]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
Merge remote-tracking branch 'sstabellini/saverestore-8' into staging
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30 #include "memory.h"
31 #include "exec-memory.h"
32
33 /* This check must be after config-host.h is included */
34 #ifdef CONFIG_EVENTFD
35 #include <sys/eventfd.h>
36 #endif
37
38 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
39 #define PAGE_SIZE TARGET_PAGE_SIZE
40
41 //#define DEBUG_KVM
42
43 #ifdef DEBUG_KVM
44 #define DPRINTF(fmt, ...) \
45 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
46 #else
47 #define DPRINTF(fmt, ...) \
48 do { } while (0)
49 #endif
50
51 typedef struct KVMSlot
52 {
53 target_phys_addr_t start_addr;
54 ram_addr_t memory_size;
55 void *ram;
56 int slot;
57 int flags;
58 } KVMSlot;
59
60 typedef struct kvm_dirty_log KVMDirtyLog;
61
62 struct KVMState
63 {
64 KVMSlot slots[32];
65 int fd;
66 int vmfd;
67 int coalesced_mmio;
68 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
69 bool coalesced_flush_in_progress;
70 int broken_set_mem_region;
71 int migration_log;
72 int vcpu_events;
73 int robust_singlestep;
74 int debugregs;
75 #ifdef KVM_CAP_SET_GUEST_DEBUG
76 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
77 #endif
78 int pit_in_kernel;
79 int pit_state2;
80 int xsave, xcrs;
81 int many_ioeventfds;
82 /* The man page (and posix) say ioctl numbers are signed int, but
83 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
84 * unsigned, and treating them as signed here can break things */
85 unsigned irqchip_inject_ioctl;
86 #ifdef KVM_CAP_IRQ_ROUTING
87 struct kvm_irq_routing *irq_routes;
88 int nr_allocated_irq_routes;
89 uint32_t *used_gsi_bitmap;
90 unsigned int max_gsi;
91 #endif
92 };
93
94 KVMState *kvm_state;
95 bool kvm_kernel_irqchip;
96
97 static const KVMCapabilityInfo kvm_required_capabilites[] = {
98 KVM_CAP_INFO(USER_MEMORY),
99 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
100 KVM_CAP_LAST_INFO
101 };
102
103 static KVMSlot *kvm_alloc_slot(KVMState *s)
104 {
105 int i;
106
107 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
108 if (s->slots[i].memory_size == 0) {
109 return &s->slots[i];
110 }
111 }
112
113 fprintf(stderr, "%s: no free slot available\n", __func__);
114 abort();
115 }
116
117 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
118 target_phys_addr_t start_addr,
119 target_phys_addr_t end_addr)
120 {
121 int i;
122
123 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
124 KVMSlot *mem = &s->slots[i];
125
126 if (start_addr == mem->start_addr &&
127 end_addr == mem->start_addr + mem->memory_size) {
128 return mem;
129 }
130 }
131
132 return NULL;
133 }
134
135 /*
136 * Find overlapping slot with lowest start address
137 */
138 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
139 target_phys_addr_t start_addr,
140 target_phys_addr_t end_addr)
141 {
142 KVMSlot *found = NULL;
143 int i;
144
145 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
146 KVMSlot *mem = &s->slots[i];
147
148 if (mem->memory_size == 0 ||
149 (found && found->start_addr < mem->start_addr)) {
150 continue;
151 }
152
153 if (end_addr > mem->start_addr &&
154 start_addr < mem->start_addr + mem->memory_size) {
155 found = mem;
156 }
157 }
158
159 return found;
160 }
161
162 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
163 target_phys_addr_t *phys_addr)
164 {
165 int i;
166
167 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
168 KVMSlot *mem = &s->slots[i];
169
170 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
171 *phys_addr = mem->start_addr + (ram - mem->ram);
172 return 1;
173 }
174 }
175
176 return 0;
177 }
178
179 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
180 {
181 struct kvm_userspace_memory_region mem;
182
183 mem.slot = slot->slot;
184 mem.guest_phys_addr = slot->start_addr;
185 mem.memory_size = slot->memory_size;
186 mem.userspace_addr = (unsigned long)slot->ram;
187 mem.flags = slot->flags;
188 if (s->migration_log) {
189 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
190 }
191 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
192 }
193
194 static void kvm_reset_vcpu(void *opaque)
195 {
196 CPUArchState *env = opaque;
197
198 kvm_arch_reset_vcpu(env);
199 }
200
201 int kvm_pit_in_kernel(void)
202 {
203 return kvm_state->pit_in_kernel;
204 }
205
206 int kvm_init_vcpu(CPUArchState *env)
207 {
208 KVMState *s = kvm_state;
209 long mmap_size;
210 int ret;
211
212 DPRINTF("kvm_init_vcpu\n");
213
214 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
215 if (ret < 0) {
216 DPRINTF("kvm_create_vcpu failed\n");
217 goto err;
218 }
219
220 env->kvm_fd = ret;
221 env->kvm_state = s;
222 env->kvm_vcpu_dirty = 1;
223
224 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
225 if (mmap_size < 0) {
226 ret = mmap_size;
227 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
228 goto err;
229 }
230
231 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
232 env->kvm_fd, 0);
233 if (env->kvm_run == MAP_FAILED) {
234 ret = -errno;
235 DPRINTF("mmap'ing vcpu state failed\n");
236 goto err;
237 }
238
239 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
240 s->coalesced_mmio_ring =
241 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
242 }
243
244 ret = kvm_arch_init_vcpu(env);
245 if (ret == 0) {
246 qemu_register_reset(kvm_reset_vcpu, env);
247 kvm_arch_reset_vcpu(env);
248 }
249 err:
250 return ret;
251 }
252
253 /*
254 * dirty pages logging control
255 */
256
257 static int kvm_mem_flags(KVMState *s, bool log_dirty)
258 {
259 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
260 }
261
262 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
263 {
264 KVMState *s = kvm_state;
265 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
266 int old_flags;
267
268 old_flags = mem->flags;
269
270 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
271 mem->flags = flags;
272
273 /* If nothing changed effectively, no need to issue ioctl */
274 if (s->migration_log) {
275 flags |= KVM_MEM_LOG_DIRTY_PAGES;
276 }
277
278 if (flags == old_flags) {
279 return 0;
280 }
281
282 return kvm_set_user_memory_region(s, mem);
283 }
284
285 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
286 ram_addr_t size, bool log_dirty)
287 {
288 KVMState *s = kvm_state;
289 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
290
291 if (mem == NULL) {
292 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
293 TARGET_FMT_plx "\n", __func__, phys_addr,
294 (target_phys_addr_t)(phys_addr + size - 1));
295 return -EINVAL;
296 }
297 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
298 }
299
300 static void kvm_log_start(MemoryListener *listener,
301 MemoryRegionSection *section)
302 {
303 int r;
304
305 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
306 section->size, true);
307 if (r < 0) {
308 abort();
309 }
310 }
311
312 static void kvm_log_stop(MemoryListener *listener,
313 MemoryRegionSection *section)
314 {
315 int r;
316
317 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
318 section->size, false);
319 if (r < 0) {
320 abort();
321 }
322 }
323
324 static int kvm_set_migration_log(int enable)
325 {
326 KVMState *s = kvm_state;
327 KVMSlot *mem;
328 int i, err;
329
330 s->migration_log = enable;
331
332 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
333 mem = &s->slots[i];
334
335 if (!mem->memory_size) {
336 continue;
337 }
338 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
339 continue;
340 }
341 err = kvm_set_user_memory_region(s, mem);
342 if (err) {
343 return err;
344 }
345 }
346 return 0;
347 }
348
349 /* get kvm's dirty pages bitmap and update qemu's */
350 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
351 unsigned long *bitmap)
352 {
353 unsigned int i, j;
354 unsigned long page_number, c;
355 target_phys_addr_t addr, addr1;
356 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
357
358 /*
359 * bitmap-traveling is faster than memory-traveling (for addr...)
360 * especially when most of the memory is not dirty.
361 */
362 for (i = 0; i < len; i++) {
363 if (bitmap[i] != 0) {
364 c = leul_to_cpu(bitmap[i]);
365 do {
366 j = ffsl(c) - 1;
367 c &= ~(1ul << j);
368 page_number = i * HOST_LONG_BITS + j;
369 addr1 = page_number * TARGET_PAGE_SIZE;
370 addr = section->offset_within_region + addr1;
371 memory_region_set_dirty(section->mr, addr, TARGET_PAGE_SIZE);
372 } while (c != 0);
373 }
374 }
375 return 0;
376 }
377
378 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
379
380 /**
381 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
382 * This function updates qemu's dirty bitmap using
383 * memory_region_set_dirty(). This means all bits are set
384 * to dirty.
385 *
386 * @start_add: start of logged region.
387 * @end_addr: end of logged region.
388 */
389 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
390 {
391 KVMState *s = kvm_state;
392 unsigned long size, allocated_size = 0;
393 KVMDirtyLog d;
394 KVMSlot *mem;
395 int ret = 0;
396 target_phys_addr_t start_addr = section->offset_within_address_space;
397 target_phys_addr_t end_addr = start_addr + section->size;
398
399 d.dirty_bitmap = NULL;
400 while (start_addr < end_addr) {
401 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
402 if (mem == NULL) {
403 break;
404 }
405
406 /* XXX bad kernel interface alert
407 * For dirty bitmap, kernel allocates array of size aligned to
408 * bits-per-long. But for case when the kernel is 64bits and
409 * the userspace is 32bits, userspace can't align to the same
410 * bits-per-long, since sizeof(long) is different between kernel
411 * and user space. This way, userspace will provide buffer which
412 * may be 4 bytes less than the kernel will use, resulting in
413 * userspace memory corruption (which is not detectable by valgrind
414 * too, in most cases).
415 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
416 * a hope that sizeof(long) wont become >8 any time soon.
417 */
418 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
419 /*HOST_LONG_BITS*/ 64) / 8;
420 if (!d.dirty_bitmap) {
421 d.dirty_bitmap = g_malloc(size);
422 } else if (size > allocated_size) {
423 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
424 }
425 allocated_size = size;
426 memset(d.dirty_bitmap, 0, allocated_size);
427
428 d.slot = mem->slot;
429
430 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
431 DPRINTF("ioctl failed %d\n", errno);
432 ret = -1;
433 break;
434 }
435
436 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
437 start_addr = mem->start_addr + mem->memory_size;
438 }
439 g_free(d.dirty_bitmap);
440
441 return ret;
442 }
443
444 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
445 {
446 int ret = -ENOSYS;
447 KVMState *s = kvm_state;
448
449 if (s->coalesced_mmio) {
450 struct kvm_coalesced_mmio_zone zone;
451
452 zone.addr = start;
453 zone.size = size;
454 zone.pad = 0;
455
456 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
457 }
458
459 return ret;
460 }
461
462 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
463 {
464 int ret = -ENOSYS;
465 KVMState *s = kvm_state;
466
467 if (s->coalesced_mmio) {
468 struct kvm_coalesced_mmio_zone zone;
469
470 zone.addr = start;
471 zone.size = size;
472 zone.pad = 0;
473
474 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
475 }
476
477 return ret;
478 }
479
480 int kvm_check_extension(KVMState *s, unsigned int extension)
481 {
482 int ret;
483
484 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
485 if (ret < 0) {
486 ret = 0;
487 }
488
489 return ret;
490 }
491
492 static int kvm_check_many_ioeventfds(void)
493 {
494 /* Userspace can use ioeventfd for io notification. This requires a host
495 * that supports eventfd(2) and an I/O thread; since eventfd does not
496 * support SIGIO it cannot interrupt the vcpu.
497 *
498 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
499 * can avoid creating too many ioeventfds.
500 */
501 #if defined(CONFIG_EVENTFD)
502 int ioeventfds[7];
503 int i, ret = 0;
504 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
505 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
506 if (ioeventfds[i] < 0) {
507 break;
508 }
509 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
510 if (ret < 0) {
511 close(ioeventfds[i]);
512 break;
513 }
514 }
515
516 /* Decide whether many devices are supported or not */
517 ret = i == ARRAY_SIZE(ioeventfds);
518
519 while (i-- > 0) {
520 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
521 close(ioeventfds[i]);
522 }
523 return ret;
524 #else
525 return 0;
526 #endif
527 }
528
529 static const KVMCapabilityInfo *
530 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
531 {
532 while (list->name) {
533 if (!kvm_check_extension(s, list->value)) {
534 return list;
535 }
536 list++;
537 }
538 return NULL;
539 }
540
541 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
542 {
543 KVMState *s = kvm_state;
544 KVMSlot *mem, old;
545 int err;
546 MemoryRegion *mr = section->mr;
547 bool log_dirty = memory_region_is_logging(mr);
548 target_phys_addr_t start_addr = section->offset_within_address_space;
549 ram_addr_t size = section->size;
550 void *ram = NULL;
551 unsigned delta;
552
553 /* kvm works in page size chunks, but the function may be called
554 with sub-page size and unaligned start address. */
555 delta = TARGET_PAGE_ALIGN(size) - size;
556 if (delta > size) {
557 return;
558 }
559 start_addr += delta;
560 size -= delta;
561 size &= TARGET_PAGE_MASK;
562 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
563 return;
564 }
565
566 if (!memory_region_is_ram(mr)) {
567 return;
568 }
569
570 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
571
572 while (1) {
573 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
574 if (!mem) {
575 break;
576 }
577
578 if (add && start_addr >= mem->start_addr &&
579 (start_addr + size <= mem->start_addr + mem->memory_size) &&
580 (ram - start_addr == mem->ram - mem->start_addr)) {
581 /* The new slot fits into the existing one and comes with
582 * identical parameters - update flags and done. */
583 kvm_slot_dirty_pages_log_change(mem, log_dirty);
584 return;
585 }
586
587 old = *mem;
588
589 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
590 kvm_physical_sync_dirty_bitmap(section);
591 }
592
593 /* unregister the overlapping slot */
594 mem->memory_size = 0;
595 err = kvm_set_user_memory_region(s, mem);
596 if (err) {
597 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
598 __func__, strerror(-err));
599 abort();
600 }
601
602 /* Workaround for older KVM versions: we can't join slots, even not by
603 * unregistering the previous ones and then registering the larger
604 * slot. We have to maintain the existing fragmentation. Sigh.
605 *
606 * This workaround assumes that the new slot starts at the same
607 * address as the first existing one. If not or if some overlapping
608 * slot comes around later, we will fail (not seen in practice so far)
609 * - and actually require a recent KVM version. */
610 if (s->broken_set_mem_region &&
611 old.start_addr == start_addr && old.memory_size < size && add) {
612 mem = kvm_alloc_slot(s);
613 mem->memory_size = old.memory_size;
614 mem->start_addr = old.start_addr;
615 mem->ram = old.ram;
616 mem->flags = kvm_mem_flags(s, log_dirty);
617
618 err = kvm_set_user_memory_region(s, mem);
619 if (err) {
620 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
621 strerror(-err));
622 abort();
623 }
624
625 start_addr += old.memory_size;
626 ram += old.memory_size;
627 size -= old.memory_size;
628 continue;
629 }
630
631 /* register prefix slot */
632 if (old.start_addr < start_addr) {
633 mem = kvm_alloc_slot(s);
634 mem->memory_size = start_addr - old.start_addr;
635 mem->start_addr = old.start_addr;
636 mem->ram = old.ram;
637 mem->flags = kvm_mem_flags(s, log_dirty);
638
639 err = kvm_set_user_memory_region(s, mem);
640 if (err) {
641 fprintf(stderr, "%s: error registering prefix slot: %s\n",
642 __func__, strerror(-err));
643 #ifdef TARGET_PPC
644 fprintf(stderr, "%s: This is probably because your kernel's " \
645 "PAGE_SIZE is too big. Please try to use 4k " \
646 "PAGE_SIZE!\n", __func__);
647 #endif
648 abort();
649 }
650 }
651
652 /* register suffix slot */
653 if (old.start_addr + old.memory_size > start_addr + size) {
654 ram_addr_t size_delta;
655
656 mem = kvm_alloc_slot(s);
657 mem->start_addr = start_addr + size;
658 size_delta = mem->start_addr - old.start_addr;
659 mem->memory_size = old.memory_size - size_delta;
660 mem->ram = old.ram + size_delta;
661 mem->flags = kvm_mem_flags(s, log_dirty);
662
663 err = kvm_set_user_memory_region(s, mem);
664 if (err) {
665 fprintf(stderr, "%s: error registering suffix slot: %s\n",
666 __func__, strerror(-err));
667 abort();
668 }
669 }
670 }
671
672 /* in case the KVM bug workaround already "consumed" the new slot */
673 if (!size) {
674 return;
675 }
676 if (!add) {
677 return;
678 }
679 mem = kvm_alloc_slot(s);
680 mem->memory_size = size;
681 mem->start_addr = start_addr;
682 mem->ram = ram;
683 mem->flags = kvm_mem_flags(s, log_dirty);
684
685 err = kvm_set_user_memory_region(s, mem);
686 if (err) {
687 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
688 strerror(-err));
689 abort();
690 }
691 }
692
693 static void kvm_begin(MemoryListener *listener)
694 {
695 }
696
697 static void kvm_commit(MemoryListener *listener)
698 {
699 }
700
701 static void kvm_region_add(MemoryListener *listener,
702 MemoryRegionSection *section)
703 {
704 kvm_set_phys_mem(section, true);
705 }
706
707 static void kvm_region_del(MemoryListener *listener,
708 MemoryRegionSection *section)
709 {
710 kvm_set_phys_mem(section, false);
711 }
712
713 static void kvm_region_nop(MemoryListener *listener,
714 MemoryRegionSection *section)
715 {
716 }
717
718 static void kvm_log_sync(MemoryListener *listener,
719 MemoryRegionSection *section)
720 {
721 int r;
722
723 r = kvm_physical_sync_dirty_bitmap(section);
724 if (r < 0) {
725 abort();
726 }
727 }
728
729 static void kvm_log_global_start(struct MemoryListener *listener)
730 {
731 int r;
732
733 r = kvm_set_migration_log(1);
734 assert(r >= 0);
735 }
736
737 static void kvm_log_global_stop(struct MemoryListener *listener)
738 {
739 int r;
740
741 r = kvm_set_migration_log(0);
742 assert(r >= 0);
743 }
744
745 static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
746 bool match_data, uint64_t data, int fd)
747 {
748 int r;
749
750 assert(match_data && section->size == 4);
751
752 r = kvm_set_ioeventfd_mmio_long(fd, section->offset_within_address_space,
753 data, true);
754 if (r < 0) {
755 abort();
756 }
757 }
758
759 static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
760 bool match_data, uint64_t data, int fd)
761 {
762 int r;
763
764 r = kvm_set_ioeventfd_mmio_long(fd, section->offset_within_address_space,
765 data, false);
766 if (r < 0) {
767 abort();
768 }
769 }
770
771 static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
772 bool match_data, uint64_t data, int fd)
773 {
774 int r;
775
776 assert(match_data && section->size == 2);
777
778 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
779 data, true);
780 if (r < 0) {
781 abort();
782 }
783 }
784
785 static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
786 bool match_data, uint64_t data, int fd)
787
788 {
789 int r;
790
791 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
792 data, false);
793 if (r < 0) {
794 abort();
795 }
796 }
797
798 static void kvm_eventfd_add(MemoryListener *listener,
799 MemoryRegionSection *section,
800 bool match_data, uint64_t data, int fd)
801 {
802 if (section->address_space == get_system_memory()) {
803 kvm_mem_ioeventfd_add(section, match_data, data, fd);
804 } else {
805 kvm_io_ioeventfd_add(section, match_data, data, fd);
806 }
807 }
808
809 static void kvm_eventfd_del(MemoryListener *listener,
810 MemoryRegionSection *section,
811 bool match_data, uint64_t data, int fd)
812 {
813 if (section->address_space == get_system_memory()) {
814 kvm_mem_ioeventfd_del(section, match_data, data, fd);
815 } else {
816 kvm_io_ioeventfd_del(section, match_data, data, fd);
817 }
818 }
819
820 static MemoryListener kvm_memory_listener = {
821 .begin = kvm_begin,
822 .commit = kvm_commit,
823 .region_add = kvm_region_add,
824 .region_del = kvm_region_del,
825 .region_nop = kvm_region_nop,
826 .log_start = kvm_log_start,
827 .log_stop = kvm_log_stop,
828 .log_sync = kvm_log_sync,
829 .log_global_start = kvm_log_global_start,
830 .log_global_stop = kvm_log_global_stop,
831 .eventfd_add = kvm_eventfd_add,
832 .eventfd_del = kvm_eventfd_del,
833 .priority = 10,
834 };
835
836 static void kvm_handle_interrupt(CPUArchState *env, int mask)
837 {
838 env->interrupt_request |= mask;
839
840 if (!qemu_cpu_is_self(env)) {
841 qemu_cpu_kick(env);
842 }
843 }
844
845 int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
846 {
847 struct kvm_irq_level event;
848 int ret;
849
850 assert(kvm_irqchip_in_kernel());
851
852 event.level = level;
853 event.irq = irq;
854 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
855 if (ret < 0) {
856 perror("kvm_set_irqchip_line");
857 abort();
858 }
859
860 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
861 }
862
863 #ifdef KVM_CAP_IRQ_ROUTING
864 static void set_gsi(KVMState *s, unsigned int gsi)
865 {
866 assert(gsi < s->max_gsi);
867
868 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
869 }
870
871 static void kvm_init_irq_routing(KVMState *s)
872 {
873 int gsi_count;
874
875 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
876 if (gsi_count > 0) {
877 unsigned int gsi_bits, i;
878
879 /* Round up so we can search ints using ffs */
880 gsi_bits = (gsi_count + 31) / 32;
881 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
882 s->max_gsi = gsi_bits;
883
884 /* Mark any over-allocated bits as already in use */
885 for (i = gsi_count; i < gsi_bits; i++) {
886 set_gsi(s, i);
887 }
888 }
889
890 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
891 s->nr_allocated_irq_routes = 0;
892
893 kvm_arch_init_irq_routing(s);
894 }
895
896 static void kvm_add_routing_entry(KVMState *s,
897 struct kvm_irq_routing_entry *entry)
898 {
899 struct kvm_irq_routing_entry *new;
900 int n, size;
901
902 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
903 n = s->nr_allocated_irq_routes * 2;
904 if (n < 64) {
905 n = 64;
906 }
907 size = sizeof(struct kvm_irq_routing);
908 size += n * sizeof(*new);
909 s->irq_routes = g_realloc(s->irq_routes, size);
910 s->nr_allocated_irq_routes = n;
911 }
912 n = s->irq_routes->nr++;
913 new = &s->irq_routes->entries[n];
914 memset(new, 0, sizeof(*new));
915 new->gsi = entry->gsi;
916 new->type = entry->type;
917 new->flags = entry->flags;
918 new->u = entry->u;
919
920 set_gsi(s, entry->gsi);
921 }
922
923 void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin)
924 {
925 struct kvm_irq_routing_entry e;
926
927 e.gsi = irq;
928 e.type = KVM_IRQ_ROUTING_IRQCHIP;
929 e.flags = 0;
930 e.u.irqchip.irqchip = irqchip;
931 e.u.irqchip.pin = pin;
932 kvm_add_routing_entry(s, &e);
933 }
934
935 int kvm_irqchip_commit_routes(KVMState *s)
936 {
937 s->irq_routes->flags = 0;
938 return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
939 }
940
941 #else /* !KVM_CAP_IRQ_ROUTING */
942
943 static void kvm_init_irq_routing(KVMState *s)
944 {
945 }
946 #endif /* !KVM_CAP_IRQ_ROUTING */
947
948 static int kvm_irqchip_create(KVMState *s)
949 {
950 QemuOptsList *list = qemu_find_opts("machine");
951 int ret;
952
953 if (QTAILQ_EMPTY(&list->head) ||
954 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
955 "kernel_irqchip", false) ||
956 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
957 return 0;
958 }
959
960 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
961 if (ret < 0) {
962 fprintf(stderr, "Create kernel irqchip failed\n");
963 return ret;
964 }
965
966 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
967 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
968 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
969 }
970 kvm_kernel_irqchip = true;
971
972 kvm_init_irq_routing(s);
973
974 return 0;
975 }
976
977 int kvm_init(void)
978 {
979 static const char upgrade_note[] =
980 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
981 "(see http://sourceforge.net/projects/kvm).\n";
982 KVMState *s;
983 const KVMCapabilityInfo *missing_cap;
984 int ret;
985 int i;
986
987 s = g_malloc0(sizeof(KVMState));
988
989 #ifdef KVM_CAP_SET_GUEST_DEBUG
990 QTAILQ_INIT(&s->kvm_sw_breakpoints);
991 #endif
992 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
993 s->slots[i].slot = i;
994 }
995 s->vmfd = -1;
996 s->fd = qemu_open("/dev/kvm", O_RDWR);
997 if (s->fd == -1) {
998 fprintf(stderr, "Could not access KVM kernel module: %m\n");
999 ret = -errno;
1000 goto err;
1001 }
1002
1003 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1004 if (ret < KVM_API_VERSION) {
1005 if (ret > 0) {
1006 ret = -EINVAL;
1007 }
1008 fprintf(stderr, "kvm version too old\n");
1009 goto err;
1010 }
1011
1012 if (ret > KVM_API_VERSION) {
1013 ret = -EINVAL;
1014 fprintf(stderr, "kvm version not supported\n");
1015 goto err;
1016 }
1017
1018 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1019 if (s->vmfd < 0) {
1020 #ifdef TARGET_S390X
1021 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1022 "your host kernel command line\n");
1023 #endif
1024 ret = s->vmfd;
1025 goto err;
1026 }
1027
1028 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1029 if (!missing_cap) {
1030 missing_cap =
1031 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1032 }
1033 if (missing_cap) {
1034 ret = -EINVAL;
1035 fprintf(stderr, "kvm does not support %s\n%s",
1036 missing_cap->name, upgrade_note);
1037 goto err;
1038 }
1039
1040 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1041
1042 s->broken_set_mem_region = 1;
1043 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1044 if (ret > 0) {
1045 s->broken_set_mem_region = 0;
1046 }
1047
1048 #ifdef KVM_CAP_VCPU_EVENTS
1049 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1050 #endif
1051
1052 s->robust_singlestep =
1053 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1054
1055 #ifdef KVM_CAP_DEBUGREGS
1056 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1057 #endif
1058
1059 #ifdef KVM_CAP_XSAVE
1060 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1061 #endif
1062
1063 #ifdef KVM_CAP_XCRS
1064 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1065 #endif
1066
1067 #ifdef KVM_CAP_PIT_STATE2
1068 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1069 #endif
1070
1071 ret = kvm_arch_init(s);
1072 if (ret < 0) {
1073 goto err;
1074 }
1075
1076 ret = kvm_irqchip_create(s);
1077 if (ret < 0) {
1078 goto err;
1079 }
1080
1081 kvm_state = s;
1082 memory_listener_register(&kvm_memory_listener, NULL);
1083
1084 s->many_ioeventfds = kvm_check_many_ioeventfds();
1085
1086 cpu_interrupt_handler = kvm_handle_interrupt;
1087
1088 return 0;
1089
1090 err:
1091 if (s) {
1092 if (s->vmfd >= 0) {
1093 close(s->vmfd);
1094 }
1095 if (s->fd != -1) {
1096 close(s->fd);
1097 }
1098 }
1099 g_free(s);
1100
1101 return ret;
1102 }
1103
1104 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1105 uint32_t count)
1106 {
1107 int i;
1108 uint8_t *ptr = data;
1109
1110 for (i = 0; i < count; i++) {
1111 if (direction == KVM_EXIT_IO_IN) {
1112 switch (size) {
1113 case 1:
1114 stb_p(ptr, cpu_inb(port));
1115 break;
1116 case 2:
1117 stw_p(ptr, cpu_inw(port));
1118 break;
1119 case 4:
1120 stl_p(ptr, cpu_inl(port));
1121 break;
1122 }
1123 } else {
1124 switch (size) {
1125 case 1:
1126 cpu_outb(port, ldub_p(ptr));
1127 break;
1128 case 2:
1129 cpu_outw(port, lduw_p(ptr));
1130 break;
1131 case 4:
1132 cpu_outl(port, ldl_p(ptr));
1133 break;
1134 }
1135 }
1136
1137 ptr += size;
1138 }
1139 }
1140
1141 static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1142 {
1143 fprintf(stderr, "KVM internal error.");
1144 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1145 int i;
1146
1147 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1148 for (i = 0; i < run->internal.ndata; ++i) {
1149 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1150 i, (uint64_t)run->internal.data[i]);
1151 }
1152 } else {
1153 fprintf(stderr, "\n");
1154 }
1155 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1156 fprintf(stderr, "emulation failure\n");
1157 if (!kvm_arch_stop_on_emulation_error(env)) {
1158 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1159 return EXCP_INTERRUPT;
1160 }
1161 }
1162 /* FIXME: Should trigger a qmp message to let management know
1163 * something went wrong.
1164 */
1165 return -1;
1166 }
1167
1168 void kvm_flush_coalesced_mmio_buffer(void)
1169 {
1170 KVMState *s = kvm_state;
1171
1172 if (s->coalesced_flush_in_progress) {
1173 return;
1174 }
1175
1176 s->coalesced_flush_in_progress = true;
1177
1178 if (s->coalesced_mmio_ring) {
1179 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1180 while (ring->first != ring->last) {
1181 struct kvm_coalesced_mmio *ent;
1182
1183 ent = &ring->coalesced_mmio[ring->first];
1184
1185 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1186 smp_wmb();
1187 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1188 }
1189 }
1190
1191 s->coalesced_flush_in_progress = false;
1192 }
1193
1194 static void do_kvm_cpu_synchronize_state(void *_env)
1195 {
1196 CPUArchState *env = _env;
1197
1198 if (!env->kvm_vcpu_dirty) {
1199 kvm_arch_get_registers(env);
1200 env->kvm_vcpu_dirty = 1;
1201 }
1202 }
1203
1204 void kvm_cpu_synchronize_state(CPUArchState *env)
1205 {
1206 if (!env->kvm_vcpu_dirty) {
1207 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1208 }
1209 }
1210
1211 void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1212 {
1213 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1214 env->kvm_vcpu_dirty = 0;
1215 }
1216
1217 void kvm_cpu_synchronize_post_init(CPUArchState *env)
1218 {
1219 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1220 env->kvm_vcpu_dirty = 0;
1221 }
1222
1223 int kvm_cpu_exec(CPUArchState *env)
1224 {
1225 struct kvm_run *run = env->kvm_run;
1226 int ret, run_ret;
1227
1228 DPRINTF("kvm_cpu_exec()\n");
1229
1230 if (kvm_arch_process_async_events(env)) {
1231 env->exit_request = 0;
1232 return EXCP_HLT;
1233 }
1234
1235 do {
1236 if (env->kvm_vcpu_dirty) {
1237 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1238 env->kvm_vcpu_dirty = 0;
1239 }
1240
1241 kvm_arch_pre_run(env, run);
1242 if (env->exit_request) {
1243 DPRINTF("interrupt exit requested\n");
1244 /*
1245 * KVM requires us to reenter the kernel after IO exits to complete
1246 * instruction emulation. This self-signal will ensure that we
1247 * leave ASAP again.
1248 */
1249 qemu_cpu_kick_self();
1250 }
1251 qemu_mutex_unlock_iothread();
1252
1253 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1254
1255 qemu_mutex_lock_iothread();
1256 kvm_arch_post_run(env, run);
1257
1258 kvm_flush_coalesced_mmio_buffer();
1259
1260 if (run_ret < 0) {
1261 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1262 DPRINTF("io window exit\n");
1263 ret = EXCP_INTERRUPT;
1264 break;
1265 }
1266 fprintf(stderr, "error: kvm run failed %s\n",
1267 strerror(-run_ret));
1268 abort();
1269 }
1270
1271 switch (run->exit_reason) {
1272 case KVM_EXIT_IO:
1273 DPRINTF("handle_io\n");
1274 kvm_handle_io(run->io.port,
1275 (uint8_t *)run + run->io.data_offset,
1276 run->io.direction,
1277 run->io.size,
1278 run->io.count);
1279 ret = 0;
1280 break;
1281 case KVM_EXIT_MMIO:
1282 DPRINTF("handle_mmio\n");
1283 cpu_physical_memory_rw(run->mmio.phys_addr,
1284 run->mmio.data,
1285 run->mmio.len,
1286 run->mmio.is_write);
1287 ret = 0;
1288 break;
1289 case KVM_EXIT_IRQ_WINDOW_OPEN:
1290 DPRINTF("irq_window_open\n");
1291 ret = EXCP_INTERRUPT;
1292 break;
1293 case KVM_EXIT_SHUTDOWN:
1294 DPRINTF("shutdown\n");
1295 qemu_system_reset_request();
1296 ret = EXCP_INTERRUPT;
1297 break;
1298 case KVM_EXIT_UNKNOWN:
1299 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1300 (uint64_t)run->hw.hardware_exit_reason);
1301 ret = -1;
1302 break;
1303 case KVM_EXIT_INTERNAL_ERROR:
1304 ret = kvm_handle_internal_error(env, run);
1305 break;
1306 default:
1307 DPRINTF("kvm_arch_handle_exit\n");
1308 ret = kvm_arch_handle_exit(env, run);
1309 break;
1310 }
1311 } while (ret == 0);
1312
1313 if (ret < 0) {
1314 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1315 vm_stop(RUN_STATE_INTERNAL_ERROR);
1316 }
1317
1318 env->exit_request = 0;
1319 return ret;
1320 }
1321
1322 int kvm_ioctl(KVMState *s, int type, ...)
1323 {
1324 int ret;
1325 void *arg;
1326 va_list ap;
1327
1328 va_start(ap, type);
1329 arg = va_arg(ap, void *);
1330 va_end(ap);
1331
1332 ret = ioctl(s->fd, type, arg);
1333 if (ret == -1) {
1334 ret = -errno;
1335 }
1336 return ret;
1337 }
1338
1339 int kvm_vm_ioctl(KVMState *s, int type, ...)
1340 {
1341 int ret;
1342 void *arg;
1343 va_list ap;
1344
1345 va_start(ap, type);
1346 arg = va_arg(ap, void *);
1347 va_end(ap);
1348
1349 ret = ioctl(s->vmfd, type, arg);
1350 if (ret == -1) {
1351 ret = -errno;
1352 }
1353 return ret;
1354 }
1355
1356 int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
1357 {
1358 int ret;
1359 void *arg;
1360 va_list ap;
1361
1362 va_start(ap, type);
1363 arg = va_arg(ap, void *);
1364 va_end(ap);
1365
1366 ret = ioctl(env->kvm_fd, type, arg);
1367 if (ret == -1) {
1368 ret = -errno;
1369 }
1370 return ret;
1371 }
1372
1373 int kvm_has_sync_mmu(void)
1374 {
1375 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1376 }
1377
1378 int kvm_has_vcpu_events(void)
1379 {
1380 return kvm_state->vcpu_events;
1381 }
1382
1383 int kvm_has_robust_singlestep(void)
1384 {
1385 return kvm_state->robust_singlestep;
1386 }
1387
1388 int kvm_has_debugregs(void)
1389 {
1390 return kvm_state->debugregs;
1391 }
1392
1393 int kvm_has_xsave(void)
1394 {
1395 return kvm_state->xsave;
1396 }
1397
1398 int kvm_has_xcrs(void)
1399 {
1400 return kvm_state->xcrs;
1401 }
1402
1403 int kvm_has_pit_state2(void)
1404 {
1405 return kvm_state->pit_state2;
1406 }
1407
1408 int kvm_has_many_ioeventfds(void)
1409 {
1410 if (!kvm_enabled()) {
1411 return 0;
1412 }
1413 return kvm_state->many_ioeventfds;
1414 }
1415
1416 int kvm_has_gsi_routing(void)
1417 {
1418 #ifdef KVM_CAP_IRQ_ROUTING
1419 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1420 #else
1421 return false;
1422 #endif
1423 }
1424
1425 int kvm_allows_irq0_override(void)
1426 {
1427 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1428 }
1429
1430 void kvm_setup_guest_memory(void *start, size_t size)
1431 {
1432 if (!kvm_has_sync_mmu()) {
1433 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1434
1435 if (ret) {
1436 perror("qemu_madvise");
1437 fprintf(stderr,
1438 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1439 exit(1);
1440 }
1441 }
1442 }
1443
1444 #ifdef KVM_CAP_SET_GUEST_DEBUG
1445 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
1446 target_ulong pc)
1447 {
1448 struct kvm_sw_breakpoint *bp;
1449
1450 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1451 if (bp->pc == pc) {
1452 return bp;
1453 }
1454 }
1455 return NULL;
1456 }
1457
1458 int kvm_sw_breakpoints_active(CPUArchState *env)
1459 {
1460 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1461 }
1462
1463 struct kvm_set_guest_debug_data {
1464 struct kvm_guest_debug dbg;
1465 CPUArchState *env;
1466 int err;
1467 };
1468
1469 static void kvm_invoke_set_guest_debug(void *data)
1470 {
1471 struct kvm_set_guest_debug_data *dbg_data = data;
1472 CPUArchState *env = dbg_data->env;
1473
1474 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1475 }
1476
1477 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1478 {
1479 struct kvm_set_guest_debug_data data;
1480
1481 data.dbg.control = reinject_trap;
1482
1483 if (env->singlestep_enabled) {
1484 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1485 }
1486 kvm_arch_update_guest_debug(env, &data.dbg);
1487 data.env = env;
1488
1489 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1490 return data.err;
1491 }
1492
1493 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1494 target_ulong len, int type)
1495 {
1496 struct kvm_sw_breakpoint *bp;
1497 CPUArchState *env;
1498 int err;
1499
1500 if (type == GDB_BREAKPOINT_SW) {
1501 bp = kvm_find_sw_breakpoint(current_env, addr);
1502 if (bp) {
1503 bp->use_count++;
1504 return 0;
1505 }
1506
1507 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1508 if (!bp) {
1509 return -ENOMEM;
1510 }
1511
1512 bp->pc = addr;
1513 bp->use_count = 1;
1514 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1515 if (err) {
1516 g_free(bp);
1517 return err;
1518 }
1519
1520 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1521 bp, entry);
1522 } else {
1523 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1524 if (err) {
1525 return err;
1526 }
1527 }
1528
1529 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1530 err = kvm_update_guest_debug(env, 0);
1531 if (err) {
1532 return err;
1533 }
1534 }
1535 return 0;
1536 }
1537
1538 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1539 target_ulong len, int type)
1540 {
1541 struct kvm_sw_breakpoint *bp;
1542 CPUArchState *env;
1543 int err;
1544
1545 if (type == GDB_BREAKPOINT_SW) {
1546 bp = kvm_find_sw_breakpoint(current_env, addr);
1547 if (!bp) {
1548 return -ENOENT;
1549 }
1550
1551 if (bp->use_count > 1) {
1552 bp->use_count--;
1553 return 0;
1554 }
1555
1556 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1557 if (err) {
1558 return err;
1559 }
1560
1561 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1562 g_free(bp);
1563 } else {
1564 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1565 if (err) {
1566 return err;
1567 }
1568 }
1569
1570 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1571 err = kvm_update_guest_debug(env, 0);
1572 if (err) {
1573 return err;
1574 }
1575 }
1576 return 0;
1577 }
1578
1579 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1580 {
1581 struct kvm_sw_breakpoint *bp, *next;
1582 KVMState *s = current_env->kvm_state;
1583 CPUArchState *env;
1584
1585 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1586 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1587 /* Try harder to find a CPU that currently sees the breakpoint. */
1588 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1589 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1590 break;
1591 }
1592 }
1593 }
1594 }
1595 kvm_arch_remove_all_hw_breakpoints();
1596
1597 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1598 kvm_update_guest_debug(env, 0);
1599 }
1600 }
1601
1602 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1603
1604 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1605 {
1606 return -EINVAL;
1607 }
1608
1609 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1610 target_ulong len, int type)
1611 {
1612 return -EINVAL;
1613 }
1614
1615 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1616 target_ulong len, int type)
1617 {
1618 return -EINVAL;
1619 }
1620
1621 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1622 {
1623 }
1624 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1625
1626 int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1627 {
1628 struct kvm_signal_mask *sigmask;
1629 int r;
1630
1631 if (!sigset) {
1632 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1633 }
1634
1635 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1636
1637 sigmask->len = 8;
1638 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1639 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1640 g_free(sigmask);
1641
1642 return r;
1643 }
1644
1645 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1646 {
1647 int ret;
1648 struct kvm_ioeventfd iofd;
1649
1650 iofd.datamatch = val;
1651 iofd.addr = addr;
1652 iofd.len = 4;
1653 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1654 iofd.fd = fd;
1655
1656 if (!kvm_enabled()) {
1657 return -ENOSYS;
1658 }
1659
1660 if (!assign) {
1661 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1662 }
1663
1664 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1665
1666 if (ret < 0) {
1667 return -errno;
1668 }
1669
1670 return 0;
1671 }
1672
1673 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1674 {
1675 struct kvm_ioeventfd kick = {
1676 .datamatch = val,
1677 .addr = addr,
1678 .len = 2,
1679 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1680 .fd = fd,
1681 };
1682 int r;
1683 if (!kvm_enabled()) {
1684 return -ENOSYS;
1685 }
1686 if (!assign) {
1687 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1688 }
1689 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1690 if (r < 0) {
1691 return r;
1692 }
1693 return 0;
1694 }
1695
1696 int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
1697 {
1698 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1699 }
1700
1701 int kvm_on_sigbus(int code, void *addr)
1702 {
1703 return kvm_arch_on_sigbus(code, addr);
1704 }