]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
kvm: Don't walk memory_size == 0 slots in kvm_client_migration_log
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30
31 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
32 #define PAGE_SIZE TARGET_PAGE_SIZE
33
34 //#define DEBUG_KVM
35
36 #ifdef DEBUG_KVM
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41 do { } while (0)
42 #endif
43
44 typedef struct KVMSlot
45 {
46 target_phys_addr_t start_addr;
47 ram_addr_t memory_size;
48 ram_addr_t phys_offset;
49 int slot;
50 int flags;
51 } KVMSlot;
52
53 typedef struct kvm_dirty_log KVMDirtyLog;
54
55 struct KVMState
56 {
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int coalesced_mmio;
61 #ifdef KVM_CAP_COALESCED_MMIO
62 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
63 #endif
64 int broken_set_mem_region;
65 int migration_log;
66 int vcpu_events;
67 int robust_singlestep;
68 int debugregs;
69 #ifdef KVM_CAP_SET_GUEST_DEBUG
70 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
71 #endif
72 int irqchip_in_kernel;
73 int pit_in_kernel;
74 int xsave, xcrs;
75 };
76
77 static KVMState *kvm_state;
78
79 static KVMSlot *kvm_alloc_slot(KVMState *s)
80 {
81 int i;
82
83 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
84 /* KVM private memory slots */
85 if (i >= 8 && i < 12)
86 continue;
87 if (s->slots[i].memory_size == 0)
88 return &s->slots[i];
89 }
90
91 fprintf(stderr, "%s: no free slot available\n", __func__);
92 abort();
93 }
94
95 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
96 target_phys_addr_t start_addr,
97 target_phys_addr_t end_addr)
98 {
99 int i;
100
101 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
102 KVMSlot *mem = &s->slots[i];
103
104 if (start_addr == mem->start_addr &&
105 end_addr == mem->start_addr + mem->memory_size) {
106 return mem;
107 }
108 }
109
110 return NULL;
111 }
112
113 /*
114 * Find overlapping slot with lowest start address
115 */
116 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
117 target_phys_addr_t start_addr,
118 target_phys_addr_t end_addr)
119 {
120 KVMSlot *found = NULL;
121 int i;
122
123 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
124 KVMSlot *mem = &s->slots[i];
125
126 if (mem->memory_size == 0 ||
127 (found && found->start_addr < mem->start_addr)) {
128 continue;
129 }
130
131 if (end_addr > mem->start_addr &&
132 start_addr < mem->start_addr + mem->memory_size) {
133 found = mem;
134 }
135 }
136
137 return found;
138 }
139
140 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
141 {
142 struct kvm_userspace_memory_region mem;
143
144 mem.slot = slot->slot;
145 mem.guest_phys_addr = slot->start_addr;
146 mem.memory_size = slot->memory_size;
147 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
148 mem.flags = slot->flags;
149 if (s->migration_log) {
150 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
151 }
152 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
153 }
154
155 static void kvm_reset_vcpu(void *opaque)
156 {
157 CPUState *env = opaque;
158
159 kvm_arch_reset_vcpu(env);
160 }
161
162 int kvm_irqchip_in_kernel(void)
163 {
164 return kvm_state->irqchip_in_kernel;
165 }
166
167 int kvm_pit_in_kernel(void)
168 {
169 return kvm_state->pit_in_kernel;
170 }
171
172
173 int kvm_init_vcpu(CPUState *env)
174 {
175 KVMState *s = kvm_state;
176 long mmap_size;
177 int ret;
178
179 DPRINTF("kvm_init_vcpu\n");
180
181 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
182 if (ret < 0) {
183 DPRINTF("kvm_create_vcpu failed\n");
184 goto err;
185 }
186
187 env->kvm_fd = ret;
188 env->kvm_state = s;
189
190 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
191 if (mmap_size < 0) {
192 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
193 goto err;
194 }
195
196 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
197 env->kvm_fd, 0);
198 if (env->kvm_run == MAP_FAILED) {
199 ret = -errno;
200 DPRINTF("mmap'ing vcpu state failed\n");
201 goto err;
202 }
203
204 #ifdef KVM_CAP_COALESCED_MMIO
205 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
206 s->coalesced_mmio_ring = (void *) env->kvm_run +
207 s->coalesced_mmio * PAGE_SIZE;
208 #endif
209
210 ret = kvm_arch_init_vcpu(env);
211 if (ret == 0) {
212 qemu_register_reset(kvm_reset_vcpu, env);
213 kvm_arch_reset_vcpu(env);
214 }
215 err:
216 return ret;
217 }
218
219 /*
220 * dirty pages logging control
221 */
222 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
223 ram_addr_t size, int flags, int mask)
224 {
225 KVMState *s = kvm_state;
226 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
227 int old_flags;
228
229 if (mem == NULL) {
230 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
231 TARGET_FMT_plx "\n", __func__, phys_addr,
232 (target_phys_addr_t)(phys_addr + size - 1));
233 return -EINVAL;
234 }
235
236 old_flags = mem->flags;
237
238 flags = (mem->flags & ~mask) | flags;
239 mem->flags = flags;
240
241 /* If nothing changed effectively, no need to issue ioctl */
242 if (s->migration_log) {
243 flags |= KVM_MEM_LOG_DIRTY_PAGES;
244 }
245 if (flags == old_flags) {
246 return 0;
247 }
248
249 return kvm_set_user_memory_region(s, mem);
250 }
251
252 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
253 {
254 return kvm_dirty_pages_log_change(phys_addr, size,
255 KVM_MEM_LOG_DIRTY_PAGES,
256 KVM_MEM_LOG_DIRTY_PAGES);
257 }
258
259 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
260 {
261 return kvm_dirty_pages_log_change(phys_addr, size,
262 0,
263 KVM_MEM_LOG_DIRTY_PAGES);
264 }
265
266 static int kvm_set_migration_log(int enable)
267 {
268 KVMState *s = kvm_state;
269 KVMSlot *mem;
270 int i, err;
271
272 s->migration_log = enable;
273
274 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
275 mem = &s->slots[i];
276
277 if (!mem->memory_size) {
278 continue;
279 }
280 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
281 continue;
282 }
283 err = kvm_set_user_memory_region(s, mem);
284 if (err) {
285 return err;
286 }
287 }
288 return 0;
289 }
290
291 /* get kvm's dirty pages bitmap and update qemu's */
292 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
293 unsigned long *bitmap,
294 unsigned long offset,
295 unsigned long mem_size)
296 {
297 unsigned int i, j;
298 unsigned long page_number, addr, addr1, c;
299 ram_addr_t ram_addr;
300 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
301 HOST_LONG_BITS;
302
303 /*
304 * bitmap-traveling is faster than memory-traveling (for addr...)
305 * especially when most of the memory is not dirty.
306 */
307 for (i = 0; i < len; i++) {
308 if (bitmap[i] != 0) {
309 c = leul_to_cpu(bitmap[i]);
310 do {
311 j = ffsl(c) - 1;
312 c &= ~(1ul << j);
313 page_number = i * HOST_LONG_BITS + j;
314 addr1 = page_number * TARGET_PAGE_SIZE;
315 addr = offset + addr1;
316 ram_addr = cpu_get_physical_page_desc(addr);
317 cpu_physical_memory_set_dirty(ram_addr);
318 } while (c != 0);
319 }
320 }
321 return 0;
322 }
323
324 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
325
326 /**
327 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
328 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
329 * This means all bits are set to dirty.
330 *
331 * @start_add: start of logged region.
332 * @end_addr: end of logged region.
333 */
334 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
335 target_phys_addr_t end_addr)
336 {
337 KVMState *s = kvm_state;
338 unsigned long size, allocated_size = 0;
339 KVMDirtyLog d;
340 KVMSlot *mem;
341 int ret = 0;
342
343 d.dirty_bitmap = NULL;
344 while (start_addr < end_addr) {
345 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
346 if (mem == NULL) {
347 break;
348 }
349
350 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
351 if (!d.dirty_bitmap) {
352 d.dirty_bitmap = qemu_malloc(size);
353 } else if (size > allocated_size) {
354 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
355 }
356 allocated_size = size;
357 memset(d.dirty_bitmap, 0, allocated_size);
358
359 d.slot = mem->slot;
360
361 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
362 DPRINTF("ioctl failed %d\n", errno);
363 ret = -1;
364 break;
365 }
366
367 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
368 mem->start_addr, mem->memory_size);
369 start_addr = mem->start_addr + mem->memory_size;
370 }
371 qemu_free(d.dirty_bitmap);
372
373 return ret;
374 }
375
376 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
377 {
378 int ret = -ENOSYS;
379 #ifdef KVM_CAP_COALESCED_MMIO
380 KVMState *s = kvm_state;
381
382 if (s->coalesced_mmio) {
383 struct kvm_coalesced_mmio_zone zone;
384
385 zone.addr = start;
386 zone.size = size;
387
388 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
389 }
390 #endif
391
392 return ret;
393 }
394
395 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
396 {
397 int ret = -ENOSYS;
398 #ifdef KVM_CAP_COALESCED_MMIO
399 KVMState *s = kvm_state;
400
401 if (s->coalesced_mmio) {
402 struct kvm_coalesced_mmio_zone zone;
403
404 zone.addr = start;
405 zone.size = size;
406
407 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
408 }
409 #endif
410
411 return ret;
412 }
413
414 int kvm_check_extension(KVMState *s, unsigned int extension)
415 {
416 int ret;
417
418 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
419 if (ret < 0) {
420 ret = 0;
421 }
422
423 return ret;
424 }
425
426 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
427 ram_addr_t size,
428 ram_addr_t phys_offset)
429 {
430 KVMState *s = kvm_state;
431 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
432 KVMSlot *mem, old;
433 int err;
434
435 if (start_addr & ~TARGET_PAGE_MASK) {
436 if (flags >= IO_MEM_UNASSIGNED) {
437 if (!kvm_lookup_overlapping_slot(s, start_addr,
438 start_addr + size)) {
439 return;
440 }
441 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
442 } else {
443 fprintf(stderr, "Only page-aligned memory slots supported\n");
444 }
445 abort();
446 }
447
448 /* KVM does not support read-only slots */
449 phys_offset &= ~IO_MEM_ROM;
450
451 while (1) {
452 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
453 if (!mem) {
454 break;
455 }
456
457 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
458 (start_addr + size <= mem->start_addr + mem->memory_size) &&
459 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
460 /* The new slot fits into the existing one and comes with
461 * identical parameters - nothing to be done. */
462 return;
463 }
464
465 old = *mem;
466
467 /* unregister the overlapping slot */
468 mem->memory_size = 0;
469 err = kvm_set_user_memory_region(s, mem);
470 if (err) {
471 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
472 __func__, strerror(-err));
473 abort();
474 }
475
476 /* Workaround for older KVM versions: we can't join slots, even not by
477 * unregistering the previous ones and then registering the larger
478 * slot. We have to maintain the existing fragmentation. Sigh.
479 *
480 * This workaround assumes that the new slot starts at the same
481 * address as the first existing one. If not or if some overlapping
482 * slot comes around later, we will fail (not seen in practice so far)
483 * - and actually require a recent KVM version. */
484 if (s->broken_set_mem_region &&
485 old.start_addr == start_addr && old.memory_size < size &&
486 flags < IO_MEM_UNASSIGNED) {
487 mem = kvm_alloc_slot(s);
488 mem->memory_size = old.memory_size;
489 mem->start_addr = old.start_addr;
490 mem->phys_offset = old.phys_offset;
491 mem->flags = 0;
492
493 err = kvm_set_user_memory_region(s, mem);
494 if (err) {
495 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
496 strerror(-err));
497 abort();
498 }
499
500 start_addr += old.memory_size;
501 phys_offset += old.memory_size;
502 size -= old.memory_size;
503 continue;
504 }
505
506 /* register prefix slot */
507 if (old.start_addr < start_addr) {
508 mem = kvm_alloc_slot(s);
509 mem->memory_size = start_addr - old.start_addr;
510 mem->start_addr = old.start_addr;
511 mem->phys_offset = old.phys_offset;
512 mem->flags = 0;
513
514 err = kvm_set_user_memory_region(s, mem);
515 if (err) {
516 fprintf(stderr, "%s: error registering prefix slot: %s\n",
517 __func__, strerror(-err));
518 abort();
519 }
520 }
521
522 /* register suffix slot */
523 if (old.start_addr + old.memory_size > start_addr + size) {
524 ram_addr_t size_delta;
525
526 mem = kvm_alloc_slot(s);
527 mem->start_addr = start_addr + size;
528 size_delta = mem->start_addr - old.start_addr;
529 mem->memory_size = old.memory_size - size_delta;
530 mem->phys_offset = old.phys_offset + size_delta;
531 mem->flags = 0;
532
533 err = kvm_set_user_memory_region(s, mem);
534 if (err) {
535 fprintf(stderr, "%s: error registering suffix slot: %s\n",
536 __func__, strerror(-err));
537 abort();
538 }
539 }
540 }
541
542 /* in case the KVM bug workaround already "consumed" the new slot */
543 if (!size)
544 return;
545
546 /* KVM does not need to know about this memory */
547 if (flags >= IO_MEM_UNASSIGNED)
548 return;
549
550 mem = kvm_alloc_slot(s);
551 mem->memory_size = size;
552 mem->start_addr = start_addr;
553 mem->phys_offset = phys_offset;
554 mem->flags = 0;
555
556 err = kvm_set_user_memory_region(s, mem);
557 if (err) {
558 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
559 strerror(-err));
560 abort();
561 }
562 }
563
564 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
565 target_phys_addr_t start_addr,
566 ram_addr_t size,
567 ram_addr_t phys_offset)
568 {
569 kvm_set_phys_mem(start_addr, size, phys_offset);
570 }
571
572 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
573 target_phys_addr_t start_addr,
574 target_phys_addr_t end_addr)
575 {
576 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
577 }
578
579 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
580 int enable)
581 {
582 return kvm_set_migration_log(enable);
583 }
584
585 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
586 .set_memory = kvm_client_set_memory,
587 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
588 .migration_log = kvm_client_migration_log,
589 };
590
591 int kvm_init(int smp_cpus)
592 {
593 static const char upgrade_note[] =
594 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
595 "(see http://sourceforge.net/projects/kvm).\n";
596 KVMState *s;
597 int ret;
598 int i;
599
600 s = qemu_mallocz(sizeof(KVMState));
601
602 #ifdef KVM_CAP_SET_GUEST_DEBUG
603 QTAILQ_INIT(&s->kvm_sw_breakpoints);
604 #endif
605 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
606 s->slots[i].slot = i;
607
608 s->vmfd = -1;
609 s->fd = qemu_open("/dev/kvm", O_RDWR);
610 if (s->fd == -1) {
611 fprintf(stderr, "Could not access KVM kernel module: %m\n");
612 ret = -errno;
613 goto err;
614 }
615
616 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
617 if (ret < KVM_API_VERSION) {
618 if (ret > 0)
619 ret = -EINVAL;
620 fprintf(stderr, "kvm version too old\n");
621 goto err;
622 }
623
624 if (ret > KVM_API_VERSION) {
625 ret = -EINVAL;
626 fprintf(stderr, "kvm version not supported\n");
627 goto err;
628 }
629
630 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
631 if (s->vmfd < 0) {
632 #ifdef TARGET_S390X
633 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
634 "your host kernel command line\n");
635 #endif
636 goto err;
637 }
638
639 /* initially, KVM allocated its own memory and we had to jump through
640 * hooks to make phys_ram_base point to this. Modern versions of KVM
641 * just use a user allocated buffer so we can use regular pages
642 * unmodified. Make sure we have a sufficiently modern version of KVM.
643 */
644 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
645 ret = -EINVAL;
646 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
647 upgrade_note);
648 goto err;
649 }
650
651 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
652 * destroyed properly. Since we rely on this capability, refuse to work
653 * with any kernel without this capability. */
654 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
655 ret = -EINVAL;
656
657 fprintf(stderr,
658 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
659 upgrade_note);
660 goto err;
661 }
662
663 s->coalesced_mmio = 0;
664 #ifdef KVM_CAP_COALESCED_MMIO
665 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
666 s->coalesced_mmio_ring = NULL;
667 #endif
668
669 s->broken_set_mem_region = 1;
670 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
671 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
672 if (ret > 0) {
673 s->broken_set_mem_region = 0;
674 }
675 #endif
676
677 s->vcpu_events = 0;
678 #ifdef KVM_CAP_VCPU_EVENTS
679 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
680 #endif
681
682 s->robust_singlestep = 0;
683 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
684 s->robust_singlestep =
685 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
686 #endif
687
688 s->debugregs = 0;
689 #ifdef KVM_CAP_DEBUGREGS
690 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
691 #endif
692
693 s->xsave = 0;
694 #ifdef KVM_CAP_XSAVE
695 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
696 #endif
697
698 s->xcrs = 0;
699 #ifdef KVM_CAP_XCRS
700 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
701 #endif
702
703 ret = kvm_arch_init(s, smp_cpus);
704 if (ret < 0)
705 goto err;
706
707 kvm_state = s;
708 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
709
710 return 0;
711
712 err:
713 if (s) {
714 if (s->vmfd != -1)
715 close(s->vmfd);
716 if (s->fd != -1)
717 close(s->fd);
718 }
719 qemu_free(s);
720
721 return ret;
722 }
723
724 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
725 uint32_t count)
726 {
727 int i;
728 uint8_t *ptr = data;
729
730 for (i = 0; i < count; i++) {
731 if (direction == KVM_EXIT_IO_IN) {
732 switch (size) {
733 case 1:
734 stb_p(ptr, cpu_inb(port));
735 break;
736 case 2:
737 stw_p(ptr, cpu_inw(port));
738 break;
739 case 4:
740 stl_p(ptr, cpu_inl(port));
741 break;
742 }
743 } else {
744 switch (size) {
745 case 1:
746 cpu_outb(port, ldub_p(ptr));
747 break;
748 case 2:
749 cpu_outw(port, lduw_p(ptr));
750 break;
751 case 4:
752 cpu_outl(port, ldl_p(ptr));
753 break;
754 }
755 }
756
757 ptr += size;
758 }
759
760 return 1;
761 }
762
763 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
764 static void kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
765 {
766
767 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
768 int i;
769
770 fprintf(stderr, "KVM internal error. Suberror: %d\n",
771 run->internal.suberror);
772
773 for (i = 0; i < run->internal.ndata; ++i) {
774 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
775 i, (uint64_t)run->internal.data[i]);
776 }
777 }
778 cpu_dump_state(env, stderr, fprintf, 0);
779 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
780 fprintf(stderr, "emulation failure\n");
781 if (!kvm_arch_stop_on_emulation_error(env))
782 return;
783 }
784 /* FIXME: Should trigger a qmp message to let management know
785 * something went wrong.
786 */
787 vm_stop(0);
788 }
789 #endif
790
791 void kvm_flush_coalesced_mmio_buffer(void)
792 {
793 #ifdef KVM_CAP_COALESCED_MMIO
794 KVMState *s = kvm_state;
795 if (s->coalesced_mmio_ring) {
796 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
797 while (ring->first != ring->last) {
798 struct kvm_coalesced_mmio *ent;
799
800 ent = &ring->coalesced_mmio[ring->first];
801
802 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
803 smp_wmb();
804 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
805 }
806 }
807 #endif
808 }
809
810 static void do_kvm_cpu_synchronize_state(void *_env)
811 {
812 CPUState *env = _env;
813
814 if (!env->kvm_vcpu_dirty) {
815 kvm_arch_get_registers(env);
816 env->kvm_vcpu_dirty = 1;
817 }
818 }
819
820 void kvm_cpu_synchronize_state(CPUState *env)
821 {
822 if (!env->kvm_vcpu_dirty)
823 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
824 }
825
826 void kvm_cpu_synchronize_post_reset(CPUState *env)
827 {
828 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
829 env->kvm_vcpu_dirty = 0;
830 }
831
832 void kvm_cpu_synchronize_post_init(CPUState *env)
833 {
834 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
835 env->kvm_vcpu_dirty = 0;
836 }
837
838 int kvm_cpu_exec(CPUState *env)
839 {
840 struct kvm_run *run = env->kvm_run;
841 int ret;
842
843 DPRINTF("kvm_cpu_exec()\n");
844
845 do {
846 #ifndef CONFIG_IOTHREAD
847 if (env->exit_request) {
848 DPRINTF("interrupt exit requested\n");
849 ret = 0;
850 break;
851 }
852 #endif
853
854 if (kvm_arch_process_irqchip_events(env)) {
855 ret = 0;
856 break;
857 }
858
859 if (env->kvm_vcpu_dirty) {
860 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
861 env->kvm_vcpu_dirty = 0;
862 }
863
864 kvm_arch_pre_run(env, run);
865 cpu_single_env = NULL;
866 qemu_mutex_unlock_iothread();
867 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
868 qemu_mutex_lock_iothread();
869 cpu_single_env = env;
870 kvm_arch_post_run(env, run);
871
872 if (ret == -EINTR || ret == -EAGAIN) {
873 cpu_exit(env);
874 DPRINTF("io window exit\n");
875 ret = 0;
876 break;
877 }
878
879 if (ret < 0) {
880 DPRINTF("kvm run failed %s\n", strerror(-ret));
881 abort();
882 }
883
884 kvm_flush_coalesced_mmio_buffer();
885
886 ret = 0; /* exit loop */
887 switch (run->exit_reason) {
888 case KVM_EXIT_IO:
889 DPRINTF("handle_io\n");
890 ret = kvm_handle_io(run->io.port,
891 (uint8_t *)run + run->io.data_offset,
892 run->io.direction,
893 run->io.size,
894 run->io.count);
895 break;
896 case KVM_EXIT_MMIO:
897 DPRINTF("handle_mmio\n");
898 cpu_physical_memory_rw(run->mmio.phys_addr,
899 run->mmio.data,
900 run->mmio.len,
901 run->mmio.is_write);
902 ret = 1;
903 break;
904 case KVM_EXIT_IRQ_WINDOW_OPEN:
905 DPRINTF("irq_window_open\n");
906 break;
907 case KVM_EXIT_SHUTDOWN:
908 DPRINTF("shutdown\n");
909 qemu_system_reset_request();
910 ret = 1;
911 break;
912 case KVM_EXIT_UNKNOWN:
913 DPRINTF("kvm_exit_unknown\n");
914 break;
915 case KVM_EXIT_FAIL_ENTRY:
916 DPRINTF("kvm_exit_fail_entry\n");
917 break;
918 case KVM_EXIT_EXCEPTION:
919 DPRINTF("kvm_exit_exception\n");
920 break;
921 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
922 case KVM_EXIT_INTERNAL_ERROR:
923 kvm_handle_internal_error(env, run);
924 break;
925 #endif
926 case KVM_EXIT_DEBUG:
927 DPRINTF("kvm_exit_debug\n");
928 #ifdef KVM_CAP_SET_GUEST_DEBUG
929 if (kvm_arch_debug(&run->debug.arch)) {
930 env->exception_index = EXCP_DEBUG;
931 return 0;
932 }
933 /* re-enter, this exception was guest-internal */
934 ret = 1;
935 #endif /* KVM_CAP_SET_GUEST_DEBUG */
936 break;
937 default:
938 DPRINTF("kvm_arch_handle_exit\n");
939 ret = kvm_arch_handle_exit(env, run);
940 break;
941 }
942 } while (ret > 0);
943
944 if (env->exit_request) {
945 env->exit_request = 0;
946 env->exception_index = EXCP_INTERRUPT;
947 }
948
949 return ret;
950 }
951
952 int kvm_ioctl(KVMState *s, int type, ...)
953 {
954 int ret;
955 void *arg;
956 va_list ap;
957
958 va_start(ap, type);
959 arg = va_arg(ap, void *);
960 va_end(ap);
961
962 ret = ioctl(s->fd, type, arg);
963 if (ret == -1)
964 ret = -errno;
965
966 return ret;
967 }
968
969 int kvm_vm_ioctl(KVMState *s, int type, ...)
970 {
971 int ret;
972 void *arg;
973 va_list ap;
974
975 va_start(ap, type);
976 arg = va_arg(ap, void *);
977 va_end(ap);
978
979 ret = ioctl(s->vmfd, type, arg);
980 if (ret == -1)
981 ret = -errno;
982
983 return ret;
984 }
985
986 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
987 {
988 int ret;
989 void *arg;
990 va_list ap;
991
992 va_start(ap, type);
993 arg = va_arg(ap, void *);
994 va_end(ap);
995
996 ret = ioctl(env->kvm_fd, type, arg);
997 if (ret == -1)
998 ret = -errno;
999
1000 return ret;
1001 }
1002
1003 int kvm_has_sync_mmu(void)
1004 {
1005 #ifdef KVM_CAP_SYNC_MMU
1006 KVMState *s = kvm_state;
1007
1008 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
1009 #else
1010 return 0;
1011 #endif
1012 }
1013
1014 int kvm_has_vcpu_events(void)
1015 {
1016 return kvm_state->vcpu_events;
1017 }
1018
1019 int kvm_has_robust_singlestep(void)
1020 {
1021 return kvm_state->robust_singlestep;
1022 }
1023
1024 int kvm_has_debugregs(void)
1025 {
1026 return kvm_state->debugregs;
1027 }
1028
1029 int kvm_has_xsave(void)
1030 {
1031 return kvm_state->xsave;
1032 }
1033
1034 int kvm_has_xcrs(void)
1035 {
1036 return kvm_state->xcrs;
1037 }
1038
1039 void kvm_setup_guest_memory(void *start, size_t size)
1040 {
1041 if (!kvm_has_sync_mmu()) {
1042 #ifdef MADV_DONTFORK
1043 int ret = madvise(start, size, MADV_DONTFORK);
1044
1045 if (ret) {
1046 perror("madvice");
1047 exit(1);
1048 }
1049 #else
1050 fprintf(stderr,
1051 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1052 exit(1);
1053 #endif
1054 }
1055 }
1056
1057 #ifdef KVM_CAP_SET_GUEST_DEBUG
1058 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1059 target_ulong pc)
1060 {
1061 struct kvm_sw_breakpoint *bp;
1062
1063 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1064 if (bp->pc == pc)
1065 return bp;
1066 }
1067 return NULL;
1068 }
1069
1070 int kvm_sw_breakpoints_active(CPUState *env)
1071 {
1072 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1073 }
1074
1075 struct kvm_set_guest_debug_data {
1076 struct kvm_guest_debug dbg;
1077 CPUState *env;
1078 int err;
1079 };
1080
1081 static void kvm_invoke_set_guest_debug(void *data)
1082 {
1083 struct kvm_set_guest_debug_data *dbg_data = data;
1084 CPUState *env = dbg_data->env;
1085
1086 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1087 }
1088
1089 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1090 {
1091 struct kvm_set_guest_debug_data data;
1092
1093 data.dbg.control = reinject_trap;
1094
1095 if (env->singlestep_enabled) {
1096 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1097 }
1098 kvm_arch_update_guest_debug(env, &data.dbg);
1099 data.env = env;
1100
1101 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1102 return data.err;
1103 }
1104
1105 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1106 target_ulong len, int type)
1107 {
1108 struct kvm_sw_breakpoint *bp;
1109 CPUState *env;
1110 int err;
1111
1112 if (type == GDB_BREAKPOINT_SW) {
1113 bp = kvm_find_sw_breakpoint(current_env, addr);
1114 if (bp) {
1115 bp->use_count++;
1116 return 0;
1117 }
1118
1119 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1120 if (!bp)
1121 return -ENOMEM;
1122
1123 bp->pc = addr;
1124 bp->use_count = 1;
1125 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1126 if (err) {
1127 free(bp);
1128 return err;
1129 }
1130
1131 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1132 bp, entry);
1133 } else {
1134 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1135 if (err)
1136 return err;
1137 }
1138
1139 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1140 err = kvm_update_guest_debug(env, 0);
1141 if (err)
1142 return err;
1143 }
1144 return 0;
1145 }
1146
1147 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1148 target_ulong len, int type)
1149 {
1150 struct kvm_sw_breakpoint *bp;
1151 CPUState *env;
1152 int err;
1153
1154 if (type == GDB_BREAKPOINT_SW) {
1155 bp = kvm_find_sw_breakpoint(current_env, addr);
1156 if (!bp)
1157 return -ENOENT;
1158
1159 if (bp->use_count > 1) {
1160 bp->use_count--;
1161 return 0;
1162 }
1163
1164 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1165 if (err)
1166 return err;
1167
1168 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1169 qemu_free(bp);
1170 } else {
1171 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1172 if (err)
1173 return err;
1174 }
1175
1176 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1177 err = kvm_update_guest_debug(env, 0);
1178 if (err)
1179 return err;
1180 }
1181 return 0;
1182 }
1183
1184 void kvm_remove_all_breakpoints(CPUState *current_env)
1185 {
1186 struct kvm_sw_breakpoint *bp, *next;
1187 KVMState *s = current_env->kvm_state;
1188 CPUState *env;
1189
1190 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1191 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1192 /* Try harder to find a CPU that currently sees the breakpoint. */
1193 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1194 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1195 break;
1196 }
1197 }
1198 }
1199 kvm_arch_remove_all_hw_breakpoints();
1200
1201 for (env = first_cpu; env != NULL; env = env->next_cpu)
1202 kvm_update_guest_debug(env, 0);
1203 }
1204
1205 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1206
1207 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1208 {
1209 return -EINVAL;
1210 }
1211
1212 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1213 target_ulong len, int type)
1214 {
1215 return -EINVAL;
1216 }
1217
1218 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1219 target_ulong len, int type)
1220 {
1221 return -EINVAL;
1222 }
1223
1224 void kvm_remove_all_breakpoints(CPUState *current_env)
1225 {
1226 }
1227 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1228
1229 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1230 {
1231 struct kvm_signal_mask *sigmask;
1232 int r;
1233
1234 if (!sigset)
1235 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1236
1237 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1238
1239 sigmask->len = 8;
1240 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1241 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1242 free(sigmask);
1243
1244 return r;
1245 }
1246
1247 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1248 {
1249 #ifdef KVM_IOEVENTFD
1250 struct kvm_ioeventfd kick = {
1251 .datamatch = val,
1252 .addr = addr,
1253 .len = 2,
1254 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1255 .fd = fd,
1256 };
1257 int r;
1258 if (!kvm_enabled())
1259 return -ENOSYS;
1260 if (!assign)
1261 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1262 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1263 if (r < 0)
1264 return r;
1265 return 0;
1266 #else
1267 return -ENOSYS;
1268 #endif
1269 }