]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
kvm: remove unused APIs
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/event_notifier.h"
36
37 /* This check must be after config-host.h is included */
38 #ifdef CONFIG_EVENTFD
39 #include <sys/eventfd.h>
40 #endif
41
42 #ifdef CONFIG_VALGRIND_H
43 #include <valgrind/memcheck.h>
44 #endif
45
46 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
47 #define PAGE_SIZE TARGET_PAGE_SIZE
48
49 //#define DEBUG_KVM
50
51 #ifdef DEBUG_KVM
52 #define DPRINTF(fmt, ...) \
53 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
54 #else
55 #define DPRINTF(fmt, ...) \
56 do { } while (0)
57 #endif
58
59 #define KVM_MSI_HASHTAB_SIZE 256
60
61 typedef struct KVMSlot
62 {
63 hwaddr start_addr;
64 ram_addr_t memory_size;
65 void *ram;
66 int slot;
67 int flags;
68 } KVMSlot;
69
70 typedef struct kvm_dirty_log KVMDirtyLog;
71
72 struct KVMState
73 {
74 KVMSlot slots[32];
75 int fd;
76 int vmfd;
77 int coalesced_mmio;
78 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
79 bool coalesced_flush_in_progress;
80 int broken_set_mem_region;
81 int migration_log;
82 int vcpu_events;
83 int robust_singlestep;
84 int debugregs;
85 #ifdef KVM_CAP_SET_GUEST_DEBUG
86 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
87 #endif
88 int pit_state2;
89 int xsave, xcrs;
90 int many_ioeventfds;
91 int intx_set_mask;
92 /* The man page (and posix) say ioctl numbers are signed int, but
93 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
94 * unsigned, and treating them as signed here can break things */
95 unsigned irq_set_ioctl;
96 #ifdef KVM_CAP_IRQ_ROUTING
97 struct kvm_irq_routing *irq_routes;
98 int nr_allocated_irq_routes;
99 uint32_t *used_gsi_bitmap;
100 unsigned int gsi_count;
101 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
102 bool direct_msi;
103 #endif
104 };
105
106 KVMState *kvm_state;
107 bool kvm_kernel_irqchip;
108 bool kvm_async_interrupts_allowed;
109 bool kvm_irqfds_allowed;
110 bool kvm_msi_via_irqfd_allowed;
111 bool kvm_gsi_routing_allowed;
112
113 static const KVMCapabilityInfo kvm_required_capabilites[] = {
114 KVM_CAP_INFO(USER_MEMORY),
115 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
116 KVM_CAP_LAST_INFO
117 };
118
119 static KVMSlot *kvm_alloc_slot(KVMState *s)
120 {
121 int i;
122
123 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
124 if (s->slots[i].memory_size == 0) {
125 return &s->slots[i];
126 }
127 }
128
129 fprintf(stderr, "%s: no free slot available\n", __func__);
130 abort();
131 }
132
133 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
134 hwaddr start_addr,
135 hwaddr end_addr)
136 {
137 int i;
138
139 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
140 KVMSlot *mem = &s->slots[i];
141
142 if (start_addr == mem->start_addr &&
143 end_addr == mem->start_addr + mem->memory_size) {
144 return mem;
145 }
146 }
147
148 return NULL;
149 }
150
151 /*
152 * Find overlapping slot with lowest start address
153 */
154 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
155 hwaddr start_addr,
156 hwaddr end_addr)
157 {
158 KVMSlot *found = NULL;
159 int i;
160
161 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
162 KVMSlot *mem = &s->slots[i];
163
164 if (mem->memory_size == 0 ||
165 (found && found->start_addr < mem->start_addr)) {
166 continue;
167 }
168
169 if (end_addr > mem->start_addr &&
170 start_addr < mem->start_addr + mem->memory_size) {
171 found = mem;
172 }
173 }
174
175 return found;
176 }
177
178 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
179 hwaddr *phys_addr)
180 {
181 int i;
182
183 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
184 KVMSlot *mem = &s->slots[i];
185
186 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
187 *phys_addr = mem->start_addr + (ram - mem->ram);
188 return 1;
189 }
190 }
191
192 return 0;
193 }
194
195 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
196 {
197 struct kvm_userspace_memory_region mem;
198
199 mem.slot = slot->slot;
200 mem.guest_phys_addr = slot->start_addr;
201 mem.memory_size = slot->memory_size;
202 mem.userspace_addr = (unsigned long)slot->ram;
203 mem.flags = slot->flags;
204 if (s->migration_log) {
205 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
206 }
207 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
208 }
209
210 static void kvm_reset_vcpu(void *opaque)
211 {
212 CPUState *cpu = opaque;
213
214 kvm_arch_reset_vcpu(cpu);
215 }
216
217 int kvm_init_vcpu(CPUState *cpu)
218 {
219 KVMState *s = kvm_state;
220 long mmap_size;
221 int ret;
222
223 DPRINTF("kvm_init_vcpu\n");
224
225 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
226 if (ret < 0) {
227 DPRINTF("kvm_create_vcpu failed\n");
228 goto err;
229 }
230
231 cpu->kvm_fd = ret;
232 cpu->kvm_state = s;
233 cpu->kvm_vcpu_dirty = true;
234
235 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
236 if (mmap_size < 0) {
237 ret = mmap_size;
238 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
239 goto err;
240 }
241
242 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
243 cpu->kvm_fd, 0);
244 if (cpu->kvm_run == MAP_FAILED) {
245 ret = -errno;
246 DPRINTF("mmap'ing vcpu state failed\n");
247 goto err;
248 }
249
250 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
251 s->coalesced_mmio_ring =
252 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
253 }
254
255 ret = kvm_arch_init_vcpu(cpu);
256 if (ret == 0) {
257 qemu_register_reset(kvm_reset_vcpu, cpu);
258 kvm_arch_reset_vcpu(cpu);
259 }
260 err:
261 return ret;
262 }
263
264 /*
265 * dirty pages logging control
266 */
267
268 static int kvm_mem_flags(KVMState *s, bool log_dirty)
269 {
270 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
271 }
272
273 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
274 {
275 KVMState *s = kvm_state;
276 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
277 int old_flags;
278
279 old_flags = mem->flags;
280
281 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
282 mem->flags = flags;
283
284 /* If nothing changed effectively, no need to issue ioctl */
285 if (s->migration_log) {
286 flags |= KVM_MEM_LOG_DIRTY_PAGES;
287 }
288
289 if (flags == old_flags) {
290 return 0;
291 }
292
293 return kvm_set_user_memory_region(s, mem);
294 }
295
296 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
297 ram_addr_t size, bool log_dirty)
298 {
299 KVMState *s = kvm_state;
300 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
301
302 if (mem == NULL) {
303 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
304 TARGET_FMT_plx "\n", __func__, phys_addr,
305 (hwaddr)(phys_addr + size - 1));
306 return -EINVAL;
307 }
308 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
309 }
310
311 static void kvm_log_start(MemoryListener *listener,
312 MemoryRegionSection *section)
313 {
314 int r;
315
316 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
317 section->size, true);
318 if (r < 0) {
319 abort();
320 }
321 }
322
323 static void kvm_log_stop(MemoryListener *listener,
324 MemoryRegionSection *section)
325 {
326 int r;
327
328 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
329 section->size, false);
330 if (r < 0) {
331 abort();
332 }
333 }
334
335 static int kvm_set_migration_log(int enable)
336 {
337 KVMState *s = kvm_state;
338 KVMSlot *mem;
339 int i, err;
340
341 s->migration_log = enable;
342
343 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
344 mem = &s->slots[i];
345
346 if (!mem->memory_size) {
347 continue;
348 }
349 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
350 continue;
351 }
352 err = kvm_set_user_memory_region(s, mem);
353 if (err) {
354 return err;
355 }
356 }
357 return 0;
358 }
359
360 /* get kvm's dirty pages bitmap and update qemu's */
361 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
362 unsigned long *bitmap)
363 {
364 unsigned int i, j;
365 unsigned long page_number, c;
366 hwaddr addr, addr1;
367 unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
368 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
369
370 /*
371 * bitmap-traveling is faster than memory-traveling (for addr...)
372 * especially when most of the memory is not dirty.
373 */
374 for (i = 0; i < len; i++) {
375 if (bitmap[i] != 0) {
376 c = leul_to_cpu(bitmap[i]);
377 do {
378 j = ffsl(c) - 1;
379 c &= ~(1ul << j);
380 page_number = (i * HOST_LONG_BITS + j) * hpratio;
381 addr1 = page_number * TARGET_PAGE_SIZE;
382 addr = section->offset_within_region + addr1;
383 memory_region_set_dirty(section->mr, addr,
384 TARGET_PAGE_SIZE * hpratio);
385 } while (c != 0);
386 }
387 }
388 return 0;
389 }
390
391 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
392
393 /**
394 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
395 * This function updates qemu's dirty bitmap using
396 * memory_region_set_dirty(). This means all bits are set
397 * to dirty.
398 *
399 * @start_add: start of logged region.
400 * @end_addr: end of logged region.
401 */
402 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
403 {
404 KVMState *s = kvm_state;
405 unsigned long size, allocated_size = 0;
406 KVMDirtyLog d;
407 KVMSlot *mem;
408 int ret = 0;
409 hwaddr start_addr = section->offset_within_address_space;
410 hwaddr end_addr = start_addr + section->size;
411
412 d.dirty_bitmap = NULL;
413 while (start_addr < end_addr) {
414 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
415 if (mem == NULL) {
416 break;
417 }
418
419 /* XXX bad kernel interface alert
420 * For dirty bitmap, kernel allocates array of size aligned to
421 * bits-per-long. But for case when the kernel is 64bits and
422 * the userspace is 32bits, userspace can't align to the same
423 * bits-per-long, since sizeof(long) is different between kernel
424 * and user space. This way, userspace will provide buffer which
425 * may be 4 bytes less than the kernel will use, resulting in
426 * userspace memory corruption (which is not detectable by valgrind
427 * too, in most cases).
428 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
429 * a hope that sizeof(long) wont become >8 any time soon.
430 */
431 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
432 /*HOST_LONG_BITS*/ 64) / 8;
433 if (!d.dirty_bitmap) {
434 d.dirty_bitmap = g_malloc(size);
435 } else if (size > allocated_size) {
436 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
437 }
438 allocated_size = size;
439 memset(d.dirty_bitmap, 0, allocated_size);
440
441 d.slot = mem->slot;
442
443 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
444 DPRINTF("ioctl failed %d\n", errno);
445 ret = -1;
446 break;
447 }
448
449 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
450 start_addr = mem->start_addr + mem->memory_size;
451 }
452 g_free(d.dirty_bitmap);
453
454 return ret;
455 }
456
457 static void kvm_coalesce_mmio_region(MemoryListener *listener,
458 MemoryRegionSection *secion,
459 hwaddr start, hwaddr size)
460 {
461 KVMState *s = kvm_state;
462
463 if (s->coalesced_mmio) {
464 struct kvm_coalesced_mmio_zone zone;
465
466 zone.addr = start;
467 zone.size = size;
468 zone.pad = 0;
469
470 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
471 }
472 }
473
474 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
475 MemoryRegionSection *secion,
476 hwaddr start, hwaddr size)
477 {
478 KVMState *s = kvm_state;
479
480 if (s->coalesced_mmio) {
481 struct kvm_coalesced_mmio_zone zone;
482
483 zone.addr = start;
484 zone.size = size;
485 zone.pad = 0;
486
487 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
488 }
489 }
490
491 int kvm_check_extension(KVMState *s, unsigned int extension)
492 {
493 int ret;
494
495 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
496 if (ret < 0) {
497 ret = 0;
498 }
499
500 return ret;
501 }
502
503 static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
504 uint32_t size)
505 {
506 int ret;
507 struct kvm_ioeventfd iofd;
508
509 iofd.datamatch = val;
510 iofd.addr = addr;
511 iofd.len = size;
512 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
513 iofd.fd = fd;
514
515 if (!kvm_enabled()) {
516 return -ENOSYS;
517 }
518
519 if (!assign) {
520 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
521 }
522
523 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
524
525 if (ret < 0) {
526 return -errno;
527 }
528
529 return 0;
530 }
531
532 static int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val,
533 bool assign)
534 {
535 struct kvm_ioeventfd kick = {
536 .datamatch = val,
537 .addr = addr,
538 .len = 2,
539 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
540 .fd = fd,
541 };
542 int r;
543 if (!kvm_enabled()) {
544 return -ENOSYS;
545 }
546 if (!assign) {
547 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
548 }
549 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
550 if (r < 0) {
551 return r;
552 }
553 return 0;
554 }
555
556
557 static int kvm_check_many_ioeventfds(void)
558 {
559 /* Userspace can use ioeventfd for io notification. This requires a host
560 * that supports eventfd(2) and an I/O thread; since eventfd does not
561 * support SIGIO it cannot interrupt the vcpu.
562 *
563 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
564 * can avoid creating too many ioeventfds.
565 */
566 #if defined(CONFIG_EVENTFD)
567 int ioeventfds[7];
568 int i, ret = 0;
569 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
570 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
571 if (ioeventfds[i] < 0) {
572 break;
573 }
574 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
575 if (ret < 0) {
576 close(ioeventfds[i]);
577 break;
578 }
579 }
580
581 /* Decide whether many devices are supported or not */
582 ret = i == ARRAY_SIZE(ioeventfds);
583
584 while (i-- > 0) {
585 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
586 close(ioeventfds[i]);
587 }
588 return ret;
589 #else
590 return 0;
591 #endif
592 }
593
594 static const KVMCapabilityInfo *
595 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
596 {
597 while (list->name) {
598 if (!kvm_check_extension(s, list->value)) {
599 return list;
600 }
601 list++;
602 }
603 return NULL;
604 }
605
606 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
607 {
608 KVMState *s = kvm_state;
609 KVMSlot *mem, old;
610 int err;
611 MemoryRegion *mr = section->mr;
612 bool log_dirty = memory_region_is_logging(mr);
613 hwaddr start_addr = section->offset_within_address_space;
614 ram_addr_t size = section->size;
615 void *ram = NULL;
616 unsigned delta;
617
618 /* kvm works in page size chunks, but the function may be called
619 with sub-page size and unaligned start address. */
620 delta = TARGET_PAGE_ALIGN(size) - size;
621 if (delta > size) {
622 return;
623 }
624 start_addr += delta;
625 size -= delta;
626 size &= TARGET_PAGE_MASK;
627 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
628 return;
629 }
630
631 if (!memory_region_is_ram(mr)) {
632 return;
633 }
634
635 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
636
637 while (1) {
638 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
639 if (!mem) {
640 break;
641 }
642
643 if (add && start_addr >= mem->start_addr &&
644 (start_addr + size <= mem->start_addr + mem->memory_size) &&
645 (ram - start_addr == mem->ram - mem->start_addr)) {
646 /* The new slot fits into the existing one and comes with
647 * identical parameters - update flags and done. */
648 kvm_slot_dirty_pages_log_change(mem, log_dirty);
649 return;
650 }
651
652 old = *mem;
653
654 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
655 kvm_physical_sync_dirty_bitmap(section);
656 }
657
658 /* unregister the overlapping slot */
659 mem->memory_size = 0;
660 err = kvm_set_user_memory_region(s, mem);
661 if (err) {
662 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
663 __func__, strerror(-err));
664 abort();
665 }
666
667 /* Workaround for older KVM versions: we can't join slots, even not by
668 * unregistering the previous ones and then registering the larger
669 * slot. We have to maintain the existing fragmentation. Sigh.
670 *
671 * This workaround assumes that the new slot starts at the same
672 * address as the first existing one. If not or if some overlapping
673 * slot comes around later, we will fail (not seen in practice so far)
674 * - and actually require a recent KVM version. */
675 if (s->broken_set_mem_region &&
676 old.start_addr == start_addr && old.memory_size < size && add) {
677 mem = kvm_alloc_slot(s);
678 mem->memory_size = old.memory_size;
679 mem->start_addr = old.start_addr;
680 mem->ram = old.ram;
681 mem->flags = kvm_mem_flags(s, log_dirty);
682
683 err = kvm_set_user_memory_region(s, mem);
684 if (err) {
685 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
686 strerror(-err));
687 abort();
688 }
689
690 start_addr += old.memory_size;
691 ram += old.memory_size;
692 size -= old.memory_size;
693 continue;
694 }
695
696 /* register prefix slot */
697 if (old.start_addr < start_addr) {
698 mem = kvm_alloc_slot(s);
699 mem->memory_size = start_addr - old.start_addr;
700 mem->start_addr = old.start_addr;
701 mem->ram = old.ram;
702 mem->flags = kvm_mem_flags(s, log_dirty);
703
704 err = kvm_set_user_memory_region(s, mem);
705 if (err) {
706 fprintf(stderr, "%s: error registering prefix slot: %s\n",
707 __func__, strerror(-err));
708 #ifdef TARGET_PPC
709 fprintf(stderr, "%s: This is probably because your kernel's " \
710 "PAGE_SIZE is too big. Please try to use 4k " \
711 "PAGE_SIZE!\n", __func__);
712 #endif
713 abort();
714 }
715 }
716
717 /* register suffix slot */
718 if (old.start_addr + old.memory_size > start_addr + size) {
719 ram_addr_t size_delta;
720
721 mem = kvm_alloc_slot(s);
722 mem->start_addr = start_addr + size;
723 size_delta = mem->start_addr - old.start_addr;
724 mem->memory_size = old.memory_size - size_delta;
725 mem->ram = old.ram + size_delta;
726 mem->flags = kvm_mem_flags(s, log_dirty);
727
728 err = kvm_set_user_memory_region(s, mem);
729 if (err) {
730 fprintf(stderr, "%s: error registering suffix slot: %s\n",
731 __func__, strerror(-err));
732 abort();
733 }
734 }
735 }
736
737 /* in case the KVM bug workaround already "consumed" the new slot */
738 if (!size) {
739 return;
740 }
741 if (!add) {
742 return;
743 }
744 mem = kvm_alloc_slot(s);
745 mem->memory_size = size;
746 mem->start_addr = start_addr;
747 mem->ram = ram;
748 mem->flags = kvm_mem_flags(s, log_dirty);
749
750 err = kvm_set_user_memory_region(s, mem);
751 if (err) {
752 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
753 strerror(-err));
754 abort();
755 }
756 }
757
758 static void kvm_region_add(MemoryListener *listener,
759 MemoryRegionSection *section)
760 {
761 kvm_set_phys_mem(section, true);
762 }
763
764 static void kvm_region_del(MemoryListener *listener,
765 MemoryRegionSection *section)
766 {
767 kvm_set_phys_mem(section, false);
768 }
769
770 static void kvm_log_sync(MemoryListener *listener,
771 MemoryRegionSection *section)
772 {
773 int r;
774
775 r = kvm_physical_sync_dirty_bitmap(section);
776 if (r < 0) {
777 abort();
778 }
779 }
780
781 static void kvm_log_global_start(struct MemoryListener *listener)
782 {
783 int r;
784
785 r = kvm_set_migration_log(1);
786 assert(r >= 0);
787 }
788
789 static void kvm_log_global_stop(struct MemoryListener *listener)
790 {
791 int r;
792
793 r = kvm_set_migration_log(0);
794 assert(r >= 0);
795 }
796
797 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
798 MemoryRegionSection *section,
799 bool match_data, uint64_t data,
800 EventNotifier *e)
801 {
802 int fd = event_notifier_get_fd(e);
803 int r;
804
805 assert(match_data && section->size <= 8);
806
807 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
808 data, true, section->size);
809 if (r < 0) {
810 abort();
811 }
812 }
813
814 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
815 MemoryRegionSection *section,
816 bool match_data, uint64_t data,
817 EventNotifier *e)
818 {
819 int fd = event_notifier_get_fd(e);
820 int r;
821
822 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
823 data, false, section->size);
824 if (r < 0) {
825 abort();
826 }
827 }
828
829 static void kvm_io_ioeventfd_add(MemoryListener *listener,
830 MemoryRegionSection *section,
831 bool match_data, uint64_t data,
832 EventNotifier *e)
833 {
834 int fd = event_notifier_get_fd(e);
835 int r;
836
837 assert(match_data && section->size == 2);
838
839 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
840 data, true);
841 if (r < 0) {
842 abort();
843 }
844 }
845
846 static void kvm_io_ioeventfd_del(MemoryListener *listener,
847 MemoryRegionSection *section,
848 bool match_data, uint64_t data,
849 EventNotifier *e)
850
851 {
852 int fd = event_notifier_get_fd(e);
853 int r;
854
855 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
856 data, false);
857 if (r < 0) {
858 abort();
859 }
860 }
861
862 static MemoryListener kvm_memory_listener = {
863 .region_add = kvm_region_add,
864 .region_del = kvm_region_del,
865 .log_start = kvm_log_start,
866 .log_stop = kvm_log_stop,
867 .log_sync = kvm_log_sync,
868 .log_global_start = kvm_log_global_start,
869 .log_global_stop = kvm_log_global_stop,
870 .eventfd_add = kvm_mem_ioeventfd_add,
871 .eventfd_del = kvm_mem_ioeventfd_del,
872 .coalesced_mmio_add = kvm_coalesce_mmio_region,
873 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
874 .priority = 10,
875 };
876
877 static MemoryListener kvm_io_listener = {
878 .eventfd_add = kvm_io_ioeventfd_add,
879 .eventfd_del = kvm_io_ioeventfd_del,
880 .priority = 10,
881 };
882
883 static void kvm_handle_interrupt(CPUState *cpu, int mask)
884 {
885 cpu->interrupt_request |= mask;
886
887 if (!qemu_cpu_is_self(cpu)) {
888 qemu_cpu_kick(cpu);
889 }
890 }
891
892 int kvm_set_irq(KVMState *s, int irq, int level)
893 {
894 struct kvm_irq_level event;
895 int ret;
896
897 assert(kvm_async_interrupts_enabled());
898
899 event.level = level;
900 event.irq = irq;
901 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
902 if (ret < 0) {
903 perror("kvm_set_irq");
904 abort();
905 }
906
907 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
908 }
909
910 #ifdef KVM_CAP_IRQ_ROUTING
911 typedef struct KVMMSIRoute {
912 struct kvm_irq_routing_entry kroute;
913 QTAILQ_ENTRY(KVMMSIRoute) entry;
914 } KVMMSIRoute;
915
916 static void set_gsi(KVMState *s, unsigned int gsi)
917 {
918 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
919 }
920
921 static void clear_gsi(KVMState *s, unsigned int gsi)
922 {
923 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
924 }
925
926 static void kvm_init_irq_routing(KVMState *s)
927 {
928 int gsi_count, i;
929
930 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
931 if (gsi_count > 0) {
932 unsigned int gsi_bits, i;
933
934 /* Round up so we can search ints using ffs */
935 gsi_bits = ALIGN(gsi_count, 32);
936 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
937 s->gsi_count = gsi_count;
938
939 /* Mark any over-allocated bits as already in use */
940 for (i = gsi_count; i < gsi_bits; i++) {
941 set_gsi(s, i);
942 }
943 }
944
945 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
946 s->nr_allocated_irq_routes = 0;
947
948 if (!s->direct_msi) {
949 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
950 QTAILQ_INIT(&s->msi_hashtab[i]);
951 }
952 }
953
954 kvm_arch_init_irq_routing(s);
955 }
956
957 static void kvm_irqchip_commit_routes(KVMState *s)
958 {
959 int ret;
960
961 s->irq_routes->flags = 0;
962 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
963 assert(ret == 0);
964 }
965
966 static void kvm_add_routing_entry(KVMState *s,
967 struct kvm_irq_routing_entry *entry)
968 {
969 struct kvm_irq_routing_entry *new;
970 int n, size;
971
972 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
973 n = s->nr_allocated_irq_routes * 2;
974 if (n < 64) {
975 n = 64;
976 }
977 size = sizeof(struct kvm_irq_routing);
978 size += n * sizeof(*new);
979 s->irq_routes = g_realloc(s->irq_routes, size);
980 s->nr_allocated_irq_routes = n;
981 }
982 n = s->irq_routes->nr++;
983 new = &s->irq_routes->entries[n];
984 memset(new, 0, sizeof(*new));
985 new->gsi = entry->gsi;
986 new->type = entry->type;
987 new->flags = entry->flags;
988 new->u = entry->u;
989
990 set_gsi(s, entry->gsi);
991
992 kvm_irqchip_commit_routes(s);
993 }
994
995 static int kvm_update_routing_entry(KVMState *s,
996 struct kvm_irq_routing_entry *new_entry)
997 {
998 struct kvm_irq_routing_entry *entry;
999 int n;
1000
1001 for (n = 0; n < s->irq_routes->nr; n++) {
1002 entry = &s->irq_routes->entries[n];
1003 if (entry->gsi != new_entry->gsi) {
1004 continue;
1005 }
1006
1007 entry->type = new_entry->type;
1008 entry->flags = new_entry->flags;
1009 entry->u = new_entry->u;
1010
1011 kvm_irqchip_commit_routes(s);
1012
1013 return 0;
1014 }
1015
1016 return -ESRCH;
1017 }
1018
1019 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1020 {
1021 struct kvm_irq_routing_entry e;
1022
1023 assert(pin < s->gsi_count);
1024
1025 e.gsi = irq;
1026 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1027 e.flags = 0;
1028 e.u.irqchip.irqchip = irqchip;
1029 e.u.irqchip.pin = pin;
1030 kvm_add_routing_entry(s, &e);
1031 }
1032
1033 void kvm_irqchip_release_virq(KVMState *s, int virq)
1034 {
1035 struct kvm_irq_routing_entry *e;
1036 int i;
1037
1038 for (i = 0; i < s->irq_routes->nr; i++) {
1039 e = &s->irq_routes->entries[i];
1040 if (e->gsi == virq) {
1041 s->irq_routes->nr--;
1042 *e = s->irq_routes->entries[s->irq_routes->nr];
1043 }
1044 }
1045 clear_gsi(s, virq);
1046 }
1047
1048 static unsigned int kvm_hash_msi(uint32_t data)
1049 {
1050 /* This is optimized for IA32 MSI layout. However, no other arch shall
1051 * repeat the mistake of not providing a direct MSI injection API. */
1052 return data & 0xff;
1053 }
1054
1055 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1056 {
1057 KVMMSIRoute *route, *next;
1058 unsigned int hash;
1059
1060 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1061 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1062 kvm_irqchip_release_virq(s, route->kroute.gsi);
1063 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1064 g_free(route);
1065 }
1066 }
1067 }
1068
1069 static int kvm_irqchip_get_virq(KVMState *s)
1070 {
1071 uint32_t *word = s->used_gsi_bitmap;
1072 int max_words = ALIGN(s->gsi_count, 32) / 32;
1073 int i, bit;
1074 bool retry = true;
1075
1076 again:
1077 /* Return the lowest unused GSI in the bitmap */
1078 for (i = 0; i < max_words; i++) {
1079 bit = ffs(~word[i]);
1080 if (!bit) {
1081 continue;
1082 }
1083
1084 return bit - 1 + i * 32;
1085 }
1086 if (!s->direct_msi && retry) {
1087 retry = false;
1088 kvm_flush_dynamic_msi_routes(s);
1089 goto again;
1090 }
1091 return -ENOSPC;
1092
1093 }
1094
1095 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1096 {
1097 unsigned int hash = kvm_hash_msi(msg.data);
1098 KVMMSIRoute *route;
1099
1100 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1101 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1102 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1103 route->kroute.u.msi.data == msg.data) {
1104 return route;
1105 }
1106 }
1107 return NULL;
1108 }
1109
1110 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1111 {
1112 struct kvm_msi msi;
1113 KVMMSIRoute *route;
1114
1115 if (s->direct_msi) {
1116 msi.address_lo = (uint32_t)msg.address;
1117 msi.address_hi = msg.address >> 32;
1118 msi.data = msg.data;
1119 msi.flags = 0;
1120 memset(msi.pad, 0, sizeof(msi.pad));
1121
1122 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1123 }
1124
1125 route = kvm_lookup_msi_route(s, msg);
1126 if (!route) {
1127 int virq;
1128
1129 virq = kvm_irqchip_get_virq(s);
1130 if (virq < 0) {
1131 return virq;
1132 }
1133
1134 route = g_malloc(sizeof(KVMMSIRoute));
1135 route->kroute.gsi = virq;
1136 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1137 route->kroute.flags = 0;
1138 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1139 route->kroute.u.msi.address_hi = msg.address >> 32;
1140 route->kroute.u.msi.data = msg.data;
1141
1142 kvm_add_routing_entry(s, &route->kroute);
1143
1144 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1145 entry);
1146 }
1147
1148 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1149
1150 return kvm_set_irq(s, route->kroute.gsi, 1);
1151 }
1152
1153 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1154 {
1155 struct kvm_irq_routing_entry kroute;
1156 int virq;
1157
1158 if (!kvm_gsi_routing_enabled()) {
1159 return -ENOSYS;
1160 }
1161
1162 virq = kvm_irqchip_get_virq(s);
1163 if (virq < 0) {
1164 return virq;
1165 }
1166
1167 kroute.gsi = virq;
1168 kroute.type = KVM_IRQ_ROUTING_MSI;
1169 kroute.flags = 0;
1170 kroute.u.msi.address_lo = (uint32_t)msg.address;
1171 kroute.u.msi.address_hi = msg.address >> 32;
1172 kroute.u.msi.data = msg.data;
1173
1174 kvm_add_routing_entry(s, &kroute);
1175
1176 return virq;
1177 }
1178
1179 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1180 {
1181 struct kvm_irq_routing_entry kroute;
1182
1183 if (!kvm_irqchip_in_kernel()) {
1184 return -ENOSYS;
1185 }
1186
1187 kroute.gsi = virq;
1188 kroute.type = KVM_IRQ_ROUTING_MSI;
1189 kroute.flags = 0;
1190 kroute.u.msi.address_lo = (uint32_t)msg.address;
1191 kroute.u.msi.address_hi = msg.address >> 32;
1192 kroute.u.msi.data = msg.data;
1193
1194 return kvm_update_routing_entry(s, &kroute);
1195 }
1196
1197 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1198 {
1199 struct kvm_irqfd irqfd = {
1200 .fd = fd,
1201 .gsi = virq,
1202 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1203 };
1204
1205 if (!kvm_irqfds_enabled()) {
1206 return -ENOSYS;
1207 }
1208
1209 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1210 }
1211
1212 #else /* !KVM_CAP_IRQ_ROUTING */
1213
1214 static void kvm_init_irq_routing(KVMState *s)
1215 {
1216 }
1217
1218 void kvm_irqchip_release_virq(KVMState *s, int virq)
1219 {
1220 }
1221
1222 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1223 {
1224 abort();
1225 }
1226
1227 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1228 {
1229 return -ENOSYS;
1230 }
1231
1232 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1233 {
1234 abort();
1235 }
1236
1237 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1238 {
1239 return -ENOSYS;
1240 }
1241 #endif /* !KVM_CAP_IRQ_ROUTING */
1242
1243 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1244 {
1245 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
1246 }
1247
1248 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1249 {
1250 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
1251 }
1252
1253 static int kvm_irqchip_create(KVMState *s)
1254 {
1255 QemuOptsList *list = qemu_find_opts("machine");
1256 int ret;
1257
1258 if (QTAILQ_EMPTY(&list->head) ||
1259 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1260 "kernel_irqchip", true) ||
1261 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1262 return 0;
1263 }
1264
1265 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1266 if (ret < 0) {
1267 fprintf(stderr, "Create kernel irqchip failed\n");
1268 return ret;
1269 }
1270
1271 kvm_kernel_irqchip = true;
1272 /* If we have an in-kernel IRQ chip then we must have asynchronous
1273 * interrupt delivery (though the reverse is not necessarily true)
1274 */
1275 kvm_async_interrupts_allowed = true;
1276
1277 kvm_init_irq_routing(s);
1278
1279 return 0;
1280 }
1281
1282 static int kvm_max_vcpus(KVMState *s)
1283 {
1284 int ret;
1285
1286 /* Find number of supported CPUs using the recommended
1287 * procedure from the kernel API documentation to cope with
1288 * older kernels that may be missing capabilities.
1289 */
1290 ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1291 if (ret) {
1292 return ret;
1293 }
1294 ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1295 if (ret) {
1296 return ret;
1297 }
1298
1299 return 4;
1300 }
1301
1302 int kvm_init(void)
1303 {
1304 static const char upgrade_note[] =
1305 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1306 "(see http://sourceforge.net/projects/kvm).\n";
1307 KVMState *s;
1308 const KVMCapabilityInfo *missing_cap;
1309 int ret;
1310 int i;
1311 int max_vcpus;
1312
1313 s = g_malloc0(sizeof(KVMState));
1314
1315 /*
1316 * On systems where the kernel can support different base page
1317 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1318 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1319 * page size for the system though.
1320 */
1321 assert(TARGET_PAGE_SIZE <= getpagesize());
1322
1323 #ifdef KVM_CAP_SET_GUEST_DEBUG
1324 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1325 #endif
1326 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1327 s->slots[i].slot = i;
1328 }
1329 s->vmfd = -1;
1330 s->fd = qemu_open("/dev/kvm", O_RDWR);
1331 if (s->fd == -1) {
1332 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1333 ret = -errno;
1334 goto err;
1335 }
1336
1337 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1338 if (ret < KVM_API_VERSION) {
1339 if (ret > 0) {
1340 ret = -EINVAL;
1341 }
1342 fprintf(stderr, "kvm version too old\n");
1343 goto err;
1344 }
1345
1346 if (ret > KVM_API_VERSION) {
1347 ret = -EINVAL;
1348 fprintf(stderr, "kvm version not supported\n");
1349 goto err;
1350 }
1351
1352 max_vcpus = kvm_max_vcpus(s);
1353 if (smp_cpus > max_vcpus) {
1354 ret = -EINVAL;
1355 fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1356 "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1357 goto err;
1358 }
1359
1360 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1361 if (s->vmfd < 0) {
1362 #ifdef TARGET_S390X
1363 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1364 "your host kernel command line\n");
1365 #endif
1366 ret = s->vmfd;
1367 goto err;
1368 }
1369
1370 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1371 if (!missing_cap) {
1372 missing_cap =
1373 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1374 }
1375 if (missing_cap) {
1376 ret = -EINVAL;
1377 fprintf(stderr, "kvm does not support %s\n%s",
1378 missing_cap->name, upgrade_note);
1379 goto err;
1380 }
1381
1382 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1383
1384 s->broken_set_mem_region = 1;
1385 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1386 if (ret > 0) {
1387 s->broken_set_mem_region = 0;
1388 }
1389
1390 #ifdef KVM_CAP_VCPU_EVENTS
1391 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1392 #endif
1393
1394 s->robust_singlestep =
1395 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1396
1397 #ifdef KVM_CAP_DEBUGREGS
1398 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1399 #endif
1400
1401 #ifdef KVM_CAP_XSAVE
1402 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1403 #endif
1404
1405 #ifdef KVM_CAP_XCRS
1406 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1407 #endif
1408
1409 #ifdef KVM_CAP_PIT_STATE2
1410 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1411 #endif
1412
1413 #ifdef KVM_CAP_IRQ_ROUTING
1414 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1415 #endif
1416
1417 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1418
1419 s->irq_set_ioctl = KVM_IRQ_LINE;
1420 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1421 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1422 }
1423
1424 ret = kvm_arch_init(s);
1425 if (ret < 0) {
1426 goto err;
1427 }
1428
1429 ret = kvm_irqchip_create(s);
1430 if (ret < 0) {
1431 goto err;
1432 }
1433
1434 kvm_state = s;
1435 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1436 memory_listener_register(&kvm_io_listener, &address_space_io);
1437
1438 s->many_ioeventfds = kvm_check_many_ioeventfds();
1439
1440 cpu_interrupt_handler = kvm_handle_interrupt;
1441
1442 return 0;
1443
1444 err:
1445 if (s->vmfd >= 0) {
1446 close(s->vmfd);
1447 }
1448 if (s->fd != -1) {
1449 close(s->fd);
1450 }
1451 g_free(s);
1452
1453 return ret;
1454 }
1455
1456 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1457 uint32_t count)
1458 {
1459 int i;
1460 uint8_t *ptr = data;
1461
1462 for (i = 0; i < count; i++) {
1463 if (direction == KVM_EXIT_IO_IN) {
1464 switch (size) {
1465 case 1:
1466 stb_p(ptr, cpu_inb(port));
1467 break;
1468 case 2:
1469 stw_p(ptr, cpu_inw(port));
1470 break;
1471 case 4:
1472 stl_p(ptr, cpu_inl(port));
1473 break;
1474 }
1475 } else {
1476 switch (size) {
1477 case 1:
1478 cpu_outb(port, ldub_p(ptr));
1479 break;
1480 case 2:
1481 cpu_outw(port, lduw_p(ptr));
1482 break;
1483 case 4:
1484 cpu_outl(port, ldl_p(ptr));
1485 break;
1486 }
1487 }
1488
1489 ptr += size;
1490 }
1491 }
1492
1493 static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1494 {
1495 CPUState *cpu = ENV_GET_CPU(env);
1496
1497 fprintf(stderr, "KVM internal error.");
1498 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1499 int i;
1500
1501 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1502 for (i = 0; i < run->internal.ndata; ++i) {
1503 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1504 i, (uint64_t)run->internal.data[i]);
1505 }
1506 } else {
1507 fprintf(stderr, "\n");
1508 }
1509 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1510 fprintf(stderr, "emulation failure\n");
1511 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1512 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1513 return EXCP_INTERRUPT;
1514 }
1515 }
1516 /* FIXME: Should trigger a qmp message to let management know
1517 * something went wrong.
1518 */
1519 return -1;
1520 }
1521
1522 void kvm_flush_coalesced_mmio_buffer(void)
1523 {
1524 KVMState *s = kvm_state;
1525
1526 if (s->coalesced_flush_in_progress) {
1527 return;
1528 }
1529
1530 s->coalesced_flush_in_progress = true;
1531
1532 if (s->coalesced_mmio_ring) {
1533 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1534 while (ring->first != ring->last) {
1535 struct kvm_coalesced_mmio *ent;
1536
1537 ent = &ring->coalesced_mmio[ring->first];
1538
1539 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1540 smp_wmb();
1541 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1542 }
1543 }
1544
1545 s->coalesced_flush_in_progress = false;
1546 }
1547
1548 static void do_kvm_cpu_synchronize_state(void *arg)
1549 {
1550 CPUState *cpu = arg;
1551
1552 if (!cpu->kvm_vcpu_dirty) {
1553 kvm_arch_get_registers(cpu);
1554 cpu->kvm_vcpu_dirty = true;
1555 }
1556 }
1557
1558 void kvm_cpu_synchronize_state(CPUArchState *env)
1559 {
1560 CPUState *cpu = ENV_GET_CPU(env);
1561
1562 if (!cpu->kvm_vcpu_dirty) {
1563 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1564 }
1565 }
1566
1567 void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1568 {
1569 CPUState *cpu = ENV_GET_CPU(env);
1570
1571 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1572 cpu->kvm_vcpu_dirty = false;
1573 }
1574
1575 void kvm_cpu_synchronize_post_init(CPUArchState *env)
1576 {
1577 CPUState *cpu = ENV_GET_CPU(env);
1578
1579 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1580 cpu->kvm_vcpu_dirty = false;
1581 }
1582
1583 int kvm_cpu_exec(CPUArchState *env)
1584 {
1585 CPUState *cpu = ENV_GET_CPU(env);
1586 struct kvm_run *run = cpu->kvm_run;
1587 int ret, run_ret;
1588
1589 DPRINTF("kvm_cpu_exec()\n");
1590
1591 if (kvm_arch_process_async_events(cpu)) {
1592 cpu->exit_request = 0;
1593 return EXCP_HLT;
1594 }
1595
1596 do {
1597 if (cpu->kvm_vcpu_dirty) {
1598 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1599 cpu->kvm_vcpu_dirty = false;
1600 }
1601
1602 kvm_arch_pre_run(cpu, run);
1603 if (cpu->exit_request) {
1604 DPRINTF("interrupt exit requested\n");
1605 /*
1606 * KVM requires us to reenter the kernel after IO exits to complete
1607 * instruction emulation. This self-signal will ensure that we
1608 * leave ASAP again.
1609 */
1610 qemu_cpu_kick_self();
1611 }
1612 qemu_mutex_unlock_iothread();
1613
1614 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1615
1616 qemu_mutex_lock_iothread();
1617 kvm_arch_post_run(cpu, run);
1618
1619 if (run_ret < 0) {
1620 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1621 DPRINTF("io window exit\n");
1622 ret = EXCP_INTERRUPT;
1623 break;
1624 }
1625 fprintf(stderr, "error: kvm run failed %s\n",
1626 strerror(-run_ret));
1627 abort();
1628 }
1629
1630 switch (run->exit_reason) {
1631 case KVM_EXIT_IO:
1632 DPRINTF("handle_io\n");
1633 kvm_handle_io(run->io.port,
1634 (uint8_t *)run + run->io.data_offset,
1635 run->io.direction,
1636 run->io.size,
1637 run->io.count);
1638 ret = 0;
1639 break;
1640 case KVM_EXIT_MMIO:
1641 DPRINTF("handle_mmio\n");
1642 cpu_physical_memory_rw(run->mmio.phys_addr,
1643 run->mmio.data,
1644 run->mmio.len,
1645 run->mmio.is_write);
1646 ret = 0;
1647 break;
1648 case KVM_EXIT_IRQ_WINDOW_OPEN:
1649 DPRINTF("irq_window_open\n");
1650 ret = EXCP_INTERRUPT;
1651 break;
1652 case KVM_EXIT_SHUTDOWN:
1653 DPRINTF("shutdown\n");
1654 qemu_system_reset_request();
1655 ret = EXCP_INTERRUPT;
1656 break;
1657 case KVM_EXIT_UNKNOWN:
1658 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1659 (uint64_t)run->hw.hardware_exit_reason);
1660 ret = -1;
1661 break;
1662 case KVM_EXIT_INTERNAL_ERROR:
1663 ret = kvm_handle_internal_error(env, run);
1664 break;
1665 default:
1666 DPRINTF("kvm_arch_handle_exit\n");
1667 ret = kvm_arch_handle_exit(cpu, run);
1668 break;
1669 }
1670 } while (ret == 0);
1671
1672 if (ret < 0) {
1673 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1674 vm_stop(RUN_STATE_INTERNAL_ERROR);
1675 }
1676
1677 cpu->exit_request = 0;
1678 return ret;
1679 }
1680
1681 int kvm_ioctl(KVMState *s, int type, ...)
1682 {
1683 int ret;
1684 void *arg;
1685 va_list ap;
1686
1687 va_start(ap, type);
1688 arg = va_arg(ap, void *);
1689 va_end(ap);
1690
1691 ret = ioctl(s->fd, type, arg);
1692 if (ret == -1) {
1693 ret = -errno;
1694 }
1695 return ret;
1696 }
1697
1698 int kvm_vm_ioctl(KVMState *s, int type, ...)
1699 {
1700 int ret;
1701 void *arg;
1702 va_list ap;
1703
1704 va_start(ap, type);
1705 arg = va_arg(ap, void *);
1706 va_end(ap);
1707
1708 ret = ioctl(s->vmfd, type, arg);
1709 if (ret == -1) {
1710 ret = -errno;
1711 }
1712 return ret;
1713 }
1714
1715 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1716 {
1717 int ret;
1718 void *arg;
1719 va_list ap;
1720
1721 va_start(ap, type);
1722 arg = va_arg(ap, void *);
1723 va_end(ap);
1724
1725 ret = ioctl(cpu->kvm_fd, type, arg);
1726 if (ret == -1) {
1727 ret = -errno;
1728 }
1729 return ret;
1730 }
1731
1732 int kvm_has_sync_mmu(void)
1733 {
1734 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1735 }
1736
1737 int kvm_has_vcpu_events(void)
1738 {
1739 return kvm_state->vcpu_events;
1740 }
1741
1742 int kvm_has_robust_singlestep(void)
1743 {
1744 return kvm_state->robust_singlestep;
1745 }
1746
1747 int kvm_has_debugregs(void)
1748 {
1749 return kvm_state->debugregs;
1750 }
1751
1752 int kvm_has_xsave(void)
1753 {
1754 return kvm_state->xsave;
1755 }
1756
1757 int kvm_has_xcrs(void)
1758 {
1759 return kvm_state->xcrs;
1760 }
1761
1762 int kvm_has_pit_state2(void)
1763 {
1764 return kvm_state->pit_state2;
1765 }
1766
1767 int kvm_has_many_ioeventfds(void)
1768 {
1769 if (!kvm_enabled()) {
1770 return 0;
1771 }
1772 return kvm_state->many_ioeventfds;
1773 }
1774
1775 int kvm_has_gsi_routing(void)
1776 {
1777 #ifdef KVM_CAP_IRQ_ROUTING
1778 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1779 #else
1780 return false;
1781 #endif
1782 }
1783
1784 int kvm_has_intx_set_mask(void)
1785 {
1786 return kvm_state->intx_set_mask;
1787 }
1788
1789 void *kvm_vmalloc(ram_addr_t size)
1790 {
1791 #ifdef TARGET_S390X
1792 void *mem;
1793
1794 mem = kvm_arch_vmalloc(size);
1795 if (mem) {
1796 return mem;
1797 }
1798 #endif
1799 return qemu_vmalloc(size);
1800 }
1801
1802 void kvm_setup_guest_memory(void *start, size_t size)
1803 {
1804 #ifdef CONFIG_VALGRIND_H
1805 VALGRIND_MAKE_MEM_DEFINED(start, size);
1806 #endif
1807 if (!kvm_has_sync_mmu()) {
1808 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1809
1810 if (ret) {
1811 perror("qemu_madvise");
1812 fprintf(stderr,
1813 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1814 exit(1);
1815 }
1816 }
1817 }
1818
1819 #ifdef KVM_CAP_SET_GUEST_DEBUG
1820 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1821 target_ulong pc)
1822 {
1823 struct kvm_sw_breakpoint *bp;
1824
1825 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1826 if (bp->pc == pc) {
1827 return bp;
1828 }
1829 }
1830 return NULL;
1831 }
1832
1833 int kvm_sw_breakpoints_active(CPUState *cpu)
1834 {
1835 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1836 }
1837
1838 struct kvm_set_guest_debug_data {
1839 struct kvm_guest_debug dbg;
1840 CPUState *cpu;
1841 int err;
1842 };
1843
1844 static void kvm_invoke_set_guest_debug(void *data)
1845 {
1846 struct kvm_set_guest_debug_data *dbg_data = data;
1847
1848 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1849 &dbg_data->dbg);
1850 }
1851
1852 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1853 {
1854 CPUState *cpu = ENV_GET_CPU(env);
1855 struct kvm_set_guest_debug_data data;
1856
1857 data.dbg.control = reinject_trap;
1858
1859 if (env->singlestep_enabled) {
1860 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1861 }
1862 kvm_arch_update_guest_debug(cpu, &data.dbg);
1863 data.cpu = cpu;
1864
1865 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1866 return data.err;
1867 }
1868
1869 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1870 target_ulong len, int type)
1871 {
1872 CPUState *current_cpu = ENV_GET_CPU(current_env);
1873 struct kvm_sw_breakpoint *bp;
1874 CPUArchState *env;
1875 int err;
1876
1877 if (type == GDB_BREAKPOINT_SW) {
1878 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1879 if (bp) {
1880 bp->use_count++;
1881 return 0;
1882 }
1883
1884 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1885 if (!bp) {
1886 return -ENOMEM;
1887 }
1888
1889 bp->pc = addr;
1890 bp->use_count = 1;
1891 err = kvm_arch_insert_sw_breakpoint(current_cpu, bp);
1892 if (err) {
1893 g_free(bp);
1894 return err;
1895 }
1896
1897 QTAILQ_INSERT_HEAD(&current_cpu->kvm_state->kvm_sw_breakpoints,
1898 bp, entry);
1899 } else {
1900 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1901 if (err) {
1902 return err;
1903 }
1904 }
1905
1906 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1907 err = kvm_update_guest_debug(env, 0);
1908 if (err) {
1909 return err;
1910 }
1911 }
1912 return 0;
1913 }
1914
1915 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1916 target_ulong len, int type)
1917 {
1918 CPUState *current_cpu = ENV_GET_CPU(current_env);
1919 struct kvm_sw_breakpoint *bp;
1920 CPUArchState *env;
1921 int err;
1922
1923 if (type == GDB_BREAKPOINT_SW) {
1924 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1925 if (!bp) {
1926 return -ENOENT;
1927 }
1928
1929 if (bp->use_count > 1) {
1930 bp->use_count--;
1931 return 0;
1932 }
1933
1934 err = kvm_arch_remove_sw_breakpoint(current_cpu, bp);
1935 if (err) {
1936 return err;
1937 }
1938
1939 QTAILQ_REMOVE(&current_cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1940 g_free(bp);
1941 } else {
1942 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1943 if (err) {
1944 return err;
1945 }
1946 }
1947
1948 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1949 err = kvm_update_guest_debug(env, 0);
1950 if (err) {
1951 return err;
1952 }
1953 }
1954 return 0;
1955 }
1956
1957 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1958 {
1959 CPUState *current_cpu = ENV_GET_CPU(current_env);
1960 struct kvm_sw_breakpoint *bp, *next;
1961 KVMState *s = current_cpu->kvm_state;
1962 CPUArchState *env;
1963 CPUState *cpu;
1964
1965 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1966 if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) {
1967 /* Try harder to find a CPU that currently sees the breakpoint. */
1968 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1969 cpu = ENV_GET_CPU(env);
1970 if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
1971 break;
1972 }
1973 }
1974 }
1975 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
1976 g_free(bp);
1977 }
1978 kvm_arch_remove_all_hw_breakpoints();
1979
1980 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1981 kvm_update_guest_debug(env, 0);
1982 }
1983 }
1984
1985 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1986
1987 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1988 {
1989 return -EINVAL;
1990 }
1991
1992 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1993 target_ulong len, int type)
1994 {
1995 return -EINVAL;
1996 }
1997
1998 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1999 target_ulong len, int type)
2000 {
2001 return -EINVAL;
2002 }
2003
2004 void kvm_remove_all_breakpoints(CPUArchState *current_env)
2005 {
2006 }
2007 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2008
2009 int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
2010 {
2011 CPUState *cpu = ENV_GET_CPU(env);
2012 struct kvm_signal_mask *sigmask;
2013 int r;
2014
2015 if (!sigset) {
2016 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2017 }
2018
2019 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2020
2021 sigmask->len = 8;
2022 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2023 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2024 g_free(sigmask);
2025
2026 return r;
2027 }
2028 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2029 {
2030 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2031 }
2032
2033 int kvm_on_sigbus(int code, void *addr)
2034 {
2035 return kvm_arch_on_sigbus(code, addr);
2036 }