]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
kvm: Fix dirty log temporary buffer size
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "gdbstub.h"
26 #include "kvm.h"
27
28 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
29 #define PAGE_SIZE TARGET_PAGE_SIZE
30
31 //#define DEBUG_KVM
32
33 #ifdef DEBUG_KVM
34 #define dprintf(fmt, ...) \
35 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
36 #else
37 #define dprintf(fmt, ...) \
38 do { } while (0)
39 #endif
40
41 typedef struct KVMSlot
42 {
43 target_phys_addr_t start_addr;
44 ram_addr_t memory_size;
45 ram_addr_t phys_offset;
46 int slot;
47 int flags;
48 } KVMSlot;
49
50 typedef struct kvm_dirty_log KVMDirtyLog;
51
52 int kvm_allowed = 0;
53
54 struct KVMState
55 {
56 KVMSlot slots[32];
57 int fd;
58 int vmfd;
59 int coalesced_mmio;
60 int broken_set_mem_region;
61 int migration_log;
62 #ifdef KVM_CAP_SET_GUEST_DEBUG
63 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
64 #endif
65 };
66
67 static KVMState *kvm_state;
68
69 static KVMSlot *kvm_alloc_slot(KVMState *s)
70 {
71 int i;
72
73 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
74 /* KVM private memory slots */
75 if (i >= 8 && i < 12)
76 continue;
77 if (s->slots[i].memory_size == 0)
78 return &s->slots[i];
79 }
80
81 fprintf(stderr, "%s: no free slot available\n", __func__);
82 abort();
83 }
84
85 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
86 target_phys_addr_t start_addr,
87 target_phys_addr_t end_addr)
88 {
89 int i;
90
91 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
92 KVMSlot *mem = &s->slots[i];
93
94 if (start_addr == mem->start_addr &&
95 end_addr == mem->start_addr + mem->memory_size) {
96 return mem;
97 }
98 }
99
100 return NULL;
101 }
102
103 /*
104 * Find overlapping slot with lowest start address
105 */
106 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
107 target_phys_addr_t start_addr,
108 target_phys_addr_t end_addr)
109 {
110 KVMSlot *found = NULL;
111 int i;
112
113 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
114 KVMSlot *mem = &s->slots[i];
115
116 if (mem->memory_size == 0 ||
117 (found && found->start_addr < mem->start_addr)) {
118 continue;
119 }
120
121 if (end_addr > mem->start_addr &&
122 start_addr < mem->start_addr + mem->memory_size) {
123 found = mem;
124 }
125 }
126
127 return found;
128 }
129
130 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
131 {
132 struct kvm_userspace_memory_region mem;
133
134 mem.slot = slot->slot;
135 mem.guest_phys_addr = slot->start_addr;
136 mem.memory_size = slot->memory_size;
137 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
138 mem.flags = slot->flags;
139 if (s->migration_log) {
140 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
141 }
142 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
143 }
144
145
146 int kvm_init_vcpu(CPUState *env)
147 {
148 KVMState *s = kvm_state;
149 long mmap_size;
150 int ret;
151
152 dprintf("kvm_init_vcpu\n");
153
154 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
155 if (ret < 0) {
156 dprintf("kvm_create_vcpu failed\n");
157 goto err;
158 }
159
160 env->kvm_fd = ret;
161 env->kvm_state = s;
162
163 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
164 if (mmap_size < 0) {
165 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
166 goto err;
167 }
168
169 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
170 env->kvm_fd, 0);
171 if (env->kvm_run == MAP_FAILED) {
172 ret = -errno;
173 dprintf("mmap'ing vcpu state failed\n");
174 goto err;
175 }
176
177 ret = kvm_arch_init_vcpu(env);
178
179 err:
180 return ret;
181 }
182
183 int kvm_sync_vcpus(void)
184 {
185 CPUState *env;
186
187 for (env = first_cpu; env != NULL; env = env->next_cpu) {
188 int ret;
189
190 ret = kvm_arch_put_registers(env);
191 if (ret)
192 return ret;
193 }
194
195 return 0;
196 }
197
198 /*
199 * dirty pages logging control
200 */
201 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
202 ram_addr_t size, int flags, int mask)
203 {
204 KVMState *s = kvm_state;
205 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
206 int old_flags;
207
208 if (mem == NULL) {
209 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
210 TARGET_FMT_plx "\n", __func__, phys_addr,
211 phys_addr + size - 1);
212 return -EINVAL;
213 }
214
215 old_flags = mem->flags;
216
217 flags = (mem->flags & ~mask) | flags;
218 mem->flags = flags;
219
220 /* If nothing changed effectively, no need to issue ioctl */
221 if (s->migration_log) {
222 flags |= KVM_MEM_LOG_DIRTY_PAGES;
223 }
224 if (flags == old_flags) {
225 return 0;
226 }
227
228 return kvm_set_user_memory_region(s, mem);
229 }
230
231 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
232 {
233 return kvm_dirty_pages_log_change(phys_addr, size,
234 KVM_MEM_LOG_DIRTY_PAGES,
235 KVM_MEM_LOG_DIRTY_PAGES);
236 }
237
238 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
239 {
240 return kvm_dirty_pages_log_change(phys_addr, size,
241 0,
242 KVM_MEM_LOG_DIRTY_PAGES);
243 }
244
245 int kvm_set_migration_log(int enable)
246 {
247 KVMState *s = kvm_state;
248 KVMSlot *mem;
249 int i, err;
250
251 s->migration_log = enable;
252
253 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
254 mem = &s->slots[i];
255
256 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
257 continue;
258 }
259 err = kvm_set_user_memory_region(s, mem);
260 if (err) {
261 return err;
262 }
263 }
264 return 0;
265 }
266
267 /**
268 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
269 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
270 * This means all bits are set to dirty.
271 *
272 * @start_add: start of logged region.
273 * @end_addr: end of logged region.
274 */
275 void kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
276 target_phys_addr_t end_addr)
277 {
278 KVMState *s = kvm_state;
279 KVMDirtyLog d;
280 KVMSlot *mem = kvm_lookup_matching_slot(s, start_addr, end_addr);
281 unsigned long alloc_size;
282 ram_addr_t addr;
283 target_phys_addr_t phys_addr = start_addr;
284
285 dprintf("sync addr: " TARGET_FMT_lx " into %lx\n", start_addr,
286 mem->phys_offset);
287 if (mem == NULL) {
288 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
289 TARGET_FMT_plx "\n", __func__, phys_addr, end_addr - 1);
290 return;
291 }
292
293 alloc_size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
294 d.dirty_bitmap = qemu_mallocz(alloc_size);
295
296 d.slot = mem->slot;
297 dprintf("slot %d, phys_addr %llx, uaddr: %llx\n",
298 d.slot, mem->start_addr, mem->phys_offset);
299
300 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
301 dprintf("ioctl failed %d\n", errno);
302 goto out;
303 }
304
305 phys_addr = start_addr;
306 for (addr = mem->phys_offset; phys_addr < end_addr; phys_addr+= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
307 unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
308 unsigned nr = (phys_addr - start_addr) >> TARGET_PAGE_BITS;
309 unsigned word = nr / (sizeof(*bitmap) * 8);
310 unsigned bit = nr % (sizeof(*bitmap) * 8);
311 if ((bitmap[word] >> bit) & 1)
312 cpu_physical_memory_set_dirty(addr);
313 }
314 out:
315 qemu_free(d.dirty_bitmap);
316 }
317
318 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
319 {
320 int ret = -ENOSYS;
321 #ifdef KVM_CAP_COALESCED_MMIO
322 KVMState *s = kvm_state;
323
324 if (s->coalesced_mmio) {
325 struct kvm_coalesced_mmio_zone zone;
326
327 zone.addr = start;
328 zone.size = size;
329
330 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
331 }
332 #endif
333
334 return ret;
335 }
336
337 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
338 {
339 int ret = -ENOSYS;
340 #ifdef KVM_CAP_COALESCED_MMIO
341 KVMState *s = kvm_state;
342
343 if (s->coalesced_mmio) {
344 struct kvm_coalesced_mmio_zone zone;
345
346 zone.addr = start;
347 zone.size = size;
348
349 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
350 }
351 #endif
352
353 return ret;
354 }
355
356 int kvm_check_extension(KVMState *s, unsigned int extension)
357 {
358 int ret;
359
360 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
361 if (ret < 0) {
362 ret = 0;
363 }
364
365 return ret;
366 }
367
368 int kvm_init(int smp_cpus)
369 {
370 KVMState *s;
371 int ret;
372 int i;
373
374 if (smp_cpus > 1) {
375 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
376 return -EINVAL;
377 }
378
379 s = qemu_mallocz(sizeof(KVMState));
380
381 #ifdef KVM_CAP_SET_GUEST_DEBUG
382 TAILQ_INIT(&s->kvm_sw_breakpoints);
383 #endif
384 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
385 s->slots[i].slot = i;
386
387 s->vmfd = -1;
388 s->fd = open("/dev/kvm", O_RDWR);
389 if (s->fd == -1) {
390 fprintf(stderr, "Could not access KVM kernel module: %m\n");
391 ret = -errno;
392 goto err;
393 }
394
395 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
396 if (ret < KVM_API_VERSION) {
397 if (ret > 0)
398 ret = -EINVAL;
399 fprintf(stderr, "kvm version too old\n");
400 goto err;
401 }
402
403 if (ret > KVM_API_VERSION) {
404 ret = -EINVAL;
405 fprintf(stderr, "kvm version not supported\n");
406 goto err;
407 }
408
409 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
410 if (s->vmfd < 0)
411 goto err;
412
413 /* initially, KVM allocated its own memory and we had to jump through
414 * hooks to make phys_ram_base point to this. Modern versions of KVM
415 * just use a user allocated buffer so we can use regular pages
416 * unmodified. Make sure we have a sufficiently modern version of KVM.
417 */
418 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
419 ret = -EINVAL;
420 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n");
421 goto err;
422 }
423
424 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
425 * destroyed properly. Since we rely on this capability, refuse to work
426 * with any kernel without this capability. */
427 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
428 ret = -EINVAL;
429
430 fprintf(stderr,
431 "KVM kernel module broken (DESTROY_MEMORY_REGION)\n"
432 "Please upgrade to at least kvm-81.\n");
433 goto err;
434 }
435
436 #ifdef KVM_CAP_COALESCED_MMIO
437 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
438 #else
439 s->coalesced_mmio = 0;
440 #endif
441
442 s->broken_set_mem_region = 1;
443 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
444 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
445 if (ret > 0) {
446 s->broken_set_mem_region = 0;
447 }
448 #endif
449
450 ret = kvm_arch_init(s, smp_cpus);
451 if (ret < 0)
452 goto err;
453
454 kvm_state = s;
455
456 return 0;
457
458 err:
459 if (s) {
460 if (s->vmfd != -1)
461 close(s->vmfd);
462 if (s->fd != -1)
463 close(s->fd);
464 }
465 qemu_free(s);
466
467 return ret;
468 }
469
470 static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
471 int direction, int size, uint32_t count)
472 {
473 int i;
474 uint8_t *ptr = data;
475
476 for (i = 0; i < count; i++) {
477 if (direction == KVM_EXIT_IO_IN) {
478 switch (size) {
479 case 1:
480 stb_p(ptr, cpu_inb(env, port));
481 break;
482 case 2:
483 stw_p(ptr, cpu_inw(env, port));
484 break;
485 case 4:
486 stl_p(ptr, cpu_inl(env, port));
487 break;
488 }
489 } else {
490 switch (size) {
491 case 1:
492 cpu_outb(env, port, ldub_p(ptr));
493 break;
494 case 2:
495 cpu_outw(env, port, lduw_p(ptr));
496 break;
497 case 4:
498 cpu_outl(env, port, ldl_p(ptr));
499 break;
500 }
501 }
502
503 ptr += size;
504 }
505
506 return 1;
507 }
508
509 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
510 {
511 #ifdef KVM_CAP_COALESCED_MMIO
512 KVMState *s = kvm_state;
513 if (s->coalesced_mmio) {
514 struct kvm_coalesced_mmio_ring *ring;
515
516 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
517 while (ring->first != ring->last) {
518 struct kvm_coalesced_mmio *ent;
519
520 ent = &ring->coalesced_mmio[ring->first];
521
522 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
523 /* FIXME smp_wmb() */
524 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
525 }
526 }
527 #endif
528 }
529
530 int kvm_cpu_exec(CPUState *env)
531 {
532 struct kvm_run *run = env->kvm_run;
533 int ret;
534
535 dprintf("kvm_cpu_exec()\n");
536
537 do {
538 kvm_arch_pre_run(env, run);
539
540 if (env->exit_request) {
541 dprintf("interrupt exit requested\n");
542 ret = 0;
543 break;
544 }
545
546 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
547 kvm_arch_post_run(env, run);
548
549 if (ret == -EINTR || ret == -EAGAIN) {
550 dprintf("io window exit\n");
551 ret = 0;
552 break;
553 }
554
555 if (ret < 0) {
556 dprintf("kvm run failed %s\n", strerror(-ret));
557 abort();
558 }
559
560 kvm_run_coalesced_mmio(env, run);
561
562 ret = 0; /* exit loop */
563 switch (run->exit_reason) {
564 case KVM_EXIT_IO:
565 dprintf("handle_io\n");
566 ret = kvm_handle_io(env, run->io.port,
567 (uint8_t *)run + run->io.data_offset,
568 run->io.direction,
569 run->io.size,
570 run->io.count);
571 break;
572 case KVM_EXIT_MMIO:
573 dprintf("handle_mmio\n");
574 cpu_physical_memory_rw(run->mmio.phys_addr,
575 run->mmio.data,
576 run->mmio.len,
577 run->mmio.is_write);
578 ret = 1;
579 break;
580 case KVM_EXIT_IRQ_WINDOW_OPEN:
581 dprintf("irq_window_open\n");
582 break;
583 case KVM_EXIT_SHUTDOWN:
584 dprintf("shutdown\n");
585 qemu_system_reset_request();
586 ret = 1;
587 break;
588 case KVM_EXIT_UNKNOWN:
589 dprintf("kvm_exit_unknown\n");
590 break;
591 case KVM_EXIT_FAIL_ENTRY:
592 dprintf("kvm_exit_fail_entry\n");
593 break;
594 case KVM_EXIT_EXCEPTION:
595 dprintf("kvm_exit_exception\n");
596 break;
597 case KVM_EXIT_DEBUG:
598 dprintf("kvm_exit_debug\n");
599 #ifdef KVM_CAP_SET_GUEST_DEBUG
600 if (kvm_arch_debug(&run->debug.arch)) {
601 gdb_set_stop_cpu(env);
602 vm_stop(EXCP_DEBUG);
603 env->exception_index = EXCP_DEBUG;
604 return 0;
605 }
606 /* re-enter, this exception was guest-internal */
607 ret = 1;
608 #endif /* KVM_CAP_SET_GUEST_DEBUG */
609 break;
610 default:
611 dprintf("kvm_arch_handle_exit\n");
612 ret = kvm_arch_handle_exit(env, run);
613 break;
614 }
615 } while (ret > 0);
616
617 if (env->exit_request) {
618 env->exit_request = 0;
619 env->exception_index = EXCP_INTERRUPT;
620 }
621
622 return ret;
623 }
624
625 void kvm_set_phys_mem(target_phys_addr_t start_addr,
626 ram_addr_t size,
627 ram_addr_t phys_offset)
628 {
629 KVMState *s = kvm_state;
630 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
631 KVMSlot *mem, old;
632 int err;
633
634 if (start_addr & ~TARGET_PAGE_MASK) {
635 if (flags >= IO_MEM_UNASSIGNED) {
636 if (!kvm_lookup_overlapping_slot(s, start_addr,
637 start_addr + size)) {
638 return;
639 }
640 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
641 } else {
642 fprintf(stderr, "Only page-aligned memory slots supported\n");
643 }
644 abort();
645 }
646
647 /* KVM does not support read-only slots */
648 phys_offset &= ~IO_MEM_ROM;
649
650 while (1) {
651 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
652 if (!mem) {
653 break;
654 }
655
656 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
657 (start_addr + size <= mem->start_addr + mem->memory_size) &&
658 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
659 /* The new slot fits into the existing one and comes with
660 * identical parameters - nothing to be done. */
661 return;
662 }
663
664 old = *mem;
665
666 /* unregister the overlapping slot */
667 mem->memory_size = 0;
668 err = kvm_set_user_memory_region(s, mem);
669 if (err) {
670 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
671 __func__, strerror(-err));
672 abort();
673 }
674
675 /* Workaround for older KVM versions: we can't join slots, even not by
676 * unregistering the previous ones and then registering the larger
677 * slot. We have to maintain the existing fragmentation. Sigh.
678 *
679 * This workaround assumes that the new slot starts at the same
680 * address as the first existing one. If not or if some overlapping
681 * slot comes around later, we will fail (not seen in practice so far)
682 * - and actually require a recent KVM version. */
683 if (s->broken_set_mem_region &&
684 old.start_addr == start_addr && old.memory_size < size &&
685 flags < IO_MEM_UNASSIGNED) {
686 mem = kvm_alloc_slot(s);
687 mem->memory_size = old.memory_size;
688 mem->start_addr = old.start_addr;
689 mem->phys_offset = old.phys_offset;
690 mem->flags = 0;
691
692 err = kvm_set_user_memory_region(s, mem);
693 if (err) {
694 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
695 strerror(-err));
696 abort();
697 }
698
699 start_addr += old.memory_size;
700 phys_offset += old.memory_size;
701 size -= old.memory_size;
702 continue;
703 }
704
705 /* register prefix slot */
706 if (old.start_addr < start_addr) {
707 mem = kvm_alloc_slot(s);
708 mem->memory_size = start_addr - old.start_addr;
709 mem->start_addr = old.start_addr;
710 mem->phys_offset = old.phys_offset;
711 mem->flags = 0;
712
713 err = kvm_set_user_memory_region(s, mem);
714 if (err) {
715 fprintf(stderr, "%s: error registering prefix slot: %s\n",
716 __func__, strerror(-err));
717 abort();
718 }
719 }
720
721 /* register suffix slot */
722 if (old.start_addr + old.memory_size > start_addr + size) {
723 ram_addr_t size_delta;
724
725 mem = kvm_alloc_slot(s);
726 mem->start_addr = start_addr + size;
727 size_delta = mem->start_addr - old.start_addr;
728 mem->memory_size = old.memory_size - size_delta;
729 mem->phys_offset = old.phys_offset + size_delta;
730 mem->flags = 0;
731
732 err = kvm_set_user_memory_region(s, mem);
733 if (err) {
734 fprintf(stderr, "%s: error registering suffix slot: %s\n",
735 __func__, strerror(-err));
736 abort();
737 }
738 }
739 }
740
741 /* in case the KVM bug workaround already "consumed" the new slot */
742 if (!size)
743 return;
744
745 /* KVM does not need to know about this memory */
746 if (flags >= IO_MEM_UNASSIGNED)
747 return;
748
749 mem = kvm_alloc_slot(s);
750 mem->memory_size = size;
751 mem->start_addr = start_addr;
752 mem->phys_offset = phys_offset;
753 mem->flags = 0;
754
755 err = kvm_set_user_memory_region(s, mem);
756 if (err) {
757 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
758 strerror(-err));
759 abort();
760 }
761 }
762
763 int kvm_ioctl(KVMState *s, int type, ...)
764 {
765 int ret;
766 void *arg;
767 va_list ap;
768
769 va_start(ap, type);
770 arg = va_arg(ap, void *);
771 va_end(ap);
772
773 ret = ioctl(s->fd, type, arg);
774 if (ret == -1)
775 ret = -errno;
776
777 return ret;
778 }
779
780 int kvm_vm_ioctl(KVMState *s, int type, ...)
781 {
782 int ret;
783 void *arg;
784 va_list ap;
785
786 va_start(ap, type);
787 arg = va_arg(ap, void *);
788 va_end(ap);
789
790 ret = ioctl(s->vmfd, type, arg);
791 if (ret == -1)
792 ret = -errno;
793
794 return ret;
795 }
796
797 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
798 {
799 int ret;
800 void *arg;
801 va_list ap;
802
803 va_start(ap, type);
804 arg = va_arg(ap, void *);
805 va_end(ap);
806
807 ret = ioctl(env->kvm_fd, type, arg);
808 if (ret == -1)
809 ret = -errno;
810
811 return ret;
812 }
813
814 int kvm_has_sync_mmu(void)
815 {
816 #ifdef KVM_CAP_SYNC_MMU
817 KVMState *s = kvm_state;
818
819 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
820 #else
821 return 0;
822 #endif
823 }
824
825 void kvm_setup_guest_memory(void *start, size_t size)
826 {
827 if (!kvm_has_sync_mmu()) {
828 #ifdef MADV_DONTFORK
829 int ret = madvise(start, size, MADV_DONTFORK);
830
831 if (ret) {
832 perror("madvice");
833 exit(1);
834 }
835 #else
836 fprintf(stderr,
837 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
838 exit(1);
839 #endif
840 }
841 }
842
843 #ifdef KVM_CAP_SET_GUEST_DEBUG
844 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
845 target_ulong pc)
846 {
847 struct kvm_sw_breakpoint *bp;
848
849 TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
850 if (bp->pc == pc)
851 return bp;
852 }
853 return NULL;
854 }
855
856 int kvm_sw_breakpoints_active(CPUState *env)
857 {
858 return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
859 }
860
861 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
862 {
863 struct kvm_guest_debug dbg;
864
865 dbg.control = 0;
866 if (env->singlestep_enabled)
867 dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
868
869 kvm_arch_update_guest_debug(env, &dbg);
870 dbg.control |= reinject_trap;
871
872 return kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg);
873 }
874
875 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
876 target_ulong len, int type)
877 {
878 struct kvm_sw_breakpoint *bp;
879 CPUState *env;
880 int err;
881
882 if (type == GDB_BREAKPOINT_SW) {
883 bp = kvm_find_sw_breakpoint(current_env, addr);
884 if (bp) {
885 bp->use_count++;
886 return 0;
887 }
888
889 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
890 if (!bp)
891 return -ENOMEM;
892
893 bp->pc = addr;
894 bp->use_count = 1;
895 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
896 if (err) {
897 free(bp);
898 return err;
899 }
900
901 TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
902 bp, entry);
903 } else {
904 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
905 if (err)
906 return err;
907 }
908
909 for (env = first_cpu; env != NULL; env = env->next_cpu) {
910 err = kvm_update_guest_debug(env, 0);
911 if (err)
912 return err;
913 }
914 return 0;
915 }
916
917 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
918 target_ulong len, int type)
919 {
920 struct kvm_sw_breakpoint *bp;
921 CPUState *env;
922 int err;
923
924 if (type == GDB_BREAKPOINT_SW) {
925 bp = kvm_find_sw_breakpoint(current_env, addr);
926 if (!bp)
927 return -ENOENT;
928
929 if (bp->use_count > 1) {
930 bp->use_count--;
931 return 0;
932 }
933
934 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
935 if (err)
936 return err;
937
938 TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
939 qemu_free(bp);
940 } else {
941 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
942 if (err)
943 return err;
944 }
945
946 for (env = first_cpu; env != NULL; env = env->next_cpu) {
947 err = kvm_update_guest_debug(env, 0);
948 if (err)
949 return err;
950 }
951 return 0;
952 }
953
954 void kvm_remove_all_breakpoints(CPUState *current_env)
955 {
956 struct kvm_sw_breakpoint *bp, *next;
957 KVMState *s = current_env->kvm_state;
958 CPUState *env;
959
960 TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
961 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
962 /* Try harder to find a CPU that currently sees the breakpoint. */
963 for (env = first_cpu; env != NULL; env = env->next_cpu) {
964 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
965 break;
966 }
967 }
968 }
969 kvm_arch_remove_all_hw_breakpoints();
970
971 for (env = first_cpu; env != NULL; env = env->next_cpu)
972 kvm_update_guest_debug(env, 0);
973 }
974
975 #else /* !KVM_CAP_SET_GUEST_DEBUG */
976
977 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
978 {
979 return -EINVAL;
980 }
981
982 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
983 target_ulong len, int type)
984 {
985 return -EINVAL;
986 }
987
988 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
989 target_ulong len, int type)
990 {
991 return -EINVAL;
992 }
993
994 void kvm_remove_all_breakpoints(CPUState *current_env)
995 {
996 }
997 #endif /* !KVM_CAP_SET_GUEST_DEBUG */