]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
kvm: add API to set ioeventfd
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29
30 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
31 #define PAGE_SIZE TARGET_PAGE_SIZE
32
33 //#define DEBUG_KVM
34
35 #ifdef DEBUG_KVM
36 #define dprintf(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define dprintf(fmt, ...) \
40 do { } while (0)
41 #endif
42
43 typedef struct KVMSlot
44 {
45 target_phys_addr_t start_addr;
46 ram_addr_t memory_size;
47 ram_addr_t phys_offset;
48 int slot;
49 int flags;
50 } KVMSlot;
51
52 typedef struct kvm_dirty_log KVMDirtyLog;
53
54 struct KVMState
55 {
56 KVMSlot slots[32];
57 int fd;
58 int vmfd;
59 int coalesced_mmio;
60 #ifdef KVM_CAP_COALESCED_MMIO
61 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
62 #endif
63 int broken_set_mem_region;
64 int migration_log;
65 int vcpu_events;
66 int robust_singlestep;
67 #ifdef KVM_CAP_SET_GUEST_DEBUG
68 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
69 #endif
70 int irqchip_in_kernel;
71 int pit_in_kernel;
72 };
73
74 static KVMState *kvm_state;
75
76 static KVMSlot *kvm_alloc_slot(KVMState *s)
77 {
78 int i;
79
80 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
81 /* KVM private memory slots */
82 if (i >= 8 && i < 12)
83 continue;
84 if (s->slots[i].memory_size == 0)
85 return &s->slots[i];
86 }
87
88 fprintf(stderr, "%s: no free slot available\n", __func__);
89 abort();
90 }
91
92 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
93 target_phys_addr_t start_addr,
94 target_phys_addr_t end_addr)
95 {
96 int i;
97
98 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
99 KVMSlot *mem = &s->slots[i];
100
101 if (start_addr == mem->start_addr &&
102 end_addr == mem->start_addr + mem->memory_size) {
103 return mem;
104 }
105 }
106
107 return NULL;
108 }
109
110 /*
111 * Find overlapping slot with lowest start address
112 */
113 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
114 target_phys_addr_t start_addr,
115 target_phys_addr_t end_addr)
116 {
117 KVMSlot *found = NULL;
118 int i;
119
120 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
121 KVMSlot *mem = &s->slots[i];
122
123 if (mem->memory_size == 0 ||
124 (found && found->start_addr < mem->start_addr)) {
125 continue;
126 }
127
128 if (end_addr > mem->start_addr &&
129 start_addr < mem->start_addr + mem->memory_size) {
130 found = mem;
131 }
132 }
133
134 return found;
135 }
136
137 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
138 {
139 struct kvm_userspace_memory_region mem;
140
141 mem.slot = slot->slot;
142 mem.guest_phys_addr = slot->start_addr;
143 mem.memory_size = slot->memory_size;
144 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
145 mem.flags = slot->flags;
146 if (s->migration_log) {
147 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
148 }
149 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
150 }
151
152 static void kvm_reset_vcpu(void *opaque)
153 {
154 CPUState *env = opaque;
155
156 kvm_arch_reset_vcpu(env);
157 }
158
159 int kvm_irqchip_in_kernel(void)
160 {
161 return kvm_state->irqchip_in_kernel;
162 }
163
164 int kvm_pit_in_kernel(void)
165 {
166 return kvm_state->pit_in_kernel;
167 }
168
169
170 int kvm_init_vcpu(CPUState *env)
171 {
172 KVMState *s = kvm_state;
173 long mmap_size;
174 int ret;
175
176 dprintf("kvm_init_vcpu\n");
177
178 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
179 if (ret < 0) {
180 dprintf("kvm_create_vcpu failed\n");
181 goto err;
182 }
183
184 env->kvm_fd = ret;
185 env->kvm_state = s;
186
187 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
188 if (mmap_size < 0) {
189 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
190 goto err;
191 }
192
193 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
194 env->kvm_fd, 0);
195 if (env->kvm_run == MAP_FAILED) {
196 ret = -errno;
197 dprintf("mmap'ing vcpu state failed\n");
198 goto err;
199 }
200
201 #ifdef KVM_CAP_COALESCED_MMIO
202 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
203 s->coalesced_mmio_ring = (void *) env->kvm_run +
204 s->coalesced_mmio * PAGE_SIZE;
205 #endif
206
207 ret = kvm_arch_init_vcpu(env);
208 if (ret == 0) {
209 qemu_register_reset(kvm_reset_vcpu, env);
210 kvm_arch_reset_vcpu(env);
211 }
212 err:
213 return ret;
214 }
215
216 /*
217 * dirty pages logging control
218 */
219 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
220 ram_addr_t size, int flags, int mask)
221 {
222 KVMState *s = kvm_state;
223 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
224 int old_flags;
225
226 if (mem == NULL) {
227 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
228 TARGET_FMT_plx "\n", __func__, phys_addr,
229 (target_phys_addr_t)(phys_addr + size - 1));
230 return -EINVAL;
231 }
232
233 old_flags = mem->flags;
234
235 flags = (mem->flags & ~mask) | flags;
236 mem->flags = flags;
237
238 /* If nothing changed effectively, no need to issue ioctl */
239 if (s->migration_log) {
240 flags |= KVM_MEM_LOG_DIRTY_PAGES;
241 }
242 if (flags == old_flags) {
243 return 0;
244 }
245
246 return kvm_set_user_memory_region(s, mem);
247 }
248
249 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
250 {
251 return kvm_dirty_pages_log_change(phys_addr, size,
252 KVM_MEM_LOG_DIRTY_PAGES,
253 KVM_MEM_LOG_DIRTY_PAGES);
254 }
255
256 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
257 {
258 return kvm_dirty_pages_log_change(phys_addr, size,
259 0,
260 KVM_MEM_LOG_DIRTY_PAGES);
261 }
262
263 static int kvm_set_migration_log(int enable)
264 {
265 KVMState *s = kvm_state;
266 KVMSlot *mem;
267 int i, err;
268
269 s->migration_log = enable;
270
271 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
272 mem = &s->slots[i];
273
274 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
275 continue;
276 }
277 err = kvm_set_user_memory_region(s, mem);
278 if (err) {
279 return err;
280 }
281 }
282 return 0;
283 }
284
285 static int test_le_bit(unsigned long nr, unsigned char *addr)
286 {
287 return (addr[nr >> 3] >> (nr & 7)) & 1;
288 }
289
290 /**
291 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
292 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
293 * This means all bits are set to dirty.
294 *
295 * @start_add: start of logged region.
296 * @end_addr: end of logged region.
297 */
298 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
299 target_phys_addr_t end_addr)
300 {
301 KVMState *s = kvm_state;
302 unsigned long size, allocated_size = 0;
303 target_phys_addr_t phys_addr;
304 ram_addr_t addr;
305 KVMDirtyLog d;
306 KVMSlot *mem;
307 int ret = 0;
308
309 d.dirty_bitmap = NULL;
310 while (start_addr < end_addr) {
311 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
312 if (mem == NULL) {
313 break;
314 }
315
316 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
317 if (!d.dirty_bitmap) {
318 d.dirty_bitmap = qemu_malloc(size);
319 } else if (size > allocated_size) {
320 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
321 }
322 allocated_size = size;
323 memset(d.dirty_bitmap, 0, allocated_size);
324
325 d.slot = mem->slot;
326
327 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
328 dprintf("ioctl failed %d\n", errno);
329 ret = -1;
330 break;
331 }
332
333 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
334 phys_addr < mem->start_addr + mem->memory_size;
335 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
336 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
337 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
338
339 if (test_le_bit(nr, bitmap)) {
340 cpu_physical_memory_set_dirty(addr);
341 }
342 }
343 start_addr = phys_addr;
344 }
345 qemu_free(d.dirty_bitmap);
346
347 return ret;
348 }
349
350 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
351 {
352 int ret = -ENOSYS;
353 #ifdef KVM_CAP_COALESCED_MMIO
354 KVMState *s = kvm_state;
355
356 if (s->coalesced_mmio) {
357 struct kvm_coalesced_mmio_zone zone;
358
359 zone.addr = start;
360 zone.size = size;
361
362 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
363 }
364 #endif
365
366 return ret;
367 }
368
369 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
370 {
371 int ret = -ENOSYS;
372 #ifdef KVM_CAP_COALESCED_MMIO
373 KVMState *s = kvm_state;
374
375 if (s->coalesced_mmio) {
376 struct kvm_coalesced_mmio_zone zone;
377
378 zone.addr = start;
379 zone.size = size;
380
381 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
382 }
383 #endif
384
385 return ret;
386 }
387
388 int kvm_check_extension(KVMState *s, unsigned int extension)
389 {
390 int ret;
391
392 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
393 if (ret < 0) {
394 ret = 0;
395 }
396
397 return ret;
398 }
399
400 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
401 ram_addr_t size,
402 ram_addr_t phys_offset)
403 {
404 KVMState *s = kvm_state;
405 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
406 KVMSlot *mem, old;
407 int err;
408
409 if (start_addr & ~TARGET_PAGE_MASK) {
410 if (flags >= IO_MEM_UNASSIGNED) {
411 if (!kvm_lookup_overlapping_slot(s, start_addr,
412 start_addr + size)) {
413 return;
414 }
415 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
416 } else {
417 fprintf(stderr, "Only page-aligned memory slots supported\n");
418 }
419 abort();
420 }
421
422 /* KVM does not support read-only slots */
423 phys_offset &= ~IO_MEM_ROM;
424
425 while (1) {
426 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
427 if (!mem) {
428 break;
429 }
430
431 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
432 (start_addr + size <= mem->start_addr + mem->memory_size) &&
433 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
434 /* The new slot fits into the existing one and comes with
435 * identical parameters - nothing to be done. */
436 return;
437 }
438
439 old = *mem;
440
441 /* unregister the overlapping slot */
442 mem->memory_size = 0;
443 err = kvm_set_user_memory_region(s, mem);
444 if (err) {
445 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
446 __func__, strerror(-err));
447 abort();
448 }
449
450 /* Workaround for older KVM versions: we can't join slots, even not by
451 * unregistering the previous ones and then registering the larger
452 * slot. We have to maintain the existing fragmentation. Sigh.
453 *
454 * This workaround assumes that the new slot starts at the same
455 * address as the first existing one. If not or if some overlapping
456 * slot comes around later, we will fail (not seen in practice so far)
457 * - and actually require a recent KVM version. */
458 if (s->broken_set_mem_region &&
459 old.start_addr == start_addr && old.memory_size < size &&
460 flags < IO_MEM_UNASSIGNED) {
461 mem = kvm_alloc_slot(s);
462 mem->memory_size = old.memory_size;
463 mem->start_addr = old.start_addr;
464 mem->phys_offset = old.phys_offset;
465 mem->flags = 0;
466
467 err = kvm_set_user_memory_region(s, mem);
468 if (err) {
469 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
470 strerror(-err));
471 abort();
472 }
473
474 start_addr += old.memory_size;
475 phys_offset += old.memory_size;
476 size -= old.memory_size;
477 continue;
478 }
479
480 /* register prefix slot */
481 if (old.start_addr < start_addr) {
482 mem = kvm_alloc_slot(s);
483 mem->memory_size = start_addr - old.start_addr;
484 mem->start_addr = old.start_addr;
485 mem->phys_offset = old.phys_offset;
486 mem->flags = 0;
487
488 err = kvm_set_user_memory_region(s, mem);
489 if (err) {
490 fprintf(stderr, "%s: error registering prefix slot: %s\n",
491 __func__, strerror(-err));
492 abort();
493 }
494 }
495
496 /* register suffix slot */
497 if (old.start_addr + old.memory_size > start_addr + size) {
498 ram_addr_t size_delta;
499
500 mem = kvm_alloc_slot(s);
501 mem->start_addr = start_addr + size;
502 size_delta = mem->start_addr - old.start_addr;
503 mem->memory_size = old.memory_size - size_delta;
504 mem->phys_offset = old.phys_offset + size_delta;
505 mem->flags = 0;
506
507 err = kvm_set_user_memory_region(s, mem);
508 if (err) {
509 fprintf(stderr, "%s: error registering suffix slot: %s\n",
510 __func__, strerror(-err));
511 abort();
512 }
513 }
514 }
515
516 /* in case the KVM bug workaround already "consumed" the new slot */
517 if (!size)
518 return;
519
520 /* KVM does not need to know about this memory */
521 if (flags >= IO_MEM_UNASSIGNED)
522 return;
523
524 mem = kvm_alloc_slot(s);
525 mem->memory_size = size;
526 mem->start_addr = start_addr;
527 mem->phys_offset = phys_offset;
528 mem->flags = 0;
529
530 err = kvm_set_user_memory_region(s, mem);
531 if (err) {
532 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
533 strerror(-err));
534 abort();
535 }
536 }
537
538 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
539 target_phys_addr_t start_addr,
540 ram_addr_t size,
541 ram_addr_t phys_offset)
542 {
543 kvm_set_phys_mem(start_addr, size, phys_offset);
544 }
545
546 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
547 target_phys_addr_t start_addr,
548 target_phys_addr_t end_addr)
549 {
550 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
551 }
552
553 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
554 int enable)
555 {
556 return kvm_set_migration_log(enable);
557 }
558
559 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
560 .set_memory = kvm_client_set_memory,
561 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
562 .migration_log = kvm_client_migration_log,
563 };
564
565 int kvm_init(int smp_cpus)
566 {
567 static const char upgrade_note[] =
568 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
569 "(see http://sourceforge.net/projects/kvm).\n";
570 KVMState *s;
571 int ret;
572 int i;
573
574 if (smp_cpus > 1) {
575 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
576 return -EINVAL;
577 }
578
579 s = qemu_mallocz(sizeof(KVMState));
580
581 #ifdef KVM_CAP_SET_GUEST_DEBUG
582 QTAILQ_INIT(&s->kvm_sw_breakpoints);
583 #endif
584 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
585 s->slots[i].slot = i;
586
587 s->vmfd = -1;
588 s->fd = qemu_open("/dev/kvm", O_RDWR);
589 if (s->fd == -1) {
590 fprintf(stderr, "Could not access KVM kernel module: %m\n");
591 ret = -errno;
592 goto err;
593 }
594
595 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
596 if (ret < KVM_API_VERSION) {
597 if (ret > 0)
598 ret = -EINVAL;
599 fprintf(stderr, "kvm version too old\n");
600 goto err;
601 }
602
603 if (ret > KVM_API_VERSION) {
604 ret = -EINVAL;
605 fprintf(stderr, "kvm version not supported\n");
606 goto err;
607 }
608
609 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
610 if (s->vmfd < 0)
611 goto err;
612
613 /* initially, KVM allocated its own memory and we had to jump through
614 * hooks to make phys_ram_base point to this. Modern versions of KVM
615 * just use a user allocated buffer so we can use regular pages
616 * unmodified. Make sure we have a sufficiently modern version of KVM.
617 */
618 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
619 ret = -EINVAL;
620 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
621 upgrade_note);
622 goto err;
623 }
624
625 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
626 * destroyed properly. Since we rely on this capability, refuse to work
627 * with any kernel without this capability. */
628 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
629 ret = -EINVAL;
630
631 fprintf(stderr,
632 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
633 upgrade_note);
634 goto err;
635 }
636
637 s->coalesced_mmio = 0;
638 #ifdef KVM_CAP_COALESCED_MMIO
639 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
640 s->coalesced_mmio_ring = NULL;
641 #endif
642
643 s->broken_set_mem_region = 1;
644 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
645 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
646 if (ret > 0) {
647 s->broken_set_mem_region = 0;
648 }
649 #endif
650
651 s->vcpu_events = 0;
652 #ifdef KVM_CAP_VCPU_EVENTS
653 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
654 #endif
655
656 s->robust_singlestep = 0;
657 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
658 s->robust_singlestep =
659 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
660 #endif
661
662 ret = kvm_arch_init(s, smp_cpus);
663 if (ret < 0)
664 goto err;
665
666 kvm_state = s;
667 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
668
669 return 0;
670
671 err:
672 if (s) {
673 if (s->vmfd != -1)
674 close(s->vmfd);
675 if (s->fd != -1)
676 close(s->fd);
677 }
678 qemu_free(s);
679
680 return ret;
681 }
682
683 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
684 uint32_t count)
685 {
686 int i;
687 uint8_t *ptr = data;
688
689 for (i = 0; i < count; i++) {
690 if (direction == KVM_EXIT_IO_IN) {
691 switch (size) {
692 case 1:
693 stb_p(ptr, cpu_inb(port));
694 break;
695 case 2:
696 stw_p(ptr, cpu_inw(port));
697 break;
698 case 4:
699 stl_p(ptr, cpu_inl(port));
700 break;
701 }
702 } else {
703 switch (size) {
704 case 1:
705 cpu_outb(port, ldub_p(ptr));
706 break;
707 case 2:
708 cpu_outw(port, lduw_p(ptr));
709 break;
710 case 4:
711 cpu_outl(port, ldl_p(ptr));
712 break;
713 }
714 }
715
716 ptr += size;
717 }
718
719 return 1;
720 }
721
722 void kvm_flush_coalesced_mmio_buffer(void)
723 {
724 #ifdef KVM_CAP_COALESCED_MMIO
725 KVMState *s = kvm_state;
726 if (s->coalesced_mmio_ring) {
727 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
728 while (ring->first != ring->last) {
729 struct kvm_coalesced_mmio *ent;
730
731 ent = &ring->coalesced_mmio[ring->first];
732
733 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
734 smp_wmb();
735 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
736 }
737 }
738 #endif
739 }
740
741 void kvm_cpu_synchronize_state(CPUState *env)
742 {
743 if (!env->kvm_vcpu_dirty) {
744 kvm_arch_get_registers(env);
745 env->kvm_vcpu_dirty = 1;
746 }
747 }
748
749 void kvm_cpu_synchronize_post_reset(CPUState *env)
750 {
751 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
752 env->kvm_vcpu_dirty = 0;
753 }
754
755 void kvm_cpu_synchronize_post_init(CPUState *env)
756 {
757 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
758 env->kvm_vcpu_dirty = 0;
759 }
760
761 int kvm_cpu_exec(CPUState *env)
762 {
763 struct kvm_run *run = env->kvm_run;
764 int ret;
765
766 dprintf("kvm_cpu_exec()\n");
767
768 do {
769 #ifndef CONFIG_IOTHREAD
770 if (env->exit_request) {
771 dprintf("interrupt exit requested\n");
772 ret = 0;
773 break;
774 }
775 #endif
776
777 if (env->kvm_vcpu_dirty) {
778 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
779 env->kvm_vcpu_dirty = 0;
780 }
781
782 kvm_arch_pre_run(env, run);
783 qemu_mutex_unlock_iothread();
784 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
785 qemu_mutex_lock_iothread();
786 kvm_arch_post_run(env, run);
787
788 if (ret == -EINTR || ret == -EAGAIN) {
789 cpu_exit(env);
790 dprintf("io window exit\n");
791 ret = 0;
792 break;
793 }
794
795 if (ret < 0) {
796 dprintf("kvm run failed %s\n", strerror(-ret));
797 abort();
798 }
799
800 kvm_flush_coalesced_mmio_buffer();
801
802 ret = 0; /* exit loop */
803 switch (run->exit_reason) {
804 case KVM_EXIT_IO:
805 dprintf("handle_io\n");
806 ret = kvm_handle_io(run->io.port,
807 (uint8_t *)run + run->io.data_offset,
808 run->io.direction,
809 run->io.size,
810 run->io.count);
811 break;
812 case KVM_EXIT_MMIO:
813 dprintf("handle_mmio\n");
814 cpu_physical_memory_rw(run->mmio.phys_addr,
815 run->mmio.data,
816 run->mmio.len,
817 run->mmio.is_write);
818 ret = 1;
819 break;
820 case KVM_EXIT_IRQ_WINDOW_OPEN:
821 dprintf("irq_window_open\n");
822 break;
823 case KVM_EXIT_SHUTDOWN:
824 dprintf("shutdown\n");
825 qemu_system_reset_request();
826 ret = 1;
827 break;
828 case KVM_EXIT_UNKNOWN:
829 dprintf("kvm_exit_unknown\n");
830 break;
831 case KVM_EXIT_FAIL_ENTRY:
832 dprintf("kvm_exit_fail_entry\n");
833 break;
834 case KVM_EXIT_EXCEPTION:
835 dprintf("kvm_exit_exception\n");
836 break;
837 case KVM_EXIT_DEBUG:
838 dprintf("kvm_exit_debug\n");
839 #ifdef KVM_CAP_SET_GUEST_DEBUG
840 if (kvm_arch_debug(&run->debug.arch)) {
841 gdb_set_stop_cpu(env);
842 vm_stop(EXCP_DEBUG);
843 env->exception_index = EXCP_DEBUG;
844 return 0;
845 }
846 /* re-enter, this exception was guest-internal */
847 ret = 1;
848 #endif /* KVM_CAP_SET_GUEST_DEBUG */
849 break;
850 default:
851 dprintf("kvm_arch_handle_exit\n");
852 ret = kvm_arch_handle_exit(env, run);
853 break;
854 }
855 } while (ret > 0);
856
857 if (env->exit_request) {
858 env->exit_request = 0;
859 env->exception_index = EXCP_INTERRUPT;
860 }
861
862 return ret;
863 }
864
865 int kvm_ioctl(KVMState *s, int type, ...)
866 {
867 int ret;
868 void *arg;
869 va_list ap;
870
871 va_start(ap, type);
872 arg = va_arg(ap, void *);
873 va_end(ap);
874
875 ret = ioctl(s->fd, type, arg);
876 if (ret == -1)
877 ret = -errno;
878
879 return ret;
880 }
881
882 int kvm_vm_ioctl(KVMState *s, int type, ...)
883 {
884 int ret;
885 void *arg;
886 va_list ap;
887
888 va_start(ap, type);
889 arg = va_arg(ap, void *);
890 va_end(ap);
891
892 ret = ioctl(s->vmfd, type, arg);
893 if (ret == -1)
894 ret = -errno;
895
896 return ret;
897 }
898
899 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
900 {
901 int ret;
902 void *arg;
903 va_list ap;
904
905 va_start(ap, type);
906 arg = va_arg(ap, void *);
907 va_end(ap);
908
909 ret = ioctl(env->kvm_fd, type, arg);
910 if (ret == -1)
911 ret = -errno;
912
913 return ret;
914 }
915
916 int kvm_has_sync_mmu(void)
917 {
918 #ifdef KVM_CAP_SYNC_MMU
919 KVMState *s = kvm_state;
920
921 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
922 #else
923 return 0;
924 #endif
925 }
926
927 int kvm_has_vcpu_events(void)
928 {
929 return kvm_state->vcpu_events;
930 }
931
932 int kvm_has_robust_singlestep(void)
933 {
934 return kvm_state->robust_singlestep;
935 }
936
937 void kvm_setup_guest_memory(void *start, size_t size)
938 {
939 if (!kvm_has_sync_mmu()) {
940 #ifdef MADV_DONTFORK
941 int ret = madvise(start, size, MADV_DONTFORK);
942
943 if (ret) {
944 perror("madvice");
945 exit(1);
946 }
947 #else
948 fprintf(stderr,
949 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
950 exit(1);
951 #endif
952 }
953 }
954
955 #ifdef KVM_CAP_SET_GUEST_DEBUG
956 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
957 {
958 #ifdef CONFIG_IOTHREAD
959 if (env != cpu_single_env) {
960 abort();
961 }
962 #endif
963 func(data);
964 }
965
966 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
967 target_ulong pc)
968 {
969 struct kvm_sw_breakpoint *bp;
970
971 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
972 if (bp->pc == pc)
973 return bp;
974 }
975 return NULL;
976 }
977
978 int kvm_sw_breakpoints_active(CPUState *env)
979 {
980 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
981 }
982
983 struct kvm_set_guest_debug_data {
984 struct kvm_guest_debug dbg;
985 CPUState *env;
986 int err;
987 };
988
989 static void kvm_invoke_set_guest_debug(void *data)
990 {
991 struct kvm_set_guest_debug_data *dbg_data = data;
992 CPUState *env = dbg_data->env;
993
994 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
995 }
996
997 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
998 {
999 struct kvm_set_guest_debug_data data;
1000
1001 data.dbg.control = reinject_trap;
1002
1003 if (env->singlestep_enabled) {
1004 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1005 }
1006 kvm_arch_update_guest_debug(env, &data.dbg);
1007 data.env = env;
1008
1009 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
1010 return data.err;
1011 }
1012
1013 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1014 target_ulong len, int type)
1015 {
1016 struct kvm_sw_breakpoint *bp;
1017 CPUState *env;
1018 int err;
1019
1020 if (type == GDB_BREAKPOINT_SW) {
1021 bp = kvm_find_sw_breakpoint(current_env, addr);
1022 if (bp) {
1023 bp->use_count++;
1024 return 0;
1025 }
1026
1027 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1028 if (!bp)
1029 return -ENOMEM;
1030
1031 bp->pc = addr;
1032 bp->use_count = 1;
1033 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1034 if (err) {
1035 free(bp);
1036 return err;
1037 }
1038
1039 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1040 bp, entry);
1041 } else {
1042 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1043 if (err)
1044 return err;
1045 }
1046
1047 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1048 err = kvm_update_guest_debug(env, 0);
1049 if (err)
1050 return err;
1051 }
1052 return 0;
1053 }
1054
1055 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1056 target_ulong len, int type)
1057 {
1058 struct kvm_sw_breakpoint *bp;
1059 CPUState *env;
1060 int err;
1061
1062 if (type == GDB_BREAKPOINT_SW) {
1063 bp = kvm_find_sw_breakpoint(current_env, addr);
1064 if (!bp)
1065 return -ENOENT;
1066
1067 if (bp->use_count > 1) {
1068 bp->use_count--;
1069 return 0;
1070 }
1071
1072 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1073 if (err)
1074 return err;
1075
1076 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1077 qemu_free(bp);
1078 } else {
1079 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1080 if (err)
1081 return err;
1082 }
1083
1084 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1085 err = kvm_update_guest_debug(env, 0);
1086 if (err)
1087 return err;
1088 }
1089 return 0;
1090 }
1091
1092 void kvm_remove_all_breakpoints(CPUState *current_env)
1093 {
1094 struct kvm_sw_breakpoint *bp, *next;
1095 KVMState *s = current_env->kvm_state;
1096 CPUState *env;
1097
1098 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1099 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1100 /* Try harder to find a CPU that currently sees the breakpoint. */
1101 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1102 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1103 break;
1104 }
1105 }
1106 }
1107 kvm_arch_remove_all_hw_breakpoints();
1108
1109 for (env = first_cpu; env != NULL; env = env->next_cpu)
1110 kvm_update_guest_debug(env, 0);
1111 }
1112
1113 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1114
1115 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1116 {
1117 return -EINVAL;
1118 }
1119
1120 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1121 target_ulong len, int type)
1122 {
1123 return -EINVAL;
1124 }
1125
1126 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1127 target_ulong len, int type)
1128 {
1129 return -EINVAL;
1130 }
1131
1132 void kvm_remove_all_breakpoints(CPUState *current_env)
1133 {
1134 }
1135 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1136
1137 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1138 {
1139 struct kvm_signal_mask *sigmask;
1140 int r;
1141
1142 if (!sigset)
1143 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1144
1145 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1146
1147 sigmask->len = 8;
1148 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1149 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1150 free(sigmask);
1151
1152 return r;
1153 }
1154
1155 #ifdef KVM_IOEVENTFD
1156 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1157 {
1158 struct kvm_ioeventfd kick = {
1159 .datamatch = val,
1160 .addr = addr,
1161 .len = 2,
1162 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1163 .fd = fd,
1164 };
1165 int r;
1166 if (!kvm_enabled())
1167 return -ENOSYS;
1168 if (!assign)
1169 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1170 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1171 if (r < 0)
1172 return r;
1173 return 0;
1174 }
1175 #endif