]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
kvm: consume internal signal with sigtimedwait
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "hw/hw.h"
26 #include "gdbstub.h"
27 #include "kvm.h"
28
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
31
32 //#define DEBUG_KVM
33
34 #ifdef DEBUG_KVM
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define dprintf(fmt, ...) \
39 do { } while (0)
40 #endif
41
42 typedef struct KVMSlot
43 {
44 target_phys_addr_t start_addr;
45 ram_addr_t memory_size;
46 ram_addr_t phys_offset;
47 int slot;
48 int flags;
49 } KVMSlot;
50
51 typedef struct kvm_dirty_log KVMDirtyLog;
52
53 int kvm_allowed = 0;
54
55 struct KVMState
56 {
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int coalesced_mmio;
61 #ifdef KVM_CAP_COALESCED_MMIO
62 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
63 #endif
64 int broken_set_mem_region;
65 int migration_log;
66 int vcpu_events;
67 #ifdef KVM_CAP_SET_GUEST_DEBUG
68 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
69 #endif
70 int irqchip_in_kernel;
71 int pit_in_kernel;
72 };
73
74 static KVMState *kvm_state;
75
76 static KVMSlot *kvm_alloc_slot(KVMState *s)
77 {
78 int i;
79
80 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
81 /* KVM private memory slots */
82 if (i >= 8 && i < 12)
83 continue;
84 if (s->slots[i].memory_size == 0)
85 return &s->slots[i];
86 }
87
88 fprintf(stderr, "%s: no free slot available\n", __func__);
89 abort();
90 }
91
92 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
93 target_phys_addr_t start_addr,
94 target_phys_addr_t end_addr)
95 {
96 int i;
97
98 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
99 KVMSlot *mem = &s->slots[i];
100
101 if (start_addr == mem->start_addr &&
102 end_addr == mem->start_addr + mem->memory_size) {
103 return mem;
104 }
105 }
106
107 return NULL;
108 }
109
110 /*
111 * Find overlapping slot with lowest start address
112 */
113 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
114 target_phys_addr_t start_addr,
115 target_phys_addr_t end_addr)
116 {
117 KVMSlot *found = NULL;
118 int i;
119
120 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
121 KVMSlot *mem = &s->slots[i];
122
123 if (mem->memory_size == 0 ||
124 (found && found->start_addr < mem->start_addr)) {
125 continue;
126 }
127
128 if (end_addr > mem->start_addr &&
129 start_addr < mem->start_addr + mem->memory_size) {
130 found = mem;
131 }
132 }
133
134 return found;
135 }
136
137 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
138 {
139 struct kvm_userspace_memory_region mem;
140
141 mem.slot = slot->slot;
142 mem.guest_phys_addr = slot->start_addr;
143 mem.memory_size = slot->memory_size;
144 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
145 mem.flags = slot->flags;
146 if (s->migration_log) {
147 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
148 }
149 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
150 }
151
152 static void kvm_reset_vcpu(void *opaque)
153 {
154 CPUState *env = opaque;
155
156 kvm_arch_reset_vcpu(env);
157 if (kvm_arch_put_registers(env)) {
158 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
159 abort();
160 }
161 }
162
163 int kvm_irqchip_in_kernel(void)
164 {
165 return kvm_state->irqchip_in_kernel;
166 }
167
168 int kvm_pit_in_kernel(void)
169 {
170 return kvm_state->pit_in_kernel;
171 }
172
173
174 int kvm_init_vcpu(CPUState *env)
175 {
176 KVMState *s = kvm_state;
177 long mmap_size;
178 int ret;
179
180 dprintf("kvm_init_vcpu\n");
181
182 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
183 if (ret < 0) {
184 dprintf("kvm_create_vcpu failed\n");
185 goto err;
186 }
187
188 env->kvm_fd = ret;
189 env->kvm_state = s;
190
191 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
192 if (mmap_size < 0) {
193 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
194 goto err;
195 }
196
197 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
198 env->kvm_fd, 0);
199 if (env->kvm_run == MAP_FAILED) {
200 ret = -errno;
201 dprintf("mmap'ing vcpu state failed\n");
202 goto err;
203 }
204
205 #ifdef KVM_CAP_COALESCED_MMIO
206 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
207 s->coalesced_mmio_ring = (void *) env->kvm_run +
208 s->coalesced_mmio * PAGE_SIZE;
209 #endif
210
211 ret = kvm_arch_init_vcpu(env);
212 if (ret == 0) {
213 qemu_register_reset(kvm_reset_vcpu, env);
214 kvm_arch_reset_vcpu(env);
215 ret = kvm_arch_put_registers(env);
216 }
217 err:
218 return ret;
219 }
220
221 /*
222 * dirty pages logging control
223 */
224 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
225 ram_addr_t size, int flags, int mask)
226 {
227 KVMState *s = kvm_state;
228 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
229 int old_flags;
230
231 if (mem == NULL) {
232 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
233 TARGET_FMT_plx "\n", __func__, phys_addr,
234 (target_phys_addr_t)(phys_addr + size - 1));
235 return -EINVAL;
236 }
237
238 old_flags = mem->flags;
239
240 flags = (mem->flags & ~mask) | flags;
241 mem->flags = flags;
242
243 /* If nothing changed effectively, no need to issue ioctl */
244 if (s->migration_log) {
245 flags |= KVM_MEM_LOG_DIRTY_PAGES;
246 }
247 if (flags == old_flags) {
248 return 0;
249 }
250
251 return kvm_set_user_memory_region(s, mem);
252 }
253
254 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
255 {
256 return kvm_dirty_pages_log_change(phys_addr, size,
257 KVM_MEM_LOG_DIRTY_PAGES,
258 KVM_MEM_LOG_DIRTY_PAGES);
259 }
260
261 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
262 {
263 return kvm_dirty_pages_log_change(phys_addr, size,
264 0,
265 KVM_MEM_LOG_DIRTY_PAGES);
266 }
267
268 static int kvm_set_migration_log(int enable)
269 {
270 KVMState *s = kvm_state;
271 KVMSlot *mem;
272 int i, err;
273
274 s->migration_log = enable;
275
276 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
277 mem = &s->slots[i];
278
279 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
280 continue;
281 }
282 err = kvm_set_user_memory_region(s, mem);
283 if (err) {
284 return err;
285 }
286 }
287 return 0;
288 }
289
290 static int test_le_bit(unsigned long nr, unsigned char *addr)
291 {
292 return (addr[nr >> 3] >> (nr & 7)) & 1;
293 }
294
295 /**
296 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
297 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
298 * This means all bits are set to dirty.
299 *
300 * @start_add: start of logged region.
301 * @end_addr: end of logged region.
302 */
303 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
304 target_phys_addr_t end_addr)
305 {
306 KVMState *s = kvm_state;
307 unsigned long size, allocated_size = 0;
308 target_phys_addr_t phys_addr;
309 ram_addr_t addr;
310 KVMDirtyLog d;
311 KVMSlot *mem;
312 int ret = 0;
313
314 d.dirty_bitmap = NULL;
315 while (start_addr < end_addr) {
316 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
317 if (mem == NULL) {
318 break;
319 }
320
321 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
322 if (!d.dirty_bitmap) {
323 d.dirty_bitmap = qemu_malloc(size);
324 } else if (size > allocated_size) {
325 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
326 }
327 allocated_size = size;
328 memset(d.dirty_bitmap, 0, allocated_size);
329
330 d.slot = mem->slot;
331
332 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
333 dprintf("ioctl failed %d\n", errno);
334 ret = -1;
335 break;
336 }
337
338 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
339 phys_addr < mem->start_addr + mem->memory_size;
340 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
341 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
342 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
343
344 if (test_le_bit(nr, bitmap)) {
345 cpu_physical_memory_set_dirty(addr);
346 }
347 }
348 start_addr = phys_addr;
349 }
350 qemu_free(d.dirty_bitmap);
351
352 return ret;
353 }
354
355 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
356 {
357 int ret = -ENOSYS;
358 #ifdef KVM_CAP_COALESCED_MMIO
359 KVMState *s = kvm_state;
360
361 if (s->coalesced_mmio) {
362 struct kvm_coalesced_mmio_zone zone;
363
364 zone.addr = start;
365 zone.size = size;
366
367 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
368 }
369 #endif
370
371 return ret;
372 }
373
374 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
375 {
376 int ret = -ENOSYS;
377 #ifdef KVM_CAP_COALESCED_MMIO
378 KVMState *s = kvm_state;
379
380 if (s->coalesced_mmio) {
381 struct kvm_coalesced_mmio_zone zone;
382
383 zone.addr = start;
384 zone.size = size;
385
386 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
387 }
388 #endif
389
390 return ret;
391 }
392
393 int kvm_check_extension(KVMState *s, unsigned int extension)
394 {
395 int ret;
396
397 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
398 if (ret < 0) {
399 ret = 0;
400 }
401
402 return ret;
403 }
404
405 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
406 ram_addr_t size,
407 ram_addr_t phys_offset)
408 {
409 KVMState *s = kvm_state;
410 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
411 KVMSlot *mem, old;
412 int err;
413
414 if (start_addr & ~TARGET_PAGE_MASK) {
415 if (flags >= IO_MEM_UNASSIGNED) {
416 if (!kvm_lookup_overlapping_slot(s, start_addr,
417 start_addr + size)) {
418 return;
419 }
420 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
421 } else {
422 fprintf(stderr, "Only page-aligned memory slots supported\n");
423 }
424 abort();
425 }
426
427 /* KVM does not support read-only slots */
428 phys_offset &= ~IO_MEM_ROM;
429
430 while (1) {
431 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
432 if (!mem) {
433 break;
434 }
435
436 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
437 (start_addr + size <= mem->start_addr + mem->memory_size) &&
438 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
439 /* The new slot fits into the existing one and comes with
440 * identical parameters - nothing to be done. */
441 return;
442 }
443
444 old = *mem;
445
446 /* unregister the overlapping slot */
447 mem->memory_size = 0;
448 err = kvm_set_user_memory_region(s, mem);
449 if (err) {
450 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
451 __func__, strerror(-err));
452 abort();
453 }
454
455 /* Workaround for older KVM versions: we can't join slots, even not by
456 * unregistering the previous ones and then registering the larger
457 * slot. We have to maintain the existing fragmentation. Sigh.
458 *
459 * This workaround assumes that the new slot starts at the same
460 * address as the first existing one. If not or if some overlapping
461 * slot comes around later, we will fail (not seen in practice so far)
462 * - and actually require a recent KVM version. */
463 if (s->broken_set_mem_region &&
464 old.start_addr == start_addr && old.memory_size < size &&
465 flags < IO_MEM_UNASSIGNED) {
466 mem = kvm_alloc_slot(s);
467 mem->memory_size = old.memory_size;
468 mem->start_addr = old.start_addr;
469 mem->phys_offset = old.phys_offset;
470 mem->flags = 0;
471
472 err = kvm_set_user_memory_region(s, mem);
473 if (err) {
474 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
475 strerror(-err));
476 abort();
477 }
478
479 start_addr += old.memory_size;
480 phys_offset += old.memory_size;
481 size -= old.memory_size;
482 continue;
483 }
484
485 /* register prefix slot */
486 if (old.start_addr < start_addr) {
487 mem = kvm_alloc_slot(s);
488 mem->memory_size = start_addr - old.start_addr;
489 mem->start_addr = old.start_addr;
490 mem->phys_offset = old.phys_offset;
491 mem->flags = 0;
492
493 err = kvm_set_user_memory_region(s, mem);
494 if (err) {
495 fprintf(stderr, "%s: error registering prefix slot: %s\n",
496 __func__, strerror(-err));
497 abort();
498 }
499 }
500
501 /* register suffix slot */
502 if (old.start_addr + old.memory_size > start_addr + size) {
503 ram_addr_t size_delta;
504
505 mem = kvm_alloc_slot(s);
506 mem->start_addr = start_addr + size;
507 size_delta = mem->start_addr - old.start_addr;
508 mem->memory_size = old.memory_size - size_delta;
509 mem->phys_offset = old.phys_offset + size_delta;
510 mem->flags = 0;
511
512 err = kvm_set_user_memory_region(s, mem);
513 if (err) {
514 fprintf(stderr, "%s: error registering suffix slot: %s\n",
515 __func__, strerror(-err));
516 abort();
517 }
518 }
519 }
520
521 /* in case the KVM bug workaround already "consumed" the new slot */
522 if (!size)
523 return;
524
525 /* KVM does not need to know about this memory */
526 if (flags >= IO_MEM_UNASSIGNED)
527 return;
528
529 mem = kvm_alloc_slot(s);
530 mem->memory_size = size;
531 mem->start_addr = start_addr;
532 mem->phys_offset = phys_offset;
533 mem->flags = 0;
534
535 err = kvm_set_user_memory_region(s, mem);
536 if (err) {
537 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
538 strerror(-err));
539 abort();
540 }
541 }
542
543 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
544 target_phys_addr_t start_addr,
545 ram_addr_t size,
546 ram_addr_t phys_offset)
547 {
548 kvm_set_phys_mem(start_addr, size, phys_offset);
549 }
550
551 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
552 target_phys_addr_t start_addr,
553 target_phys_addr_t end_addr)
554 {
555 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
556 }
557
558 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
559 int enable)
560 {
561 return kvm_set_migration_log(enable);
562 }
563
564 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
565 .set_memory = kvm_client_set_memory,
566 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
567 .migration_log = kvm_client_migration_log,
568 };
569
570 int kvm_init(int smp_cpus)
571 {
572 static const char upgrade_note[] =
573 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
574 "(see http://sourceforge.net/projects/kvm).\n";
575 KVMState *s;
576 int ret;
577 int i;
578
579 if (smp_cpus > 1) {
580 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
581 return -EINVAL;
582 }
583
584 s = qemu_mallocz(sizeof(KVMState));
585
586 #ifdef KVM_CAP_SET_GUEST_DEBUG
587 QTAILQ_INIT(&s->kvm_sw_breakpoints);
588 #endif
589 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
590 s->slots[i].slot = i;
591
592 s->vmfd = -1;
593 s->fd = qemu_open("/dev/kvm", O_RDWR);
594 if (s->fd == -1) {
595 fprintf(stderr, "Could not access KVM kernel module: %m\n");
596 ret = -errno;
597 goto err;
598 }
599
600 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
601 if (ret < KVM_API_VERSION) {
602 if (ret > 0)
603 ret = -EINVAL;
604 fprintf(stderr, "kvm version too old\n");
605 goto err;
606 }
607
608 if (ret > KVM_API_VERSION) {
609 ret = -EINVAL;
610 fprintf(stderr, "kvm version not supported\n");
611 goto err;
612 }
613
614 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
615 if (s->vmfd < 0)
616 goto err;
617
618 /* initially, KVM allocated its own memory and we had to jump through
619 * hooks to make phys_ram_base point to this. Modern versions of KVM
620 * just use a user allocated buffer so we can use regular pages
621 * unmodified. Make sure we have a sufficiently modern version of KVM.
622 */
623 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
624 ret = -EINVAL;
625 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
626 upgrade_note);
627 goto err;
628 }
629
630 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
631 * destroyed properly. Since we rely on this capability, refuse to work
632 * with any kernel without this capability. */
633 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
634 ret = -EINVAL;
635
636 fprintf(stderr,
637 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
638 upgrade_note);
639 goto err;
640 }
641
642 s->coalesced_mmio = 0;
643 #ifdef KVM_CAP_COALESCED_MMIO
644 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
645 s->coalesced_mmio_ring = NULL;
646 #endif
647
648 s->broken_set_mem_region = 1;
649 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
650 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
651 if (ret > 0) {
652 s->broken_set_mem_region = 0;
653 }
654 #endif
655
656 s->vcpu_events = 0;
657 #ifdef KVM_CAP_VCPU_EVENTS
658 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
659 #endif
660
661 ret = kvm_arch_init(s, smp_cpus);
662 if (ret < 0)
663 goto err;
664
665 kvm_state = s;
666 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
667
668 return 0;
669
670 err:
671 if (s) {
672 if (s->vmfd != -1)
673 close(s->vmfd);
674 if (s->fd != -1)
675 close(s->fd);
676 }
677 qemu_free(s);
678
679 return ret;
680 }
681
682 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
683 uint32_t count)
684 {
685 int i;
686 uint8_t *ptr = data;
687
688 for (i = 0; i < count; i++) {
689 if (direction == KVM_EXIT_IO_IN) {
690 switch (size) {
691 case 1:
692 stb_p(ptr, cpu_inb(port));
693 break;
694 case 2:
695 stw_p(ptr, cpu_inw(port));
696 break;
697 case 4:
698 stl_p(ptr, cpu_inl(port));
699 break;
700 }
701 } else {
702 switch (size) {
703 case 1:
704 cpu_outb(port, ldub_p(ptr));
705 break;
706 case 2:
707 cpu_outw(port, lduw_p(ptr));
708 break;
709 case 4:
710 cpu_outl(port, ldl_p(ptr));
711 break;
712 }
713 }
714
715 ptr += size;
716 }
717
718 return 1;
719 }
720
721 void kvm_flush_coalesced_mmio_buffer(void)
722 {
723 #ifdef KVM_CAP_COALESCED_MMIO
724 KVMState *s = kvm_state;
725 if (s->coalesced_mmio_ring) {
726 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
727 while (ring->first != ring->last) {
728 struct kvm_coalesced_mmio *ent;
729
730 ent = &ring->coalesced_mmio[ring->first];
731
732 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
733 /* FIXME smp_wmb() */
734 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
735 }
736 }
737 #endif
738 }
739
740 void kvm_cpu_synchronize_state(CPUState *env)
741 {
742 if (!env->kvm_vcpu_dirty) {
743 kvm_arch_get_registers(env);
744 env->kvm_vcpu_dirty = 1;
745 }
746 }
747
748 int kvm_cpu_exec(CPUState *env)
749 {
750 struct kvm_run *run = env->kvm_run;
751 int ret;
752
753 dprintf("kvm_cpu_exec()\n");
754
755 do {
756 if (env->exit_request) {
757 dprintf("interrupt exit requested\n");
758 ret = 0;
759 break;
760 }
761
762 if (env->kvm_vcpu_dirty) {
763 kvm_arch_put_registers(env);
764 env->kvm_vcpu_dirty = 0;
765 }
766
767 kvm_arch_pre_run(env, run);
768 qemu_mutex_unlock_iothread();
769 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
770 qemu_mutex_lock_iothread();
771 kvm_arch_post_run(env, run);
772
773 if (ret == -EINTR || ret == -EAGAIN) {
774 cpu_exit(env);
775 dprintf("io window exit\n");
776 ret = 0;
777 break;
778 }
779
780 if (ret < 0) {
781 dprintf("kvm run failed %s\n", strerror(-ret));
782 abort();
783 }
784
785 kvm_flush_coalesced_mmio_buffer();
786
787 ret = 0; /* exit loop */
788 switch (run->exit_reason) {
789 case KVM_EXIT_IO:
790 dprintf("handle_io\n");
791 ret = kvm_handle_io(run->io.port,
792 (uint8_t *)run + run->io.data_offset,
793 run->io.direction,
794 run->io.size,
795 run->io.count);
796 break;
797 case KVM_EXIT_MMIO:
798 dprintf("handle_mmio\n");
799 cpu_physical_memory_rw(run->mmio.phys_addr,
800 run->mmio.data,
801 run->mmio.len,
802 run->mmio.is_write);
803 ret = 1;
804 break;
805 case KVM_EXIT_IRQ_WINDOW_OPEN:
806 dprintf("irq_window_open\n");
807 break;
808 case KVM_EXIT_SHUTDOWN:
809 dprintf("shutdown\n");
810 qemu_system_reset_request();
811 ret = 1;
812 break;
813 case KVM_EXIT_UNKNOWN:
814 dprintf("kvm_exit_unknown\n");
815 break;
816 case KVM_EXIT_FAIL_ENTRY:
817 dprintf("kvm_exit_fail_entry\n");
818 break;
819 case KVM_EXIT_EXCEPTION:
820 dprintf("kvm_exit_exception\n");
821 break;
822 case KVM_EXIT_DEBUG:
823 dprintf("kvm_exit_debug\n");
824 #ifdef KVM_CAP_SET_GUEST_DEBUG
825 if (kvm_arch_debug(&run->debug.arch)) {
826 gdb_set_stop_cpu(env);
827 vm_stop(EXCP_DEBUG);
828 env->exception_index = EXCP_DEBUG;
829 return 0;
830 }
831 /* re-enter, this exception was guest-internal */
832 ret = 1;
833 #endif /* KVM_CAP_SET_GUEST_DEBUG */
834 break;
835 default:
836 dprintf("kvm_arch_handle_exit\n");
837 ret = kvm_arch_handle_exit(env, run);
838 break;
839 }
840 } while (ret > 0);
841
842 if (env->exit_request) {
843 env->exit_request = 0;
844 env->exception_index = EXCP_INTERRUPT;
845 }
846
847 return ret;
848 }
849
850 int kvm_ioctl(KVMState *s, int type, ...)
851 {
852 int ret;
853 void *arg;
854 va_list ap;
855
856 va_start(ap, type);
857 arg = va_arg(ap, void *);
858 va_end(ap);
859
860 ret = ioctl(s->fd, type, arg);
861 if (ret == -1)
862 ret = -errno;
863
864 return ret;
865 }
866
867 int kvm_vm_ioctl(KVMState *s, int type, ...)
868 {
869 int ret;
870 void *arg;
871 va_list ap;
872
873 va_start(ap, type);
874 arg = va_arg(ap, void *);
875 va_end(ap);
876
877 ret = ioctl(s->vmfd, type, arg);
878 if (ret == -1)
879 ret = -errno;
880
881 return ret;
882 }
883
884 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
885 {
886 int ret;
887 void *arg;
888 va_list ap;
889
890 va_start(ap, type);
891 arg = va_arg(ap, void *);
892 va_end(ap);
893
894 ret = ioctl(env->kvm_fd, type, arg);
895 if (ret == -1)
896 ret = -errno;
897
898 return ret;
899 }
900
901 int kvm_has_sync_mmu(void)
902 {
903 #ifdef KVM_CAP_SYNC_MMU
904 KVMState *s = kvm_state;
905
906 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
907 #else
908 return 0;
909 #endif
910 }
911
912 int kvm_has_vcpu_events(void)
913 {
914 return kvm_state->vcpu_events;
915 }
916
917 void kvm_setup_guest_memory(void *start, size_t size)
918 {
919 if (!kvm_has_sync_mmu()) {
920 #ifdef MADV_DONTFORK
921 int ret = madvise(start, size, MADV_DONTFORK);
922
923 if (ret) {
924 perror("madvice");
925 exit(1);
926 }
927 #else
928 fprintf(stderr,
929 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
930 exit(1);
931 #endif
932 }
933 }
934
935 #ifdef KVM_CAP_SET_GUEST_DEBUG
936 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
937 {
938 #ifdef CONFIG_IOTHREAD
939 if (env != cpu_single_env) {
940 abort();
941 }
942 #endif
943 func(data);
944 }
945
946 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
947 target_ulong pc)
948 {
949 struct kvm_sw_breakpoint *bp;
950
951 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
952 if (bp->pc == pc)
953 return bp;
954 }
955 return NULL;
956 }
957
958 int kvm_sw_breakpoints_active(CPUState *env)
959 {
960 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
961 }
962
963 struct kvm_set_guest_debug_data {
964 struct kvm_guest_debug dbg;
965 CPUState *env;
966 int err;
967 };
968
969 static void kvm_invoke_set_guest_debug(void *data)
970 {
971 struct kvm_set_guest_debug_data *dbg_data = data;
972 CPUState *env = dbg_data->env;
973
974 if (env->kvm_vcpu_dirty) {
975 kvm_arch_put_registers(env);
976 env->kvm_vcpu_dirty = 0;
977 }
978 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
979 }
980
981 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
982 {
983 struct kvm_set_guest_debug_data data;
984
985 data.dbg.control = 0;
986 if (env->singlestep_enabled)
987 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
988
989 kvm_arch_update_guest_debug(env, &data.dbg);
990 data.dbg.control |= reinject_trap;
991 data.env = env;
992
993 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
994 return data.err;
995 }
996
997 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
998 target_ulong len, int type)
999 {
1000 struct kvm_sw_breakpoint *bp;
1001 CPUState *env;
1002 int err;
1003
1004 if (type == GDB_BREAKPOINT_SW) {
1005 bp = kvm_find_sw_breakpoint(current_env, addr);
1006 if (bp) {
1007 bp->use_count++;
1008 return 0;
1009 }
1010
1011 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1012 if (!bp)
1013 return -ENOMEM;
1014
1015 bp->pc = addr;
1016 bp->use_count = 1;
1017 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1018 if (err) {
1019 free(bp);
1020 return err;
1021 }
1022
1023 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1024 bp, entry);
1025 } else {
1026 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1027 if (err)
1028 return err;
1029 }
1030
1031 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1032 err = kvm_update_guest_debug(env, 0);
1033 if (err)
1034 return err;
1035 }
1036 return 0;
1037 }
1038
1039 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1040 target_ulong len, int type)
1041 {
1042 struct kvm_sw_breakpoint *bp;
1043 CPUState *env;
1044 int err;
1045
1046 if (type == GDB_BREAKPOINT_SW) {
1047 bp = kvm_find_sw_breakpoint(current_env, addr);
1048 if (!bp)
1049 return -ENOENT;
1050
1051 if (bp->use_count > 1) {
1052 bp->use_count--;
1053 return 0;
1054 }
1055
1056 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1057 if (err)
1058 return err;
1059
1060 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1061 qemu_free(bp);
1062 } else {
1063 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1064 if (err)
1065 return err;
1066 }
1067
1068 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1069 err = kvm_update_guest_debug(env, 0);
1070 if (err)
1071 return err;
1072 }
1073 return 0;
1074 }
1075
1076 void kvm_remove_all_breakpoints(CPUState *current_env)
1077 {
1078 struct kvm_sw_breakpoint *bp, *next;
1079 KVMState *s = current_env->kvm_state;
1080 CPUState *env;
1081
1082 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1083 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1084 /* Try harder to find a CPU that currently sees the breakpoint. */
1085 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1086 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1087 break;
1088 }
1089 }
1090 }
1091 kvm_arch_remove_all_hw_breakpoints();
1092
1093 for (env = first_cpu; env != NULL; env = env->next_cpu)
1094 kvm_update_guest_debug(env, 0);
1095 }
1096
1097 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1098
1099 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1100 {
1101 return -EINVAL;
1102 }
1103
1104 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1105 target_ulong len, int type)
1106 {
1107 return -EINVAL;
1108 }
1109
1110 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1111 target_ulong len, int type)
1112 {
1113 return -EINVAL;
1114 }
1115
1116 void kvm_remove_all_breakpoints(CPUState *current_env)
1117 {
1118 }
1119 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1120
1121 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1122 {
1123 struct kvm_signal_mask *sigmask;
1124 int r;
1125
1126 if (!sigset)
1127 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1128
1129 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1130
1131 sigmask->len = 8;
1132 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1133 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1134 free(sigmask);
1135
1136 return r;
1137 }