]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
Merge remote-tracking branch 'qemu-kvm/uq/master' into staging
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "hw/msi.h"
28 #include "gdbstub.h"
29 #include "kvm.h"
30 #include "bswap.h"
31 #include "memory.h"
32 #include "exec-memory.h"
33
34 /* This check must be after config-host.h is included */
35 #ifdef CONFIG_EVENTFD
36 #include <sys/eventfd.h>
37 #endif
38
39 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
40 #define PAGE_SIZE TARGET_PAGE_SIZE
41
42 //#define DEBUG_KVM
43
44 #ifdef DEBUG_KVM
45 #define DPRINTF(fmt, ...) \
46 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
47 #else
48 #define DPRINTF(fmt, ...) \
49 do { } while (0)
50 #endif
51
52 #define KVM_MSI_HASHTAB_SIZE 256
53
54 typedef struct KVMSlot
55 {
56 target_phys_addr_t start_addr;
57 ram_addr_t memory_size;
58 void *ram;
59 int slot;
60 int flags;
61 } KVMSlot;
62
63 typedef struct kvm_dirty_log KVMDirtyLog;
64
65 struct KVMState
66 {
67 KVMSlot slots[32];
68 int fd;
69 int vmfd;
70 int coalesced_mmio;
71 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
72 bool coalesced_flush_in_progress;
73 int broken_set_mem_region;
74 int migration_log;
75 int vcpu_events;
76 int robust_singlestep;
77 int debugregs;
78 #ifdef KVM_CAP_SET_GUEST_DEBUG
79 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
80 #endif
81 int pit_state2;
82 int xsave, xcrs;
83 int many_ioeventfds;
84 /* The man page (and posix) say ioctl numbers are signed int, but
85 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
86 * unsigned, and treating them as signed here can break things */
87 unsigned irqchip_inject_ioctl;
88 #ifdef KVM_CAP_IRQ_ROUTING
89 struct kvm_irq_routing *irq_routes;
90 int nr_allocated_irq_routes;
91 uint32_t *used_gsi_bitmap;
92 unsigned int gsi_count;
93 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
94 bool direct_msi;
95 #endif
96 };
97
98 KVMState *kvm_state;
99 bool kvm_kernel_irqchip;
100
101 static const KVMCapabilityInfo kvm_required_capabilites[] = {
102 KVM_CAP_INFO(USER_MEMORY),
103 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
104 KVM_CAP_LAST_INFO
105 };
106
107 static KVMSlot *kvm_alloc_slot(KVMState *s)
108 {
109 int i;
110
111 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
112 if (s->slots[i].memory_size == 0) {
113 return &s->slots[i];
114 }
115 }
116
117 fprintf(stderr, "%s: no free slot available\n", __func__);
118 abort();
119 }
120
121 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
122 target_phys_addr_t start_addr,
123 target_phys_addr_t end_addr)
124 {
125 int i;
126
127 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
128 KVMSlot *mem = &s->slots[i];
129
130 if (start_addr == mem->start_addr &&
131 end_addr == mem->start_addr + mem->memory_size) {
132 return mem;
133 }
134 }
135
136 return NULL;
137 }
138
139 /*
140 * Find overlapping slot with lowest start address
141 */
142 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
143 target_phys_addr_t start_addr,
144 target_phys_addr_t end_addr)
145 {
146 KVMSlot *found = NULL;
147 int i;
148
149 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
150 KVMSlot *mem = &s->slots[i];
151
152 if (mem->memory_size == 0 ||
153 (found && found->start_addr < mem->start_addr)) {
154 continue;
155 }
156
157 if (end_addr > mem->start_addr &&
158 start_addr < mem->start_addr + mem->memory_size) {
159 found = mem;
160 }
161 }
162
163 return found;
164 }
165
166 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
167 target_phys_addr_t *phys_addr)
168 {
169 int i;
170
171 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
172 KVMSlot *mem = &s->slots[i];
173
174 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
175 *phys_addr = mem->start_addr + (ram - mem->ram);
176 return 1;
177 }
178 }
179
180 return 0;
181 }
182
183 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
184 {
185 struct kvm_userspace_memory_region mem;
186
187 mem.slot = slot->slot;
188 mem.guest_phys_addr = slot->start_addr;
189 mem.memory_size = slot->memory_size;
190 mem.userspace_addr = (unsigned long)slot->ram;
191 mem.flags = slot->flags;
192 if (s->migration_log) {
193 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
194 }
195 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
196 }
197
198 static void kvm_reset_vcpu(void *opaque)
199 {
200 CPUArchState *env = opaque;
201
202 kvm_arch_reset_vcpu(env);
203 }
204
205 int kvm_init_vcpu(CPUArchState *env)
206 {
207 KVMState *s = kvm_state;
208 long mmap_size;
209 int ret;
210
211 DPRINTF("kvm_init_vcpu\n");
212
213 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
214 if (ret < 0) {
215 DPRINTF("kvm_create_vcpu failed\n");
216 goto err;
217 }
218
219 env->kvm_fd = ret;
220 env->kvm_state = s;
221 env->kvm_vcpu_dirty = 1;
222
223 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
224 if (mmap_size < 0) {
225 ret = mmap_size;
226 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
227 goto err;
228 }
229
230 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
231 env->kvm_fd, 0);
232 if (env->kvm_run == MAP_FAILED) {
233 ret = -errno;
234 DPRINTF("mmap'ing vcpu state failed\n");
235 goto err;
236 }
237
238 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
239 s->coalesced_mmio_ring =
240 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
241 }
242
243 ret = kvm_arch_init_vcpu(env);
244 if (ret == 0) {
245 qemu_register_reset(kvm_reset_vcpu, env);
246 kvm_arch_reset_vcpu(env);
247 }
248 err:
249 return ret;
250 }
251
252 /*
253 * dirty pages logging control
254 */
255
256 static int kvm_mem_flags(KVMState *s, bool log_dirty)
257 {
258 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
259 }
260
261 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
262 {
263 KVMState *s = kvm_state;
264 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
265 int old_flags;
266
267 old_flags = mem->flags;
268
269 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
270 mem->flags = flags;
271
272 /* If nothing changed effectively, no need to issue ioctl */
273 if (s->migration_log) {
274 flags |= KVM_MEM_LOG_DIRTY_PAGES;
275 }
276
277 if (flags == old_flags) {
278 return 0;
279 }
280
281 return kvm_set_user_memory_region(s, mem);
282 }
283
284 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
285 ram_addr_t size, bool log_dirty)
286 {
287 KVMState *s = kvm_state;
288 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
289
290 if (mem == NULL) {
291 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
292 TARGET_FMT_plx "\n", __func__, phys_addr,
293 (target_phys_addr_t)(phys_addr + size - 1));
294 return -EINVAL;
295 }
296 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
297 }
298
299 static void kvm_log_start(MemoryListener *listener,
300 MemoryRegionSection *section)
301 {
302 int r;
303
304 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
305 section->size, true);
306 if (r < 0) {
307 abort();
308 }
309 }
310
311 static void kvm_log_stop(MemoryListener *listener,
312 MemoryRegionSection *section)
313 {
314 int r;
315
316 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
317 section->size, false);
318 if (r < 0) {
319 abort();
320 }
321 }
322
323 static int kvm_set_migration_log(int enable)
324 {
325 KVMState *s = kvm_state;
326 KVMSlot *mem;
327 int i, err;
328
329 s->migration_log = enable;
330
331 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
332 mem = &s->slots[i];
333
334 if (!mem->memory_size) {
335 continue;
336 }
337 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
338 continue;
339 }
340 err = kvm_set_user_memory_region(s, mem);
341 if (err) {
342 return err;
343 }
344 }
345 return 0;
346 }
347
348 /* get kvm's dirty pages bitmap and update qemu's */
349 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
350 unsigned long *bitmap)
351 {
352 unsigned int i, j;
353 unsigned long page_number, c;
354 target_phys_addr_t addr, addr1;
355 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
356 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
357
358 /*
359 * bitmap-traveling is faster than memory-traveling (for addr...)
360 * especially when most of the memory is not dirty.
361 */
362 for (i = 0; i < len; i++) {
363 if (bitmap[i] != 0) {
364 c = leul_to_cpu(bitmap[i]);
365 do {
366 j = ffsl(c) - 1;
367 c &= ~(1ul << j);
368 page_number = (i * HOST_LONG_BITS + j) * hpratio;
369 addr1 = page_number * TARGET_PAGE_SIZE;
370 addr = section->offset_within_region + addr1;
371 memory_region_set_dirty(section->mr, addr,
372 TARGET_PAGE_SIZE * hpratio);
373 } while (c != 0);
374 }
375 }
376 return 0;
377 }
378
379 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
380
381 /**
382 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
383 * This function updates qemu's dirty bitmap using
384 * memory_region_set_dirty(). This means all bits are set
385 * to dirty.
386 *
387 * @start_add: start of logged region.
388 * @end_addr: end of logged region.
389 */
390 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
391 {
392 KVMState *s = kvm_state;
393 unsigned long size, allocated_size = 0;
394 KVMDirtyLog d;
395 KVMSlot *mem;
396 int ret = 0;
397 target_phys_addr_t start_addr = section->offset_within_address_space;
398 target_phys_addr_t end_addr = start_addr + section->size;
399
400 d.dirty_bitmap = NULL;
401 while (start_addr < end_addr) {
402 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
403 if (mem == NULL) {
404 break;
405 }
406
407 /* XXX bad kernel interface alert
408 * For dirty bitmap, kernel allocates array of size aligned to
409 * bits-per-long. But for case when the kernel is 64bits and
410 * the userspace is 32bits, userspace can't align to the same
411 * bits-per-long, since sizeof(long) is different between kernel
412 * and user space. This way, userspace will provide buffer which
413 * may be 4 bytes less than the kernel will use, resulting in
414 * userspace memory corruption (which is not detectable by valgrind
415 * too, in most cases).
416 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
417 * a hope that sizeof(long) wont become >8 any time soon.
418 */
419 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
420 /*HOST_LONG_BITS*/ 64) / 8;
421 if (!d.dirty_bitmap) {
422 d.dirty_bitmap = g_malloc(size);
423 } else if (size > allocated_size) {
424 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
425 }
426 allocated_size = size;
427 memset(d.dirty_bitmap, 0, allocated_size);
428
429 d.slot = mem->slot;
430
431 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
432 DPRINTF("ioctl failed %d\n", errno);
433 ret = -1;
434 break;
435 }
436
437 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
438 start_addr = mem->start_addr + mem->memory_size;
439 }
440 g_free(d.dirty_bitmap);
441
442 return ret;
443 }
444
445 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
446 {
447 int ret = -ENOSYS;
448 KVMState *s = kvm_state;
449
450 if (s->coalesced_mmio) {
451 struct kvm_coalesced_mmio_zone zone;
452
453 zone.addr = start;
454 zone.size = size;
455 zone.pad = 0;
456
457 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
458 }
459
460 return ret;
461 }
462
463 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
464 {
465 int ret = -ENOSYS;
466 KVMState *s = kvm_state;
467
468 if (s->coalesced_mmio) {
469 struct kvm_coalesced_mmio_zone zone;
470
471 zone.addr = start;
472 zone.size = size;
473 zone.pad = 0;
474
475 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
476 }
477
478 return ret;
479 }
480
481 int kvm_check_extension(KVMState *s, unsigned int extension)
482 {
483 int ret;
484
485 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
486 if (ret < 0) {
487 ret = 0;
488 }
489
490 return ret;
491 }
492
493 static int kvm_check_many_ioeventfds(void)
494 {
495 /* Userspace can use ioeventfd for io notification. This requires a host
496 * that supports eventfd(2) and an I/O thread; since eventfd does not
497 * support SIGIO it cannot interrupt the vcpu.
498 *
499 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
500 * can avoid creating too many ioeventfds.
501 */
502 #if defined(CONFIG_EVENTFD)
503 int ioeventfds[7];
504 int i, ret = 0;
505 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
506 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
507 if (ioeventfds[i] < 0) {
508 break;
509 }
510 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
511 if (ret < 0) {
512 close(ioeventfds[i]);
513 break;
514 }
515 }
516
517 /* Decide whether many devices are supported or not */
518 ret = i == ARRAY_SIZE(ioeventfds);
519
520 while (i-- > 0) {
521 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
522 close(ioeventfds[i]);
523 }
524 return ret;
525 #else
526 return 0;
527 #endif
528 }
529
530 static const KVMCapabilityInfo *
531 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
532 {
533 while (list->name) {
534 if (!kvm_check_extension(s, list->value)) {
535 return list;
536 }
537 list++;
538 }
539 return NULL;
540 }
541
542 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
543 {
544 KVMState *s = kvm_state;
545 KVMSlot *mem, old;
546 int err;
547 MemoryRegion *mr = section->mr;
548 bool log_dirty = memory_region_is_logging(mr);
549 target_phys_addr_t start_addr = section->offset_within_address_space;
550 ram_addr_t size = section->size;
551 void *ram = NULL;
552 unsigned delta;
553
554 /* kvm works in page size chunks, but the function may be called
555 with sub-page size and unaligned start address. */
556 delta = TARGET_PAGE_ALIGN(size) - size;
557 if (delta > size) {
558 return;
559 }
560 start_addr += delta;
561 size -= delta;
562 size &= TARGET_PAGE_MASK;
563 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
564 return;
565 }
566
567 if (!memory_region_is_ram(mr)) {
568 return;
569 }
570
571 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
572
573 while (1) {
574 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
575 if (!mem) {
576 break;
577 }
578
579 if (add && start_addr >= mem->start_addr &&
580 (start_addr + size <= mem->start_addr + mem->memory_size) &&
581 (ram - start_addr == mem->ram - mem->start_addr)) {
582 /* The new slot fits into the existing one and comes with
583 * identical parameters - update flags and done. */
584 kvm_slot_dirty_pages_log_change(mem, log_dirty);
585 return;
586 }
587
588 old = *mem;
589
590 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
591 kvm_physical_sync_dirty_bitmap(section);
592 }
593
594 /* unregister the overlapping slot */
595 mem->memory_size = 0;
596 err = kvm_set_user_memory_region(s, mem);
597 if (err) {
598 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
599 __func__, strerror(-err));
600 abort();
601 }
602
603 /* Workaround for older KVM versions: we can't join slots, even not by
604 * unregistering the previous ones and then registering the larger
605 * slot. We have to maintain the existing fragmentation. Sigh.
606 *
607 * This workaround assumes that the new slot starts at the same
608 * address as the first existing one. If not or if some overlapping
609 * slot comes around later, we will fail (not seen in practice so far)
610 * - and actually require a recent KVM version. */
611 if (s->broken_set_mem_region &&
612 old.start_addr == start_addr && old.memory_size < size && add) {
613 mem = kvm_alloc_slot(s);
614 mem->memory_size = old.memory_size;
615 mem->start_addr = old.start_addr;
616 mem->ram = old.ram;
617 mem->flags = kvm_mem_flags(s, log_dirty);
618
619 err = kvm_set_user_memory_region(s, mem);
620 if (err) {
621 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
622 strerror(-err));
623 abort();
624 }
625
626 start_addr += old.memory_size;
627 ram += old.memory_size;
628 size -= old.memory_size;
629 continue;
630 }
631
632 /* register prefix slot */
633 if (old.start_addr < start_addr) {
634 mem = kvm_alloc_slot(s);
635 mem->memory_size = start_addr - old.start_addr;
636 mem->start_addr = old.start_addr;
637 mem->ram = old.ram;
638 mem->flags = kvm_mem_flags(s, log_dirty);
639
640 err = kvm_set_user_memory_region(s, mem);
641 if (err) {
642 fprintf(stderr, "%s: error registering prefix slot: %s\n",
643 __func__, strerror(-err));
644 #ifdef TARGET_PPC
645 fprintf(stderr, "%s: This is probably because your kernel's " \
646 "PAGE_SIZE is too big. Please try to use 4k " \
647 "PAGE_SIZE!\n", __func__);
648 #endif
649 abort();
650 }
651 }
652
653 /* register suffix slot */
654 if (old.start_addr + old.memory_size > start_addr + size) {
655 ram_addr_t size_delta;
656
657 mem = kvm_alloc_slot(s);
658 mem->start_addr = start_addr + size;
659 size_delta = mem->start_addr - old.start_addr;
660 mem->memory_size = old.memory_size - size_delta;
661 mem->ram = old.ram + size_delta;
662 mem->flags = kvm_mem_flags(s, log_dirty);
663
664 err = kvm_set_user_memory_region(s, mem);
665 if (err) {
666 fprintf(stderr, "%s: error registering suffix slot: %s\n",
667 __func__, strerror(-err));
668 abort();
669 }
670 }
671 }
672
673 /* in case the KVM bug workaround already "consumed" the new slot */
674 if (!size) {
675 return;
676 }
677 if (!add) {
678 return;
679 }
680 mem = kvm_alloc_slot(s);
681 mem->memory_size = size;
682 mem->start_addr = start_addr;
683 mem->ram = ram;
684 mem->flags = kvm_mem_flags(s, log_dirty);
685
686 err = kvm_set_user_memory_region(s, mem);
687 if (err) {
688 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
689 strerror(-err));
690 abort();
691 }
692 }
693
694 static void kvm_begin(MemoryListener *listener)
695 {
696 }
697
698 static void kvm_commit(MemoryListener *listener)
699 {
700 }
701
702 static void kvm_region_add(MemoryListener *listener,
703 MemoryRegionSection *section)
704 {
705 kvm_set_phys_mem(section, true);
706 }
707
708 static void kvm_region_del(MemoryListener *listener,
709 MemoryRegionSection *section)
710 {
711 kvm_set_phys_mem(section, false);
712 }
713
714 static void kvm_region_nop(MemoryListener *listener,
715 MemoryRegionSection *section)
716 {
717 }
718
719 static void kvm_log_sync(MemoryListener *listener,
720 MemoryRegionSection *section)
721 {
722 int r;
723
724 r = kvm_physical_sync_dirty_bitmap(section);
725 if (r < 0) {
726 abort();
727 }
728 }
729
730 static void kvm_log_global_start(struct MemoryListener *listener)
731 {
732 int r;
733
734 r = kvm_set_migration_log(1);
735 assert(r >= 0);
736 }
737
738 static void kvm_log_global_stop(struct MemoryListener *listener)
739 {
740 int r;
741
742 r = kvm_set_migration_log(0);
743 assert(r >= 0);
744 }
745
746 static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
747 bool match_data, uint64_t data, int fd)
748 {
749 int r;
750
751 assert(match_data && section->size <= 8);
752
753 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
754 data, true, section->size);
755 if (r < 0) {
756 abort();
757 }
758 }
759
760 static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
761 bool match_data, uint64_t data, int fd)
762 {
763 int r;
764
765 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
766 data, false, section->size);
767 if (r < 0) {
768 abort();
769 }
770 }
771
772 static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
773 bool match_data, uint64_t data, int fd)
774 {
775 int r;
776
777 assert(match_data && section->size == 2);
778
779 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
780 data, true);
781 if (r < 0) {
782 abort();
783 }
784 }
785
786 static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
787 bool match_data, uint64_t data, int fd)
788
789 {
790 int r;
791
792 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
793 data, false);
794 if (r < 0) {
795 abort();
796 }
797 }
798
799 static void kvm_eventfd_add(MemoryListener *listener,
800 MemoryRegionSection *section,
801 bool match_data, uint64_t data, int fd)
802 {
803 if (section->address_space == get_system_memory()) {
804 kvm_mem_ioeventfd_add(section, match_data, data, fd);
805 } else {
806 kvm_io_ioeventfd_add(section, match_data, data, fd);
807 }
808 }
809
810 static void kvm_eventfd_del(MemoryListener *listener,
811 MemoryRegionSection *section,
812 bool match_data, uint64_t data, int fd)
813 {
814 if (section->address_space == get_system_memory()) {
815 kvm_mem_ioeventfd_del(section, match_data, data, fd);
816 } else {
817 kvm_io_ioeventfd_del(section, match_data, data, fd);
818 }
819 }
820
821 static MemoryListener kvm_memory_listener = {
822 .begin = kvm_begin,
823 .commit = kvm_commit,
824 .region_add = kvm_region_add,
825 .region_del = kvm_region_del,
826 .region_nop = kvm_region_nop,
827 .log_start = kvm_log_start,
828 .log_stop = kvm_log_stop,
829 .log_sync = kvm_log_sync,
830 .log_global_start = kvm_log_global_start,
831 .log_global_stop = kvm_log_global_stop,
832 .eventfd_add = kvm_eventfd_add,
833 .eventfd_del = kvm_eventfd_del,
834 .priority = 10,
835 };
836
837 static void kvm_handle_interrupt(CPUArchState *env, int mask)
838 {
839 env->interrupt_request |= mask;
840
841 if (!qemu_cpu_is_self(env)) {
842 qemu_cpu_kick(env);
843 }
844 }
845
846 int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
847 {
848 struct kvm_irq_level event;
849 int ret;
850
851 assert(kvm_irqchip_in_kernel());
852
853 event.level = level;
854 event.irq = irq;
855 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
856 if (ret < 0) {
857 perror("kvm_set_irqchip_line");
858 abort();
859 }
860
861 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
862 }
863
864 #ifdef KVM_CAP_IRQ_ROUTING
865 typedef struct KVMMSIRoute {
866 struct kvm_irq_routing_entry kroute;
867 QTAILQ_ENTRY(KVMMSIRoute) entry;
868 } KVMMSIRoute;
869
870 static void set_gsi(KVMState *s, unsigned int gsi)
871 {
872 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
873 }
874
875 static void clear_gsi(KVMState *s, unsigned int gsi)
876 {
877 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
878 }
879
880 static void kvm_init_irq_routing(KVMState *s)
881 {
882 int gsi_count, i;
883
884 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
885 if (gsi_count > 0) {
886 unsigned int gsi_bits, i;
887
888 /* Round up so we can search ints using ffs */
889 gsi_bits = ALIGN(gsi_count, 32);
890 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
891 s->gsi_count = gsi_count;
892
893 /* Mark any over-allocated bits as already in use */
894 for (i = gsi_count; i < gsi_bits; i++) {
895 set_gsi(s, i);
896 }
897 }
898
899 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
900 s->nr_allocated_irq_routes = 0;
901
902 if (!s->direct_msi) {
903 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
904 QTAILQ_INIT(&s->msi_hashtab[i]);
905 }
906 }
907
908 kvm_arch_init_irq_routing(s);
909 }
910
911 static void kvm_irqchip_commit_routes(KVMState *s)
912 {
913 int ret;
914
915 s->irq_routes->flags = 0;
916 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
917 assert(ret == 0);
918 }
919
920 static void kvm_add_routing_entry(KVMState *s,
921 struct kvm_irq_routing_entry *entry)
922 {
923 struct kvm_irq_routing_entry *new;
924 int n, size;
925
926 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
927 n = s->nr_allocated_irq_routes * 2;
928 if (n < 64) {
929 n = 64;
930 }
931 size = sizeof(struct kvm_irq_routing);
932 size += n * sizeof(*new);
933 s->irq_routes = g_realloc(s->irq_routes, size);
934 s->nr_allocated_irq_routes = n;
935 }
936 n = s->irq_routes->nr++;
937 new = &s->irq_routes->entries[n];
938 memset(new, 0, sizeof(*new));
939 new->gsi = entry->gsi;
940 new->type = entry->type;
941 new->flags = entry->flags;
942 new->u = entry->u;
943
944 set_gsi(s, entry->gsi);
945
946 kvm_irqchip_commit_routes(s);
947 }
948
949 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
950 {
951 struct kvm_irq_routing_entry e;
952
953 assert(pin < s->gsi_count);
954
955 e.gsi = irq;
956 e.type = KVM_IRQ_ROUTING_IRQCHIP;
957 e.flags = 0;
958 e.u.irqchip.irqchip = irqchip;
959 e.u.irqchip.pin = pin;
960 kvm_add_routing_entry(s, &e);
961 }
962
963 void kvm_irqchip_release_virq(KVMState *s, int virq)
964 {
965 struct kvm_irq_routing_entry *e;
966 int i;
967
968 for (i = 0; i < s->irq_routes->nr; i++) {
969 e = &s->irq_routes->entries[i];
970 if (e->gsi == virq) {
971 s->irq_routes->nr--;
972 *e = s->irq_routes->entries[s->irq_routes->nr];
973 }
974 }
975 clear_gsi(s, virq);
976
977 kvm_irqchip_commit_routes(s);
978 }
979
980 static unsigned int kvm_hash_msi(uint32_t data)
981 {
982 /* This is optimized for IA32 MSI layout. However, no other arch shall
983 * repeat the mistake of not providing a direct MSI injection API. */
984 return data & 0xff;
985 }
986
987 static void kvm_flush_dynamic_msi_routes(KVMState *s)
988 {
989 KVMMSIRoute *route, *next;
990 unsigned int hash;
991
992 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
993 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
994 kvm_irqchip_release_virq(s, route->kroute.gsi);
995 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
996 g_free(route);
997 }
998 }
999 }
1000
1001 static int kvm_irqchip_get_virq(KVMState *s)
1002 {
1003 uint32_t *word = s->used_gsi_bitmap;
1004 int max_words = ALIGN(s->gsi_count, 32) / 32;
1005 int i, bit;
1006 bool retry = true;
1007
1008 again:
1009 /* Return the lowest unused GSI in the bitmap */
1010 for (i = 0; i < max_words; i++) {
1011 bit = ffs(~word[i]);
1012 if (!bit) {
1013 continue;
1014 }
1015
1016 return bit - 1 + i * 32;
1017 }
1018 if (!s->direct_msi && retry) {
1019 retry = false;
1020 kvm_flush_dynamic_msi_routes(s);
1021 goto again;
1022 }
1023 return -ENOSPC;
1024
1025 }
1026
1027 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1028 {
1029 unsigned int hash = kvm_hash_msi(msg.data);
1030 KVMMSIRoute *route;
1031
1032 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1033 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1034 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1035 route->kroute.u.msi.data == msg.data) {
1036 return route;
1037 }
1038 }
1039 return NULL;
1040 }
1041
1042 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1043 {
1044 struct kvm_msi msi;
1045 KVMMSIRoute *route;
1046
1047 if (s->direct_msi) {
1048 msi.address_lo = (uint32_t)msg.address;
1049 msi.address_hi = msg.address >> 32;
1050 msi.data = msg.data;
1051 msi.flags = 0;
1052 memset(msi.pad, 0, sizeof(msi.pad));
1053
1054 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1055 }
1056
1057 route = kvm_lookup_msi_route(s, msg);
1058 if (!route) {
1059 int virq;
1060
1061 virq = kvm_irqchip_get_virq(s);
1062 if (virq < 0) {
1063 return virq;
1064 }
1065
1066 route = g_malloc(sizeof(KVMMSIRoute));
1067 route->kroute.gsi = virq;
1068 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1069 route->kroute.flags = 0;
1070 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1071 route->kroute.u.msi.address_hi = msg.address >> 32;
1072 route->kroute.u.msi.data = msg.data;
1073
1074 kvm_add_routing_entry(s, &route->kroute);
1075
1076 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1077 entry);
1078 }
1079
1080 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1081
1082 return kvm_irqchip_set_irq(s, route->kroute.gsi, 1);
1083 }
1084
1085 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1086 {
1087 struct kvm_irq_routing_entry kroute;
1088 int virq;
1089
1090 if (!kvm_irqchip_in_kernel()) {
1091 return -ENOSYS;
1092 }
1093
1094 virq = kvm_irqchip_get_virq(s);
1095 if (virq < 0) {
1096 return virq;
1097 }
1098
1099 kroute.gsi = virq;
1100 kroute.type = KVM_IRQ_ROUTING_MSI;
1101 kroute.flags = 0;
1102 kroute.u.msi.address_lo = (uint32_t)msg.address;
1103 kroute.u.msi.address_hi = msg.address >> 32;
1104 kroute.u.msi.data = msg.data;
1105
1106 kvm_add_routing_entry(s, &kroute);
1107
1108 return virq;
1109 }
1110
1111 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1112 {
1113 struct kvm_irqfd irqfd = {
1114 .fd = fd,
1115 .gsi = virq,
1116 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1117 };
1118
1119 if (!kvm_irqchip_in_kernel()) {
1120 return -ENOSYS;
1121 }
1122
1123 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1124 }
1125
1126 #else /* !KVM_CAP_IRQ_ROUTING */
1127
1128 static void kvm_init_irq_routing(KVMState *s)
1129 {
1130 }
1131
1132 void kvm_irqchip_release_virq(KVMState *s, int virq)
1133 {
1134 }
1135
1136 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1137 {
1138 abort();
1139 }
1140
1141 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1142 {
1143 abort();
1144 }
1145
1146 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1147 {
1148 abort();
1149 }
1150 #endif /* !KVM_CAP_IRQ_ROUTING */
1151
1152 int kvm_irqchip_add_irqfd(KVMState *s, int fd, int virq)
1153 {
1154 return kvm_irqchip_assign_irqfd(s, fd, virq, true);
1155 }
1156
1157 int kvm_irqchip_remove_irqfd(KVMState *s, int fd, int virq)
1158 {
1159 return kvm_irqchip_assign_irqfd(s, fd, virq, false);
1160 }
1161
1162 static int kvm_irqchip_create(KVMState *s)
1163 {
1164 QemuOptsList *list = qemu_find_opts("machine");
1165 int ret;
1166
1167 if (QTAILQ_EMPTY(&list->head) ||
1168 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1169 "kernel_irqchip", true) ||
1170 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1171 return 0;
1172 }
1173
1174 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1175 if (ret < 0) {
1176 fprintf(stderr, "Create kernel irqchip failed\n");
1177 return ret;
1178 }
1179
1180 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
1181 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1182 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
1183 }
1184 kvm_kernel_irqchip = true;
1185
1186 kvm_init_irq_routing(s);
1187
1188 return 0;
1189 }
1190
1191 int kvm_init(void)
1192 {
1193 static const char upgrade_note[] =
1194 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1195 "(see http://sourceforge.net/projects/kvm).\n";
1196 KVMState *s;
1197 const KVMCapabilityInfo *missing_cap;
1198 int ret;
1199 int i;
1200
1201 s = g_malloc0(sizeof(KVMState));
1202
1203 /*
1204 * On systems where the kernel can support different base page
1205 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1206 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1207 * page size for the system though.
1208 */
1209 assert(TARGET_PAGE_SIZE <= getpagesize());
1210
1211 #ifdef KVM_CAP_SET_GUEST_DEBUG
1212 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1213 #endif
1214 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1215 s->slots[i].slot = i;
1216 }
1217 s->vmfd = -1;
1218 s->fd = qemu_open("/dev/kvm", O_RDWR);
1219 if (s->fd == -1) {
1220 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1221 ret = -errno;
1222 goto err;
1223 }
1224
1225 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1226 if (ret < KVM_API_VERSION) {
1227 if (ret > 0) {
1228 ret = -EINVAL;
1229 }
1230 fprintf(stderr, "kvm version too old\n");
1231 goto err;
1232 }
1233
1234 if (ret > KVM_API_VERSION) {
1235 ret = -EINVAL;
1236 fprintf(stderr, "kvm version not supported\n");
1237 goto err;
1238 }
1239
1240 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1241 if (s->vmfd < 0) {
1242 #ifdef TARGET_S390X
1243 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1244 "your host kernel command line\n");
1245 #endif
1246 ret = s->vmfd;
1247 goto err;
1248 }
1249
1250 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1251 if (!missing_cap) {
1252 missing_cap =
1253 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1254 }
1255 if (missing_cap) {
1256 ret = -EINVAL;
1257 fprintf(stderr, "kvm does not support %s\n%s",
1258 missing_cap->name, upgrade_note);
1259 goto err;
1260 }
1261
1262 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1263
1264 s->broken_set_mem_region = 1;
1265 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1266 if (ret > 0) {
1267 s->broken_set_mem_region = 0;
1268 }
1269
1270 #ifdef KVM_CAP_VCPU_EVENTS
1271 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1272 #endif
1273
1274 s->robust_singlestep =
1275 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1276
1277 #ifdef KVM_CAP_DEBUGREGS
1278 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1279 #endif
1280
1281 #ifdef KVM_CAP_XSAVE
1282 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1283 #endif
1284
1285 #ifdef KVM_CAP_XCRS
1286 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1287 #endif
1288
1289 #ifdef KVM_CAP_PIT_STATE2
1290 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1291 #endif
1292
1293 #ifdef KVM_CAP_IRQ_ROUTING
1294 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1295 #endif
1296
1297 ret = kvm_arch_init(s);
1298 if (ret < 0) {
1299 goto err;
1300 }
1301
1302 ret = kvm_irqchip_create(s);
1303 if (ret < 0) {
1304 goto err;
1305 }
1306
1307 kvm_state = s;
1308 memory_listener_register(&kvm_memory_listener, NULL);
1309
1310 s->many_ioeventfds = kvm_check_many_ioeventfds();
1311
1312 cpu_interrupt_handler = kvm_handle_interrupt;
1313
1314 return 0;
1315
1316 err:
1317 if (s) {
1318 if (s->vmfd >= 0) {
1319 close(s->vmfd);
1320 }
1321 if (s->fd != -1) {
1322 close(s->fd);
1323 }
1324 }
1325 g_free(s);
1326
1327 return ret;
1328 }
1329
1330 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1331 uint32_t count)
1332 {
1333 int i;
1334 uint8_t *ptr = data;
1335
1336 for (i = 0; i < count; i++) {
1337 if (direction == KVM_EXIT_IO_IN) {
1338 switch (size) {
1339 case 1:
1340 stb_p(ptr, cpu_inb(port));
1341 break;
1342 case 2:
1343 stw_p(ptr, cpu_inw(port));
1344 break;
1345 case 4:
1346 stl_p(ptr, cpu_inl(port));
1347 break;
1348 }
1349 } else {
1350 switch (size) {
1351 case 1:
1352 cpu_outb(port, ldub_p(ptr));
1353 break;
1354 case 2:
1355 cpu_outw(port, lduw_p(ptr));
1356 break;
1357 case 4:
1358 cpu_outl(port, ldl_p(ptr));
1359 break;
1360 }
1361 }
1362
1363 ptr += size;
1364 }
1365 }
1366
1367 static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1368 {
1369 fprintf(stderr, "KVM internal error.");
1370 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1371 int i;
1372
1373 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1374 for (i = 0; i < run->internal.ndata; ++i) {
1375 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1376 i, (uint64_t)run->internal.data[i]);
1377 }
1378 } else {
1379 fprintf(stderr, "\n");
1380 }
1381 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1382 fprintf(stderr, "emulation failure\n");
1383 if (!kvm_arch_stop_on_emulation_error(env)) {
1384 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1385 return EXCP_INTERRUPT;
1386 }
1387 }
1388 /* FIXME: Should trigger a qmp message to let management know
1389 * something went wrong.
1390 */
1391 return -1;
1392 }
1393
1394 void kvm_flush_coalesced_mmio_buffer(void)
1395 {
1396 KVMState *s = kvm_state;
1397
1398 if (s->coalesced_flush_in_progress) {
1399 return;
1400 }
1401
1402 s->coalesced_flush_in_progress = true;
1403
1404 if (s->coalesced_mmio_ring) {
1405 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1406 while (ring->first != ring->last) {
1407 struct kvm_coalesced_mmio *ent;
1408
1409 ent = &ring->coalesced_mmio[ring->first];
1410
1411 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1412 smp_wmb();
1413 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1414 }
1415 }
1416
1417 s->coalesced_flush_in_progress = false;
1418 }
1419
1420 static void do_kvm_cpu_synchronize_state(void *_env)
1421 {
1422 CPUArchState *env = _env;
1423
1424 if (!env->kvm_vcpu_dirty) {
1425 kvm_arch_get_registers(env);
1426 env->kvm_vcpu_dirty = 1;
1427 }
1428 }
1429
1430 void kvm_cpu_synchronize_state(CPUArchState *env)
1431 {
1432 if (!env->kvm_vcpu_dirty) {
1433 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1434 }
1435 }
1436
1437 void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1438 {
1439 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1440 env->kvm_vcpu_dirty = 0;
1441 }
1442
1443 void kvm_cpu_synchronize_post_init(CPUArchState *env)
1444 {
1445 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1446 env->kvm_vcpu_dirty = 0;
1447 }
1448
1449 int kvm_cpu_exec(CPUArchState *env)
1450 {
1451 struct kvm_run *run = env->kvm_run;
1452 int ret, run_ret;
1453
1454 DPRINTF("kvm_cpu_exec()\n");
1455
1456 if (kvm_arch_process_async_events(env)) {
1457 env->exit_request = 0;
1458 return EXCP_HLT;
1459 }
1460
1461 do {
1462 if (env->kvm_vcpu_dirty) {
1463 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1464 env->kvm_vcpu_dirty = 0;
1465 }
1466
1467 kvm_arch_pre_run(env, run);
1468 if (env->exit_request) {
1469 DPRINTF("interrupt exit requested\n");
1470 /*
1471 * KVM requires us to reenter the kernel after IO exits to complete
1472 * instruction emulation. This self-signal will ensure that we
1473 * leave ASAP again.
1474 */
1475 qemu_cpu_kick_self();
1476 }
1477 qemu_mutex_unlock_iothread();
1478
1479 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1480
1481 qemu_mutex_lock_iothread();
1482 kvm_arch_post_run(env, run);
1483
1484 kvm_flush_coalesced_mmio_buffer();
1485
1486 if (run_ret < 0) {
1487 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1488 DPRINTF("io window exit\n");
1489 ret = EXCP_INTERRUPT;
1490 break;
1491 }
1492 fprintf(stderr, "error: kvm run failed %s\n",
1493 strerror(-run_ret));
1494 abort();
1495 }
1496
1497 switch (run->exit_reason) {
1498 case KVM_EXIT_IO:
1499 DPRINTF("handle_io\n");
1500 kvm_handle_io(run->io.port,
1501 (uint8_t *)run + run->io.data_offset,
1502 run->io.direction,
1503 run->io.size,
1504 run->io.count);
1505 ret = 0;
1506 break;
1507 case KVM_EXIT_MMIO:
1508 DPRINTF("handle_mmio\n");
1509 cpu_physical_memory_rw(run->mmio.phys_addr,
1510 run->mmio.data,
1511 run->mmio.len,
1512 run->mmio.is_write);
1513 ret = 0;
1514 break;
1515 case KVM_EXIT_IRQ_WINDOW_OPEN:
1516 DPRINTF("irq_window_open\n");
1517 ret = EXCP_INTERRUPT;
1518 break;
1519 case KVM_EXIT_SHUTDOWN:
1520 DPRINTF("shutdown\n");
1521 qemu_system_reset_request();
1522 ret = EXCP_INTERRUPT;
1523 break;
1524 case KVM_EXIT_UNKNOWN:
1525 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1526 (uint64_t)run->hw.hardware_exit_reason);
1527 ret = -1;
1528 break;
1529 case KVM_EXIT_INTERNAL_ERROR:
1530 ret = kvm_handle_internal_error(env, run);
1531 break;
1532 default:
1533 DPRINTF("kvm_arch_handle_exit\n");
1534 ret = kvm_arch_handle_exit(env, run);
1535 break;
1536 }
1537 } while (ret == 0);
1538
1539 if (ret < 0) {
1540 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1541 vm_stop(RUN_STATE_INTERNAL_ERROR);
1542 }
1543
1544 env->exit_request = 0;
1545 return ret;
1546 }
1547
1548 int kvm_ioctl(KVMState *s, int type, ...)
1549 {
1550 int ret;
1551 void *arg;
1552 va_list ap;
1553
1554 va_start(ap, type);
1555 arg = va_arg(ap, void *);
1556 va_end(ap);
1557
1558 ret = ioctl(s->fd, type, arg);
1559 if (ret == -1) {
1560 ret = -errno;
1561 }
1562 return ret;
1563 }
1564
1565 int kvm_vm_ioctl(KVMState *s, int type, ...)
1566 {
1567 int ret;
1568 void *arg;
1569 va_list ap;
1570
1571 va_start(ap, type);
1572 arg = va_arg(ap, void *);
1573 va_end(ap);
1574
1575 ret = ioctl(s->vmfd, type, arg);
1576 if (ret == -1) {
1577 ret = -errno;
1578 }
1579 return ret;
1580 }
1581
1582 int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
1583 {
1584 int ret;
1585 void *arg;
1586 va_list ap;
1587
1588 va_start(ap, type);
1589 arg = va_arg(ap, void *);
1590 va_end(ap);
1591
1592 ret = ioctl(env->kvm_fd, type, arg);
1593 if (ret == -1) {
1594 ret = -errno;
1595 }
1596 return ret;
1597 }
1598
1599 int kvm_has_sync_mmu(void)
1600 {
1601 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1602 }
1603
1604 int kvm_has_vcpu_events(void)
1605 {
1606 return kvm_state->vcpu_events;
1607 }
1608
1609 int kvm_has_robust_singlestep(void)
1610 {
1611 return kvm_state->robust_singlestep;
1612 }
1613
1614 int kvm_has_debugregs(void)
1615 {
1616 return kvm_state->debugregs;
1617 }
1618
1619 int kvm_has_xsave(void)
1620 {
1621 return kvm_state->xsave;
1622 }
1623
1624 int kvm_has_xcrs(void)
1625 {
1626 return kvm_state->xcrs;
1627 }
1628
1629 int kvm_has_pit_state2(void)
1630 {
1631 return kvm_state->pit_state2;
1632 }
1633
1634 int kvm_has_many_ioeventfds(void)
1635 {
1636 if (!kvm_enabled()) {
1637 return 0;
1638 }
1639 return kvm_state->many_ioeventfds;
1640 }
1641
1642 int kvm_has_gsi_routing(void)
1643 {
1644 #ifdef KVM_CAP_IRQ_ROUTING
1645 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1646 #else
1647 return false;
1648 #endif
1649 }
1650
1651 int kvm_allows_irq0_override(void)
1652 {
1653 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1654 }
1655
1656 void kvm_setup_guest_memory(void *start, size_t size)
1657 {
1658 if (!kvm_has_sync_mmu()) {
1659 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1660
1661 if (ret) {
1662 perror("qemu_madvise");
1663 fprintf(stderr,
1664 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1665 exit(1);
1666 }
1667 }
1668 }
1669
1670 #ifdef KVM_CAP_SET_GUEST_DEBUG
1671 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
1672 target_ulong pc)
1673 {
1674 struct kvm_sw_breakpoint *bp;
1675
1676 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1677 if (bp->pc == pc) {
1678 return bp;
1679 }
1680 }
1681 return NULL;
1682 }
1683
1684 int kvm_sw_breakpoints_active(CPUArchState *env)
1685 {
1686 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1687 }
1688
1689 struct kvm_set_guest_debug_data {
1690 struct kvm_guest_debug dbg;
1691 CPUArchState *env;
1692 int err;
1693 };
1694
1695 static void kvm_invoke_set_guest_debug(void *data)
1696 {
1697 struct kvm_set_guest_debug_data *dbg_data = data;
1698 CPUArchState *env = dbg_data->env;
1699
1700 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1701 }
1702
1703 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1704 {
1705 struct kvm_set_guest_debug_data data;
1706
1707 data.dbg.control = reinject_trap;
1708
1709 if (env->singlestep_enabled) {
1710 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1711 }
1712 kvm_arch_update_guest_debug(env, &data.dbg);
1713 data.env = env;
1714
1715 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1716 return data.err;
1717 }
1718
1719 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1720 target_ulong len, int type)
1721 {
1722 struct kvm_sw_breakpoint *bp;
1723 CPUArchState *env;
1724 int err;
1725
1726 if (type == GDB_BREAKPOINT_SW) {
1727 bp = kvm_find_sw_breakpoint(current_env, addr);
1728 if (bp) {
1729 bp->use_count++;
1730 return 0;
1731 }
1732
1733 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1734 if (!bp) {
1735 return -ENOMEM;
1736 }
1737
1738 bp->pc = addr;
1739 bp->use_count = 1;
1740 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1741 if (err) {
1742 g_free(bp);
1743 return err;
1744 }
1745
1746 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1747 bp, entry);
1748 } else {
1749 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1750 if (err) {
1751 return err;
1752 }
1753 }
1754
1755 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1756 err = kvm_update_guest_debug(env, 0);
1757 if (err) {
1758 return err;
1759 }
1760 }
1761 return 0;
1762 }
1763
1764 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1765 target_ulong len, int type)
1766 {
1767 struct kvm_sw_breakpoint *bp;
1768 CPUArchState *env;
1769 int err;
1770
1771 if (type == GDB_BREAKPOINT_SW) {
1772 bp = kvm_find_sw_breakpoint(current_env, addr);
1773 if (!bp) {
1774 return -ENOENT;
1775 }
1776
1777 if (bp->use_count > 1) {
1778 bp->use_count--;
1779 return 0;
1780 }
1781
1782 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1783 if (err) {
1784 return err;
1785 }
1786
1787 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1788 g_free(bp);
1789 } else {
1790 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1791 if (err) {
1792 return err;
1793 }
1794 }
1795
1796 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1797 err = kvm_update_guest_debug(env, 0);
1798 if (err) {
1799 return err;
1800 }
1801 }
1802 return 0;
1803 }
1804
1805 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1806 {
1807 struct kvm_sw_breakpoint *bp, *next;
1808 KVMState *s = current_env->kvm_state;
1809 CPUArchState *env;
1810
1811 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1812 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1813 /* Try harder to find a CPU that currently sees the breakpoint. */
1814 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1815 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1816 break;
1817 }
1818 }
1819 }
1820 }
1821 kvm_arch_remove_all_hw_breakpoints();
1822
1823 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1824 kvm_update_guest_debug(env, 0);
1825 }
1826 }
1827
1828 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1829
1830 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1831 {
1832 return -EINVAL;
1833 }
1834
1835 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1836 target_ulong len, int type)
1837 {
1838 return -EINVAL;
1839 }
1840
1841 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1842 target_ulong len, int type)
1843 {
1844 return -EINVAL;
1845 }
1846
1847 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1848 {
1849 }
1850 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1851
1852 int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1853 {
1854 struct kvm_signal_mask *sigmask;
1855 int r;
1856
1857 if (!sigset) {
1858 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1859 }
1860
1861 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1862
1863 sigmask->len = 8;
1864 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1865 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1866 g_free(sigmask);
1867
1868 return r;
1869 }
1870
1871 int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1872 uint32_t size)
1873 {
1874 int ret;
1875 struct kvm_ioeventfd iofd;
1876
1877 iofd.datamatch = val;
1878 iofd.addr = addr;
1879 iofd.len = size;
1880 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1881 iofd.fd = fd;
1882
1883 if (!kvm_enabled()) {
1884 return -ENOSYS;
1885 }
1886
1887 if (!assign) {
1888 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1889 }
1890
1891 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1892
1893 if (ret < 0) {
1894 return -errno;
1895 }
1896
1897 return 0;
1898 }
1899
1900 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1901 {
1902 struct kvm_ioeventfd kick = {
1903 .datamatch = val,
1904 .addr = addr,
1905 .len = 2,
1906 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1907 .fd = fd,
1908 };
1909 int r;
1910 if (!kvm_enabled()) {
1911 return -ENOSYS;
1912 }
1913 if (!assign) {
1914 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1915 }
1916 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1917 if (r < 0) {
1918 return r;
1919 }
1920 return 0;
1921 }
1922
1923 int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
1924 {
1925 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1926 }
1927
1928 int kvm_on_sigbus(int code, void *addr)
1929 {
1930 return kvm_arch_on_sigbus(code, addr);
1931 }