->kvm_fd, type, arg);
983 if (ret == -1)
984 ret = -errno;
985
986 return ret;
987 }
988
989 int kvm_has_sync_mmu(void)
990 {
991 #ifdef KVM_CAP_SYNC_MMU
992 KVMState *s = kvm_state;
993
994 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
995 #else
996 return 0;
997 #endif
998 }
999
1000 int kvm_has_vcpu_events(void)
1001 {
1002 return kvm_state->vcpu_events;
1003 }
1004
1005 int kvm_has_robust_singlestep(void)
1006 {
1007 return kvm_state->robust_singlestep;
1008 }
1009
1010 int kvm_has_debugregs(void)
1011 {
1012 return kvm_state->debugregs;
1013 }
1014
1015 void kvm_setup_guest_memory(void *start, size_t size)
1016 {
1017 if (!kvm_has_sync_mmu()) {
1018 #ifdef MADV_DONTFORK
1019 int ret = madvise(start, size, MADV_DONTFORK);
1020
1021 if (ret) {
1022 perror("madvice");
1023 exit(1);
1024 }
1025 #else
1026 fprintf(stderr,
1027 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1028 exit(1);
1029 #endif
1030 }
1031 }
1032
1033 #ifdef KVM_CAP_SET_GUEST_DEBUG
1034 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
1035 {
1036 #ifdef CONFIG_IOTHREAD
1037 if (env != cpu_single_env) {
1038 abort();
1039 }
1040 #endif
1041 func(data);
1042 }
1043
1044 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1045 target_ulong pc)
1046 {
1047 struct kvm_sw_breakpoint *bp;
1048
1049 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1050 if (bp->pc == pc)
1051 return bp;
1052 }
1053 return NULL;
1054 }
1055
1056 int kvm_sw_breakpoints_active(CPUState *env)
1057 {
1058 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1059 }
1060
1061 struct kvm_set_guest_debug_data {
1062 struct kvm_guest_debug dbg;
1063 CPUState *env;
1064 int err;
1065 };
1066
1067 static void kvm_invoke_set_guest_debug(void *data)
1068 {
1069 struct kvm_set_guest_debug_data *dbg_data = data;
1070 CPUState *env = dbg_data->env;
1071
1072 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1073 }
1074
1075 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1076 {
1077 struct kvm_set_guest_debug_data data;
1078
1079 data.dbg.control = reinject_trap;
1080
1081 if (env->singlestep_enabled) {
1082 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1083 }
1084 kvm_arch_update_guest_debug(env, &data.dbg);
1085 data.env = env;
1086
1087 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
1088 return data.err;
1089 }
1090
1091 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1092 target_ulong len, int type)
1093 {
1094 struct kvm_sw_breakpoint *bp;
1095 CPUState *env;
1096 int err;
1097
1098 if (type == GDB_BREAKPOINT_SW) {
1099 bp = kvm_find_sw_breakpoint(current_env, addr);
1100 if (bp) {
1101 bp->use_count++;
1102 return 0;
1103 }
1104
1105 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1106 if (!bp)
1107 return -ENOMEM;
1108
1109 bp->pc = addr;
1110 bp->use_count = 1;
1111 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1112 if (err) {
1113 free(bp);
1114 return err;
1115 }
1116
1117 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1118 bp, entry);
1119 } else {
1120 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1121 if (err)
1122 return err;
1123 }
1124
1125 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1126 err = kvm_update_guest_debug(env, 0);
1127 if (err)
1128 return err;
1129 }
1130 return 0;
1131 }
1132
1133 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1134 target_ulong len, int type)
1135 {
1136 struct kvm_sw_breakpoint *bp;
1137 CPUState *env;
1138 int err;
1139
1140 if (type == GDB_BREAKPOINT_SW) {
1141 bp = kvm_find_sw_breakpoint(current_env, addr);
1142 if (!bp)
1143 return -ENOENT;
1144
1145 if (bp->use_count > 1) {
1146 bp->use_count--;
1147 return 0;
1148 }
1149
1150 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1151 if (err)
1152 return err;
1153
1154 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1155 qemu_free(bp);
1156 } else {
1157 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1158 if (err)
1159 return err;
1160 }
1161
1162 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1163 err = kvm_update_guest_debug(env, 0);
1164 if (err)
1165 return err;
1166 }
1167 return 0;
1168 }
1169
1170 void kvm_remove_all_breakpoints(CPUState *current_env)
1171 {
1172 struct kvm_sw_breakpoint *bp, *next;
1173 KVMState *s = current_env->kvm_state;
1174 CPUState *env;
1175
1176 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1177 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1178 /* Try harder to find a CPU that currently sees the breakpoint. */
1179 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1180 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1181 break;
1182 }
1183 }
1184 }
1185 kvm_arch_remove_all_hw_breakpoints();
1186
1187 for (env = first_cpu; env != NULL; env = env->next_cpu)
1188 kvm_update_guest_debug(env, 0);
1189 }
1190
1191 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1192
1193 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1194 {
1195 return -EINVAL;
1196 }
1197
1198 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1199 target_ulong len, int type)
1200 {
1201 return -EINVAL;
1202 }
1203
1204 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1205 target_ulong len, int type)
1206 {
1207 return -EINVAL;
1208 }
1209
1210 void kvm_remove_all_breakpoints(CPUState *current_env)
1211 {
1212 }
1213 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1214
1215 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1216 {
1217 struct kvm_signal_mask *sigmask;
1218 int r;
1219
1220 if (!sigset)
1221 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1222
1223 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1224
1225 sigmask->len = 8;
1226 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1227 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1228 free(sigmask);
1229
1230 return r;
1231 }
1232
1233 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1234 {
1235 #ifdef KVM_IOEVENTFD
1236 struct kvm_ioeventfd kick = {
1237 .datamatch = val,
1238 .addr = addr,
1239 .len = 2,
1240 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1241 .fd = fd,
1242 };
1243 int r;
1244 if (!kvm_enabled())
1245 return -ENOSYS;
1246 if (!assign)
1247 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1248 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1249 if (r < 0)
1250 return r;
1251 return 0;
1252 #else
1253 return -ENOSYS;
1254 #endif
1255 }