]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
qemu-thread: use pthread_equal
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "hw/hw.h"
26 #include "gdbstub.h"
27 #include "kvm.h"
28
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
31
32 //#define DEBUG_KVM
33
34 #ifdef DEBUG_KVM
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define dprintf(fmt, ...) \
39 do { } while (0)
40 #endif
41
42 typedef struct KVMSlot
43 {
44 target_phys_addr_t start_addr;
45 ram_addr_t memory_size;
46 ram_addr_t phys_offset;
47 int slot;
48 int flags;
49 } KVMSlot;
50
51 typedef struct kvm_dirty_log KVMDirtyLog;
52
53 int kvm_allowed = 0;
54
55 struct KVMState
56 {
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int coalesced_mmio;
61 int broken_set_mem_region;
62 int migration_log;
63 #ifdef KVM_CAP_SET_GUEST_DEBUG
64 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
65 #endif
66 };
67
68 static KVMState *kvm_state;
69
70 static KVMSlot *kvm_alloc_slot(KVMState *s)
71 {
72 int i;
73
74 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
75 /* KVM private memory slots */
76 if (i >= 8 && i < 12)
77 continue;
78 if (s->slots[i].memory_size == 0)
79 return &s->slots[i];
80 }
81
82 fprintf(stderr, "%s: no free slot available\n", __func__);
83 abort();
84 }
85
86 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
87 target_phys_addr_t start_addr,
88 target_phys_addr_t end_addr)
89 {
90 int i;
91
92 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
93 KVMSlot *mem = &s->slots[i];
94
95 if (start_addr == mem->start_addr &&
96 end_addr == mem->start_addr + mem->memory_size) {
97 return mem;
98 }
99 }
100
101 return NULL;
102 }
103
104 /*
105 * Find overlapping slot with lowest start address
106 */
107 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
108 target_phys_addr_t start_addr,
109 target_phys_addr_t end_addr)
110 {
111 KVMSlot *found = NULL;
112 int i;
113
114 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
115 KVMSlot *mem = &s->slots[i];
116
117 if (mem->memory_size == 0 ||
118 (found && found->start_addr < mem->start_addr)) {
119 continue;
120 }
121
122 if (end_addr > mem->start_addr &&
123 start_addr < mem->start_addr + mem->memory_size) {
124 found = mem;
125 }
126 }
127
128 return found;
129 }
130
131 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
132 {
133 struct kvm_userspace_memory_region mem;
134
135 mem.slot = slot->slot;
136 mem.guest_phys_addr = slot->start_addr;
137 mem.memory_size = slot->memory_size;
138 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
139 mem.flags = slot->flags;
140 if (s->migration_log) {
141 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
142 }
143 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
144 }
145
146 static void kvm_reset_vcpu(void *opaque)
147 {
148 CPUState *env = opaque;
149
150 if (kvm_arch_put_registers(env)) {
151 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
152 abort();
153 }
154 }
155
156 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
157 {
158 if (env == cpu_single_env) {
159 func(data);
160 return;
161 }
162 abort();
163 }
164
165 int kvm_init_vcpu(CPUState *env)
166 {
167 KVMState *s = kvm_state;
168 long mmap_size;
169 int ret;
170
171 dprintf("kvm_init_vcpu\n");
172
173 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
174 if (ret < 0) {
175 dprintf("kvm_create_vcpu failed\n");
176 goto err;
177 }
178
179 env->kvm_fd = ret;
180 env->kvm_state = s;
181
182 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
183 if (mmap_size < 0) {
184 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
185 goto err;
186 }
187
188 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
189 env->kvm_fd, 0);
190 if (env->kvm_run == MAP_FAILED) {
191 ret = -errno;
192 dprintf("mmap'ing vcpu state failed\n");
193 goto err;
194 }
195
196 ret = kvm_arch_init_vcpu(env);
197 if (ret == 0) {
198 qemu_register_reset(kvm_reset_vcpu, env);
199 ret = kvm_arch_put_registers(env);
200 }
201 err:
202 return ret;
203 }
204
205 int kvm_put_mp_state(CPUState *env)
206 {
207 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
208
209 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
210 }
211
212 int kvm_get_mp_state(CPUState *env)
213 {
214 struct kvm_mp_state mp_state;
215 int ret;
216
217 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
218 if (ret < 0) {
219 return ret;
220 }
221 env->mp_state = mp_state.mp_state;
222 return 0;
223 }
224
225 /*
226 * dirty pages logging control
227 */
228 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
229 ram_addr_t size, int flags, int mask)
230 {
231 KVMState *s = kvm_state;
232 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
233 int old_flags;
234
235 if (mem == NULL) {
236 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
237 TARGET_FMT_plx "\n", __func__, phys_addr,
238 (target_phys_addr_t)(phys_addr + size - 1));
239 return -EINVAL;
240 }
241
242 old_flags = mem->flags;
243
244 flags = (mem->flags & ~mask) | flags;
245 mem->flags = flags;
246
247 /* If nothing changed effectively, no need to issue ioctl */
248 if (s->migration_log) {
249 flags |= KVM_MEM_LOG_DIRTY_PAGES;
250 }
251 if (flags == old_flags) {
252 return 0;
253 }
254
255 return kvm_set_user_memory_region(s, mem);
256 }
257
258 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
259 {
260 return kvm_dirty_pages_log_change(phys_addr, size,
261 KVM_MEM_LOG_DIRTY_PAGES,
262 KVM_MEM_LOG_DIRTY_PAGES);
263 }
264
265 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
266 {
267 return kvm_dirty_pages_log_change(phys_addr, size,
268 0,
269 KVM_MEM_LOG_DIRTY_PAGES);
270 }
271
272 int kvm_set_migration_log(int enable)
273 {
274 KVMState *s = kvm_state;
275 KVMSlot *mem;
276 int i, err;
277
278 s->migration_log = enable;
279
280 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
281 mem = &s->slots[i];
282
283 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
284 continue;
285 }
286 err = kvm_set_user_memory_region(s, mem);
287 if (err) {
288 return err;
289 }
290 }
291 return 0;
292 }
293
294 /**
295 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
296 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
297 * This means all bits are set to dirty.
298 *
299 * @start_add: start of logged region.
300 * @end_addr: end of logged region.
301 */
302 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
303 target_phys_addr_t end_addr)
304 {
305 KVMState *s = kvm_state;
306 unsigned long size, allocated_size = 0;
307 target_phys_addr_t phys_addr;
308 ram_addr_t addr;
309 KVMDirtyLog d;
310 KVMSlot *mem;
311 int ret = 0;
312 int r;
313
314 d.dirty_bitmap = NULL;
315 while (start_addr < end_addr) {
316 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
317 if (mem == NULL) {
318 break;
319 }
320
321 /* We didn't activate dirty logging? Don't care then. */
322 if(!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
323 continue;
324 }
325
326 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
327 if (!d.dirty_bitmap) {
328 d.dirty_bitmap = qemu_malloc(size);
329 } else if (size > allocated_size) {
330 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
331 }
332 allocated_size = size;
333 memset(d.dirty_bitmap, 0, allocated_size);
334
335 d.slot = mem->slot;
336
337 r = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
338 if (r == -EINVAL) {
339 dprintf("ioctl failed %d\n", errno);
340 ret = -1;
341 break;
342 }
343
344 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
345 phys_addr < mem->start_addr + mem->memory_size;
346 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
347 unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
348 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
349 unsigned word = nr / (sizeof(*bitmap) * 8);
350 unsigned bit = nr % (sizeof(*bitmap) * 8);
351
352 if ((bitmap[word] >> bit) & 1) {
353 cpu_physical_memory_set_dirty(addr);
354 } else if (r < 0) {
355 /* When our KVM implementation doesn't know about dirty logging
356 * we can just assume it's always dirty and be fine. */
357 cpu_physical_memory_set_dirty(addr);
358 }
359 }
360 start_addr = phys_addr;
361 }
362 qemu_free(d.dirty_bitmap);
363
364 return ret;
365 }
366
367 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
368 {
369 int ret = -ENOSYS;
370 #ifdef KVM_CAP_COALESCED_MMIO
371 KVMState *s = kvm_state;
372
373 if (s->coalesced_mmio) {
374 struct kvm_coalesced_mmio_zone zone;
375
376 zone.addr = start;
377 zone.size = size;
378
379 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
380 }
381 #endif
382
383 return ret;
384 }
385
386 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
387 {
388 int ret = -ENOSYS;
389 #ifdef KVM_CAP_COALESCED_MMIO
390 KVMState *s = kvm_state;
391
392 if (s->coalesced_mmio) {
393 struct kvm_coalesced_mmio_zone zone;
394
395 zone.addr = start;
396 zone.size = size;
397
398 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
399 }
400 #endif
401
402 return ret;
403 }
404
405 int kvm_check_extension(KVMState *s, unsigned int extension)
406 {
407 int ret;
408
409 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
410 if (ret < 0) {
411 ret = 0;
412 }
413
414 return ret;
415 }
416
417 int kvm_init(int smp_cpus)
418 {
419 static const char upgrade_note[] =
420 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
421 "(see http://sourceforge.net/projects/kvm).\n";
422 KVMState *s;
423 int ret;
424 int i;
425
426 if (smp_cpus > 1) {
427 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
428 return -EINVAL;
429 }
430
431 s = qemu_mallocz(sizeof(KVMState));
432
433 #ifdef KVM_CAP_SET_GUEST_DEBUG
434 TAILQ_INIT(&s->kvm_sw_breakpoints);
435 #endif
436 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
437 s->slots[i].slot = i;
438
439 s->vmfd = -1;
440 s->fd = open("/dev/kvm", O_RDWR);
441 if (s->fd == -1) {
442 fprintf(stderr, "Could not access KVM kernel module: %m\n");
443 ret = -errno;
444 goto err;
445 }
446
447 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
448 if (ret < KVM_API_VERSION) {
449 if (ret > 0)
450 ret = -EINVAL;
451 fprintf(stderr, "kvm version too old\n");
452 goto err;
453 }
454
455 if (ret > KVM_API_VERSION) {
456 ret = -EINVAL;
457 fprintf(stderr, "kvm version not supported\n");
458 goto err;
459 }
460
461 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
462 if (s->vmfd < 0)
463 goto err;
464
465 /* initially, KVM allocated its own memory and we had to jump through
466 * hooks to make phys_ram_base point to this. Modern versions of KVM
467 * just use a user allocated buffer so we can use regular pages
468 * unmodified. Make sure we have a sufficiently modern version of KVM.
469 */
470 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
471 ret = -EINVAL;
472 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
473 upgrade_note);
474 goto err;
475 }
476
477 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
478 * destroyed properly. Since we rely on this capability, refuse to work
479 * with any kernel without this capability. */
480 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
481 ret = -EINVAL;
482
483 fprintf(stderr,
484 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
485 upgrade_note);
486 goto err;
487 }
488
489 #ifdef KVM_CAP_COALESCED_MMIO
490 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
491 #else
492 s->coalesced_mmio = 0;
493 #endif
494
495 s->broken_set_mem_region = 1;
496 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
497 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
498 if (ret > 0) {
499 s->broken_set_mem_region = 0;
500 }
501 #endif
502
503 ret = kvm_arch_init(s, smp_cpus);
504 if (ret < 0)
505 goto err;
506
507 kvm_state = s;
508
509 return 0;
510
511 err:
512 if (s) {
513 if (s->vmfd != -1)
514 close(s->vmfd);
515 if (s->fd != -1)
516 close(s->fd);
517 }
518 qemu_free(s);
519
520 return ret;
521 }
522
523 static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
524 int direction, int size, uint32_t count)
525 {
526 int i;
527 uint8_t *ptr = data;
528
529 for (i = 0; i < count; i++) {
530 if (direction == KVM_EXIT_IO_IN) {
531 switch (size) {
532 case 1:
533 stb_p(ptr, cpu_inb(env, port));
534 break;
535 case 2:
536 stw_p(ptr, cpu_inw(env, port));
537 break;
538 case 4:
539 stl_p(ptr, cpu_inl(env, port));
540 break;
541 }
542 } else {
543 switch (size) {
544 case 1:
545 cpu_outb(env, port, ldub_p(ptr));
546 break;
547 case 2:
548 cpu_outw(env, port, lduw_p(ptr));
549 break;
550 case 4:
551 cpu_outl(env, port, ldl_p(ptr));
552 break;
553 }
554 }
555
556 ptr += size;
557 }
558
559 return 1;
560 }
561
562 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
563 {
564 #ifdef KVM_CAP_COALESCED_MMIO
565 KVMState *s = kvm_state;
566 if (s->coalesced_mmio) {
567 struct kvm_coalesced_mmio_ring *ring;
568
569 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
570 while (ring->first != ring->last) {
571 struct kvm_coalesced_mmio *ent;
572
573 ent = &ring->coalesced_mmio[ring->first];
574
575 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
576 /* FIXME smp_wmb() */
577 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
578 }
579 }
580 #endif
581 }
582
583 int kvm_cpu_exec(CPUState *env)
584 {
585 struct kvm_run *run = env->kvm_run;
586 int ret;
587
588 dprintf("kvm_cpu_exec()\n");
589
590 do {
591 if (env->exit_request) {
592 dprintf("interrupt exit requested\n");
593 ret = 0;
594 break;
595 }
596
597 kvm_arch_pre_run(env, run);
598 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
599 kvm_arch_post_run(env, run);
600
601 if (ret == -EINTR || ret == -EAGAIN) {
602 dprintf("io window exit\n");
603 ret = 0;
604 break;
605 }
606
607 if (ret < 0) {
608 dprintf("kvm run failed %s\n", strerror(-ret));
609 abort();
610 }
611
612 kvm_run_coalesced_mmio(env, run);
613
614 ret = 0; /* exit loop */
615 switch (run->exit_reason) {
616 case KVM_EXIT_IO:
617 dprintf("handle_io\n");
618 ret = kvm_handle_io(env, run->io.port,
619 (uint8_t *)run + run->io.data_offset,
620 run->io.direction,
621 run->io.size,
622 run->io.count);
623 break;
624 case KVM_EXIT_MMIO:
625 dprintf("handle_mmio\n");
626 cpu_physical_memory_rw(run->mmio.phys_addr,
627 run->mmio.data,
628 run->mmio.len,
629 run->mmio.is_write);
630 ret = 1;
631 break;
632 case KVM_EXIT_IRQ_WINDOW_OPEN:
633 dprintf("irq_window_open\n");
634 break;
635 case KVM_EXIT_SHUTDOWN:
636 dprintf("shutdown\n");
637 qemu_system_reset_request();
638 ret = 1;
639 break;
640 case KVM_EXIT_UNKNOWN:
641 dprintf("kvm_exit_unknown\n");
642 break;
643 case KVM_EXIT_FAIL_ENTRY:
644 dprintf("kvm_exit_fail_entry\n");
645 break;
646 case KVM_EXIT_EXCEPTION:
647 dprintf("kvm_exit_exception\n");
648 break;
649 case KVM_EXIT_DEBUG:
650 dprintf("kvm_exit_debug\n");
651 #ifdef KVM_CAP_SET_GUEST_DEBUG
652 if (kvm_arch_debug(&run->debug.arch)) {
653 gdb_set_stop_cpu(env);
654 vm_stop(EXCP_DEBUG);
655 env->exception_index = EXCP_DEBUG;
656 return 0;
657 }
658 /* re-enter, this exception was guest-internal */
659 ret = 1;
660 #endif /* KVM_CAP_SET_GUEST_DEBUG */
661 break;
662 default:
663 dprintf("kvm_arch_handle_exit\n");
664 ret = kvm_arch_handle_exit(env, run);
665 break;
666 }
667 } while (ret > 0);
668
669 if (env->exit_request) {
670 env->exit_request = 0;
671 env->exception_index = EXCP_INTERRUPT;
672 }
673
674 return ret;
675 }
676
677 void kvm_set_phys_mem(target_phys_addr_t start_addr,
678 ram_addr_t size,
679 ram_addr_t phys_offset)
680 {
681 KVMState *s = kvm_state;
682 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
683 KVMSlot *mem, old;
684 int err;
685
686 if (start_addr & ~TARGET_PAGE_MASK) {
687 if (flags >= IO_MEM_UNASSIGNED) {
688 if (!kvm_lookup_overlapping_slot(s, start_addr,
689 start_addr + size)) {
690 return;
691 }
692 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
693 } else {
694 fprintf(stderr, "Only page-aligned memory slots supported\n");
695 }
696 abort();
697 }
698
699 /* KVM does not support read-only slots */
700 phys_offset &= ~IO_MEM_ROM;
701
702 while (1) {
703 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
704 if (!mem) {
705 break;
706 }
707
708 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
709 (start_addr + size <= mem->start_addr + mem->memory_size) &&
710 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
711 /* The new slot fits into the existing one and comes with
712 * identical parameters - nothing to be done. */
713 return;
714 }
715
716 old = *mem;
717
718 /* unregister the overlapping slot */
719 mem->memory_size = 0;
720 err = kvm_set_user_memory_region(s, mem);
721 if (err) {
722 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
723 __func__, strerror(-err));
724 abort();
725 }
726
727 /* Workaround for older KVM versions: we can't join slots, even not by
728 * unregistering the previous ones and then registering the larger
729 * slot. We have to maintain the existing fragmentation. Sigh.
730 *
731 * This workaround assumes that the new slot starts at the same
732 * address as the first existing one. If not or if some overlapping
733 * slot comes around later, we will fail (not seen in practice so far)
734 * - and actually require a recent KVM version. */
735 if (s->broken_set_mem_region &&
736 old.start_addr == start_addr && old.memory_size < size &&
737 flags < IO_MEM_UNASSIGNED) {
738 mem = kvm_alloc_slot(s);
739 mem->memory_size = old.memory_size;
740 mem->start_addr = old.start_addr;
741 mem->phys_offset = old.phys_offset;
742 mem->flags = 0;
743
744 err = kvm_set_user_memory_region(s, mem);
745 if (err) {
746 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
747 strerror(-err));
748 abort();
749 }
750
751 start_addr += old.memory_size;
752 phys_offset += old.memory_size;
753 size -= old.memory_size;
754 continue;
755 }
756
757 /* register prefix slot */
758 if (old.start_addr < start_addr) {
759 mem = kvm_alloc_slot(s);
760 mem->memory_size = start_addr - old.start_addr;
761 mem->start_addr = old.start_addr;
762 mem->phys_offset = old.phys_offset;
763 mem->flags = 0;
764
765 err = kvm_set_user_memory_region(s, mem);
766 if (err) {
767 fprintf(stderr, "%s: error registering prefix slot: %s\n",
768 __func__, strerror(-err));
769 abort();
770 }
771 }
772
773 /* register suffix slot */
774 if (old.start_addr + old.memory_size > start_addr + size) {
775 ram_addr_t size_delta;
776
777 mem = kvm_alloc_slot(s);
778 mem->start_addr = start_addr + size;
779 size_delta = mem->start_addr - old.start_addr;
780 mem->memory_size = old.memory_size - size_delta;
781 mem->phys_offset = old.phys_offset + size_delta;
782 mem->flags = 0;
783
784 err = kvm_set_user_memory_region(s, mem);
785 if (err) {
786 fprintf(stderr, "%s: error registering suffix slot: %s\n",
787 __func__, strerror(-err));
788 abort();
789 }
790 }
791 }
792
793 /* in case the KVM bug workaround already "consumed" the new slot */
794 if (!size)
795 return;
796
797 /* KVM does not need to know about this memory */
798 if (flags >= IO_MEM_UNASSIGNED)
799 return;
800
801 mem = kvm_alloc_slot(s);
802 mem->memory_size = size;
803 mem->start_addr = start_addr;
804 mem->phys_offset = phys_offset;
805 mem->flags = 0;
806
807 err = kvm_set_user_memory_region(s, mem);
808 if (err) {
809 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
810 strerror(-err));
811 abort();
812 }
813 }
814
815 int kvm_ioctl(KVMState *s, int type, ...)
816 {
817 int ret;
818 void *arg;
819 va_list ap;
820
821 va_start(ap, type);
822 arg = va_arg(ap, void *);
823 va_end(ap);
824
825 ret = ioctl(s->fd, type, arg);
826 if (ret == -1)
827 ret = -errno;
828
829 return ret;
830 }
831
832 int kvm_vm_ioctl(KVMState *s, int type, ...)
833 {
834 int ret;
835 void *arg;
836 va_list ap;
837
838 va_start(ap, type);
839 arg = va_arg(ap, void *);
840 va_end(ap);
841
842 ret = ioctl(s->vmfd, type, arg);
843 if (ret == -1)
844 ret = -errno;
845
846 return ret;
847 }
848
849 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
850 {
851 int ret;
852 void *arg;
853 va_list ap;
854
855 va_start(ap, type);
856 arg = va_arg(ap, void *);
857 va_end(ap);
858
859 ret = ioctl(env->kvm_fd, type, arg);
860 if (ret == -1)
861 ret = -errno;
862
863 return ret;
864 }
865
866 int kvm_has_sync_mmu(void)
867 {
868 #ifdef KVM_CAP_SYNC_MMU
869 KVMState *s = kvm_state;
870
871 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
872 #else
873 return 0;
874 #endif
875 }
876
877 void kvm_setup_guest_memory(void *start, size_t size)
878 {
879 if (!kvm_has_sync_mmu()) {
880 #ifdef MADV_DONTFORK
881 int ret = madvise(start, size, MADV_DONTFORK);
882
883 if (ret) {
884 perror("madvice");
885 exit(1);
886 }
887 #else
888 fprintf(stderr,
889 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
890 exit(1);
891 #endif
892 }
893 }
894
895 #ifdef KVM_CAP_SET_GUEST_DEBUG
896 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
897 target_ulong pc)
898 {
899 struct kvm_sw_breakpoint *bp;
900
901 TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
902 if (bp->pc == pc)
903 return bp;
904 }
905 return NULL;
906 }
907
908 int kvm_sw_breakpoints_active(CPUState *env)
909 {
910 return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
911 }
912
913 struct kvm_set_guest_debug_data {
914 struct kvm_guest_debug dbg;
915 CPUState *env;
916 int err;
917 };
918
919 static void kvm_invoke_set_guest_debug(void *data)
920 {
921 struct kvm_set_guest_debug_data *dbg_data = data;
922 dbg_data->err = kvm_vcpu_ioctl(dbg_data->env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
923 }
924
925 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
926 {
927 struct kvm_set_guest_debug_data data;
928
929 data.dbg.control = 0;
930 if (env->singlestep_enabled)
931 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
932
933 kvm_arch_update_guest_debug(env, &data.dbg);
934 data.dbg.control |= reinject_trap;
935 data.env = env;
936
937 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
938 return data.err;
939 }
940
941 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
942 target_ulong len, int type)
943 {
944 struct kvm_sw_breakpoint *bp;
945 CPUState *env;
946 int err;
947
948 if (type == GDB_BREAKPOINT_SW) {
949 bp = kvm_find_sw_breakpoint(current_env, addr);
950 if (bp) {
951 bp->use_count++;
952 return 0;
953 }
954
955 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
956 if (!bp)
957 return -ENOMEM;
958
959 bp->pc = addr;
960 bp->use_count = 1;
961 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
962 if (err) {
963 free(bp);
964 return err;
965 }
966
967 TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
968 bp, entry);
969 } else {
970 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
971 if (err)
972 return err;
973 }
974
975 for (env = first_cpu; env != NULL; env = env->next_cpu) {
976 err = kvm_update_guest_debug(env, 0);
977 if (err)
978 return err;
979 }
980 return 0;
981 }
982
983 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
984 target_ulong len, int type)
985 {
986 struct kvm_sw_breakpoint *bp;
987 CPUState *env;
988 int err;
989
990 if (type == GDB_BREAKPOINT_SW) {
991 bp = kvm_find_sw_breakpoint(current_env, addr);
992 if (!bp)
993 return -ENOENT;
994
995 if (bp->use_count > 1) {
996 bp->use_count--;
997 return 0;
998 }
999
1000 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1001 if (err)
1002 return err;
1003
1004 TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1005 qemu_free(bp);
1006 } else {
1007 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1008 if (err)
1009 return err;
1010 }
1011
1012 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1013 err = kvm_update_guest_debug(env, 0);
1014 if (err)
1015 return err;
1016 }
1017 return 0;
1018 }
1019
1020 void kvm_remove_all_breakpoints(CPUState *current_env)
1021 {
1022 struct kvm_sw_breakpoint *bp, *next;
1023 KVMState *s = current_env->kvm_state;
1024 CPUState *env;
1025
1026 TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1027 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1028 /* Try harder to find a CPU that currently sees the breakpoint. */
1029 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1030 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1031 break;
1032 }
1033 }
1034 }
1035 kvm_arch_remove_all_hw_breakpoints();
1036
1037 for (env = first_cpu; env != NULL; env = env->next_cpu)
1038 kvm_update_guest_debug(env, 0);
1039 }
1040
1041 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1042
1043 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1044 {
1045 return -EINVAL;
1046 }
1047
1048 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1049 target_ulong len, int type)
1050 {
1051 return -EINVAL;
1052 }
1053
1054 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1055 target_ulong len, int type)
1056 {
1057 return -EINVAL;
1058 }
1059
1060 void kvm_remove_all_breakpoints(CPUState *current_env)
1061 {
1062 }
1063 #endif /* !KVM_CAP_SET_GUEST_DEBUG */