]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
kvm: handle internal error
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29
30 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
31 #define PAGE_SIZE TARGET_PAGE_SIZE
32
33 //#define DEBUG_KVM
34
35 #ifdef DEBUG_KVM
36 #define DPRINTF(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF(fmt, ...) \
40 do { } while (0)
41 #endif
42
43 typedef struct KVMSlot
44 {
45 target_phys_addr_t start_addr;
46 ram_addr_t memory_size;
47 ram_addr_t phys_offset;
48 int slot;
49 int flags;
50 } KVMSlot;
51
52 typedef struct kvm_dirty_log KVMDirtyLog;
53
54 struct KVMState
55 {
56 KVMSlot slots[32];
57 int fd;
58 int vmfd;
59 int coalesced_mmio;
60 #ifdef KVM_CAP_COALESCED_MMIO
61 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
62 #endif
63 int broken_set_mem_region;
64 int migration_log;
65 int vcpu_events;
66 int robust_singlestep;
67 int debugregs;
68 #ifdef KVM_CAP_SET_GUEST_DEBUG
69 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
70 #endif
71 int irqchip_in_kernel;
72 int pit_in_kernel;
73 };
74
75 static KVMState *kvm_state;
76
77 static KVMSlot *kvm_alloc_slot(KVMState *s)
78 {
79 int i;
80
81 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
82 /* KVM private memory slots */
83 if (i >= 8 && i < 12)
84 continue;
85 if (s->slots[i].memory_size == 0)
86 return &s->slots[i];
87 }
88
89 fprintf(stderr, "%s: no free slot available\n", __func__);
90 abort();
91 }
92
93 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
94 target_phys_addr_t start_addr,
95 target_phys_addr_t end_addr)
96 {
97 int i;
98
99 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
100 KVMSlot *mem = &s->slots[i];
101
102 if (start_addr == mem->start_addr &&
103 end_addr == mem->start_addr + mem->memory_size) {
104 return mem;
105 }
106 }
107
108 return NULL;
109 }
110
111 /*
112 * Find overlapping slot with lowest start address
113 */
114 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
115 target_phys_addr_t start_addr,
116 target_phys_addr_t end_addr)
117 {
118 KVMSlot *found = NULL;
119 int i;
120
121 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
122 KVMSlot *mem = &s->slots[i];
123
124 if (mem->memory_size == 0 ||
125 (found && found->start_addr < mem->start_addr)) {
126 continue;
127 }
128
129 if (end_addr > mem->start_addr &&
130 start_addr < mem->start_addr + mem->memory_size) {
131 found = mem;
132 }
133 }
134
135 return found;
136 }
137
138 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
139 {
140 struct kvm_userspace_memory_region mem;
141
142 mem.slot = slot->slot;
143 mem.guest_phys_addr = slot->start_addr;
144 mem.memory_size = slot->memory_size;
145 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
146 mem.flags = slot->flags;
147 if (s->migration_log) {
148 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
149 }
150 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
151 }
152
153 static void kvm_reset_vcpu(void *opaque)
154 {
155 CPUState *env = opaque;
156
157 kvm_arch_reset_vcpu(env);
158 }
159
160 int kvm_irqchip_in_kernel(void)
161 {
162 return kvm_state->irqchip_in_kernel;
163 }
164
165 int kvm_pit_in_kernel(void)
166 {
167 return kvm_state->pit_in_kernel;
168 }
169
170
171 int kvm_init_vcpu(CPUState *env)
172 {
173 KVMState *s = kvm_state;
174 long mmap_size;
175 int ret;
176
177 DPRINTF("kvm_init_vcpu\n");
178
179 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
180 if (ret < 0) {
181 DPRINTF("kvm_create_vcpu failed\n");
182 goto err;
183 }
184
185 env->kvm_fd = ret;
186 env->kvm_state = s;
187
188 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
189 if (mmap_size < 0) {
190 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
191 goto err;
192 }
193
194 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
195 env->kvm_fd, 0);
196 if (env->kvm_run == MAP_FAILED) {
197 ret = -errno;
198 DPRINTF("mmap'ing vcpu state failed\n");
199 goto err;
200 }
201
202 #ifdef KVM_CAP_COALESCED_MMIO
203 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
204 s->coalesced_mmio_ring = (void *) env->kvm_run +
205 s->coalesced_mmio * PAGE_SIZE;
206 #endif
207
208 ret = kvm_arch_init_vcpu(env);
209 if (ret == 0) {
210 qemu_register_reset(kvm_reset_vcpu, env);
211 kvm_arch_reset_vcpu(env);
212 }
213 err:
214 return ret;
215 }
216
217 /*
218 * dirty pages logging control
219 */
220 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
221 ram_addr_t size, int flags, int mask)
222 {
223 KVMState *s = kvm_state;
224 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
225 int old_flags;
226
227 if (mem == NULL) {
228 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
229 TARGET_FMT_plx "\n", __func__, phys_addr,
230 (target_phys_addr_t)(phys_addr + size - 1));
231 return -EINVAL;
232 }
233
234 old_flags = mem->flags;
235
236 flags = (mem->flags & ~mask) | flags;
237 mem->flags = flags;
238
239 /* If nothing changed effectively, no need to issue ioctl */
240 if (s->migration_log) {
241 flags |= KVM_MEM_LOG_DIRTY_PAGES;
242 }
243 if (flags == old_flags) {
244 return 0;
245 }
246
247 return kvm_set_user_memory_region(s, mem);
248 }
249
250 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
251 {
252 return kvm_dirty_pages_log_change(phys_addr, size,
253 KVM_MEM_LOG_DIRTY_PAGES,
254 KVM_MEM_LOG_DIRTY_PAGES);
255 }
256
257 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
258 {
259 return kvm_dirty_pages_log_change(phys_addr, size,
260 0,
261 KVM_MEM_LOG_DIRTY_PAGES);
262 }
263
264 static int kvm_set_migration_log(int enable)
265 {
266 KVMState *s = kvm_state;
267 KVMSlot *mem;
268 int i, err;
269
270 s->migration_log = enable;
271
272 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
273 mem = &s->slots[i];
274
275 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
276 continue;
277 }
278 err = kvm_set_user_memory_region(s, mem);
279 if (err) {
280 return err;
281 }
282 }
283 return 0;
284 }
285
286 static int test_le_bit(unsigned long nr, unsigned char *addr)
287 {
288 return (addr[nr >> 3] >> (nr & 7)) & 1;
289 }
290
291 /**
292 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
293 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
294 * This means all bits are set to dirty.
295 *
296 * @start_add: start of logged region.
297 * @end_addr: end of logged region.
298 */
299 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
300 target_phys_addr_t end_addr)
301 {
302 KVMState *s = kvm_state;
303 unsigned long size, allocated_size = 0;
304 target_phys_addr_t phys_addr;
305 ram_addr_t addr;
306 KVMDirtyLog d;
307 KVMSlot *mem;
308 int ret = 0;
309
310 d.dirty_bitmap = NULL;
311 while (start_addr < end_addr) {
312 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
313 if (mem == NULL) {
314 break;
315 }
316
317 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
318 if (!d.dirty_bitmap) {
319 d.dirty_bitmap = qemu_malloc(size);
320 } else if (size > allocated_size) {
321 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
322 }
323 allocated_size = size;
324 memset(d.dirty_bitmap, 0, allocated_size);
325
326 d.slot = mem->slot;
327
328 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
329 DPRINTF("ioctl failed %d\n", errno);
330 ret = -1;
331 break;
332 }
333
334 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
335 phys_addr < mem->start_addr + mem->memory_size;
336 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
337 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
338 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
339
340 if (test_le_bit(nr, bitmap)) {
341 cpu_physical_memory_set_dirty(addr);
342 }
343 }
344 start_addr = phys_addr;
345 }
346 qemu_free(d.dirty_bitmap);
347
348 return ret;
349 }
350
351 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
352 {
353 int ret = -ENOSYS;
354 #ifdef KVM_CAP_COALESCED_MMIO
355 KVMState *s = kvm_state;
356
357 if (s->coalesced_mmio) {
358 struct kvm_coalesced_mmio_zone zone;
359
360 zone.addr = start;
361 zone.size = size;
362
363 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
364 }
365 #endif
366
367 return ret;
368 }
369
370 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
371 {
372 int ret = -ENOSYS;
373 #ifdef KVM_CAP_COALESCED_MMIO
374 KVMState *s = kvm_state;
375
376 if (s->coalesced_mmio) {
377 struct kvm_coalesced_mmio_zone zone;
378
379 zone.addr = start;
380 zone.size = size;
381
382 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
383 }
384 #endif
385
386 return ret;
387 }
388
389 int kvm_check_extension(KVMState *s, unsigned int extension)
390 {
391 int ret;
392
393 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
394 if (ret < 0) {
395 ret = 0;
396 }
397
398 return ret;
399 }
400
401 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
402 ram_addr_t size,
403 ram_addr_t phys_offset)
404 {
405 KVMState *s = kvm_state;
406 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
407 KVMSlot *mem, old;
408 int err;
409
410 if (start_addr & ~TARGET_PAGE_MASK) {
411 if (flags >= IO_MEM_UNASSIGNED) {
412 if (!kvm_lookup_overlapping_slot(s, start_addr,
413 start_addr + size)) {
414 return;
415 }
416 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
417 } else {
418 fprintf(stderr, "Only page-aligned memory slots supported\n");
419 }
420 abort();
421 }
422
423 /* KVM does not support read-only slots */
424 phys_offset &= ~IO_MEM_ROM;
425
426 while (1) {
427 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
428 if (!mem) {
429 break;
430 }
431
432 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
433 (start_addr + size <= mem->start_addr + mem->memory_size) &&
434 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
435 /* The new slot fits into the existing one and comes with
436 * identical parameters - nothing to be done. */
437 return;
438 }
439
440 old = *mem;
441
442 /* unregister the overlapping slot */
443 mem->memory_size = 0;
444 err = kvm_set_user_memory_region(s, mem);
445 if (err) {
446 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
447 __func__, strerror(-err));
448 abort();
449 }
450
451 /* Workaround for older KVM versions: we can't join slots, even not by
452 * unregistering the previous ones and then registering the larger
453 * slot. We have to maintain the existing fragmentation. Sigh.
454 *
455 * This workaround assumes that the new slot starts at the same
456 * address as the first existing one. If not or if some overlapping
457 * slot comes around later, we will fail (not seen in practice so far)
458 * - and actually require a recent KVM version. */
459 if (s->broken_set_mem_region &&
460 old.start_addr == start_addr && old.memory_size < size &&
461 flags < IO_MEM_UNASSIGNED) {
462 mem = kvm_alloc_slot(s);
463 mem->memory_size = old.memory_size;
464 mem->start_addr = old.start_addr;
465 mem->phys_offset = old.phys_offset;
466 mem->flags = 0;
467
468 err = kvm_set_user_memory_region(s, mem);
469 if (err) {
470 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
471 strerror(-err));
472 abort();
473 }
474
475 start_addr += old.memory_size;
476 phys_offset += old.memory_size;
477 size -= old.memory_size;
478 continue;
479 }
480
481 /* register prefix slot */
482 if (old.start_addr < start_addr) {
483 mem = kvm_alloc_slot(s);
484 mem->memory_size = start_addr - old.start_addr;
485 mem->start_addr = old.start_addr;
486 mem->phys_offset = old.phys_offset;
487 mem->flags = 0;
488
489 err = kvm_set_user_memory_region(s, mem);
490 if (err) {
491 fprintf(stderr, "%s: error registering prefix slot: %s\n",
492 __func__, strerror(-err));
493 abort();
494 }
495 }
496
497 /* register suffix slot */
498 if (old.start_addr + old.memory_size > start_addr + size) {
499 ram_addr_t size_delta;
500
501 mem = kvm_alloc_slot(s);
502 mem->start_addr = start_addr + size;
503 size_delta = mem->start_addr - old.start_addr;
504 mem->memory_size = old.memory_size - size_delta;
505 mem->phys_offset = old.phys_offset + size_delta;
506 mem->flags = 0;
507
508 err = kvm_set_user_memory_region(s, mem);
509 if (err) {
510 fprintf(stderr, "%s: error registering suffix slot: %s\n",
511 __func__, strerror(-err));
512 abort();
513 }
514 }
515 }
516
517 /* in case the KVM bug workaround already "consumed" the new slot */
518 if (!size)
519 return;
520
521 /* KVM does not need to know about this memory */
522 if (flags >= IO_MEM_UNASSIGNED)
523 return;
524
525 mem = kvm_alloc_slot(s);
526 mem->memory_size = size;
527 mem->start_addr = start_addr;
528 mem->phys_offset = phys_offset;
529 mem->flags = 0;
530
531 err = kvm_set_user_memory_region(s, mem);
532 if (err) {
533 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
534 strerror(-err));
535 abort();
536 }
537 }
538
539 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
540 target_phys_addr_t start_addr,
541 ram_addr_t size,
542 ram_addr_t phys_offset)
543 {
544 kvm_set_phys_mem(start_addr, size, phys_offset);
545 }
546
547 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
548 target_phys_addr_t start_addr,
549 target_phys_addr_t end_addr)
550 {
551 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
552 }
553
554 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
555 int enable)
556 {
557 return kvm_set_migration_log(enable);
558 }
559
560 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
561 .set_memory = kvm_client_set_memory,
562 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
563 .migration_log = kvm_client_migration_log,
564 };
565
566 int kvm_init(int smp_cpus)
567 {
568 static const char upgrade_note[] =
569 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
570 "(see http://sourceforge.net/projects/kvm).\n";
571 KVMState *s;
572 int ret;
573 int i;
574
575 if (smp_cpus > 1) {
576 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
577 return -EINVAL;
578 }
579
580 s = qemu_mallocz(sizeof(KVMState));
581
582 #ifdef KVM_CAP_SET_GUEST_DEBUG
583 QTAILQ_INIT(&s->kvm_sw_breakpoints);
584 #endif
585 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
586 s->slots[i].slot = i;
587
588 s->vmfd = -1;
589 s->fd = qemu_open("/dev/kvm", O_RDWR);
590 if (s->fd == -1) {
591 fprintf(stderr, "Could not access KVM kernel module: %m\n");
592 ret = -errno;
593 goto err;
594 }
595
596 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
597 if (ret < KVM_API_VERSION) {
598 if (ret > 0)
599 ret = -EINVAL;
600 fprintf(stderr, "kvm version too old\n");
601 goto err;
602 }
603
604 if (ret > KVM_API_VERSION) {
605 ret = -EINVAL;
606 fprintf(stderr, "kvm version not supported\n");
607 goto err;
608 }
609
610 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
611 if (s->vmfd < 0) {
612 #ifdef TARGET_S390X
613 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
614 "your host kernel command line\n");
615 #endif
616 goto err;
617 }
618
619 /* initially, KVM allocated its own memory and we had to jump through
620 * hooks to make phys_ram_base point to this. Modern versions of KVM
621 * just use a user allocated buffer so we can use regular pages
622 * unmodified. Make sure we have a sufficiently modern version of KVM.
623 */
624 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
625 ret = -EINVAL;
626 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
627 upgrade_note);
628 goto err;
629 }
630
631 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
632 * destroyed properly. Since we rely on this capability, refuse to work
633 * with any kernel without this capability. */
634 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
635 ret = -EINVAL;
636
637 fprintf(stderr,
638 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
639 upgrade_note);
640 goto err;
641 }
642
643 s->coalesced_mmio = 0;
644 #ifdef KVM_CAP_COALESCED_MMIO
645 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
646 s->coalesced_mmio_ring = NULL;
647 #endif
648
649 s->broken_set_mem_region = 1;
650 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
651 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
652 if (ret > 0) {
653 s->broken_set_mem_region = 0;
654 }
655 #endif
656
657 s->vcpu_events = 0;
658 #ifdef KVM_CAP_VCPU_EVENTS
659 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
660 #endif
661
662 s->robust_singlestep = 0;
663 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
664 s->robust_singlestep =
665 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
666 #endif
667
668 s->debugregs = 0;
669 #ifdef KVM_CAP_DEBUGREGS
670 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
671 #endif
672
673 ret = kvm_arch_init(s, smp_cpus);
674 if (ret < 0)
675 goto err;
676
677 kvm_state = s;
678 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
679
680 return 0;
681
682 err:
683 if (s) {
684 if (s->vmfd != -1)
685 close(s->vmfd);
686 if (s->fd != -1)
687 close(s->fd);
688 }
689 qemu_free(s);
690
691 return ret;
692 }
693
694 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
695 uint32_t count)
696 {
697 int i;
698 uint8_t *ptr = data;
699
700 for (i = 0; i < count; i++) {
701 if (direction == KVM_EXIT_IO_IN) {
702 switch (size) {
703 case 1:
704 stb_p(ptr, cpu_inb(port));
705 break;
706 case 2:
707 stw_p(ptr, cpu_inw(port));
708 break;
709 case 4:
710 stl_p(ptr, cpu_inl(port));
711 break;
712 }
713 } else {
714 switch (size) {
715 case 1:
716 cpu_outb(port, ldub_p(ptr));
717 break;
718 case 2:
719 cpu_outw(port, lduw_p(ptr));
720 break;
721 case 4:
722 cpu_outl(port, ldl_p(ptr));
723 break;
724 }
725 }
726
727 ptr += size;
728 }
729
730 return 1;
731 }
732
733 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
734 static void kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
735 {
736
737 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
738 int i;
739
740 fprintf(stderr, "KVM internal error. Suberror: %d\n",
741 run->internal.suberror);
742
743 for (i = 0; i < run->internal.ndata; ++i) {
744 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
745 i, (uint64_t)run->internal.data[i]);
746 }
747 }
748 cpu_dump_state(env, stderr, fprintf, 0);
749 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
750 fprintf(stderr, "emulation failure\n");
751 }
752 /* FIXME: Should trigger a qmp message to let management know
753 * something went wrong.
754 */
755 vm_stop(0);
756 }
757 #endif
758
759 void kvm_flush_coalesced_mmio_buffer(void)
760 {
761 #ifdef KVM_CAP_COALESCED_MMIO
762 KVMState *s = kvm_state;
763 if (s->coalesced_mmio_ring) {
764 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
765 while (ring->first != ring->last) {
766 struct kvm_coalesced_mmio *ent;
767
768 ent = &ring->coalesced_mmio[ring->first];
769
770 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
771 smp_wmb();
772 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
773 }
774 }
775 #endif
776 }
777
778 void kvm_cpu_synchronize_state(CPUState *env)
779 {
780 if (!env->kvm_vcpu_dirty) {
781 kvm_arch_get_registers(env);
782 env->kvm_vcpu_dirty = 1;
783 }
784 }
785
786 void kvm_cpu_synchronize_post_reset(CPUState *env)
787 {
788 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
789 env->kvm_vcpu_dirty = 0;
790 }
791
792 void kvm_cpu_synchronize_post_init(CPUState *env)
793 {
794 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
795 env->kvm_vcpu_dirty = 0;
796 }
797
798 int kvm_cpu_exec(CPUState *env)
799 {
800 struct kvm_run *run = env->kvm_run;
801 int ret;
802
803 DPRINTF("kvm_cpu_exec()\n");
804
805 do {
806 #ifndef CONFIG_IOTHREAD
807 if (env->exit_request) {
808 DPRINTF("interrupt exit requested\n");
809 ret = 0;
810 break;
811 }
812 #endif
813
814 if (env->kvm_vcpu_dirty) {
815 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
816 env->kvm_vcpu_dirty = 0;
817 }
818
819 kvm_arch_pre_run(env, run);
820 qemu_mutex_unlock_iothread();
821 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
822 qemu_mutex_lock_iothread();
823 kvm_arch_post_run(env, run);
824
825 if (ret == -EINTR || ret == -EAGAIN) {
826 cpu_exit(env);
827 DPRINTF("io window exit\n");
828 ret = 0;
829 break;
830 }
831
832 if (ret < 0) {
833 DPRINTF("kvm run failed %s\n", strerror(-ret));
834 abort();
835 }
836
837 kvm_flush_coalesced_mmio_buffer();
838
839 ret = 0; /* exit loop */
840 switch (run->exit_reason) {
841 case KVM_EXIT_IO:
842 DPRINTF("handle_io\n");
843 ret = kvm_handle_io(run->io.port,
844 (uint8_t *)run + run->io.data_offset,
845 run->io.direction,
846 run->io.size,
847 run->io.count);
848 break;
849 case KVM_EXIT_MMIO:
850 DPRINTF("handle_mmio\n");
851 cpu_physical_memory_rw(run->mmio.phys_addr,
852 run->mmio.data,
853 run->mmio.len,
854 run->mmio.is_write);
855 ret = 1;
856 break;
857 case KVM_EXIT_IRQ_WINDOW_OPEN:
858 DPRINTF("irq_window_open\n");
859 break;
860 case KVM_EXIT_SHUTDOWN:
861 DPRINTF("shutdown\n");
862 qemu_system_reset_request();
863 ret = 1;
864 break;
865 case KVM_EXIT_UNKNOWN:
866 DPRINTF("kvm_exit_unknown\n");
867 break;
868 case KVM_EXIT_FAIL_ENTRY:
869 DPRINTF("kvm_exit_fail_entry\n");
870 break;
871 case KVM_EXIT_EXCEPTION:
872 DPRINTF("kvm_exit_exception\n");
873 break;
874 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
875 case KVM_EXIT_INTERNAL_ERROR:
876 kvm_handle_internal_error(env, run);
877 break;
878 #endif
879 case KVM_EXIT_DEBUG:
880 DPRINTF("kvm_exit_debug\n");
881 #ifdef KVM_CAP_SET_GUEST_DEBUG
882 if (kvm_arch_debug(&run->debug.arch)) {
883 gdb_set_stop_cpu(env);
884 vm_stop(EXCP_DEBUG);
885 env->exception_index = EXCP_DEBUG;
886 return 0;
887 }
888 /* re-enter, this exception was guest-internal */
889 ret = 1;
890 #endif /* KVM_CAP_SET_GUEST_DEBUG */
891 break;
892 default:
893 DPRINTF("kvm_arch_handle_exit\n");
894 ret = kvm_arch_handle_exit(env, run);
895 break;
896 }
897 } while (ret > 0);
898
899 if (env->exit_request) {
900 env->exit_request = 0;
901 env->exception_index = EXCP_INTERRUPT;
902 }
903
904 return ret;
905 }
906
907 int kvm_ioctl(KVMState *s, int type, ...)
908 {
909 int ret;
910 void *arg;
911 va_list ap;
912
913 va_start(ap, type);
914 arg = va_arg(ap, void *);
915 va_end(ap);
916
917 ret = ioctl(s->fd, type, arg);
918 if (ret == -1)
919 ret = -errno;
920
921 return ret;
922 }
923
924 int kvm_vm_ioctl(KVMState *s, int type, ...)
925 {
926 int ret;
927 void *arg;
928 va_list ap;
929
930 va_start(ap, type);
931 arg = va_arg(ap, void *);
932 va_end(ap);
933
934 ret = ioctl(s->vmfd, type, arg);
935 if (ret == -1)
936 ret = -errno;
937
938 return ret;
939 }
940
941 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
942 {
943 int ret;
944 void *arg;
945 va_list ap;
946
947 va_start(ap, type);
948 arg = va_arg(ap, void *);
949 va_end(ap);
950
951 ret = ioctl(env->kvm_fd, type, arg);
952 if (ret == -1)
953 ret = -errno;
954
955 return ret;
956 }
957
958 int kvm_has_sync_mmu(void)
959 {
960 #ifdef KVM_CAP_SYNC_MMU
961 KVMState *s = kvm_state;
962
963 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
964 #else
965 return 0;
966 #endif
967 }
968
969 int kvm_has_vcpu_events(void)
970 {
971 return kvm_state->vcpu_events;
972 }
973
974 int kvm_has_robust_singlestep(void)
975 {
976 return kvm_state->robust_singlestep;
977 }
978
979 int kvm_has_debugregs(void)
980 {
981 return kvm_state->debugregs;
982 }
983
984 void kvm_setup_guest_memory(void *start, size_t size)
985 {
986 if (!kvm_has_sync_mmu()) {
987 #ifdef MADV_DONTFORK
988 int ret = madvise(start, size, MADV_DONTFORK);
989
990 if (ret) {
991 perror("madvice");
992 exit(1);
993 }
994 #else
995 fprintf(stderr,
996 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
997 exit(1);
998 #endif
999 }
1000 }
1001
1002 #ifdef KVM_CAP_SET_GUEST_DEBUG
1003 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
1004 {
1005 #ifdef CONFIG_IOTHREAD
1006 if (env != cpu_single_env) {
1007 abort();
1008 }
1009 #endif
1010 func(data);
1011 }
1012
1013 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1014 target_ulong pc)
1015 {
1016 struct kvm_sw_breakpoint *bp;
1017
1018 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1019 if (bp->pc == pc)
1020 return bp;
1021 }
1022 return NULL;
1023 }
1024
1025 int kvm_sw_breakpoints_active(CPUState *env)
1026 {
1027 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1028 }
1029
1030 struct kvm_set_guest_debug_data {
1031 struct kvm_guest_debug dbg;
1032 CPUState *env;
1033 int err;
1034 };
1035
1036 static void kvm_invoke_set_guest_debug(void *data)
1037 {
1038 struct kvm_set_guest_debug_data *dbg_data = data;
1039 CPUState *env = dbg_data->env;
1040
1041 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1042 }
1043
1044 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1045 {
1046 struct kvm_set_guest_debug_data data;
1047
1048 data.dbg.control = reinject_trap;
1049
1050 if (env->singlestep_enabled) {
1051 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1052 }
1053 kvm_arch_update_guest_debug(env, &data.dbg);
1054 data.env = env;
1055
1056 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
1057 return data.err;
1058 }
1059
1060 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1061 target_ulong len, int type)
1062 {
1063 struct kvm_sw_breakpoint *bp;
1064 CPUState *env;
1065 int err;
1066
1067 if (type == GDB_BREAKPOINT_SW) {
1068 bp = kvm_find_sw_breakpoint(current_env, addr);
1069 if (bp) {
1070 bp->use_count++;
1071 return 0;
1072 }
1073
1074 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1075 if (!bp)
1076 return -ENOMEM;
1077
1078 bp->pc = addr;
1079 bp->use_count = 1;
1080 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1081 if (err) {
1082 free(bp);
1083 return err;
1084 }
1085
1086 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1087 bp, entry);
1088 } else {
1089 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1090 if (err)
1091 return err;
1092 }
1093
1094 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1095 err = kvm_update_guest_debug(env, 0);
1096 if (err)
1097 return err;
1098 }
1099 return 0;
1100 }
1101
1102 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1103 target_ulong len, int type)
1104 {
1105 struct kvm_sw_breakpoint *bp;
1106 CPUState *env;
1107 int err;
1108
1109 if (type == GDB_BREAKPOINT_SW) {
1110 bp = kvm_find_sw_breakpoint(current_env, addr);
1111 if (!bp)
1112 return -ENOENT;
1113
1114 if (bp->use_count > 1) {
1115 bp->use_count--;
1116 return 0;
1117 }
1118
1119 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1120 if (err)
1121 return err;
1122
1123 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1124 qemu_free(bp);
1125 } else {
1126 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1127 if (err)
1128 return err;
1129 }
1130
1131 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1132 err = kvm_update_guest_debug(env, 0);
1133 if (err)
1134 return err;
1135 }
1136 return 0;
1137 }
1138
1139 void kvm_remove_all_breakpoints(CPUState *current_env)
1140 {
1141 struct kvm_sw_breakpoint *bp, *next;
1142 KVMState *s = current_env->kvm_state;
1143 CPUState *env;
1144
1145 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1146 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1147 /* Try harder to find a CPU that currently sees the breakpoint. */
1148 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1149 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1150 break;
1151 }
1152 }
1153 }
1154 kvm_arch_remove_all_hw_breakpoints();
1155
1156 for (env = first_cpu; env != NULL; env = env->next_cpu)
1157 kvm_update_guest_debug(env, 0);
1158 }
1159
1160 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1161
1162 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1163 {
1164 return -EINVAL;
1165 }
1166
1167 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1168 target_ulong len, int type)
1169 {
1170 return -EINVAL;
1171 }
1172
1173 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1174 target_ulong len, int type)
1175 {
1176 return -EINVAL;
1177 }
1178
1179 void kvm_remove_all_breakpoints(CPUState *current_env)
1180 {
1181 }
1182 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1183
1184 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1185 {
1186 struct kvm_signal_mask *sigmask;
1187 int r;
1188
1189 if (!sigset)
1190 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1191
1192 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1193
1194 sigmask->len = 8;
1195 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1196 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1197 free(sigmask);
1198
1199 return r;
1200 }
1201
1202 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1203 {
1204 #ifdef KVM_IOEVENTFD
1205 struct kvm_ioeventfd kick = {
1206 .datamatch = val,
1207 .addr = addr,
1208 .len = 2,
1209 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1210 .fd = fd,
1211 };
1212 int r;
1213 if (!kvm_enabled())
1214 return -ENOSYS;
1215 if (!assign)
1216 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1217 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1218 if (r < 0)
1219 return r;
1220 return 0;
1221 #else
1222 return -ENOSYS;
1223 #endif
1224 }