]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
Merge remote-tracking branch 'bonzini/scsi-next' into staging
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/event_notifier.h"
36
37 /* This check must be after config-host.h is included */
38 #ifdef CONFIG_EVENTFD
39 #include <sys/eventfd.h>
40 #endif
41
42 #ifdef CONFIG_VALGRIND_H
43 #include <valgrind/memcheck.h>
44 #endif
45
46 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
47 #define PAGE_SIZE TARGET_PAGE_SIZE
48
49 //#define DEBUG_KVM
50
51 #ifdef DEBUG_KVM
52 #define DPRINTF(fmt, ...) \
53 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
54 #else
55 #define DPRINTF(fmt, ...) \
56 do { } while (0)
57 #endif
58
59 #define KVM_MSI_HASHTAB_SIZE 256
60
61 typedef struct KVMSlot
62 {
63 hwaddr start_addr;
64 ram_addr_t memory_size;
65 void *ram;
66 int slot;
67 int flags;
68 } KVMSlot;
69
70 typedef struct kvm_dirty_log KVMDirtyLog;
71
72 struct KVMState
73 {
74 KVMSlot slots[32];
75 int fd;
76 int vmfd;
77 int coalesced_mmio;
78 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
79 bool coalesced_flush_in_progress;
80 int broken_set_mem_region;
81 int migration_log;
82 int vcpu_events;
83 int robust_singlestep;
84 int debugregs;
85 #ifdef KVM_CAP_SET_GUEST_DEBUG
86 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
87 #endif
88 int pit_state2;
89 int xsave, xcrs;
90 int many_ioeventfds;
91 int intx_set_mask;
92 /* The man page (and posix) say ioctl numbers are signed int, but
93 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
94 * unsigned, and treating them as signed here can break things */
95 unsigned irq_set_ioctl;
96 #ifdef KVM_CAP_IRQ_ROUTING
97 struct kvm_irq_routing *irq_routes;
98 int nr_allocated_irq_routes;
99 uint32_t *used_gsi_bitmap;
100 unsigned int gsi_count;
101 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
102 bool direct_msi;
103 #endif
104 };
105
106 KVMState *kvm_state;
107 bool kvm_kernel_irqchip;
108 bool kvm_async_interrupts_allowed;
109 bool kvm_irqfds_allowed;
110 bool kvm_msi_via_irqfd_allowed;
111 bool kvm_gsi_routing_allowed;
112
113 static const KVMCapabilityInfo kvm_required_capabilites[] = {
114 KVM_CAP_INFO(USER_MEMORY),
115 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
116 KVM_CAP_LAST_INFO
117 };
118
119 static KVMSlot *kvm_alloc_slot(KVMState *s)
120 {
121 int i;
122
123 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
124 if (s->slots[i].memory_size == 0) {
125 return &s->slots[i];
126 }
127 }
128
129 fprintf(stderr, "%s: no free slot available\n", __func__);
130 abort();
131 }
132
133 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
134 hwaddr start_addr,
135 hwaddr end_addr)
136 {
137 int i;
138
139 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
140 KVMSlot *mem = &s->slots[i];
141
142 if (start_addr == mem->start_addr &&
143 end_addr == mem->start_addr + mem->memory_size) {
144 return mem;
145 }
146 }
147
148 return NULL;
149 }
150
151 /*
152 * Find overlapping slot with lowest start address
153 */
154 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
155 hwaddr start_addr,
156 hwaddr end_addr)
157 {
158 KVMSlot *found = NULL;
159 int i;
160
161 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
162 KVMSlot *mem = &s->slots[i];
163
164 if (mem->memory_size == 0 ||
165 (found && found->start_addr < mem->start_addr)) {
166 continue;
167 }
168
169 if (end_addr > mem->start_addr &&
170 start_addr < mem->start_addr + mem->memory_size) {
171 found = mem;
172 }
173 }
174
175 return found;
176 }
177
178 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
179 hwaddr *phys_addr)
180 {
181 int i;
182
183 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
184 KVMSlot *mem = &s->slots[i];
185
186 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
187 *phys_addr = mem->start_addr + (ram - mem->ram);
188 return 1;
189 }
190 }
191
192 return 0;
193 }
194
195 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
196 {
197 struct kvm_userspace_memory_region mem;
198
199 mem.slot = slot->slot;
200 mem.guest_phys_addr = slot->start_addr;
201 mem.memory_size = slot->memory_size;
202 mem.userspace_addr = (unsigned long)slot->ram;
203 mem.flags = slot->flags;
204 if (s->migration_log) {
205 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
206 }
207 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
208 }
209
210 static void kvm_reset_vcpu(void *opaque)
211 {
212 CPUState *cpu = opaque;
213
214 kvm_arch_reset_vcpu(cpu);
215 }
216
217 int kvm_init_vcpu(CPUState *cpu)
218 {
219 KVMState *s = kvm_state;
220 long mmap_size;
221 int ret;
222
223 DPRINTF("kvm_init_vcpu\n");
224
225 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
226 if (ret < 0) {
227 DPRINTF("kvm_create_vcpu failed\n");
228 goto err;
229 }
230
231 cpu->kvm_fd = ret;
232 cpu->kvm_state = s;
233 cpu->kvm_vcpu_dirty = true;
234
235 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
236 if (mmap_size < 0) {
237 ret = mmap_size;
238 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
239 goto err;
240 }
241
242 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
243 cpu->kvm_fd, 0);
244 if (cpu->kvm_run == MAP_FAILED) {
245 ret = -errno;
246 DPRINTF("mmap'ing vcpu state failed\n");
247 goto err;
248 }
249
250 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
251 s->coalesced_mmio_ring =
252 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
253 }
254
255 ret = kvm_arch_init_vcpu(cpu);
256 if (ret == 0) {
257 qemu_register_reset(kvm_reset_vcpu, cpu);
258 kvm_arch_reset_vcpu(cpu);
259 }
260 err:
261 return ret;
262 }
263
264 /*
265 * dirty pages logging control
266 */
267
268 static int kvm_mem_flags(KVMState *s, bool log_dirty)
269 {
270 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
271 }
272
273 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
274 {
275 KVMState *s = kvm_state;
276 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
277 int old_flags;
278
279 old_flags = mem->flags;
280
281 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
282 mem->flags = flags;
283
284 /* If nothing changed effectively, no need to issue ioctl */
285 if (s->migration_log) {
286 flags |= KVM_MEM_LOG_DIRTY_PAGES;
287 }
288
289 if (flags == old_flags) {
290 return 0;
291 }
292
293 return kvm_set_user_memory_region(s, mem);
294 }
295
296 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
297 ram_addr_t size, bool log_dirty)
298 {
299 KVMState *s = kvm_state;
300 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
301
302 if (mem == NULL) {
303 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
304 TARGET_FMT_plx "\n", __func__, phys_addr,
305 (hwaddr)(phys_addr + size - 1));
306 return -EINVAL;
307 }
308 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
309 }
310
311 static void kvm_log_start(MemoryListener *listener,
312 MemoryRegionSection *section)
313 {
314 int r;
315
316 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
317 section->size, true);
318 if (r < 0) {
319 abort();
320 }
321 }
322
323 static void kvm_log_stop(MemoryListener *listener,
324 MemoryRegionSection *section)
325 {
326 int r;
327
328 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
329 section->size, false);
330 if (r < 0) {
331 abort();
332 }
333 }
334
335 static int kvm_set_migration_log(int enable)
336 {
337 KVMState *s = kvm_state;
338 KVMSlot *mem;
339 int i, err;
340
341 s->migration_log = enable;
342
343 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
344 mem = &s->slots[i];
345
346 if (!mem->memory_size) {
347 continue;
348 }
349 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
350 continue;
351 }
352 err = kvm_set_user_memory_region(s, mem);
353 if (err) {
354 return err;
355 }
356 }
357 return 0;
358 }
359
360 /* get kvm's dirty pages bitmap and update qemu's */
361 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
362 unsigned long *bitmap)
363 {
364 unsigned int i, j;
365 unsigned long page_number, c;
366 hwaddr addr, addr1;
367 unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
368 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
369
370 /*
371 * bitmap-traveling is faster than memory-traveling (for addr...)
372 * especially when most of the memory is not dirty.
373 */
374 for (i = 0; i < len; i++) {
375 if (bitmap[i] != 0) {
376 c = leul_to_cpu(bitmap[i]);
377 do {
378 j = ffsl(c) - 1;
379 c &= ~(1ul << j);
380 page_number = (i * HOST_LONG_BITS + j) * hpratio;
381 addr1 = page_number * TARGET_PAGE_SIZE;
382 addr = section->offset_within_region + addr1;
383 memory_region_set_dirty(section->mr, addr,
384 TARGET_PAGE_SIZE * hpratio);
385 } while (c != 0);
386 }
387 }
388 return 0;
389 }
390
391 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
392
393 /**
394 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
395 * This function updates qemu's dirty bitmap using
396 * memory_region_set_dirty(). This means all bits are set
397 * to dirty.
398 *
399 * @start_add: start of logged region.
400 * @end_addr: end of logged region.
401 */
402 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
403 {
404 KVMState *s = kvm_state;
405 unsigned long size, allocated_size = 0;
406 KVMDirtyLog d;
407 KVMSlot *mem;
408 int ret = 0;
409 hwaddr start_addr = section->offset_within_address_space;
410 hwaddr end_addr = start_addr + section->size;
411
412 d.dirty_bitmap = NULL;
413 while (start_addr < end_addr) {
414 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
415 if (mem == NULL) {
416 break;
417 }
418
419 /* XXX bad kernel interface alert
420 * For dirty bitmap, kernel allocates array of size aligned to
421 * bits-per-long. But for case when the kernel is 64bits and
422 * the userspace is 32bits, userspace can't align to the same
423 * bits-per-long, since sizeof(long) is different between kernel
424 * and user space. This way, userspace will provide buffer which
425 * may be 4 bytes less than the kernel will use, resulting in
426 * userspace memory corruption (which is not detectable by valgrind
427 * too, in most cases).
428 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
429 * a hope that sizeof(long) wont become >8 any time soon.
430 */
431 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
432 /*HOST_LONG_BITS*/ 64) / 8;
433 if (!d.dirty_bitmap) {
434 d.dirty_bitmap = g_malloc(size);
435 } else if (size > allocated_size) {
436 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
437 }
438 allocated_size = size;
439 memset(d.dirty_bitmap, 0, allocated_size);
440
441 d.slot = mem->slot;
442
443 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
444 DPRINTF("ioctl failed %d\n", errno);
445 ret = -1;
446 break;
447 }
448
449 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
450 start_addr = mem->start_addr + mem->memory_size;
451 }
452 g_free(d.dirty_bitmap);
453
454 return ret;
455 }
456
457 static void kvm_coalesce_mmio_region(MemoryListener *listener,
458 MemoryRegionSection *secion,
459 hwaddr start, hwaddr size)
460 {
461 KVMState *s = kvm_state;
462
463 if (s->coalesced_mmio) {
464 struct kvm_coalesced_mmio_zone zone;
465
466 zone.addr = start;
467 zone.size = size;
468 zone.pad = 0;
469
470 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
471 }
472 }
473
474 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
475 MemoryRegionSection *secion,
476 hwaddr start, hwaddr size)
477 {
478 KVMState *s = kvm_state;
479
480 if (s->coalesced_mmio) {
481 struct kvm_coalesced_mmio_zone zone;
482
483 zone.addr = start;
484 zone.size = size;
485 zone.pad = 0;
486
487 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
488 }
489 }
490
491 int kvm_check_extension(KVMState *s, unsigned int extension)
492 {
493 int ret;
494
495 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
496 if (ret < 0) {
497 ret = 0;
498 }
499
500 return ret;
501 }
502
503 static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val,
504 bool assign, uint32_t size, bool datamatch)
505 {
506 int ret;
507 struct kvm_ioeventfd iofd;
508
509 iofd.datamatch = datamatch ? val : 0;
510 iofd.addr = addr;
511 iofd.len = size;
512 iofd.flags = 0;
513 iofd.fd = fd;
514
515 if (!kvm_enabled()) {
516 return -ENOSYS;
517 }
518
519 if (datamatch) {
520 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
521 }
522 if (!assign) {
523 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
524 }
525
526 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
527
528 if (ret < 0) {
529 return -errno;
530 }
531
532 return 0;
533 }
534
535 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
536 bool assign, uint32_t size, bool datamatch)
537 {
538 struct kvm_ioeventfd kick = {
539 .datamatch = datamatch ? val : 0,
540 .addr = addr,
541 .flags = KVM_IOEVENTFD_FLAG_PIO,
542 .len = size,
543 .fd = fd,
544 };
545 int r;
546 if (!kvm_enabled()) {
547 return -ENOSYS;
548 }
549 if (datamatch) {
550 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
551 }
552 if (!assign) {
553 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
554 }
555 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
556 if (r < 0) {
557 return r;
558 }
559 return 0;
560 }
561
562
563 static int kvm_check_many_ioeventfds(void)
564 {
565 /* Userspace can use ioeventfd for io notification. This requires a host
566 * that supports eventfd(2) and an I/O thread; since eventfd does not
567 * support SIGIO it cannot interrupt the vcpu.
568 *
569 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
570 * can avoid creating too many ioeventfds.
571 */
572 #if defined(CONFIG_EVENTFD)
573 int ioeventfds[7];
574 int i, ret = 0;
575 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
576 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
577 if (ioeventfds[i] < 0) {
578 break;
579 }
580 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
581 if (ret < 0) {
582 close(ioeventfds[i]);
583 break;
584 }
585 }
586
587 /* Decide whether many devices are supported or not */
588 ret = i == ARRAY_SIZE(ioeventfds);
589
590 while (i-- > 0) {
591 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
592 close(ioeventfds[i]);
593 }
594 return ret;
595 #else
596 return 0;
597 #endif
598 }
599
600 static const KVMCapabilityInfo *
601 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
602 {
603 while (list->name) {
604 if (!kvm_check_extension(s, list->value)) {
605 return list;
606 }
607 list++;
608 }
609 return NULL;
610 }
611
612 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
613 {
614 KVMState *s = kvm_state;
615 KVMSlot *mem, old;
616 int err;
617 MemoryRegion *mr = section->mr;
618 bool log_dirty = memory_region_is_logging(mr);
619 hwaddr start_addr = section->offset_within_address_space;
620 ram_addr_t size = section->size;
621 void *ram = NULL;
622 unsigned delta;
623
624 /* kvm works in page size chunks, but the function may be called
625 with sub-page size and unaligned start address. */
626 delta = TARGET_PAGE_ALIGN(size) - size;
627 if (delta > size) {
628 return;
629 }
630 start_addr += delta;
631 size -= delta;
632 size &= TARGET_PAGE_MASK;
633 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
634 return;
635 }
636
637 if (!memory_region_is_ram(mr)) {
638 return;
639 }
640
641 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
642
643 while (1) {
644 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
645 if (!mem) {
646 break;
647 }
648
649 if (add && start_addr >= mem->start_addr &&
650 (start_addr + size <= mem->start_addr + mem->memory_size) &&
651 (ram - start_addr == mem->ram - mem->start_addr)) {
652 /* The new slot fits into the existing one and comes with
653 * identical parameters - update flags and done. */
654 kvm_slot_dirty_pages_log_change(mem, log_dirty);
655 return;
656 }
657
658 old = *mem;
659
660 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
661 kvm_physical_sync_dirty_bitmap(section);
662 }
663
664 /* unregister the overlapping slot */
665 mem->memory_size = 0;
666 err = kvm_set_user_memory_region(s, mem);
667 if (err) {
668 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
669 __func__, strerror(-err));
670 abort();
671 }
672
673 /* Workaround for older KVM versions: we can't join slots, even not by
674 * unregistering the previous ones and then registering the larger
675 * slot. We have to maintain the existing fragmentation. Sigh.
676 *
677 * This workaround assumes that the new slot starts at the same
678 * address as the first existing one. If not or if some overlapping
679 * slot comes around later, we will fail (not seen in practice so far)
680 * - and actually require a recent KVM version. */
681 if (s->broken_set_mem_region &&
682 old.start_addr == start_addr && old.memory_size < size && add) {
683 mem = kvm_alloc_slot(s);
684 mem->memory_size = old.memory_size;
685 mem->start_addr = old.start_addr;
686 mem->ram = old.ram;
687 mem->flags = kvm_mem_flags(s, log_dirty);
688
689 err = kvm_set_user_memory_region(s, mem);
690 if (err) {
691 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
692 strerror(-err));
693 abort();
694 }
695
696 start_addr += old.memory_size;
697 ram += old.memory_size;
698 size -= old.memory_size;
699 continue;
700 }
701
702 /* register prefix slot */
703 if (old.start_addr < start_addr) {
704 mem = kvm_alloc_slot(s);
705 mem->memory_size = start_addr - old.start_addr;
706 mem->start_addr = old.start_addr;
707 mem->ram = old.ram;
708 mem->flags = kvm_mem_flags(s, log_dirty);
709
710 err = kvm_set_user_memory_region(s, mem);
711 if (err) {
712 fprintf(stderr, "%s: error registering prefix slot: %s\n",
713 __func__, strerror(-err));
714 #ifdef TARGET_PPC
715 fprintf(stderr, "%s: This is probably because your kernel's " \
716 "PAGE_SIZE is too big. Please try to use 4k " \
717 "PAGE_SIZE!\n", __func__);
718 #endif
719 abort();
720 }
721 }
722
723 /* register suffix slot */
724 if (old.start_addr + old.memory_size > start_addr + size) {
725 ram_addr_t size_delta;
726
727 mem = kvm_alloc_slot(s);
728 mem->start_addr = start_addr + size;
729 size_delta = mem->start_addr - old.start_addr;
730 mem->memory_size = old.memory_size - size_delta;
731 mem->ram = old.ram + size_delta;
732 mem->flags = kvm_mem_flags(s, log_dirty);
733
734 err = kvm_set_user_memory_region(s, mem);
735 if (err) {
736 fprintf(stderr, "%s: error registering suffix slot: %s\n",
737 __func__, strerror(-err));
738 abort();
739 }
740 }
741 }
742
743 /* in case the KVM bug workaround already "consumed" the new slot */
744 if (!size) {
745 return;
746 }
747 if (!add) {
748 return;
749 }
750 mem = kvm_alloc_slot(s);
751 mem->memory_size = size;
752 mem->start_addr = start_addr;
753 mem->ram = ram;
754 mem->flags = kvm_mem_flags(s, log_dirty);
755
756 err = kvm_set_user_memory_region(s, mem);
757 if (err) {
758 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
759 strerror(-err));
760 abort();
761 }
762 }
763
764 static void kvm_region_add(MemoryListener *listener,
765 MemoryRegionSection *section)
766 {
767 kvm_set_phys_mem(section, true);
768 }
769
770 static void kvm_region_del(MemoryListener *listener,
771 MemoryRegionSection *section)
772 {
773 kvm_set_phys_mem(section, false);
774 }
775
776 static void kvm_log_sync(MemoryListener *listener,
777 MemoryRegionSection *section)
778 {
779 int r;
780
781 r = kvm_physical_sync_dirty_bitmap(section);
782 if (r < 0) {
783 abort();
784 }
785 }
786
787 static void kvm_log_global_start(struct MemoryListener *listener)
788 {
789 int r;
790
791 r = kvm_set_migration_log(1);
792 assert(r >= 0);
793 }
794
795 static void kvm_log_global_stop(struct MemoryListener *listener)
796 {
797 int r;
798
799 r = kvm_set_migration_log(0);
800 assert(r >= 0);
801 }
802
803 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
804 MemoryRegionSection *section,
805 bool match_data, uint64_t data,
806 EventNotifier *e)
807 {
808 int fd = event_notifier_get_fd(e);
809 int r;
810
811 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
812 data, true, section->size, match_data);
813 if (r < 0) {
814 abort();
815 }
816 }
817
818 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
819 MemoryRegionSection *section,
820 bool match_data, uint64_t data,
821 EventNotifier *e)
822 {
823 int fd = event_notifier_get_fd(e);
824 int r;
825
826 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
827 data, false, section->size, match_data);
828 if (r < 0) {
829 abort();
830 }
831 }
832
833 static void kvm_io_ioeventfd_add(MemoryListener *listener,
834 MemoryRegionSection *section,
835 bool match_data, uint64_t data,
836 EventNotifier *e)
837 {
838 int fd = event_notifier_get_fd(e);
839 int r;
840
841 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
842 data, true, section->size, match_data);
843 if (r < 0) {
844 abort();
845 }
846 }
847
848 static void kvm_io_ioeventfd_del(MemoryListener *listener,
849 MemoryRegionSection *section,
850 bool match_data, uint64_t data,
851 EventNotifier *e)
852
853 {
854 int fd = event_notifier_get_fd(e);
855 int r;
856
857 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
858 data, false, section->size, match_data);
859 if (r < 0) {
860 abort();
861 }
862 }
863
864 static MemoryListener kvm_memory_listener = {
865 .region_add = kvm_region_add,
866 .region_del = kvm_region_del,
867 .log_start = kvm_log_start,
868 .log_stop = kvm_log_stop,
869 .log_sync = kvm_log_sync,
870 .log_global_start = kvm_log_global_start,
871 .log_global_stop = kvm_log_global_stop,
872 .eventfd_add = kvm_mem_ioeventfd_add,
873 .eventfd_del = kvm_mem_ioeventfd_del,
874 .coalesced_mmio_add = kvm_coalesce_mmio_region,
875 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
876 .priority = 10,
877 };
878
879 static MemoryListener kvm_io_listener = {
880 .eventfd_add = kvm_io_ioeventfd_add,
881 .eventfd_del = kvm_io_ioeventfd_del,
882 .priority = 10,
883 };
884
885 static void kvm_handle_interrupt(CPUState *cpu, int mask)
886 {
887 cpu->interrupt_request |= mask;
888
889 if (!qemu_cpu_is_self(cpu)) {
890 qemu_cpu_kick(cpu);
891 }
892 }
893
894 int kvm_set_irq(KVMState *s, int irq, int level)
895 {
896 struct kvm_irq_level event;
897 int ret;
898
899 assert(kvm_async_interrupts_enabled());
900
901 event.level = level;
902 event.irq = irq;
903 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
904 if (ret < 0) {
905 perror("kvm_set_irq");
906 abort();
907 }
908
909 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
910 }
911
912 #ifdef KVM_CAP_IRQ_ROUTING
913 typedef struct KVMMSIRoute {
914 struct kvm_irq_routing_entry kroute;
915 QTAILQ_ENTRY(KVMMSIRoute) entry;
916 } KVMMSIRoute;
917
918 static void set_gsi(KVMState *s, unsigned int gsi)
919 {
920 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
921 }
922
923 static void clear_gsi(KVMState *s, unsigned int gsi)
924 {
925 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
926 }
927
928 static void kvm_init_irq_routing(KVMState *s)
929 {
930 int gsi_count, i;
931
932 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
933 if (gsi_count > 0) {
934 unsigned int gsi_bits, i;
935
936 /* Round up so we can search ints using ffs */
937 gsi_bits = ALIGN(gsi_count, 32);
938 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
939 s->gsi_count = gsi_count;
940
941 /* Mark any over-allocated bits as already in use */
942 for (i = gsi_count; i < gsi_bits; i++) {
943 set_gsi(s, i);
944 }
945 }
946
947 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
948 s->nr_allocated_irq_routes = 0;
949
950 if (!s->direct_msi) {
951 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
952 QTAILQ_INIT(&s->msi_hashtab[i]);
953 }
954 }
955
956 kvm_arch_init_irq_routing(s);
957 }
958
959 static void kvm_irqchip_commit_routes(KVMState *s)
960 {
961 int ret;
962
963 s->irq_routes->flags = 0;
964 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
965 assert(ret == 0);
966 }
967
968 static void kvm_add_routing_entry(KVMState *s,
969 struct kvm_irq_routing_entry *entry)
970 {
971 struct kvm_irq_routing_entry *new;
972 int n, size;
973
974 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
975 n = s->nr_allocated_irq_routes * 2;
976 if (n < 64) {
977 n = 64;
978 }
979 size = sizeof(struct kvm_irq_routing);
980 size += n * sizeof(*new);
981 s->irq_routes = g_realloc(s->irq_routes, size);
982 s->nr_allocated_irq_routes = n;
983 }
984 n = s->irq_routes->nr++;
985 new = &s->irq_routes->entries[n];
986 memset(new, 0, sizeof(*new));
987 new->gsi = entry->gsi;
988 new->type = entry->type;
989 new->flags = entry->flags;
990 new->u = entry->u;
991
992 set_gsi(s, entry->gsi);
993
994 kvm_irqchip_commit_routes(s);
995 }
996
997 static int kvm_update_routing_entry(KVMState *s,
998 struct kvm_irq_routing_entry *new_entry)
999 {
1000 struct kvm_irq_routing_entry *entry;
1001 int n;
1002
1003 for (n = 0; n < s->irq_routes->nr; n++) {
1004 entry = &s->irq_routes->entries[n];
1005 if (entry->gsi != new_entry->gsi) {
1006 continue;
1007 }
1008
1009 entry->type = new_entry->type;
1010 entry->flags = new_entry->flags;
1011 entry->u = new_entry->u;
1012
1013 kvm_irqchip_commit_routes(s);
1014
1015 return 0;
1016 }
1017
1018 return -ESRCH;
1019 }
1020
1021 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1022 {
1023 struct kvm_irq_routing_entry e;
1024
1025 assert(pin < s->gsi_count);
1026
1027 e.gsi = irq;
1028 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1029 e.flags = 0;
1030 e.u.irqchip.irqchip = irqchip;
1031 e.u.irqchip.pin = pin;
1032 kvm_add_routing_entry(s, &e);
1033 }
1034
1035 void kvm_irqchip_release_virq(KVMState *s, int virq)
1036 {
1037 struct kvm_irq_routing_entry *e;
1038 int i;
1039
1040 for (i = 0; i < s->irq_routes->nr; i++) {
1041 e = &s->irq_routes->entries[i];
1042 if (e->gsi == virq) {
1043 s->irq_routes->nr--;
1044 *e = s->irq_routes->entries[s->irq_routes->nr];
1045 }
1046 }
1047 clear_gsi(s, virq);
1048 }
1049
1050 static unsigned int kvm_hash_msi(uint32_t data)
1051 {
1052 /* This is optimized for IA32 MSI layout. However, no other arch shall
1053 * repeat the mistake of not providing a direct MSI injection API. */
1054 return data & 0xff;
1055 }
1056
1057 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1058 {
1059 KVMMSIRoute *route, *next;
1060 unsigned int hash;
1061
1062 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1063 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1064 kvm_irqchip_release_virq(s, route->kroute.gsi);
1065 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1066 g_free(route);
1067 }
1068 }
1069 }
1070
1071 static int kvm_irqchip_get_virq(KVMState *s)
1072 {
1073 uint32_t *word = s->used_gsi_bitmap;
1074 int max_words = ALIGN(s->gsi_count, 32) / 32;
1075 int i, bit;
1076 bool retry = true;
1077
1078 again:
1079 /* Return the lowest unused GSI in the bitmap */
1080 for (i = 0; i < max_words; i++) {
1081 bit = ffs(~word[i]);
1082 if (!bit) {
1083 continue;
1084 }
1085
1086 return bit - 1 + i * 32;
1087 }
1088 if (!s->direct_msi && retry) {
1089 retry = false;
1090 kvm_flush_dynamic_msi_routes(s);
1091 goto again;
1092 }
1093 return -ENOSPC;
1094
1095 }
1096
1097 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1098 {
1099 unsigned int hash = kvm_hash_msi(msg.data);
1100 KVMMSIRoute *route;
1101
1102 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1103 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1104 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1105 route->kroute.u.msi.data == msg.data) {
1106 return route;
1107 }
1108 }
1109 return NULL;
1110 }
1111
1112 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1113 {
1114 struct kvm_msi msi;
1115 KVMMSIRoute *route;
1116
1117 if (s->direct_msi) {
1118 msi.address_lo = (uint32_t)msg.address;
1119 msi.address_hi = msg.address >> 32;
1120 msi.data = msg.data;
1121 msi.flags = 0;
1122 memset(msi.pad, 0, sizeof(msi.pad));
1123
1124 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1125 }
1126
1127 route = kvm_lookup_msi_route(s, msg);
1128 if (!route) {
1129 int virq;
1130
1131 virq = kvm_irqchip_get_virq(s);
1132 if (virq < 0) {
1133 return virq;
1134 }
1135
1136 route = g_malloc(sizeof(KVMMSIRoute));
1137 route->kroute.gsi = virq;
1138 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1139 route->kroute.flags = 0;
1140 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1141 route->kroute.u.msi.address_hi = msg.address >> 32;
1142 route->kroute.u.msi.data = msg.data;
1143
1144 kvm_add_routing_entry(s, &route->kroute);
1145
1146 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1147 entry);
1148 }
1149
1150 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1151
1152 return kvm_set_irq(s, route->kroute.gsi, 1);
1153 }
1154
1155 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1156 {
1157 struct kvm_irq_routing_entry kroute;
1158 int virq;
1159
1160 if (!kvm_gsi_routing_enabled()) {
1161 return -ENOSYS;
1162 }
1163
1164 virq = kvm_irqchip_get_virq(s);
1165 if (virq < 0) {
1166 return virq;
1167 }
1168
1169 kroute.gsi = virq;
1170 kroute.type = KVM_IRQ_ROUTING_MSI;
1171 kroute.flags = 0;
1172 kroute.u.msi.address_lo = (uint32_t)msg.address;
1173 kroute.u.msi.address_hi = msg.address >> 32;
1174 kroute.u.msi.data = msg.data;
1175
1176 kvm_add_routing_entry(s, &kroute);
1177
1178 return virq;
1179 }
1180
1181 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1182 {
1183 struct kvm_irq_routing_entry kroute;
1184
1185 if (!kvm_irqchip_in_kernel()) {
1186 return -ENOSYS;
1187 }
1188
1189 kroute.gsi = virq;
1190 kroute.type = KVM_IRQ_ROUTING_MSI;
1191 kroute.flags = 0;
1192 kroute.u.msi.address_lo = (uint32_t)msg.address;
1193 kroute.u.msi.address_hi = msg.address >> 32;
1194 kroute.u.msi.data = msg.data;
1195
1196 return kvm_update_routing_entry(s, &kroute);
1197 }
1198
1199 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1200 {
1201 struct kvm_irqfd irqfd = {
1202 .fd = fd,
1203 .gsi = virq,
1204 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1205 };
1206
1207 if (!kvm_irqfds_enabled()) {
1208 return -ENOSYS;
1209 }
1210
1211 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1212 }
1213
1214 #else /* !KVM_CAP_IRQ_ROUTING */
1215
1216 static void kvm_init_irq_routing(KVMState *s)
1217 {
1218 }
1219
1220 void kvm_irqchip_release_virq(KVMState *s, int virq)
1221 {
1222 }
1223
1224 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1225 {
1226 abort();
1227 }
1228
1229 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1230 {
1231 return -ENOSYS;
1232 }
1233
1234 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1235 {
1236 abort();
1237 }
1238
1239 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1240 {
1241 return -ENOSYS;
1242 }
1243 #endif /* !KVM_CAP_IRQ_ROUTING */
1244
1245 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1246 {
1247 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
1248 }
1249
1250 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1251 {
1252 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
1253 }
1254
1255 static int kvm_irqchip_create(KVMState *s)
1256 {
1257 QemuOptsList *list = qemu_find_opts("machine");
1258 int ret;
1259
1260 if (QTAILQ_EMPTY(&list->head) ||
1261 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1262 "kernel_irqchip", true) ||
1263 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1264 return 0;
1265 }
1266
1267 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1268 if (ret < 0) {
1269 fprintf(stderr, "Create kernel irqchip failed\n");
1270 return ret;
1271 }
1272
1273 kvm_kernel_irqchip = true;
1274 /* If we have an in-kernel IRQ chip then we must have asynchronous
1275 * interrupt delivery (though the reverse is not necessarily true)
1276 */
1277 kvm_async_interrupts_allowed = true;
1278
1279 kvm_init_irq_routing(s);
1280
1281 return 0;
1282 }
1283
1284 static int kvm_max_vcpus(KVMState *s)
1285 {
1286 int ret;
1287
1288 /* Find number of supported CPUs using the recommended
1289 * procedure from the kernel API documentation to cope with
1290 * older kernels that may be missing capabilities.
1291 */
1292 ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1293 if (ret) {
1294 return ret;
1295 }
1296 ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1297 if (ret) {
1298 return ret;
1299 }
1300
1301 return 4;
1302 }
1303
1304 int kvm_init(void)
1305 {
1306 static const char upgrade_note[] =
1307 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1308 "(see http://sourceforge.net/projects/kvm).\n";
1309 KVMState *s;
1310 const KVMCapabilityInfo *missing_cap;
1311 int ret;
1312 int i;
1313 int max_vcpus;
1314
1315 s = g_malloc0(sizeof(KVMState));
1316
1317 /*
1318 * On systems where the kernel can support different base page
1319 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1320 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1321 * page size for the system though.
1322 */
1323 assert(TARGET_PAGE_SIZE <= getpagesize());
1324
1325 #ifdef KVM_CAP_SET_GUEST_DEBUG
1326 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1327 #endif
1328 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1329 s->slots[i].slot = i;
1330 }
1331 s->vmfd = -1;
1332 s->fd = qemu_open("/dev/kvm", O_RDWR);
1333 if (s->fd == -1) {
1334 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1335 ret = -errno;
1336 goto err;
1337 }
1338
1339 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1340 if (ret < KVM_API_VERSION) {
1341 if (ret > 0) {
1342 ret = -EINVAL;
1343 }
1344 fprintf(stderr, "kvm version too old\n");
1345 goto err;
1346 }
1347
1348 if (ret > KVM_API_VERSION) {
1349 ret = -EINVAL;
1350 fprintf(stderr, "kvm version not supported\n");
1351 goto err;
1352 }
1353
1354 max_vcpus = kvm_max_vcpus(s);
1355 if (smp_cpus > max_vcpus) {
1356 ret = -EINVAL;
1357 fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1358 "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1359 goto err;
1360 }
1361
1362 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1363 if (s->vmfd < 0) {
1364 #ifdef TARGET_S390X
1365 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1366 "your host kernel command line\n");
1367 #endif
1368 ret = s->vmfd;
1369 goto err;
1370 }
1371
1372 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1373 if (!missing_cap) {
1374 missing_cap =
1375 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1376 }
1377 if (missing_cap) {
1378 ret = -EINVAL;
1379 fprintf(stderr, "kvm does not support %s\n%s",
1380 missing_cap->name, upgrade_note);
1381 goto err;
1382 }
1383
1384 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1385
1386 s->broken_set_mem_region = 1;
1387 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1388 if (ret > 0) {
1389 s->broken_set_mem_region = 0;
1390 }
1391
1392 #ifdef KVM_CAP_VCPU_EVENTS
1393 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1394 #endif
1395
1396 s->robust_singlestep =
1397 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1398
1399 #ifdef KVM_CAP_DEBUGREGS
1400 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1401 #endif
1402
1403 #ifdef KVM_CAP_XSAVE
1404 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1405 #endif
1406
1407 #ifdef KVM_CAP_XCRS
1408 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1409 #endif
1410
1411 #ifdef KVM_CAP_PIT_STATE2
1412 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1413 #endif
1414
1415 #ifdef KVM_CAP_IRQ_ROUTING
1416 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1417 #endif
1418
1419 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1420
1421 s->irq_set_ioctl = KVM_IRQ_LINE;
1422 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1423 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1424 }
1425
1426 ret = kvm_arch_init(s);
1427 if (ret < 0) {
1428 goto err;
1429 }
1430
1431 ret = kvm_irqchip_create(s);
1432 if (ret < 0) {
1433 goto err;
1434 }
1435
1436 kvm_state = s;
1437 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1438 memory_listener_register(&kvm_io_listener, &address_space_io);
1439
1440 s->many_ioeventfds = kvm_check_many_ioeventfds();
1441
1442 cpu_interrupt_handler = kvm_handle_interrupt;
1443
1444 return 0;
1445
1446 err:
1447 if (s->vmfd >= 0) {
1448 close(s->vmfd);
1449 }
1450 if (s->fd != -1) {
1451 close(s->fd);
1452 }
1453 g_free(s);
1454
1455 return ret;
1456 }
1457
1458 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1459 uint32_t count)
1460 {
1461 int i;
1462 uint8_t *ptr = data;
1463
1464 for (i = 0; i < count; i++) {
1465 if (direction == KVM_EXIT_IO_IN) {
1466 switch (size) {
1467 case 1:
1468 stb_p(ptr, cpu_inb(port));
1469 break;
1470 case 2:
1471 stw_p(ptr, cpu_inw(port));
1472 break;
1473 case 4:
1474 stl_p(ptr, cpu_inl(port));
1475 break;
1476 }
1477 } else {
1478 switch (size) {
1479 case 1:
1480 cpu_outb(port, ldub_p(ptr));
1481 break;
1482 case 2:
1483 cpu_outw(port, lduw_p(ptr));
1484 break;
1485 case 4:
1486 cpu_outl(port, ldl_p(ptr));
1487 break;
1488 }
1489 }
1490
1491 ptr += size;
1492 }
1493 }
1494
1495 static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1496 {
1497 CPUState *cpu = ENV_GET_CPU(env);
1498
1499 fprintf(stderr, "KVM internal error.");
1500 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1501 int i;
1502
1503 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1504 for (i = 0; i < run->internal.ndata; ++i) {
1505 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1506 i, (uint64_t)run->internal.data[i]);
1507 }
1508 } else {
1509 fprintf(stderr, "\n");
1510 }
1511 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1512 fprintf(stderr, "emulation failure\n");
1513 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1514 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1515 return EXCP_INTERRUPT;
1516 }
1517 }
1518 /* FIXME: Should trigger a qmp message to let management know
1519 * something went wrong.
1520 */
1521 return -1;
1522 }
1523
1524 void kvm_flush_coalesced_mmio_buffer(void)
1525 {
1526 KVMState *s = kvm_state;
1527
1528 if (s->coalesced_flush_in_progress) {
1529 return;
1530 }
1531
1532 s->coalesced_flush_in_progress = true;
1533
1534 if (s->coalesced_mmio_ring) {
1535 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1536 while (ring->first != ring->last) {
1537 struct kvm_coalesced_mmio *ent;
1538
1539 ent = &ring->coalesced_mmio[ring->first];
1540
1541 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1542 smp_wmb();
1543 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1544 }
1545 }
1546
1547 s->coalesced_flush_in_progress = false;
1548 }
1549
1550 static void do_kvm_cpu_synchronize_state(void *arg)
1551 {
1552 CPUState *cpu = arg;
1553
1554 if (!cpu->kvm_vcpu_dirty) {
1555 kvm_arch_get_registers(cpu);
1556 cpu->kvm_vcpu_dirty = true;
1557 }
1558 }
1559
1560 void kvm_cpu_synchronize_state(CPUArchState *env)
1561 {
1562 CPUState *cpu = ENV_GET_CPU(env);
1563
1564 if (!cpu->kvm_vcpu_dirty) {
1565 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1566 }
1567 }
1568
1569 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1570 {
1571 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1572 cpu->kvm_vcpu_dirty = false;
1573 }
1574
1575 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1576 {
1577 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1578 cpu->kvm_vcpu_dirty = false;
1579 }
1580
1581 int kvm_cpu_exec(CPUArchState *env)
1582 {
1583 CPUState *cpu = ENV_GET_CPU(env);
1584 struct kvm_run *run = cpu->kvm_run;
1585 int ret, run_ret;
1586
1587 DPRINTF("kvm_cpu_exec()\n");
1588
1589 if (kvm_arch_process_async_events(cpu)) {
1590 cpu->exit_request = 0;
1591 return EXCP_HLT;
1592 }
1593
1594 do {
1595 if (cpu->kvm_vcpu_dirty) {
1596 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1597 cpu->kvm_vcpu_dirty = false;
1598 }
1599
1600 kvm_arch_pre_run(cpu, run);
1601 if (cpu->exit_request) {
1602 DPRINTF("interrupt exit requested\n");
1603 /*
1604 * KVM requires us to reenter the kernel after IO exits to complete
1605 * instruction emulation. This self-signal will ensure that we
1606 * leave ASAP again.
1607 */
1608 qemu_cpu_kick_self();
1609 }
1610 qemu_mutex_unlock_iothread();
1611
1612 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1613
1614 qemu_mutex_lock_iothread();
1615 kvm_arch_post_run(cpu, run);
1616
1617 if (run_ret < 0) {
1618 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1619 DPRINTF("io window exit\n");
1620 ret = EXCP_INTERRUPT;
1621 break;
1622 }
1623 fprintf(stderr, "error: kvm run failed %s\n",
1624 strerror(-run_ret));
1625 abort();
1626 }
1627
1628 switch (run->exit_reason) {
1629 case KVM_EXIT_IO:
1630 DPRINTF("handle_io\n");
1631 kvm_handle_io(run->io.port,
1632 (uint8_t *)run + run->io.data_offset,
1633 run->io.direction,
1634 run->io.size,
1635 run->io.count);
1636 ret = 0;
1637 break;
1638 case KVM_EXIT_MMIO:
1639 DPRINTF("handle_mmio\n");
1640 cpu_physical_memory_rw(run->mmio.phys_addr,
1641 run->mmio.data,
1642 run->mmio.len,
1643 run->mmio.is_write);
1644 ret = 0;
1645 break;
1646 case KVM_EXIT_IRQ_WINDOW_OPEN:
1647 DPRINTF("irq_window_open\n");
1648 ret = EXCP_INTERRUPT;
1649 break;
1650 case KVM_EXIT_SHUTDOWN:
1651 DPRINTF("shutdown\n");
1652 qemu_system_reset_request();
1653 ret = EXCP_INTERRUPT;
1654 break;
1655 case KVM_EXIT_UNKNOWN:
1656 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1657 (uint64_t)run->hw.hardware_exit_reason);
1658 ret = -1;
1659 break;
1660 case KVM_EXIT_INTERNAL_ERROR:
1661 ret = kvm_handle_internal_error(env, run);
1662 break;
1663 default:
1664 DPRINTF("kvm_arch_handle_exit\n");
1665 ret = kvm_arch_handle_exit(cpu, run);
1666 break;
1667 }
1668 } while (ret == 0);
1669
1670 if (ret < 0) {
1671 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1672 vm_stop(RUN_STATE_INTERNAL_ERROR);
1673 }
1674
1675 cpu->exit_request = 0;
1676 return ret;
1677 }
1678
1679 int kvm_ioctl(KVMState *s, int type, ...)
1680 {
1681 int ret;
1682 void *arg;
1683 va_list ap;
1684
1685 va_start(ap, type);
1686 arg = va_arg(ap, void *);
1687 va_end(ap);
1688
1689 ret = ioctl(s->fd, type, arg);
1690 if (ret == -1) {
1691 ret = -errno;
1692 }
1693 return ret;
1694 }
1695
1696 int kvm_vm_ioctl(KVMState *s, int type, ...)
1697 {
1698 int ret;
1699 void *arg;
1700 va_list ap;
1701
1702 va_start(ap, type);
1703 arg = va_arg(ap, void *);
1704 va_end(ap);
1705
1706 ret = ioctl(s->vmfd, type, arg);
1707 if (ret == -1) {
1708 ret = -errno;
1709 }
1710 return ret;
1711 }
1712
1713 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1714 {
1715 int ret;
1716 void *arg;
1717 va_list ap;
1718
1719 va_start(ap, type);
1720 arg = va_arg(ap, void *);
1721 va_end(ap);
1722
1723 ret = ioctl(cpu->kvm_fd, type, arg);
1724 if (ret == -1) {
1725 ret = -errno;
1726 }
1727 return ret;
1728 }
1729
1730 int kvm_has_sync_mmu(void)
1731 {
1732 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1733 }
1734
1735 int kvm_has_vcpu_events(void)
1736 {
1737 return kvm_state->vcpu_events;
1738 }
1739
1740 int kvm_has_robust_singlestep(void)
1741 {
1742 return kvm_state->robust_singlestep;
1743 }
1744
1745 int kvm_has_debugregs(void)
1746 {
1747 return kvm_state->debugregs;
1748 }
1749
1750 int kvm_has_xsave(void)
1751 {
1752 return kvm_state->xsave;
1753 }
1754
1755 int kvm_has_xcrs(void)
1756 {
1757 return kvm_state->xcrs;
1758 }
1759
1760 int kvm_has_pit_state2(void)
1761 {
1762 return kvm_state->pit_state2;
1763 }
1764
1765 int kvm_has_many_ioeventfds(void)
1766 {
1767 if (!kvm_enabled()) {
1768 return 0;
1769 }
1770 return kvm_state->many_ioeventfds;
1771 }
1772
1773 int kvm_has_gsi_routing(void)
1774 {
1775 #ifdef KVM_CAP_IRQ_ROUTING
1776 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1777 #else
1778 return false;
1779 #endif
1780 }
1781
1782 int kvm_has_intx_set_mask(void)
1783 {
1784 return kvm_state->intx_set_mask;
1785 }
1786
1787 void *kvm_vmalloc(ram_addr_t size)
1788 {
1789 #ifdef TARGET_S390X
1790 void *mem;
1791
1792 mem = kvm_arch_vmalloc(size);
1793 if (mem) {
1794 return mem;
1795 }
1796 #endif
1797 return qemu_vmalloc(size);
1798 }
1799
1800 void kvm_setup_guest_memory(void *start, size_t size)
1801 {
1802 #ifdef CONFIG_VALGRIND_H
1803 VALGRIND_MAKE_MEM_DEFINED(start, size);
1804 #endif
1805 if (!kvm_has_sync_mmu()) {
1806 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1807
1808 if (ret) {
1809 perror("qemu_madvise");
1810 fprintf(stderr,
1811 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1812 exit(1);
1813 }
1814 }
1815 }
1816
1817 #ifdef KVM_CAP_SET_GUEST_DEBUG
1818 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1819 target_ulong pc)
1820 {
1821 struct kvm_sw_breakpoint *bp;
1822
1823 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1824 if (bp->pc == pc) {
1825 return bp;
1826 }
1827 }
1828 return NULL;
1829 }
1830
1831 int kvm_sw_breakpoints_active(CPUState *cpu)
1832 {
1833 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1834 }
1835
1836 struct kvm_set_guest_debug_data {
1837 struct kvm_guest_debug dbg;
1838 CPUState *cpu;
1839 int err;
1840 };
1841
1842 static void kvm_invoke_set_guest_debug(void *data)
1843 {
1844 struct kvm_set_guest_debug_data *dbg_data = data;
1845
1846 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1847 &dbg_data->dbg);
1848 }
1849
1850 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1851 {
1852 CPUState *cpu = ENV_GET_CPU(env);
1853 struct kvm_set_guest_debug_data data;
1854
1855 data.dbg.control = reinject_trap;
1856
1857 if (env->singlestep_enabled) {
1858 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1859 }
1860 kvm_arch_update_guest_debug(cpu, &data.dbg);
1861 data.cpu = cpu;
1862
1863 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1864 return data.err;
1865 }
1866
1867 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1868 target_ulong len, int type)
1869 {
1870 CPUState *current_cpu = ENV_GET_CPU(current_env);
1871 struct kvm_sw_breakpoint *bp;
1872 CPUArchState *env;
1873 int err;
1874
1875 if (type == GDB_BREAKPOINT_SW) {
1876 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1877 if (bp) {
1878 bp->use_count++;
1879 return 0;
1880 }
1881
1882 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1883 if (!bp) {
1884 return -ENOMEM;
1885 }
1886
1887 bp->pc = addr;
1888 bp->use_count = 1;
1889 err = kvm_arch_insert_sw_breakpoint(current_cpu, bp);
1890 if (err) {
1891 g_free(bp);
1892 return err;
1893 }
1894
1895 QTAILQ_INSERT_HEAD(&current_cpu->kvm_state->kvm_sw_breakpoints,
1896 bp, entry);
1897 } else {
1898 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1899 if (err) {
1900 return err;
1901 }
1902 }
1903
1904 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1905 err = kvm_update_guest_debug(env, 0);
1906 if (err) {
1907 return err;
1908 }
1909 }
1910 return 0;
1911 }
1912
1913 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1914 target_ulong len, int type)
1915 {
1916 CPUState *current_cpu = ENV_GET_CPU(current_env);
1917 struct kvm_sw_breakpoint *bp;
1918 CPUArchState *env;
1919 int err;
1920
1921 if (type == GDB_BREAKPOINT_SW) {
1922 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1923 if (!bp) {
1924 return -ENOENT;
1925 }
1926
1927 if (bp->use_count > 1) {
1928 bp->use_count--;
1929 return 0;
1930 }
1931
1932 err = kvm_arch_remove_sw_breakpoint(current_cpu, bp);
1933 if (err) {
1934 return err;
1935 }
1936
1937 QTAILQ_REMOVE(&current_cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1938 g_free(bp);
1939 } else {
1940 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1941 if (err) {
1942 return err;
1943 }
1944 }
1945
1946 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1947 err = kvm_update_guest_debug(env, 0);
1948 if (err) {
1949 return err;
1950 }
1951 }
1952 return 0;
1953 }
1954
1955 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1956 {
1957 CPUState *current_cpu = ENV_GET_CPU(current_env);
1958 struct kvm_sw_breakpoint *bp, *next;
1959 KVMState *s = current_cpu->kvm_state;
1960 CPUArchState *env;
1961 CPUState *cpu;
1962
1963 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1964 if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) {
1965 /* Try harder to find a CPU that currently sees the breakpoint. */
1966 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1967 cpu = ENV_GET_CPU(env);
1968 if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
1969 break;
1970 }
1971 }
1972 }
1973 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
1974 g_free(bp);
1975 }
1976 kvm_arch_remove_all_hw_breakpoints();
1977
1978 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1979 kvm_update_guest_debug(env, 0);
1980 }
1981 }
1982
1983 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1984
1985 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1986 {
1987 return -EINVAL;
1988 }
1989
1990 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1991 target_ulong len, int type)
1992 {
1993 return -EINVAL;
1994 }
1995
1996 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1997 target_ulong len, int type)
1998 {
1999 return -EINVAL;
2000 }
2001
2002 void kvm_remove_all_breakpoints(CPUArchState *current_env)
2003 {
2004 }
2005 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2006
2007 int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
2008 {
2009 CPUState *cpu = ENV_GET_CPU(env);
2010 struct kvm_signal_mask *sigmask;
2011 int r;
2012
2013 if (!sigset) {
2014 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2015 }
2016
2017 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2018
2019 sigmask->len = 8;
2020 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2021 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2022 g_free(sigmask);
2023
2024 return r;
2025 }
2026 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2027 {
2028 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2029 }
2030
2031 int kvm_on_sigbus(int code, void *addr)
2032 {
2033 return kvm_arch_on_sigbus(code, addr);
2034 }