]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
Spelling fixes in comments (it's -> its)
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30 #include "memory.h"
31 #include "exec-memory.h"
32
33 /* This check must be after config-host.h is included */
34 #ifdef CONFIG_EVENTFD
35 #include <sys/eventfd.h>
36 #endif
37
38 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
39 #define PAGE_SIZE TARGET_PAGE_SIZE
40
41 //#define DEBUG_KVM
42
43 #ifdef DEBUG_KVM
44 #define DPRINTF(fmt, ...) \
45 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
46 #else
47 #define DPRINTF(fmt, ...) \
48 do { } while (0)
49 #endif
50
51 typedef struct KVMSlot
52 {
53 target_phys_addr_t start_addr;
54 ram_addr_t memory_size;
55 void *ram;
56 int slot;
57 int flags;
58 } KVMSlot;
59
60 typedef struct kvm_dirty_log KVMDirtyLog;
61
62 struct KVMState
63 {
64 KVMSlot slots[32];
65 int fd;
66 int vmfd;
67 int coalesced_mmio;
68 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
69 bool coalesced_flush_in_progress;
70 int broken_set_mem_region;
71 int migration_log;
72 int vcpu_events;
73 int robust_singlestep;
74 int debugregs;
75 #ifdef KVM_CAP_SET_GUEST_DEBUG
76 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
77 #endif
78 int pit_in_kernel;
79 int xsave, xcrs;
80 int many_ioeventfds;
81 int irqchip_inject_ioctl;
82 #ifdef KVM_CAP_IRQ_ROUTING
83 struct kvm_irq_routing *irq_routes;
84 int nr_allocated_irq_routes;
85 uint32_t *used_gsi_bitmap;
86 unsigned int max_gsi;
87 #endif
88 };
89
90 KVMState *kvm_state;
91 bool kvm_kernel_irqchip;
92
93 static const KVMCapabilityInfo kvm_required_capabilites[] = {
94 KVM_CAP_INFO(USER_MEMORY),
95 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
96 KVM_CAP_LAST_INFO
97 };
98
99 static KVMSlot *kvm_alloc_slot(KVMState *s)
100 {
101 int i;
102
103 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
104 if (s->slots[i].memory_size == 0) {
105 return &s->slots[i];
106 }
107 }
108
109 fprintf(stderr, "%s: no free slot available\n", __func__);
110 abort();
111 }
112
113 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
114 target_phys_addr_t start_addr,
115 target_phys_addr_t end_addr)
116 {
117 int i;
118
119 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
120 KVMSlot *mem = &s->slots[i];
121
122 if (start_addr == mem->start_addr &&
123 end_addr == mem->start_addr + mem->memory_size) {
124 return mem;
125 }
126 }
127
128 return NULL;
129 }
130
131 /*
132 * Find overlapping slot with lowest start address
133 */
134 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
135 target_phys_addr_t start_addr,
136 target_phys_addr_t end_addr)
137 {
138 KVMSlot *found = NULL;
139 int i;
140
141 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
142 KVMSlot *mem = &s->slots[i];
143
144 if (mem->memory_size == 0 ||
145 (found && found->start_addr < mem->start_addr)) {
146 continue;
147 }
148
149 if (end_addr > mem->start_addr &&
150 start_addr < mem->start_addr + mem->memory_size) {
151 found = mem;
152 }
153 }
154
155 return found;
156 }
157
158 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
159 target_phys_addr_t *phys_addr)
160 {
161 int i;
162
163 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
164 KVMSlot *mem = &s->slots[i];
165
166 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
167 *phys_addr = mem->start_addr + (ram - mem->ram);
168 return 1;
169 }
170 }
171
172 return 0;
173 }
174
175 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
176 {
177 struct kvm_userspace_memory_region mem;
178
179 mem.slot = slot->slot;
180 mem.guest_phys_addr = slot->start_addr;
181 mem.memory_size = slot->memory_size;
182 mem.userspace_addr = (unsigned long)slot->ram;
183 mem.flags = slot->flags;
184 if (s->migration_log) {
185 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
186 }
187 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
188 }
189
190 static void kvm_reset_vcpu(void *opaque)
191 {
192 CPUState *env = opaque;
193
194 kvm_arch_reset_vcpu(env);
195 }
196
197 int kvm_pit_in_kernel(void)
198 {
199 return kvm_state->pit_in_kernel;
200 }
201
202 int kvm_init_vcpu(CPUState *env)
203 {
204 KVMState *s = kvm_state;
205 long mmap_size;
206 int ret;
207
208 DPRINTF("kvm_init_vcpu\n");
209
210 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
211 if (ret < 0) {
212 DPRINTF("kvm_create_vcpu failed\n");
213 goto err;
214 }
215
216 env->kvm_fd = ret;
217 env->kvm_state = s;
218 env->kvm_vcpu_dirty = 1;
219
220 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
221 if (mmap_size < 0) {
222 ret = mmap_size;
223 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
224 goto err;
225 }
226
227 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
228 env->kvm_fd, 0);
229 if (env->kvm_run == MAP_FAILED) {
230 ret = -errno;
231 DPRINTF("mmap'ing vcpu state failed\n");
232 goto err;
233 }
234
235 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
236 s->coalesced_mmio_ring =
237 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
238 }
239
240 ret = kvm_arch_init_vcpu(env);
241 if (ret == 0) {
242 qemu_register_reset(kvm_reset_vcpu, env);
243 kvm_arch_reset_vcpu(env);
244 }
245 err:
246 return ret;
247 }
248
249 /*
250 * dirty pages logging control
251 */
252
253 static int kvm_mem_flags(KVMState *s, bool log_dirty)
254 {
255 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
256 }
257
258 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
259 {
260 KVMState *s = kvm_state;
261 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
262 int old_flags;
263
264 old_flags = mem->flags;
265
266 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
267 mem->flags = flags;
268
269 /* If nothing changed effectively, no need to issue ioctl */
270 if (s->migration_log) {
271 flags |= KVM_MEM_LOG_DIRTY_PAGES;
272 }
273
274 if (flags == old_flags) {
275 return 0;
276 }
277
278 return kvm_set_user_memory_region(s, mem);
279 }
280
281 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
282 ram_addr_t size, bool log_dirty)
283 {
284 KVMState *s = kvm_state;
285 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
286
287 if (mem == NULL) {
288 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
289 TARGET_FMT_plx "\n", __func__, phys_addr,
290 (target_phys_addr_t)(phys_addr + size - 1));
291 return -EINVAL;
292 }
293 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
294 }
295
296 static void kvm_log_start(MemoryListener *listener,
297 MemoryRegionSection *section)
298 {
299 int r;
300
301 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
302 section->size, true);
303 if (r < 0) {
304 abort();
305 }
306 }
307
308 static void kvm_log_stop(MemoryListener *listener,
309 MemoryRegionSection *section)
310 {
311 int r;
312
313 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
314 section->size, false);
315 if (r < 0) {
316 abort();
317 }
318 }
319
320 static int kvm_set_migration_log(int enable)
321 {
322 KVMState *s = kvm_state;
323 KVMSlot *mem;
324 int i, err;
325
326 s->migration_log = enable;
327
328 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
329 mem = &s->slots[i];
330
331 if (!mem->memory_size) {
332 continue;
333 }
334 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
335 continue;
336 }
337 err = kvm_set_user_memory_region(s, mem);
338 if (err) {
339 return err;
340 }
341 }
342 return 0;
343 }
344
345 /* get kvm's dirty pages bitmap and update qemu's */
346 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
347 unsigned long *bitmap)
348 {
349 unsigned int i, j;
350 unsigned long page_number, c;
351 target_phys_addr_t addr, addr1;
352 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
353
354 /*
355 * bitmap-traveling is faster than memory-traveling (for addr...)
356 * especially when most of the memory is not dirty.
357 */
358 for (i = 0; i < len; i++) {
359 if (bitmap[i] != 0) {
360 c = leul_to_cpu(bitmap[i]);
361 do {
362 j = ffsl(c) - 1;
363 c &= ~(1ul << j);
364 page_number = i * HOST_LONG_BITS + j;
365 addr1 = page_number * TARGET_PAGE_SIZE;
366 addr = section->offset_within_region + addr1;
367 memory_region_set_dirty(section->mr, addr, TARGET_PAGE_SIZE);
368 } while (c != 0);
369 }
370 }
371 return 0;
372 }
373
374 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
375
376 /**
377 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
378 * This function updates qemu's dirty bitmap using
379 * memory_region_set_dirty(). This means all bits are set
380 * to dirty.
381 *
382 * @start_add: start of logged region.
383 * @end_addr: end of logged region.
384 */
385 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
386 {
387 KVMState *s = kvm_state;
388 unsigned long size, allocated_size = 0;
389 KVMDirtyLog d;
390 KVMSlot *mem;
391 int ret = 0;
392 target_phys_addr_t start_addr = section->offset_within_address_space;
393 target_phys_addr_t end_addr = start_addr + section->size;
394
395 d.dirty_bitmap = NULL;
396 while (start_addr < end_addr) {
397 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
398 if (mem == NULL) {
399 break;
400 }
401
402 /* XXX bad kernel interface alert
403 * For dirty bitmap, kernel allocates array of size aligned to
404 * bits-per-long. But for case when the kernel is 64bits and
405 * the userspace is 32bits, userspace can't align to the same
406 * bits-per-long, since sizeof(long) is different between kernel
407 * and user space. This way, userspace will provide buffer which
408 * may be 4 bytes less than the kernel will use, resulting in
409 * userspace memory corruption (which is not detectable by valgrind
410 * too, in most cases).
411 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
412 * a hope that sizeof(long) wont become >8 any time soon.
413 */
414 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
415 /*HOST_LONG_BITS*/ 64) / 8;
416 if (!d.dirty_bitmap) {
417 d.dirty_bitmap = g_malloc(size);
418 } else if (size > allocated_size) {
419 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
420 }
421 allocated_size = size;
422 memset(d.dirty_bitmap, 0, allocated_size);
423
424 d.slot = mem->slot;
425
426 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
427 DPRINTF("ioctl failed %d\n", errno);
428 ret = -1;
429 break;
430 }
431
432 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
433 start_addr = mem->start_addr + mem->memory_size;
434 }
435 g_free(d.dirty_bitmap);
436
437 return ret;
438 }
439
440 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
441 {
442 int ret = -ENOSYS;
443 KVMState *s = kvm_state;
444
445 if (s->coalesced_mmio) {
446 struct kvm_coalesced_mmio_zone zone;
447
448 zone.addr = start;
449 zone.size = size;
450
451 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
452 }
453
454 return ret;
455 }
456
457 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
458 {
459 int ret = -ENOSYS;
460 KVMState *s = kvm_state;
461
462 if (s->coalesced_mmio) {
463 struct kvm_coalesced_mmio_zone zone;
464
465 zone.addr = start;
466 zone.size = size;
467
468 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
469 }
470
471 return ret;
472 }
473
474 int kvm_check_extension(KVMState *s, unsigned int extension)
475 {
476 int ret;
477
478 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
479 if (ret < 0) {
480 ret = 0;
481 }
482
483 return ret;
484 }
485
486 static int kvm_check_many_ioeventfds(void)
487 {
488 /* Userspace can use ioeventfd for io notification. This requires a host
489 * that supports eventfd(2) and an I/O thread; since eventfd does not
490 * support SIGIO it cannot interrupt the vcpu.
491 *
492 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
493 * can avoid creating too many ioeventfds.
494 */
495 #if defined(CONFIG_EVENTFD)
496 int ioeventfds[7];
497 int i, ret = 0;
498 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
499 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
500 if (ioeventfds[i] < 0) {
501 break;
502 }
503 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
504 if (ret < 0) {
505 close(ioeventfds[i]);
506 break;
507 }
508 }
509
510 /* Decide whether many devices are supported or not */
511 ret = i == ARRAY_SIZE(ioeventfds);
512
513 while (i-- > 0) {
514 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
515 close(ioeventfds[i]);
516 }
517 return ret;
518 #else
519 return 0;
520 #endif
521 }
522
523 static const KVMCapabilityInfo *
524 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
525 {
526 while (list->name) {
527 if (!kvm_check_extension(s, list->value)) {
528 return list;
529 }
530 list++;
531 }
532 return NULL;
533 }
534
535 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
536 {
537 KVMState *s = kvm_state;
538 KVMSlot *mem, old;
539 int err;
540 MemoryRegion *mr = section->mr;
541 bool log_dirty = memory_region_is_logging(mr);
542 target_phys_addr_t start_addr = section->offset_within_address_space;
543 ram_addr_t size = section->size;
544 void *ram = NULL;
545 unsigned delta;
546
547 /* kvm works in page size chunks, but the function may be called
548 with sub-page size and unaligned start address. */
549 delta = TARGET_PAGE_ALIGN(size) - size;
550 if (delta > size) {
551 return;
552 }
553 start_addr += delta;
554 size -= delta;
555 size &= TARGET_PAGE_MASK;
556 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
557 return;
558 }
559
560 if (!memory_region_is_ram(mr)) {
561 return;
562 }
563
564 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
565
566 while (1) {
567 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
568 if (!mem) {
569 break;
570 }
571
572 if (add && start_addr >= mem->start_addr &&
573 (start_addr + size <= mem->start_addr + mem->memory_size) &&
574 (ram - start_addr == mem->ram - mem->start_addr)) {
575 /* The new slot fits into the existing one and comes with
576 * identical parameters - update flags and done. */
577 kvm_slot_dirty_pages_log_change(mem, log_dirty);
578 return;
579 }
580
581 old = *mem;
582
583 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
584 kvm_physical_sync_dirty_bitmap(section);
585 }
586
587 /* unregister the overlapping slot */
588 mem->memory_size = 0;
589 err = kvm_set_user_memory_region(s, mem);
590 if (err) {
591 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
592 __func__, strerror(-err));
593 abort();
594 }
595
596 /* Workaround for older KVM versions: we can't join slots, even not by
597 * unregistering the previous ones and then registering the larger
598 * slot. We have to maintain the existing fragmentation. Sigh.
599 *
600 * This workaround assumes that the new slot starts at the same
601 * address as the first existing one. If not or if some overlapping
602 * slot comes around later, we will fail (not seen in practice so far)
603 * - and actually require a recent KVM version. */
604 if (s->broken_set_mem_region &&
605 old.start_addr == start_addr && old.memory_size < size && add) {
606 mem = kvm_alloc_slot(s);
607 mem->memory_size = old.memory_size;
608 mem->start_addr = old.start_addr;
609 mem->ram = old.ram;
610 mem->flags = kvm_mem_flags(s, log_dirty);
611
612 err = kvm_set_user_memory_region(s, mem);
613 if (err) {
614 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
615 strerror(-err));
616 abort();
617 }
618
619 start_addr += old.memory_size;
620 ram += old.memory_size;
621 size -= old.memory_size;
622 continue;
623 }
624
625 /* register prefix slot */
626 if (old.start_addr < start_addr) {
627 mem = kvm_alloc_slot(s);
628 mem->memory_size = start_addr - old.start_addr;
629 mem->start_addr = old.start_addr;
630 mem->ram = old.ram;
631 mem->flags = kvm_mem_flags(s, log_dirty);
632
633 err = kvm_set_user_memory_region(s, mem);
634 if (err) {
635 fprintf(stderr, "%s: error registering prefix slot: %s\n",
636 __func__, strerror(-err));
637 #ifdef TARGET_PPC
638 fprintf(stderr, "%s: This is probably because your kernel's " \
639 "PAGE_SIZE is too big. Please try to use 4k " \
640 "PAGE_SIZE!\n", __func__);
641 #endif
642 abort();
643 }
644 }
645
646 /* register suffix slot */
647 if (old.start_addr + old.memory_size > start_addr + size) {
648 ram_addr_t size_delta;
649
650 mem = kvm_alloc_slot(s);
651 mem->start_addr = start_addr + size;
652 size_delta = mem->start_addr - old.start_addr;
653 mem->memory_size = old.memory_size - size_delta;
654 mem->ram = old.ram + size_delta;
655 mem->flags = kvm_mem_flags(s, log_dirty);
656
657 err = kvm_set_user_memory_region(s, mem);
658 if (err) {
659 fprintf(stderr, "%s: error registering suffix slot: %s\n",
660 __func__, strerror(-err));
661 abort();
662 }
663 }
664 }
665
666 /* in case the KVM bug workaround already "consumed" the new slot */
667 if (!size) {
668 return;
669 }
670 if (!add) {
671 return;
672 }
673 mem = kvm_alloc_slot(s);
674 mem->memory_size = size;
675 mem->start_addr = start_addr;
676 mem->ram = ram;
677 mem->flags = kvm_mem_flags(s, log_dirty);
678
679 err = kvm_set_user_memory_region(s, mem);
680 if (err) {
681 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
682 strerror(-err));
683 abort();
684 }
685 }
686
687 static void kvm_begin(MemoryListener *listener)
688 {
689 }
690
691 static void kvm_commit(MemoryListener *listener)
692 {
693 }
694
695 static void kvm_region_add(MemoryListener *listener,
696 MemoryRegionSection *section)
697 {
698 kvm_set_phys_mem(section, true);
699 }
700
701 static void kvm_region_del(MemoryListener *listener,
702 MemoryRegionSection *section)
703 {
704 kvm_set_phys_mem(section, false);
705 }
706
707 static void kvm_region_nop(MemoryListener *listener,
708 MemoryRegionSection *section)
709 {
710 }
711
712 static void kvm_log_sync(MemoryListener *listener,
713 MemoryRegionSection *section)
714 {
715 int r;
716
717 r = kvm_physical_sync_dirty_bitmap(section);
718 if (r < 0) {
719 abort();
720 }
721 }
722
723 static void kvm_log_global_start(struct MemoryListener *listener)
724 {
725 int r;
726
727 r = kvm_set_migration_log(1);
728 assert(r >= 0);
729 }
730
731 static void kvm_log_global_stop(struct MemoryListener *listener)
732 {
733 int r;
734
735 r = kvm_set_migration_log(0);
736 assert(r >= 0);
737 }
738
739 static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
740 bool match_data, uint64_t data, int fd)
741 {
742 int r;
743
744 assert(match_data && section->size == 4);
745
746 r = kvm_set_ioeventfd_mmio_long(fd, section->offset_within_address_space,
747 data, true);
748 if (r < 0) {
749 abort();
750 }
751 }
752
753 static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
754 bool match_data, uint64_t data, int fd)
755 {
756 int r;
757
758 r = kvm_set_ioeventfd_mmio_long(fd, section->offset_within_address_space,
759 data, false);
760 if (r < 0) {
761 abort();
762 }
763 }
764
765 static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
766 bool match_data, uint64_t data, int fd)
767 {
768 int r;
769
770 assert(match_data && section->size == 2);
771
772 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
773 data, true);
774 if (r < 0) {
775 abort();
776 }
777 }
778
779 static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
780 bool match_data, uint64_t data, int fd)
781
782 {
783 int r;
784
785 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
786 data, false);
787 if (r < 0) {
788 abort();
789 }
790 }
791
792 static void kvm_eventfd_add(MemoryListener *listener,
793 MemoryRegionSection *section,
794 bool match_data, uint64_t data, int fd)
795 {
796 if (section->address_space == get_system_memory()) {
797 kvm_mem_ioeventfd_add(section, match_data, data, fd);
798 } else {
799 kvm_io_ioeventfd_add(section, match_data, data, fd);
800 }
801 }
802
803 static void kvm_eventfd_del(MemoryListener *listener,
804 MemoryRegionSection *section,
805 bool match_data, uint64_t data, int fd)
806 {
807 if (section->address_space == get_system_memory()) {
808 kvm_mem_ioeventfd_del(section, match_data, data, fd);
809 } else {
810 kvm_io_ioeventfd_del(section, match_data, data, fd);
811 }
812 }
813
814 static MemoryListener kvm_memory_listener = {
815 .begin = kvm_begin,
816 .commit = kvm_commit,
817 .region_add = kvm_region_add,
818 .region_del = kvm_region_del,
819 .region_nop = kvm_region_nop,
820 .log_start = kvm_log_start,
821 .log_stop = kvm_log_stop,
822 .log_sync = kvm_log_sync,
823 .log_global_start = kvm_log_global_start,
824 .log_global_stop = kvm_log_global_stop,
825 .eventfd_add = kvm_eventfd_add,
826 .eventfd_del = kvm_eventfd_del,
827 .priority = 10,
828 };
829
830 static void kvm_handle_interrupt(CPUState *env, int mask)
831 {
832 env->interrupt_request |= mask;
833
834 if (!qemu_cpu_is_self(env)) {
835 qemu_cpu_kick(env);
836 }
837 }
838
839 int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
840 {
841 struct kvm_irq_level event;
842 int ret;
843
844 assert(kvm_irqchip_in_kernel());
845
846 event.level = level;
847 event.irq = irq;
848 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
849 if (ret < 0) {
850 perror("kvm_set_irqchip_line");
851 abort();
852 }
853
854 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
855 }
856
857 #ifdef KVM_CAP_IRQ_ROUTING
858 static void set_gsi(KVMState *s, unsigned int gsi)
859 {
860 assert(gsi < s->max_gsi);
861
862 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
863 }
864
865 static void kvm_init_irq_routing(KVMState *s)
866 {
867 int gsi_count;
868
869 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
870 if (gsi_count > 0) {
871 unsigned int gsi_bits, i;
872
873 /* Round up so we can search ints using ffs */
874 gsi_bits = (gsi_count + 31) / 32;
875 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
876 s->max_gsi = gsi_bits;
877
878 /* Mark any over-allocated bits as already in use */
879 for (i = gsi_count; i < gsi_bits; i++) {
880 set_gsi(s, i);
881 }
882 }
883
884 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
885 s->nr_allocated_irq_routes = 0;
886
887 kvm_arch_init_irq_routing(s);
888 }
889
890 static void kvm_add_routing_entry(KVMState *s,
891 struct kvm_irq_routing_entry *entry)
892 {
893 struct kvm_irq_routing_entry *new;
894 int n, size;
895
896 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
897 n = s->nr_allocated_irq_routes * 2;
898 if (n < 64) {
899 n = 64;
900 }
901 size = sizeof(struct kvm_irq_routing);
902 size += n * sizeof(*new);
903 s->irq_routes = g_realloc(s->irq_routes, size);
904 s->nr_allocated_irq_routes = n;
905 }
906 n = s->irq_routes->nr++;
907 new = &s->irq_routes->entries[n];
908 memset(new, 0, sizeof(*new));
909 new->gsi = entry->gsi;
910 new->type = entry->type;
911 new->flags = entry->flags;
912 new->u = entry->u;
913
914 set_gsi(s, entry->gsi);
915 }
916
917 void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin)
918 {
919 struct kvm_irq_routing_entry e;
920
921 e.gsi = irq;
922 e.type = KVM_IRQ_ROUTING_IRQCHIP;
923 e.flags = 0;
924 e.u.irqchip.irqchip = irqchip;
925 e.u.irqchip.pin = pin;
926 kvm_add_routing_entry(s, &e);
927 }
928
929 int kvm_irqchip_commit_routes(KVMState *s)
930 {
931 s->irq_routes->flags = 0;
932 return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
933 }
934
935 #else /* !KVM_CAP_IRQ_ROUTING */
936
937 static void kvm_init_irq_routing(KVMState *s)
938 {
939 }
940 #endif /* !KVM_CAP_IRQ_ROUTING */
941
942 static int kvm_irqchip_create(KVMState *s)
943 {
944 QemuOptsList *list = qemu_find_opts("machine");
945 int ret;
946
947 if (QTAILQ_EMPTY(&list->head) ||
948 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
949 "kernel_irqchip", false) ||
950 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
951 return 0;
952 }
953
954 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
955 if (ret < 0) {
956 fprintf(stderr, "Create kernel irqchip failed\n");
957 return ret;
958 }
959
960 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
961 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
962 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
963 }
964 kvm_kernel_irqchip = true;
965
966 kvm_init_irq_routing(s);
967
968 return 0;
969 }
970
971 int kvm_init(void)
972 {
973 static const char upgrade_note[] =
974 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
975 "(see http://sourceforge.net/projects/kvm).\n";
976 KVMState *s;
977 const KVMCapabilityInfo *missing_cap;
978 int ret;
979 int i;
980
981 s = g_malloc0(sizeof(KVMState));
982
983 #ifdef KVM_CAP_SET_GUEST_DEBUG
984 QTAILQ_INIT(&s->kvm_sw_breakpoints);
985 #endif
986 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
987 s->slots[i].slot = i;
988 }
989 s->vmfd = -1;
990 s->fd = qemu_open("/dev/kvm", O_RDWR);
991 if (s->fd == -1) {
992 fprintf(stderr, "Could not access KVM kernel module: %m\n");
993 ret = -errno;
994 goto err;
995 }
996
997 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
998 if (ret < KVM_API_VERSION) {
999 if (ret > 0) {
1000 ret = -EINVAL;
1001 }
1002 fprintf(stderr, "kvm version too old\n");
1003 goto err;
1004 }
1005
1006 if (ret > KVM_API_VERSION) {
1007 ret = -EINVAL;
1008 fprintf(stderr, "kvm version not supported\n");
1009 goto err;
1010 }
1011
1012 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1013 if (s->vmfd < 0) {
1014 #ifdef TARGET_S390X
1015 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1016 "your host kernel command line\n");
1017 #endif
1018 ret = s->vmfd;
1019 goto err;
1020 }
1021
1022 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1023 if (!missing_cap) {
1024 missing_cap =
1025 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1026 }
1027 if (missing_cap) {
1028 ret = -EINVAL;
1029 fprintf(stderr, "kvm does not support %s\n%s",
1030 missing_cap->name, upgrade_note);
1031 goto err;
1032 }
1033
1034 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1035
1036 s->broken_set_mem_region = 1;
1037 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1038 if (ret > 0) {
1039 s->broken_set_mem_region = 0;
1040 }
1041
1042 #ifdef KVM_CAP_VCPU_EVENTS
1043 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1044 #endif
1045
1046 s->robust_singlestep =
1047 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1048
1049 #ifdef KVM_CAP_DEBUGREGS
1050 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1051 #endif
1052
1053 #ifdef KVM_CAP_XSAVE
1054 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1055 #endif
1056
1057 #ifdef KVM_CAP_XCRS
1058 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1059 #endif
1060
1061 ret = kvm_arch_init(s);
1062 if (ret < 0) {
1063 goto err;
1064 }
1065
1066 ret = kvm_irqchip_create(s);
1067 if (ret < 0) {
1068 goto err;
1069 }
1070
1071 kvm_state = s;
1072 memory_listener_register(&kvm_memory_listener, NULL);
1073
1074 s->many_ioeventfds = kvm_check_many_ioeventfds();
1075
1076 cpu_interrupt_handler = kvm_handle_interrupt;
1077
1078 return 0;
1079
1080 err:
1081 if (s) {
1082 if (s->vmfd >= 0) {
1083 close(s->vmfd);
1084 }
1085 if (s->fd != -1) {
1086 close(s->fd);
1087 }
1088 }
1089 g_free(s);
1090
1091 return ret;
1092 }
1093
1094 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1095 uint32_t count)
1096 {
1097 int i;
1098 uint8_t *ptr = data;
1099
1100 for (i = 0; i < count; i++) {
1101 if (direction == KVM_EXIT_IO_IN) {
1102 switch (size) {
1103 case 1:
1104 stb_p(ptr, cpu_inb(port));
1105 break;
1106 case 2:
1107 stw_p(ptr, cpu_inw(port));
1108 break;
1109 case 4:
1110 stl_p(ptr, cpu_inl(port));
1111 break;
1112 }
1113 } else {
1114 switch (size) {
1115 case 1:
1116 cpu_outb(port, ldub_p(ptr));
1117 break;
1118 case 2:
1119 cpu_outw(port, lduw_p(ptr));
1120 break;
1121 case 4:
1122 cpu_outl(port, ldl_p(ptr));
1123 break;
1124 }
1125 }
1126
1127 ptr += size;
1128 }
1129 }
1130
1131 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
1132 {
1133 fprintf(stderr, "KVM internal error.");
1134 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1135 int i;
1136
1137 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1138 for (i = 0; i < run->internal.ndata; ++i) {
1139 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1140 i, (uint64_t)run->internal.data[i]);
1141 }
1142 } else {
1143 fprintf(stderr, "\n");
1144 }
1145 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1146 fprintf(stderr, "emulation failure\n");
1147 if (!kvm_arch_stop_on_emulation_error(env)) {
1148 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1149 return EXCP_INTERRUPT;
1150 }
1151 }
1152 /* FIXME: Should trigger a qmp message to let management know
1153 * something went wrong.
1154 */
1155 return -1;
1156 }
1157
1158 void kvm_flush_coalesced_mmio_buffer(void)
1159 {
1160 KVMState *s = kvm_state;
1161
1162 if (s->coalesced_flush_in_progress) {
1163 return;
1164 }
1165
1166 s->coalesced_flush_in_progress = true;
1167
1168 if (s->coalesced_mmio_ring) {
1169 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1170 while (ring->first != ring->last) {
1171 struct kvm_coalesced_mmio *ent;
1172
1173 ent = &ring->coalesced_mmio[ring->first];
1174
1175 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1176 smp_wmb();
1177 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1178 }
1179 }
1180
1181 s->coalesced_flush_in_progress = false;
1182 }
1183
1184 static void do_kvm_cpu_synchronize_state(void *_env)
1185 {
1186 CPUState *env = _env;
1187
1188 if (!env->kvm_vcpu_dirty) {
1189 kvm_arch_get_registers(env);
1190 env->kvm_vcpu_dirty = 1;
1191 }
1192 }
1193
1194 void kvm_cpu_synchronize_state(CPUState *env)
1195 {
1196 if (!env->kvm_vcpu_dirty) {
1197 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1198 }
1199 }
1200
1201 void kvm_cpu_synchronize_post_reset(CPUState *env)
1202 {
1203 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1204 env->kvm_vcpu_dirty = 0;
1205 }
1206
1207 void kvm_cpu_synchronize_post_init(CPUState *env)
1208 {
1209 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1210 env->kvm_vcpu_dirty = 0;
1211 }
1212
1213 int kvm_cpu_exec(CPUState *env)
1214 {
1215 struct kvm_run *run = env->kvm_run;
1216 int ret, run_ret;
1217
1218 DPRINTF("kvm_cpu_exec()\n");
1219
1220 if (kvm_arch_process_async_events(env)) {
1221 env->exit_request = 0;
1222 return EXCP_HLT;
1223 }
1224
1225 do {
1226 if (env->kvm_vcpu_dirty) {
1227 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1228 env->kvm_vcpu_dirty = 0;
1229 }
1230
1231 kvm_arch_pre_run(env, run);
1232 if (env->exit_request) {
1233 DPRINTF("interrupt exit requested\n");
1234 /*
1235 * KVM requires us to reenter the kernel after IO exits to complete
1236 * instruction emulation. This self-signal will ensure that we
1237 * leave ASAP again.
1238 */
1239 qemu_cpu_kick_self();
1240 }
1241 qemu_mutex_unlock_iothread();
1242
1243 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1244
1245 qemu_mutex_lock_iothread();
1246 kvm_arch_post_run(env, run);
1247
1248 kvm_flush_coalesced_mmio_buffer();
1249
1250 if (run_ret < 0) {
1251 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1252 DPRINTF("io window exit\n");
1253 ret = EXCP_INTERRUPT;
1254 break;
1255 }
1256 fprintf(stderr, "error: kvm run failed %s\n",
1257 strerror(-run_ret));
1258 abort();
1259 }
1260
1261 switch (run->exit_reason) {
1262 case KVM_EXIT_IO:
1263 DPRINTF("handle_io\n");
1264 kvm_handle_io(run->io.port,
1265 (uint8_t *)run + run->io.data_offset,
1266 run->io.direction,
1267 run->io.size,
1268 run->io.count);
1269 ret = 0;
1270 break;
1271 case KVM_EXIT_MMIO:
1272 DPRINTF("handle_mmio\n");
1273 cpu_physical_memory_rw(run->mmio.phys_addr,
1274 run->mmio.data,
1275 run->mmio.len,
1276 run->mmio.is_write);
1277 ret = 0;
1278 break;
1279 case KVM_EXIT_IRQ_WINDOW_OPEN:
1280 DPRINTF("irq_window_open\n");
1281 ret = EXCP_INTERRUPT;
1282 break;
1283 case KVM_EXIT_SHUTDOWN:
1284 DPRINTF("shutdown\n");
1285 qemu_system_reset_request();
1286 ret = EXCP_INTERRUPT;
1287 break;
1288 case KVM_EXIT_UNKNOWN:
1289 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1290 (uint64_t)run->hw.hardware_exit_reason);
1291 ret = -1;
1292 break;
1293 case KVM_EXIT_INTERNAL_ERROR:
1294 ret = kvm_handle_internal_error(env, run);
1295 break;
1296 default:
1297 DPRINTF("kvm_arch_handle_exit\n");
1298 ret = kvm_arch_handle_exit(env, run);
1299 break;
1300 }
1301 } while (ret == 0);
1302
1303 if (ret < 0) {
1304 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1305 vm_stop(RUN_STATE_INTERNAL_ERROR);
1306 }
1307
1308 env->exit_request = 0;
1309 return ret;
1310 }
1311
1312 int kvm_ioctl(KVMState *s, int type, ...)
1313 {
1314 int ret;
1315 void *arg;
1316 va_list ap;
1317
1318 va_start(ap, type);
1319 arg = va_arg(ap, void *);
1320 va_end(ap);
1321
1322 ret = ioctl(s->fd, type, arg);
1323 if (ret == -1) {
1324 ret = -errno;
1325 }
1326 return ret;
1327 }
1328
1329 int kvm_vm_ioctl(KVMState *s, int type, ...)
1330 {
1331 int ret;
1332 void *arg;
1333 va_list ap;
1334
1335 va_start(ap, type);
1336 arg = va_arg(ap, void *);
1337 va_end(ap);
1338
1339 ret = ioctl(s->vmfd, type, arg);
1340 if (ret == -1) {
1341 ret = -errno;
1342 }
1343 return ret;
1344 }
1345
1346 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1347 {
1348 int ret;
1349 void *arg;
1350 va_list ap;
1351
1352 va_start(ap, type);
1353 arg = va_arg(ap, void *);
1354 va_end(ap);
1355
1356 ret = ioctl(env->kvm_fd, type, arg);
1357 if (ret == -1) {
1358 ret = -errno;
1359 }
1360 return ret;
1361 }
1362
1363 int kvm_has_sync_mmu(void)
1364 {
1365 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1366 }
1367
1368 int kvm_has_vcpu_events(void)
1369 {
1370 return kvm_state->vcpu_events;
1371 }
1372
1373 int kvm_has_robust_singlestep(void)
1374 {
1375 return kvm_state->robust_singlestep;
1376 }
1377
1378 int kvm_has_debugregs(void)
1379 {
1380 return kvm_state->debugregs;
1381 }
1382
1383 int kvm_has_xsave(void)
1384 {
1385 return kvm_state->xsave;
1386 }
1387
1388 int kvm_has_xcrs(void)
1389 {
1390 return kvm_state->xcrs;
1391 }
1392
1393 int kvm_has_many_ioeventfds(void)
1394 {
1395 if (!kvm_enabled()) {
1396 return 0;
1397 }
1398 return kvm_state->many_ioeventfds;
1399 }
1400
1401 int kvm_has_gsi_routing(void)
1402 {
1403 #ifdef KVM_CAP_IRQ_ROUTING
1404 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1405 #else
1406 return false;
1407 #endif
1408 }
1409
1410 int kvm_allows_irq0_override(void)
1411 {
1412 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1413 }
1414
1415 void kvm_setup_guest_memory(void *start, size_t size)
1416 {
1417 if (!kvm_has_sync_mmu()) {
1418 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1419
1420 if (ret) {
1421 perror("qemu_madvise");
1422 fprintf(stderr,
1423 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1424 exit(1);
1425 }
1426 }
1427 }
1428
1429 #ifdef KVM_CAP_SET_GUEST_DEBUG
1430 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1431 target_ulong pc)
1432 {
1433 struct kvm_sw_breakpoint *bp;
1434
1435 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1436 if (bp->pc == pc) {
1437 return bp;
1438 }
1439 }
1440 return NULL;
1441 }
1442
1443 int kvm_sw_breakpoints_active(CPUState *env)
1444 {
1445 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1446 }
1447
1448 struct kvm_set_guest_debug_data {
1449 struct kvm_guest_debug dbg;
1450 CPUState *env;
1451 int err;
1452 };
1453
1454 static void kvm_invoke_set_guest_debug(void *data)
1455 {
1456 struct kvm_set_guest_debug_data *dbg_data = data;
1457 CPUState *env = dbg_data->env;
1458
1459 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1460 }
1461
1462 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1463 {
1464 struct kvm_set_guest_debug_data data;
1465
1466 data.dbg.control = reinject_trap;
1467
1468 if (env->singlestep_enabled) {
1469 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1470 }
1471 kvm_arch_update_guest_debug(env, &data.dbg);
1472 data.env = env;
1473
1474 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1475 return data.err;
1476 }
1477
1478 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1479 target_ulong len, int type)
1480 {
1481 struct kvm_sw_breakpoint *bp;
1482 CPUState *env;
1483 int err;
1484
1485 if (type == GDB_BREAKPOINT_SW) {
1486 bp = kvm_find_sw_breakpoint(current_env, addr);
1487 if (bp) {
1488 bp->use_count++;
1489 return 0;
1490 }
1491
1492 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1493 if (!bp) {
1494 return -ENOMEM;
1495 }
1496
1497 bp->pc = addr;
1498 bp->use_count = 1;
1499 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1500 if (err) {
1501 g_free(bp);
1502 return err;
1503 }
1504
1505 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1506 bp, entry);
1507 } else {
1508 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1509 if (err) {
1510 return err;
1511 }
1512 }
1513
1514 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1515 err = kvm_update_guest_debug(env, 0);
1516 if (err) {
1517 return err;
1518 }
1519 }
1520 return 0;
1521 }
1522
1523 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1524 target_ulong len, int type)
1525 {
1526 struct kvm_sw_breakpoint *bp;
1527 CPUState *env;
1528 int err;
1529
1530 if (type == GDB_BREAKPOINT_SW) {
1531 bp = kvm_find_sw_breakpoint(current_env, addr);
1532 if (!bp) {
1533 return -ENOENT;
1534 }
1535
1536 if (bp->use_count > 1) {
1537 bp->use_count--;
1538 return 0;
1539 }
1540
1541 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1542 if (err) {
1543 return err;
1544 }
1545
1546 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1547 g_free(bp);
1548 } else {
1549 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1550 if (err) {
1551 return err;
1552 }
1553 }
1554
1555 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1556 err = kvm_update_guest_debug(env, 0);
1557 if (err) {
1558 return err;
1559 }
1560 }
1561 return 0;
1562 }
1563
1564 void kvm_remove_all_breakpoints(CPUState *current_env)
1565 {
1566 struct kvm_sw_breakpoint *bp, *next;
1567 KVMState *s = current_env->kvm_state;
1568 CPUState *env;
1569
1570 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1571 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1572 /* Try harder to find a CPU that currently sees the breakpoint. */
1573 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1574 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1575 break;
1576 }
1577 }
1578 }
1579 }
1580 kvm_arch_remove_all_hw_breakpoints();
1581
1582 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1583 kvm_update_guest_debug(env, 0);
1584 }
1585 }
1586
1587 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1588
1589 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1590 {
1591 return -EINVAL;
1592 }
1593
1594 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1595 target_ulong len, int type)
1596 {
1597 return -EINVAL;
1598 }
1599
1600 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1601 target_ulong len, int type)
1602 {
1603 return -EINVAL;
1604 }
1605
1606 void kvm_remove_all_breakpoints(CPUState *current_env)
1607 {
1608 }
1609 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1610
1611 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1612 {
1613 struct kvm_signal_mask *sigmask;
1614 int r;
1615
1616 if (!sigset) {
1617 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1618 }
1619
1620 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1621
1622 sigmask->len = 8;
1623 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1624 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1625 g_free(sigmask);
1626
1627 return r;
1628 }
1629
1630 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1631 {
1632 int ret;
1633 struct kvm_ioeventfd iofd;
1634
1635 iofd.datamatch = val;
1636 iofd.addr = addr;
1637 iofd.len = 4;
1638 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1639 iofd.fd = fd;
1640
1641 if (!kvm_enabled()) {
1642 return -ENOSYS;
1643 }
1644
1645 if (!assign) {
1646 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1647 }
1648
1649 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1650
1651 if (ret < 0) {
1652 return -errno;
1653 }
1654
1655 return 0;
1656 }
1657
1658 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1659 {
1660 struct kvm_ioeventfd kick = {
1661 .datamatch = val,
1662 .addr = addr,
1663 .len = 2,
1664 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1665 .fd = fd,
1666 };
1667 int r;
1668 if (!kvm_enabled()) {
1669 return -ENOSYS;
1670 }
1671 if (!assign) {
1672 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1673 }
1674 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1675 if (r < 0) {
1676 return r;
1677 }
1678 return 0;
1679 }
1680
1681 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1682 {
1683 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1684 }
1685
1686 int kvm_on_sigbus(int code, void *addr)
1687 {
1688 return kvm_arch_on_sigbus(code, addr);
1689 }