]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
cpu: Move kvm_state field into CPUState
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "qemu-option.h"
26 #include "qemu-config.h"
27 #include "sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/msi.h"
30 #include "gdbstub.h"
31 #include "kvm.h"
32 #include "bswap.h"
33 #include "memory.h"
34 #include "exec-memory.h"
35 #include "event_notifier.h"
36
37 /* This check must be after config-host.h is included */
38 #ifdef CONFIG_EVENTFD
39 #include <sys/eventfd.h>
40 #endif
41
42 #ifdef CONFIG_VALGRIND_H
43 #include <valgrind/memcheck.h>
44 #endif
45
46 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
47 #define PAGE_SIZE TARGET_PAGE_SIZE
48
49 //#define DEBUG_KVM
50
51 #ifdef DEBUG_KVM
52 #define DPRINTF(fmt, ...) \
53 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
54 #else
55 #define DPRINTF(fmt, ...) \
56 do { } while (0)
57 #endif
58
59 #define KVM_MSI_HASHTAB_SIZE 256
60
61 typedef struct KVMSlot
62 {
63 hwaddr start_addr;
64 ram_addr_t memory_size;
65 void *ram;
66 int slot;
67 int flags;
68 } KVMSlot;
69
70 typedef struct kvm_dirty_log KVMDirtyLog;
71
72 struct KVMState
73 {
74 KVMSlot slots[32];
75 int fd;
76 int vmfd;
77 int coalesced_mmio;
78 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
79 bool coalesced_flush_in_progress;
80 int broken_set_mem_region;
81 int migration_log;
82 int vcpu_events;
83 int robust_singlestep;
84 int debugregs;
85 #ifdef KVM_CAP_SET_GUEST_DEBUG
86 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
87 #endif
88 int pit_state2;
89 int xsave, xcrs;
90 int many_ioeventfds;
91 int intx_set_mask;
92 /* The man page (and posix) say ioctl numbers are signed int, but
93 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
94 * unsigned, and treating them as signed here can break things */
95 unsigned irq_set_ioctl;
96 #ifdef KVM_CAP_IRQ_ROUTING
97 struct kvm_irq_routing *irq_routes;
98 int nr_allocated_irq_routes;
99 uint32_t *used_gsi_bitmap;
100 unsigned int gsi_count;
101 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
102 bool direct_msi;
103 #endif
104 };
105
106 KVMState *kvm_state;
107 bool kvm_kernel_irqchip;
108 bool kvm_async_interrupts_allowed;
109 bool kvm_irqfds_allowed;
110 bool kvm_msi_via_irqfd_allowed;
111 bool kvm_gsi_routing_allowed;
112
113 static const KVMCapabilityInfo kvm_required_capabilites[] = {
114 KVM_CAP_INFO(USER_MEMORY),
115 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
116 KVM_CAP_LAST_INFO
117 };
118
119 static KVMSlot *kvm_alloc_slot(KVMState *s)
120 {
121 int i;
122
123 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
124 if (s->slots[i].memory_size == 0) {
125 return &s->slots[i];
126 }
127 }
128
129 fprintf(stderr, "%s: no free slot available\n", __func__);
130 abort();
131 }
132
133 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
134 hwaddr start_addr,
135 hwaddr end_addr)
136 {
137 int i;
138
139 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
140 KVMSlot *mem = &s->slots[i];
141
142 if (start_addr == mem->start_addr &&
143 end_addr == mem->start_addr + mem->memory_size) {
144 return mem;
145 }
146 }
147
148 return NULL;
149 }
150
151 /*
152 * Find overlapping slot with lowest start address
153 */
154 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
155 hwaddr start_addr,
156 hwaddr end_addr)
157 {
158 KVMSlot *found = NULL;
159 int i;
160
161 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
162 KVMSlot *mem = &s->slots[i];
163
164 if (mem->memory_size == 0 ||
165 (found && found->start_addr < mem->start_addr)) {
166 continue;
167 }
168
169 if (end_addr > mem->start_addr &&
170 start_addr < mem->start_addr + mem->memory_size) {
171 found = mem;
172 }
173 }
174
175 return found;
176 }
177
178 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
179 hwaddr *phys_addr)
180 {
181 int i;
182
183 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
184 KVMSlot *mem = &s->slots[i];
185
186 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
187 *phys_addr = mem->start_addr + (ram - mem->ram);
188 return 1;
189 }
190 }
191
192 return 0;
193 }
194
195 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
196 {
197 struct kvm_userspace_memory_region mem;
198
199 mem.slot = slot->slot;
200 mem.guest_phys_addr = slot->start_addr;
201 mem.memory_size = slot->memory_size;
202 mem.userspace_addr = (unsigned long)slot->ram;
203 mem.flags = slot->flags;
204 if (s->migration_log) {
205 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
206 }
207 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
208 }
209
210 static void kvm_reset_vcpu(void *opaque)
211 {
212 CPUState *cpu = opaque;
213
214 kvm_arch_reset_vcpu(cpu);
215 }
216
217 int kvm_init_vcpu(CPUArchState *env)
218 {
219 CPUState *cpu = ENV_GET_CPU(env);
220 KVMState *s = kvm_state;
221 long mmap_size;
222 int ret;
223
224 DPRINTF("kvm_init_vcpu\n");
225
226 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
227 if (ret < 0) {
228 DPRINTF("kvm_create_vcpu failed\n");
229 goto err;
230 }
231
232 cpu->kvm_fd = ret;
233 cpu->kvm_state = s;
234 cpu->kvm_vcpu_dirty = true;
235
236 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
237 if (mmap_size < 0) {
238 ret = mmap_size;
239 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
240 goto err;
241 }
242
243 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
244 cpu->kvm_fd, 0);
245 if (env->kvm_run == MAP_FAILED) {
246 ret = -errno;
247 DPRINTF("mmap'ing vcpu state failed\n");
248 goto err;
249 }
250
251 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
252 s->coalesced_mmio_ring =
253 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
254 }
255
256 ret = kvm_arch_init_vcpu(cpu);
257 if (ret == 0) {
258 qemu_register_reset(kvm_reset_vcpu, cpu);
259 kvm_arch_reset_vcpu(cpu);
260 }
261 err:
262 return ret;
263 }
264
265 /*
266 * dirty pages logging control
267 */
268
269 static int kvm_mem_flags(KVMState *s, bool log_dirty)
270 {
271 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
272 }
273
274 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
275 {
276 KVMState *s = kvm_state;
277 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
278 int old_flags;
279
280 old_flags = mem->flags;
281
282 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
283 mem->flags = flags;
284
285 /* If nothing changed effectively, no need to issue ioctl */
286 if (s->migration_log) {
287 flags |= KVM_MEM_LOG_DIRTY_PAGES;
288 }
289
290 if (flags == old_flags) {
291 return 0;
292 }
293
294 return kvm_set_user_memory_region(s, mem);
295 }
296
297 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
298 ram_addr_t size, bool log_dirty)
299 {
300 KVMState *s = kvm_state;
301 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
302
303 if (mem == NULL) {
304 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
305 TARGET_FMT_plx "\n", __func__, phys_addr,
306 (hwaddr)(phys_addr + size - 1));
307 return -EINVAL;
308 }
309 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
310 }
311
312 static void kvm_log_start(MemoryListener *listener,
313 MemoryRegionSection *section)
314 {
315 int r;
316
317 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
318 section->size, true);
319 if (r < 0) {
320 abort();
321 }
322 }
323
324 static void kvm_log_stop(MemoryListener *listener,
325 MemoryRegionSection *section)
326 {
327 int r;
328
329 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
330 section->size, false);
331 if (r < 0) {
332 abort();
333 }
334 }
335
336 static int kvm_set_migration_log(int enable)
337 {
338 KVMState *s = kvm_state;
339 KVMSlot *mem;
340 int i, err;
341
342 s->migration_log = enable;
343
344 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
345 mem = &s->slots[i];
346
347 if (!mem->memory_size) {
348 continue;
349 }
350 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
351 continue;
352 }
353 err = kvm_set_user_memory_region(s, mem);
354 if (err) {
355 return err;
356 }
357 }
358 return 0;
359 }
360
361 /* get kvm's dirty pages bitmap and update qemu's */
362 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
363 unsigned long *bitmap)
364 {
365 unsigned int i, j;
366 unsigned long page_number, c;
367 hwaddr addr, addr1;
368 unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
369 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
370
371 /*
372 * bitmap-traveling is faster than memory-traveling (for addr...)
373 * especially when most of the memory is not dirty.
374 */
375 for (i = 0; i < len; i++) {
376 if (bitmap[i] != 0) {
377 c = leul_to_cpu(bitmap[i]);
378 do {
379 j = ffsl(c) - 1;
380 c &= ~(1ul << j);
381 page_number = (i * HOST_LONG_BITS + j) * hpratio;
382 addr1 = page_number * TARGET_PAGE_SIZE;
383 addr = section->offset_within_region + addr1;
384 memory_region_set_dirty(section->mr, addr,
385 TARGET_PAGE_SIZE * hpratio);
386 } while (c != 0);
387 }
388 }
389 return 0;
390 }
391
392 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
393
394 /**
395 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
396 * This function updates qemu's dirty bitmap using
397 * memory_region_set_dirty(). This means all bits are set
398 * to dirty.
399 *
400 * @start_add: start of logged region.
401 * @end_addr: end of logged region.
402 */
403 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
404 {
405 KVMState *s = kvm_state;
406 unsigned long size, allocated_size = 0;
407 KVMDirtyLog d;
408 KVMSlot *mem;
409 int ret = 0;
410 hwaddr start_addr = section->offset_within_address_space;
411 hwaddr end_addr = start_addr + section->size;
412
413 d.dirty_bitmap = NULL;
414 while (start_addr < end_addr) {
415 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
416 if (mem == NULL) {
417 break;
418 }
419
420 /* XXX bad kernel interface alert
421 * For dirty bitmap, kernel allocates array of size aligned to
422 * bits-per-long. But for case when the kernel is 64bits and
423 * the userspace is 32bits, userspace can't align to the same
424 * bits-per-long, since sizeof(long) is different between kernel
425 * and user space. This way, userspace will provide buffer which
426 * may be 4 bytes less than the kernel will use, resulting in
427 * userspace memory corruption (which is not detectable by valgrind
428 * too, in most cases).
429 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
430 * a hope that sizeof(long) wont become >8 any time soon.
431 */
432 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
433 /*HOST_LONG_BITS*/ 64) / 8;
434 if (!d.dirty_bitmap) {
435 d.dirty_bitmap = g_malloc(size);
436 } else if (size > allocated_size) {
437 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
438 }
439 allocated_size = size;
440 memset(d.dirty_bitmap, 0, allocated_size);
441
442 d.slot = mem->slot;
443
444 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
445 DPRINTF("ioctl failed %d\n", errno);
446 ret = -1;
447 break;
448 }
449
450 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
451 start_addr = mem->start_addr + mem->memory_size;
452 }
453 g_free(d.dirty_bitmap);
454
455 return ret;
456 }
457
458 static void kvm_coalesce_mmio_region(MemoryListener *listener,
459 MemoryRegionSection *secion,
460 hwaddr start, hwaddr size)
461 {
462 KVMState *s = kvm_state;
463
464 if (s->coalesced_mmio) {
465 struct kvm_coalesced_mmio_zone zone;
466
467 zone.addr = start;
468 zone.size = size;
469 zone.pad = 0;
470
471 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
472 }
473 }
474
475 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
476 MemoryRegionSection *secion,
477 hwaddr start, hwaddr size)
478 {
479 KVMState *s = kvm_state;
480
481 if (s->coalesced_mmio) {
482 struct kvm_coalesced_mmio_zone zone;
483
484 zone.addr = start;
485 zone.size = size;
486 zone.pad = 0;
487
488 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
489 }
490 }
491
492 int kvm_check_extension(KVMState *s, unsigned int extension)
493 {
494 int ret;
495
496 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
497 if (ret < 0) {
498 ret = 0;
499 }
500
501 return ret;
502 }
503
504 static int kvm_check_many_ioeventfds(void)
505 {
506 /* Userspace can use ioeventfd for io notification. This requires a host
507 * that supports eventfd(2) and an I/O thread; since eventfd does not
508 * support SIGIO it cannot interrupt the vcpu.
509 *
510 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
511 * can avoid creating too many ioeventfds.
512 */
513 #if defined(CONFIG_EVENTFD)
514 int ioeventfds[7];
515 int i, ret = 0;
516 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
517 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
518 if (ioeventfds[i] < 0) {
519 break;
520 }
521 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
522 if (ret < 0) {
523 close(ioeventfds[i]);
524 break;
525 }
526 }
527
528 /* Decide whether many devices are supported or not */
529 ret = i == ARRAY_SIZE(ioeventfds);
530
531 while (i-- > 0) {
532 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
533 close(ioeventfds[i]);
534 }
535 return ret;
536 #else
537 return 0;
538 #endif
539 }
540
541 static const KVMCapabilityInfo *
542 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
543 {
544 while (list->name) {
545 if (!kvm_check_extension(s, list->value)) {
546 return list;
547 }
548 list++;
549 }
550 return NULL;
551 }
552
553 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
554 {
555 KVMState *s = kvm_state;
556 KVMSlot *mem, old;
557 int err;
558 MemoryRegion *mr = section->mr;
559 bool log_dirty = memory_region_is_logging(mr);
560 hwaddr start_addr = section->offset_within_address_space;
561 ram_addr_t size = section->size;
562 void *ram = NULL;
563 unsigned delta;
564
565 /* kvm works in page size chunks, but the function may be called
566 with sub-page size and unaligned start address. */
567 delta = TARGET_PAGE_ALIGN(size) - size;
568 if (delta > size) {
569 return;
570 }
571 start_addr += delta;
572 size -= delta;
573 size &= TARGET_PAGE_MASK;
574 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
575 return;
576 }
577
578 if (!memory_region_is_ram(mr)) {
579 return;
580 }
581
582 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
583
584 while (1) {
585 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
586 if (!mem) {
587 break;
588 }
589
590 if (add && start_addr >= mem->start_addr &&
591 (start_addr + size <= mem->start_addr + mem->memory_size) &&
592 (ram - start_addr == mem->ram - mem->start_addr)) {
593 /* The new slot fits into the existing one and comes with
594 * identical parameters - update flags and done. */
595 kvm_slot_dirty_pages_log_change(mem, log_dirty);
596 return;
597 }
598
599 old = *mem;
600
601 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
602 kvm_physical_sync_dirty_bitmap(section);
603 }
604
605 /* unregister the overlapping slot */
606 mem->memory_size = 0;
607 err = kvm_set_user_memory_region(s, mem);
608 if (err) {
609 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
610 __func__, strerror(-err));
611 abort();
612 }
613
614 /* Workaround for older KVM versions: we can't join slots, even not by
615 * unregistering the previous ones and then registering the larger
616 * slot. We have to maintain the existing fragmentation. Sigh.
617 *
618 * This workaround assumes that the new slot starts at the same
619 * address as the first existing one. If not or if some overlapping
620 * slot comes around later, we will fail (not seen in practice so far)
621 * - and actually require a recent KVM version. */
622 if (s->broken_set_mem_region &&
623 old.start_addr == start_addr && old.memory_size < size && add) {
624 mem = kvm_alloc_slot(s);
625 mem->memory_size = old.memory_size;
626 mem->start_addr = old.start_addr;
627 mem->ram = old.ram;
628 mem->flags = kvm_mem_flags(s, log_dirty);
629
630 err = kvm_set_user_memory_region(s, mem);
631 if (err) {
632 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
633 strerror(-err));
634 abort();
635 }
636
637 start_addr += old.memory_size;
638 ram += old.memory_size;
639 size -= old.memory_size;
640 continue;
641 }
642
643 /* register prefix slot */
644 if (old.start_addr < start_addr) {
645 mem = kvm_alloc_slot(s);
646 mem->memory_size = start_addr - old.start_addr;
647 mem->start_addr = old.start_addr;
648 mem->ram = old.ram;
649 mem->flags = kvm_mem_flags(s, log_dirty);
650
651 err = kvm_set_user_memory_region(s, mem);
652 if (err) {
653 fprintf(stderr, "%s: error registering prefix slot: %s\n",
654 __func__, strerror(-err));
655 #ifdef TARGET_PPC
656 fprintf(stderr, "%s: This is probably because your kernel's " \
657 "PAGE_SIZE is too big. Please try to use 4k " \
658 "PAGE_SIZE!\n", __func__);
659 #endif
660 abort();
661 }
662 }
663
664 /* register suffix slot */
665 if (old.start_addr + old.memory_size > start_addr + size) {
666 ram_addr_t size_delta;
667
668 mem = kvm_alloc_slot(s);
669 mem->start_addr = start_addr + size;
670 size_delta = mem->start_addr - old.start_addr;
671 mem->memory_size = old.memory_size - size_delta;
672 mem->ram = old.ram + size_delta;
673 mem->flags = kvm_mem_flags(s, log_dirty);
674
675 err = kvm_set_user_memory_region(s, mem);
676 if (err) {
677 fprintf(stderr, "%s: error registering suffix slot: %s\n",
678 __func__, strerror(-err));
679 abort();
680 }
681 }
682 }
683
684 /* in case the KVM bug workaround already "consumed" the new slot */
685 if (!size) {
686 return;
687 }
688 if (!add) {
689 return;
690 }
691 mem = kvm_alloc_slot(s);
692 mem->memory_size = size;
693 mem->start_addr = start_addr;
694 mem->ram = ram;
695 mem->flags = kvm_mem_flags(s, log_dirty);
696
697 err = kvm_set_user_memory_region(s, mem);
698 if (err) {
699 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
700 strerror(-err));
701 abort();
702 }
703 }
704
705 static void kvm_region_add(MemoryListener *listener,
706 MemoryRegionSection *section)
707 {
708 kvm_set_phys_mem(section, true);
709 }
710
711 static void kvm_region_del(MemoryListener *listener,
712 MemoryRegionSection *section)
713 {
714 kvm_set_phys_mem(section, false);
715 }
716
717 static void kvm_log_sync(MemoryListener *listener,
718 MemoryRegionSection *section)
719 {
720 int r;
721
722 r = kvm_physical_sync_dirty_bitmap(section);
723 if (r < 0) {
724 abort();
725 }
726 }
727
728 static void kvm_log_global_start(struct MemoryListener *listener)
729 {
730 int r;
731
732 r = kvm_set_migration_log(1);
733 assert(r >= 0);
734 }
735
736 static void kvm_log_global_stop(struct MemoryListener *listener)
737 {
738 int r;
739
740 r = kvm_set_migration_log(0);
741 assert(r >= 0);
742 }
743
744 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
745 MemoryRegionSection *section,
746 bool match_data, uint64_t data,
747 EventNotifier *e)
748 {
749 int fd = event_notifier_get_fd(e);
750 int r;
751
752 assert(match_data && section->size <= 8);
753
754 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
755 data, true, section->size);
756 if (r < 0) {
757 abort();
758 }
759 }
760
761 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
762 MemoryRegionSection *section,
763 bool match_data, uint64_t data,
764 EventNotifier *e)
765 {
766 int fd = event_notifier_get_fd(e);
767 int r;
768
769 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
770 data, false, section->size);
771 if (r < 0) {
772 abort();
773 }
774 }
775
776 static void kvm_io_ioeventfd_add(MemoryListener *listener,
777 MemoryRegionSection *section,
778 bool match_data, uint64_t data,
779 EventNotifier *e)
780 {
781 int fd = event_notifier_get_fd(e);
782 int r;
783
784 assert(match_data && section->size == 2);
785
786 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
787 data, true);
788 if (r < 0) {
789 abort();
790 }
791 }
792
793 static void kvm_io_ioeventfd_del(MemoryListener *listener,
794 MemoryRegionSection *section,
795 bool match_data, uint64_t data,
796 EventNotifier *e)
797
798 {
799 int fd = event_notifier_get_fd(e);
800 int r;
801
802 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
803 data, false);
804 if (r < 0) {
805 abort();
806 }
807 }
808
809 static MemoryListener kvm_memory_listener = {
810 .region_add = kvm_region_add,
811 .region_del = kvm_region_del,
812 .log_start = kvm_log_start,
813 .log_stop = kvm_log_stop,
814 .log_sync = kvm_log_sync,
815 .log_global_start = kvm_log_global_start,
816 .log_global_stop = kvm_log_global_stop,
817 .eventfd_add = kvm_mem_ioeventfd_add,
818 .eventfd_del = kvm_mem_ioeventfd_del,
819 .coalesced_mmio_add = kvm_coalesce_mmio_region,
820 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
821 .priority = 10,
822 };
823
824 static MemoryListener kvm_io_listener = {
825 .eventfd_add = kvm_io_ioeventfd_add,
826 .eventfd_del = kvm_io_ioeventfd_del,
827 .priority = 10,
828 };
829
830 static void kvm_handle_interrupt(CPUArchState *env, int mask)
831 {
832 CPUState *cpu = ENV_GET_CPU(env);
833
834 env->interrupt_request |= mask;
835
836 if (!qemu_cpu_is_self(cpu)) {
837 qemu_cpu_kick(cpu);
838 }
839 }
840
841 int kvm_set_irq(KVMState *s, int irq, int level)
842 {
843 struct kvm_irq_level event;
844 int ret;
845
846 assert(kvm_async_interrupts_enabled());
847
848 event.level = level;
849 event.irq = irq;
850 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
851 if (ret < 0) {
852 perror("kvm_set_irq");
853 abort();
854 }
855
856 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
857 }
858
859 #ifdef KVM_CAP_IRQ_ROUTING
860 typedef struct KVMMSIRoute {
861 struct kvm_irq_routing_entry kroute;
862 QTAILQ_ENTRY(KVMMSIRoute) entry;
863 } KVMMSIRoute;
864
865 static void set_gsi(KVMState *s, unsigned int gsi)
866 {
867 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
868 }
869
870 static void clear_gsi(KVMState *s, unsigned int gsi)
871 {
872 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
873 }
874
875 static void kvm_init_irq_routing(KVMState *s)
876 {
877 int gsi_count, i;
878
879 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
880 if (gsi_count > 0) {
881 unsigned int gsi_bits, i;
882
883 /* Round up so we can search ints using ffs */
884 gsi_bits = ALIGN(gsi_count, 32);
885 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
886 s->gsi_count = gsi_count;
887
888 /* Mark any over-allocated bits as already in use */
889 for (i = gsi_count; i < gsi_bits; i++) {
890 set_gsi(s, i);
891 }
892 }
893
894 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
895 s->nr_allocated_irq_routes = 0;
896
897 if (!s->direct_msi) {
898 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
899 QTAILQ_INIT(&s->msi_hashtab[i]);
900 }
901 }
902
903 kvm_arch_init_irq_routing(s);
904 }
905
906 static void kvm_irqchip_commit_routes(KVMState *s)
907 {
908 int ret;
909
910 s->irq_routes->flags = 0;
911 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
912 assert(ret == 0);
913 }
914
915 static void kvm_add_routing_entry(KVMState *s,
916 struct kvm_irq_routing_entry *entry)
917 {
918 struct kvm_irq_routing_entry *new;
919 int n, size;
920
921 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
922 n = s->nr_allocated_irq_routes * 2;
923 if (n < 64) {
924 n = 64;
925 }
926 size = sizeof(struct kvm_irq_routing);
927 size += n * sizeof(*new);
928 s->irq_routes = g_realloc(s->irq_routes, size);
929 s->nr_allocated_irq_routes = n;
930 }
931 n = s->irq_routes->nr++;
932 new = &s->irq_routes->entries[n];
933 memset(new, 0, sizeof(*new));
934 new->gsi = entry->gsi;
935 new->type = entry->type;
936 new->flags = entry->flags;
937 new->u = entry->u;
938
939 set_gsi(s, entry->gsi);
940
941 kvm_irqchip_commit_routes(s);
942 }
943
944 static int kvm_update_routing_entry(KVMState *s,
945 struct kvm_irq_routing_entry *new_entry)
946 {
947 struct kvm_irq_routing_entry *entry;
948 int n;
949
950 for (n = 0; n < s->irq_routes->nr; n++) {
951 entry = &s->irq_routes->entries[n];
952 if (entry->gsi != new_entry->gsi) {
953 continue;
954 }
955
956 entry->type = new_entry->type;
957 entry->flags = new_entry->flags;
958 entry->u = new_entry->u;
959
960 kvm_irqchip_commit_routes(s);
961
962 return 0;
963 }
964
965 return -ESRCH;
966 }
967
968 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
969 {
970 struct kvm_irq_routing_entry e;
971
972 assert(pin < s->gsi_count);
973
974 e.gsi = irq;
975 e.type = KVM_IRQ_ROUTING_IRQCHIP;
976 e.flags = 0;
977 e.u.irqchip.irqchip = irqchip;
978 e.u.irqchip.pin = pin;
979 kvm_add_routing_entry(s, &e);
980 }
981
982 void kvm_irqchip_release_virq(KVMState *s, int virq)
983 {
984 struct kvm_irq_routing_entry *e;
985 int i;
986
987 for (i = 0; i < s->irq_routes->nr; i++) {
988 e = &s->irq_routes->entries[i];
989 if (e->gsi == virq) {
990 s->irq_routes->nr--;
991 *e = s->irq_routes->entries[s->irq_routes->nr];
992 }
993 }
994 clear_gsi(s, virq);
995
996 kvm_irqchip_commit_routes(s);
997 }
998
999 static unsigned int kvm_hash_msi(uint32_t data)
1000 {
1001 /* This is optimized for IA32 MSI layout. However, no other arch shall
1002 * repeat the mistake of not providing a direct MSI injection API. */
1003 return data & 0xff;
1004 }
1005
1006 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1007 {
1008 KVMMSIRoute *route, *next;
1009 unsigned int hash;
1010
1011 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1012 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1013 kvm_irqchip_release_virq(s, route->kroute.gsi);
1014 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1015 g_free(route);
1016 }
1017 }
1018 }
1019
1020 static int kvm_irqchip_get_virq(KVMState *s)
1021 {
1022 uint32_t *word = s->used_gsi_bitmap;
1023 int max_words = ALIGN(s->gsi_count, 32) / 32;
1024 int i, bit;
1025 bool retry = true;
1026
1027 again:
1028 /* Return the lowest unused GSI in the bitmap */
1029 for (i = 0; i < max_words; i++) {
1030 bit = ffs(~word[i]);
1031 if (!bit) {
1032 continue;
1033 }
1034
1035 return bit - 1 + i * 32;
1036 }
1037 if (!s->direct_msi && retry) {
1038 retry = false;
1039 kvm_flush_dynamic_msi_routes(s);
1040 goto again;
1041 }
1042 return -ENOSPC;
1043
1044 }
1045
1046 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1047 {
1048 unsigned int hash = kvm_hash_msi(msg.data);
1049 KVMMSIRoute *route;
1050
1051 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1052 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1053 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1054 route->kroute.u.msi.data == msg.data) {
1055 return route;
1056 }
1057 }
1058 return NULL;
1059 }
1060
1061 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1062 {
1063 struct kvm_msi msi;
1064 KVMMSIRoute *route;
1065
1066 if (s->direct_msi) {
1067 msi.address_lo = (uint32_t)msg.address;
1068 msi.address_hi = msg.address >> 32;
1069 msi.data = msg.data;
1070 msi.flags = 0;
1071 memset(msi.pad, 0, sizeof(msi.pad));
1072
1073 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1074 }
1075
1076 route = kvm_lookup_msi_route(s, msg);
1077 if (!route) {
1078 int virq;
1079
1080 virq = kvm_irqchip_get_virq(s);
1081 if (virq < 0) {
1082 return virq;
1083 }
1084
1085 route = g_malloc(sizeof(KVMMSIRoute));
1086 route->kroute.gsi = virq;
1087 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1088 route->kroute.flags = 0;
1089 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1090 route->kroute.u.msi.address_hi = msg.address >> 32;
1091 route->kroute.u.msi.data = msg.data;
1092
1093 kvm_add_routing_entry(s, &route->kroute);
1094
1095 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1096 entry);
1097 }
1098
1099 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1100
1101 return kvm_set_irq(s, route->kroute.gsi, 1);
1102 }
1103
1104 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1105 {
1106 struct kvm_irq_routing_entry kroute;
1107 int virq;
1108
1109 if (!kvm_gsi_routing_enabled()) {
1110 return -ENOSYS;
1111 }
1112
1113 virq = kvm_irqchip_get_virq(s);
1114 if (virq < 0) {
1115 return virq;
1116 }
1117
1118 kroute.gsi = virq;
1119 kroute.type = KVM_IRQ_ROUTING_MSI;
1120 kroute.flags = 0;
1121 kroute.u.msi.address_lo = (uint32_t)msg.address;
1122 kroute.u.msi.address_hi = msg.address >> 32;
1123 kroute.u.msi.data = msg.data;
1124
1125 kvm_add_routing_entry(s, &kroute);
1126
1127 return virq;
1128 }
1129
1130 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1131 {
1132 struct kvm_irq_routing_entry kroute;
1133
1134 if (!kvm_irqchip_in_kernel()) {
1135 return -ENOSYS;
1136 }
1137
1138 kroute.gsi = virq;
1139 kroute.type = KVM_IRQ_ROUTING_MSI;
1140 kroute.flags = 0;
1141 kroute.u.msi.address_lo = (uint32_t)msg.address;
1142 kroute.u.msi.address_hi = msg.address >> 32;
1143 kroute.u.msi.data = msg.data;
1144
1145 return kvm_update_routing_entry(s, &kroute);
1146 }
1147
1148 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1149 {
1150 struct kvm_irqfd irqfd = {
1151 .fd = fd,
1152 .gsi = virq,
1153 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1154 };
1155
1156 if (!kvm_irqfds_enabled()) {
1157 return -ENOSYS;
1158 }
1159
1160 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1161 }
1162
1163 #else /* !KVM_CAP_IRQ_ROUTING */
1164
1165 static void kvm_init_irq_routing(KVMState *s)
1166 {
1167 }
1168
1169 void kvm_irqchip_release_virq(KVMState *s, int virq)
1170 {
1171 }
1172
1173 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1174 {
1175 abort();
1176 }
1177
1178 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1179 {
1180 return -ENOSYS;
1181 }
1182
1183 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1184 {
1185 abort();
1186 }
1187 #endif /* !KVM_CAP_IRQ_ROUTING */
1188
1189 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1190 {
1191 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
1192 }
1193
1194 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1195 {
1196 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
1197 }
1198
1199 static int kvm_irqchip_create(KVMState *s)
1200 {
1201 QemuOptsList *list = qemu_find_opts("machine");
1202 int ret;
1203
1204 if (QTAILQ_EMPTY(&list->head) ||
1205 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1206 "kernel_irqchip", true) ||
1207 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1208 return 0;
1209 }
1210
1211 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1212 if (ret < 0) {
1213 fprintf(stderr, "Create kernel irqchip failed\n");
1214 return ret;
1215 }
1216
1217 kvm_kernel_irqchip = true;
1218 /* If we have an in-kernel IRQ chip then we must have asynchronous
1219 * interrupt delivery (though the reverse is not necessarily true)
1220 */
1221 kvm_async_interrupts_allowed = true;
1222
1223 kvm_init_irq_routing(s);
1224
1225 return 0;
1226 }
1227
1228 static int kvm_max_vcpus(KVMState *s)
1229 {
1230 int ret;
1231
1232 /* Find number of supported CPUs using the recommended
1233 * procedure from the kernel API documentation to cope with
1234 * older kernels that may be missing capabilities.
1235 */
1236 ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1237 if (ret) {
1238 return ret;
1239 }
1240 ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1241 if (ret) {
1242 return ret;
1243 }
1244
1245 return 4;
1246 }
1247
1248 int kvm_init(void)
1249 {
1250 static const char upgrade_note[] =
1251 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1252 "(see http://sourceforge.net/projects/kvm).\n";
1253 KVMState *s;
1254 const KVMCapabilityInfo *missing_cap;
1255 int ret;
1256 int i;
1257 int max_vcpus;
1258
1259 s = g_malloc0(sizeof(KVMState));
1260
1261 /*
1262 * On systems where the kernel can support different base page
1263 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1264 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1265 * page size for the system though.
1266 */
1267 assert(TARGET_PAGE_SIZE <= getpagesize());
1268
1269 #ifdef KVM_CAP_SET_GUEST_DEBUG
1270 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1271 #endif
1272 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1273 s->slots[i].slot = i;
1274 }
1275 s->vmfd = -1;
1276 s->fd = qemu_open("/dev/kvm", O_RDWR);
1277 if (s->fd == -1) {
1278 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1279 ret = -errno;
1280 goto err;
1281 }
1282
1283 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1284 if (ret < KVM_API_VERSION) {
1285 if (ret > 0) {
1286 ret = -EINVAL;
1287 }
1288 fprintf(stderr, "kvm version too old\n");
1289 goto err;
1290 }
1291
1292 if (ret > KVM_API_VERSION) {
1293 ret = -EINVAL;
1294 fprintf(stderr, "kvm version not supported\n");
1295 goto err;
1296 }
1297
1298 max_vcpus = kvm_max_vcpus(s);
1299 if (smp_cpus > max_vcpus) {
1300 ret = -EINVAL;
1301 fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1302 "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1303 goto err;
1304 }
1305
1306 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1307 if (s->vmfd < 0) {
1308 #ifdef TARGET_S390X
1309 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1310 "your host kernel command line\n");
1311 #endif
1312 ret = s->vmfd;
1313 goto err;
1314 }
1315
1316 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1317 if (!missing_cap) {
1318 missing_cap =
1319 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1320 }
1321 if (missing_cap) {
1322 ret = -EINVAL;
1323 fprintf(stderr, "kvm does not support %s\n%s",
1324 missing_cap->name, upgrade_note);
1325 goto err;
1326 }
1327
1328 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1329
1330 s->broken_set_mem_region = 1;
1331 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1332 if (ret > 0) {
1333 s->broken_set_mem_region = 0;
1334 }
1335
1336 #ifdef KVM_CAP_VCPU_EVENTS
1337 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1338 #endif
1339
1340 s->robust_singlestep =
1341 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1342
1343 #ifdef KVM_CAP_DEBUGREGS
1344 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1345 #endif
1346
1347 #ifdef KVM_CAP_XSAVE
1348 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1349 #endif
1350
1351 #ifdef KVM_CAP_XCRS
1352 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1353 #endif
1354
1355 #ifdef KVM_CAP_PIT_STATE2
1356 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1357 #endif
1358
1359 #ifdef KVM_CAP_IRQ_ROUTING
1360 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1361 #endif
1362
1363 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1364
1365 s->irq_set_ioctl = KVM_IRQ_LINE;
1366 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1367 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1368 }
1369
1370 ret = kvm_arch_init(s);
1371 if (ret < 0) {
1372 goto err;
1373 }
1374
1375 ret = kvm_irqchip_create(s);
1376 if (ret < 0) {
1377 goto err;
1378 }
1379
1380 kvm_state = s;
1381 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1382 memory_listener_register(&kvm_io_listener, &address_space_io);
1383
1384 s->many_ioeventfds = kvm_check_many_ioeventfds();
1385
1386 cpu_interrupt_handler = kvm_handle_interrupt;
1387
1388 return 0;
1389
1390 err:
1391 if (s->vmfd >= 0) {
1392 close(s->vmfd);
1393 }
1394 if (s->fd != -1) {
1395 close(s->fd);
1396 }
1397 g_free(s);
1398
1399 return ret;
1400 }
1401
1402 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1403 uint32_t count)
1404 {
1405 int i;
1406 uint8_t *ptr = data;
1407
1408 for (i = 0; i < count; i++) {
1409 if (direction == KVM_EXIT_IO_IN) {
1410 switch (size) {
1411 case 1:
1412 stb_p(ptr, cpu_inb(port));
1413 break;
1414 case 2:
1415 stw_p(ptr, cpu_inw(port));
1416 break;
1417 case 4:
1418 stl_p(ptr, cpu_inl(port));
1419 break;
1420 }
1421 } else {
1422 switch (size) {
1423 case 1:
1424 cpu_outb(port, ldub_p(ptr));
1425 break;
1426 case 2:
1427 cpu_outw(port, lduw_p(ptr));
1428 break;
1429 case 4:
1430 cpu_outl(port, ldl_p(ptr));
1431 break;
1432 }
1433 }
1434
1435 ptr += size;
1436 }
1437 }
1438
1439 static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1440 {
1441 CPUState *cpu = ENV_GET_CPU(env);
1442
1443 fprintf(stderr, "KVM internal error.");
1444 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1445 int i;
1446
1447 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1448 for (i = 0; i < run->internal.ndata; ++i) {
1449 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1450 i, (uint64_t)run->internal.data[i]);
1451 }
1452 } else {
1453 fprintf(stderr, "\n");
1454 }
1455 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1456 fprintf(stderr, "emulation failure\n");
1457 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1458 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1459 return EXCP_INTERRUPT;
1460 }
1461 }
1462 /* FIXME: Should trigger a qmp message to let management know
1463 * something went wrong.
1464 */
1465 return -1;
1466 }
1467
1468 void kvm_flush_coalesced_mmio_buffer(void)
1469 {
1470 KVMState *s = kvm_state;
1471
1472 if (s->coalesced_flush_in_progress) {
1473 return;
1474 }
1475
1476 s->coalesced_flush_in_progress = true;
1477
1478 if (s->coalesced_mmio_ring) {
1479 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1480 while (ring->first != ring->last) {
1481 struct kvm_coalesced_mmio *ent;
1482
1483 ent = &ring->coalesced_mmio[ring->first];
1484
1485 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1486 smp_wmb();
1487 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1488 }
1489 }
1490
1491 s->coalesced_flush_in_progress = false;
1492 }
1493
1494 static void do_kvm_cpu_synchronize_state(void *arg)
1495 {
1496 CPUState *cpu = arg;
1497
1498 if (!cpu->kvm_vcpu_dirty) {
1499 kvm_arch_get_registers(cpu);
1500 cpu->kvm_vcpu_dirty = true;
1501 }
1502 }
1503
1504 void kvm_cpu_synchronize_state(CPUArchState *env)
1505 {
1506 CPUState *cpu = ENV_GET_CPU(env);
1507
1508 if (!cpu->kvm_vcpu_dirty) {
1509 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1510 }
1511 }
1512
1513 void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1514 {
1515 CPUState *cpu = ENV_GET_CPU(env);
1516
1517 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1518 cpu->kvm_vcpu_dirty = false;
1519 }
1520
1521 void kvm_cpu_synchronize_post_init(CPUArchState *env)
1522 {
1523 CPUState *cpu = ENV_GET_CPU(env);
1524
1525 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1526 cpu->kvm_vcpu_dirty = false;
1527 }
1528
1529 int kvm_cpu_exec(CPUArchState *env)
1530 {
1531 CPUState *cpu = ENV_GET_CPU(env);
1532 struct kvm_run *run = env->kvm_run;
1533 int ret, run_ret;
1534
1535 DPRINTF("kvm_cpu_exec()\n");
1536
1537 if (kvm_arch_process_async_events(cpu)) {
1538 env->exit_request = 0;
1539 return EXCP_HLT;
1540 }
1541
1542 do {
1543 if (cpu->kvm_vcpu_dirty) {
1544 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1545 cpu->kvm_vcpu_dirty = false;
1546 }
1547
1548 kvm_arch_pre_run(cpu, run);
1549 if (env->exit_request) {
1550 DPRINTF("interrupt exit requested\n");
1551 /*
1552 * KVM requires us to reenter the kernel after IO exits to complete
1553 * instruction emulation. This self-signal will ensure that we
1554 * leave ASAP again.
1555 */
1556 qemu_cpu_kick_self();
1557 }
1558 qemu_mutex_unlock_iothread();
1559
1560 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1561
1562 qemu_mutex_lock_iothread();
1563 kvm_arch_post_run(cpu, run);
1564
1565 if (run_ret < 0) {
1566 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1567 DPRINTF("io window exit\n");
1568 ret = EXCP_INTERRUPT;
1569 break;
1570 }
1571 fprintf(stderr, "error: kvm run failed %s\n",
1572 strerror(-run_ret));
1573 abort();
1574 }
1575
1576 switch (run->exit_reason) {
1577 case KVM_EXIT_IO:
1578 DPRINTF("handle_io\n");
1579 kvm_handle_io(run->io.port,
1580 (uint8_t *)run + run->io.data_offset,
1581 run->io.direction,
1582 run->io.size,
1583 run->io.count);
1584 ret = 0;
1585 break;
1586 case KVM_EXIT_MMIO:
1587 DPRINTF("handle_mmio\n");
1588 cpu_physical_memory_rw(run->mmio.phys_addr,
1589 run->mmio.data,
1590 run->mmio.len,
1591 run->mmio.is_write);
1592 ret = 0;
1593 break;
1594 case KVM_EXIT_IRQ_WINDOW_OPEN:
1595 DPRINTF("irq_window_open\n");
1596 ret = EXCP_INTERRUPT;
1597 break;
1598 case KVM_EXIT_SHUTDOWN:
1599 DPRINTF("shutdown\n");
1600 qemu_system_reset_request();
1601 ret = EXCP_INTERRUPT;
1602 break;
1603 case KVM_EXIT_UNKNOWN:
1604 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1605 (uint64_t)run->hw.hardware_exit_reason);
1606 ret = -1;
1607 break;
1608 case KVM_EXIT_INTERNAL_ERROR:
1609 ret = kvm_handle_internal_error(env, run);
1610 break;
1611 default:
1612 DPRINTF("kvm_arch_handle_exit\n");
1613 ret = kvm_arch_handle_exit(cpu, run);
1614 break;
1615 }
1616 } while (ret == 0);
1617
1618 if (ret < 0) {
1619 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1620 vm_stop(RUN_STATE_INTERNAL_ERROR);
1621 }
1622
1623 env->exit_request = 0;
1624 return ret;
1625 }
1626
1627 int kvm_ioctl(KVMState *s, int type, ...)
1628 {
1629 int ret;
1630 void *arg;
1631 va_list ap;
1632
1633 va_start(ap, type);
1634 arg = va_arg(ap, void *);
1635 va_end(ap);
1636
1637 ret = ioctl(s->fd, type, arg);
1638 if (ret == -1) {
1639 ret = -errno;
1640 }
1641 return ret;
1642 }
1643
1644 int kvm_vm_ioctl(KVMState *s, int type, ...)
1645 {
1646 int ret;
1647 void *arg;
1648 va_list ap;
1649
1650 va_start(ap, type);
1651 arg = va_arg(ap, void *);
1652 va_end(ap);
1653
1654 ret = ioctl(s->vmfd, type, arg);
1655 if (ret == -1) {
1656 ret = -errno;
1657 }
1658 return ret;
1659 }
1660
1661 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1662 {
1663 int ret;
1664 void *arg;
1665 va_list ap;
1666
1667 va_start(ap, type);
1668 arg = va_arg(ap, void *);
1669 va_end(ap);
1670
1671 ret = ioctl(cpu->kvm_fd, type, arg);
1672 if (ret == -1) {
1673 ret = -errno;
1674 }
1675 return ret;
1676 }
1677
1678 int kvm_has_sync_mmu(void)
1679 {
1680 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1681 }
1682
1683 int kvm_has_vcpu_events(void)
1684 {
1685 return kvm_state->vcpu_events;
1686 }
1687
1688 int kvm_has_robust_singlestep(void)
1689 {
1690 return kvm_state->robust_singlestep;
1691 }
1692
1693 int kvm_has_debugregs(void)
1694 {
1695 return kvm_state->debugregs;
1696 }
1697
1698 int kvm_has_xsave(void)
1699 {
1700 return kvm_state->xsave;
1701 }
1702
1703 int kvm_has_xcrs(void)
1704 {
1705 return kvm_state->xcrs;
1706 }
1707
1708 int kvm_has_pit_state2(void)
1709 {
1710 return kvm_state->pit_state2;
1711 }
1712
1713 int kvm_has_many_ioeventfds(void)
1714 {
1715 if (!kvm_enabled()) {
1716 return 0;
1717 }
1718 return kvm_state->many_ioeventfds;
1719 }
1720
1721 int kvm_has_gsi_routing(void)
1722 {
1723 #ifdef KVM_CAP_IRQ_ROUTING
1724 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1725 #else
1726 return false;
1727 #endif
1728 }
1729
1730 int kvm_has_intx_set_mask(void)
1731 {
1732 return kvm_state->intx_set_mask;
1733 }
1734
1735 void *kvm_vmalloc(ram_addr_t size)
1736 {
1737 #ifdef TARGET_S390X
1738 void *mem;
1739
1740 mem = kvm_arch_vmalloc(size);
1741 if (mem) {
1742 return mem;
1743 }
1744 #endif
1745 return qemu_vmalloc(size);
1746 }
1747
1748 void kvm_setup_guest_memory(void *start, size_t size)
1749 {
1750 #ifdef CONFIG_VALGRIND_H
1751 VALGRIND_MAKE_MEM_DEFINED(start, size);
1752 #endif
1753 if (!kvm_has_sync_mmu()) {
1754 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1755
1756 if (ret) {
1757 perror("qemu_madvise");
1758 fprintf(stderr,
1759 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1760 exit(1);
1761 }
1762 }
1763 }
1764
1765 #ifdef KVM_CAP_SET_GUEST_DEBUG
1766 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1767 target_ulong pc)
1768 {
1769 struct kvm_sw_breakpoint *bp;
1770
1771 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1772 if (bp->pc == pc) {
1773 return bp;
1774 }
1775 }
1776 return NULL;
1777 }
1778
1779 int kvm_sw_breakpoints_active(CPUState *cpu)
1780 {
1781 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1782 }
1783
1784 struct kvm_set_guest_debug_data {
1785 struct kvm_guest_debug dbg;
1786 CPUState *cpu;
1787 int err;
1788 };
1789
1790 static void kvm_invoke_set_guest_debug(void *data)
1791 {
1792 struct kvm_set_guest_debug_data *dbg_data = data;
1793
1794 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1795 &dbg_data->dbg);
1796 }
1797
1798 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1799 {
1800 CPUState *cpu = ENV_GET_CPU(env);
1801 struct kvm_set_guest_debug_data data;
1802
1803 data.dbg.control = reinject_trap;
1804
1805 if (env->singlestep_enabled) {
1806 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1807 }
1808 kvm_arch_update_guest_debug(cpu, &data.dbg);
1809 data.cpu = cpu;
1810
1811 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1812 return data.err;
1813 }
1814
1815 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1816 target_ulong len, int type)
1817 {
1818 CPUState *current_cpu = ENV_GET_CPU(current_env);
1819 struct kvm_sw_breakpoint *bp;
1820 CPUArchState *env;
1821 int err;
1822
1823 if (type == GDB_BREAKPOINT_SW) {
1824 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1825 if (bp) {
1826 bp->use_count++;
1827 return 0;
1828 }
1829
1830 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1831 if (!bp) {
1832 return -ENOMEM;
1833 }
1834
1835 bp->pc = addr;
1836 bp->use_count = 1;
1837 err = kvm_arch_insert_sw_breakpoint(current_cpu, bp);
1838 if (err) {
1839 g_free(bp);
1840 return err;
1841 }
1842
1843 QTAILQ_INSERT_HEAD(&current_cpu->kvm_state->kvm_sw_breakpoints,
1844 bp, entry);
1845 } else {
1846 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1847 if (err) {
1848 return err;
1849 }
1850 }
1851
1852 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1853 err = kvm_update_guest_debug(env, 0);
1854 if (err) {
1855 return err;
1856 }
1857 }
1858 return 0;
1859 }
1860
1861 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1862 target_ulong len, int type)
1863 {
1864 CPUState *current_cpu = ENV_GET_CPU(current_env);
1865 struct kvm_sw_breakpoint *bp;
1866 CPUArchState *env;
1867 int err;
1868
1869 if (type == GDB_BREAKPOINT_SW) {
1870 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1871 if (!bp) {
1872 return -ENOENT;
1873 }
1874
1875 if (bp->use_count > 1) {
1876 bp->use_count--;
1877 return 0;
1878 }
1879
1880 err = kvm_arch_remove_sw_breakpoint(current_cpu, bp);
1881 if (err) {
1882 return err;
1883 }
1884
1885 QTAILQ_REMOVE(&current_cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1886 g_free(bp);
1887 } else {
1888 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1889 if (err) {
1890 return err;
1891 }
1892 }
1893
1894 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1895 err = kvm_update_guest_debug(env, 0);
1896 if (err) {
1897 return err;
1898 }
1899 }
1900 return 0;
1901 }
1902
1903 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1904 {
1905 CPUState *current_cpu = ENV_GET_CPU(current_env);
1906 struct kvm_sw_breakpoint *bp, *next;
1907 KVMState *s = current_cpu->kvm_state;
1908 CPUArchState *env;
1909 CPUState *cpu;
1910
1911 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1912 if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) {
1913 /* Try harder to find a CPU that currently sees the breakpoint. */
1914 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1915 cpu = ENV_GET_CPU(env);
1916 if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
1917 break;
1918 }
1919 }
1920 }
1921 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
1922 g_free(bp);
1923 }
1924 kvm_arch_remove_all_hw_breakpoints();
1925
1926 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1927 kvm_update_guest_debug(env, 0);
1928 }
1929 }
1930
1931 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1932
1933 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1934 {
1935 return -EINVAL;
1936 }
1937
1938 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1939 target_ulong len, int type)
1940 {
1941 return -EINVAL;
1942 }
1943
1944 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1945 target_ulong len, int type)
1946 {
1947 return -EINVAL;
1948 }
1949
1950 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1951 {
1952 }
1953 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1954
1955 int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1956 {
1957 CPUState *cpu = ENV_GET_CPU(env);
1958 struct kvm_signal_mask *sigmask;
1959 int r;
1960
1961 if (!sigset) {
1962 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
1963 }
1964
1965 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1966
1967 sigmask->len = 8;
1968 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1969 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
1970 g_free(sigmask);
1971
1972 return r;
1973 }
1974
1975 int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1976 uint32_t size)
1977 {
1978 int ret;
1979 struct kvm_ioeventfd iofd;
1980
1981 iofd.datamatch = val;
1982 iofd.addr = addr;
1983 iofd.len = size;
1984 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1985 iofd.fd = fd;
1986
1987 if (!kvm_enabled()) {
1988 return -ENOSYS;
1989 }
1990
1991 if (!assign) {
1992 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1993 }
1994
1995 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1996
1997 if (ret < 0) {
1998 return -errno;
1999 }
2000
2001 return 0;
2002 }
2003
2004 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
2005 {
2006 struct kvm_ioeventfd kick = {
2007 .datamatch = val,
2008 .addr = addr,
2009 .len = 2,
2010 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
2011 .fd = fd,
2012 };
2013 int r;
2014 if (!kvm_enabled()) {
2015 return -ENOSYS;
2016 }
2017 if (!assign) {
2018 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2019 }
2020 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2021 if (r < 0) {
2022 return r;
2023 }
2024 return 0;
2025 }
2026
2027 int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
2028 {
2029 CPUState *cpu = ENV_GET_CPU(env);
2030 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2031 }
2032
2033 int kvm_on_sigbus(int code, void *addr)
2034 {
2035 return kvm_arch_on_sigbus(code, addr);
2036 }