]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
kvm: Leave kvm_cpu_exec directly after KVM_EXIT_SHUTDOWN
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30
31 /* This check must be after config-host.h is included */
32 #ifdef CONFIG_EVENTFD
33 #include <sys/eventfd.h>
34 #endif
35
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
38
39 //#define DEBUG_KVM
40
41 #ifdef DEBUG_KVM
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44 #else
45 #define DPRINTF(fmt, ...) \
46 do { } while (0)
47 #endif
48
49 typedef struct KVMSlot
50 {
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
54 int slot;
55 int flags;
56 } KVMSlot;
57
58 typedef struct kvm_dirty_log KVMDirtyLog;
59
60 struct KVMState
61 {
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
65 int coalesced_mmio;
66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
67 int broken_set_mem_region;
68 int migration_log;
69 int vcpu_events;
70 int robust_singlestep;
71 int debugregs;
72 #ifdef KVM_CAP_SET_GUEST_DEBUG
73 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
74 #endif
75 int irqchip_in_kernel;
76 int pit_in_kernel;
77 int xsave, xcrs;
78 int many_ioeventfds;
79 };
80
81 static KVMState *kvm_state;
82
83 static const KVMCapabilityInfo kvm_required_capabilites[] = {
84 KVM_CAP_INFO(USER_MEMORY),
85 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
86 KVM_CAP_LAST_INFO
87 };
88
89 static KVMSlot *kvm_alloc_slot(KVMState *s)
90 {
91 int i;
92
93 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
94 /* KVM private memory slots */
95 if (i >= 8 && i < 12) {
96 continue;
97 }
98 if (s->slots[i].memory_size == 0) {
99 return &s->slots[i];
100 }
101 }
102
103 fprintf(stderr, "%s: no free slot available\n", __func__);
104 abort();
105 }
106
107 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
108 target_phys_addr_t start_addr,
109 target_phys_addr_t end_addr)
110 {
111 int i;
112
113 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
114 KVMSlot *mem = &s->slots[i];
115
116 if (start_addr == mem->start_addr &&
117 end_addr == mem->start_addr + mem->memory_size) {
118 return mem;
119 }
120 }
121
122 return NULL;
123 }
124
125 /*
126 * Find overlapping slot with lowest start address
127 */
128 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
129 target_phys_addr_t start_addr,
130 target_phys_addr_t end_addr)
131 {
132 KVMSlot *found = NULL;
133 int i;
134
135 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
136 KVMSlot *mem = &s->slots[i];
137
138 if (mem->memory_size == 0 ||
139 (found && found->start_addr < mem->start_addr)) {
140 continue;
141 }
142
143 if (end_addr > mem->start_addr &&
144 start_addr < mem->start_addr + mem->memory_size) {
145 found = mem;
146 }
147 }
148
149 return found;
150 }
151
152 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
153 target_phys_addr_t *phys_addr)
154 {
155 int i;
156
157 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
158 KVMSlot *mem = &s->slots[i];
159
160 if (ram_addr >= mem->phys_offset &&
161 ram_addr < mem->phys_offset + mem->memory_size) {
162 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
163 return 1;
164 }
165 }
166
167 return 0;
168 }
169
170 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
171 {
172 struct kvm_userspace_memory_region mem;
173
174 mem.slot = slot->slot;
175 mem.guest_phys_addr = slot->start_addr;
176 mem.memory_size = slot->memory_size;
177 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
178 mem.flags = slot->flags;
179 if (s->migration_log) {
180 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
181 }
182 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
183 }
184
185 static void kvm_reset_vcpu(void *opaque)
186 {
187 CPUState *env = opaque;
188
189 kvm_arch_reset_vcpu(env);
190 }
191
192 int kvm_irqchip_in_kernel(void)
193 {
194 return kvm_state->irqchip_in_kernel;
195 }
196
197 int kvm_pit_in_kernel(void)
198 {
199 return kvm_state->pit_in_kernel;
200 }
201
202 int kvm_init_vcpu(CPUState *env)
203 {
204 KVMState *s = kvm_state;
205 long mmap_size;
206 int ret;
207
208 DPRINTF("kvm_init_vcpu\n");
209
210 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
211 if (ret < 0) {
212 DPRINTF("kvm_create_vcpu failed\n");
213 goto err;
214 }
215
216 env->kvm_fd = ret;
217 env->kvm_state = s;
218
219 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
220 if (mmap_size < 0) {
221 ret = mmap_size;
222 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
223 goto err;
224 }
225
226 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
227 env->kvm_fd, 0);
228 if (env->kvm_run == MAP_FAILED) {
229 ret = -errno;
230 DPRINTF("mmap'ing vcpu state failed\n");
231 goto err;
232 }
233
234 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
235 s->coalesced_mmio_ring =
236 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
237 }
238
239 ret = kvm_arch_init_vcpu(env);
240 if (ret == 0) {
241 qemu_register_reset(kvm_reset_vcpu, env);
242 kvm_arch_reset_vcpu(env);
243 }
244 err:
245 return ret;
246 }
247
248 /*
249 * dirty pages logging control
250 */
251 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
252 ram_addr_t size, int flags, int mask)
253 {
254 KVMState *s = kvm_state;
255 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
256 int old_flags;
257
258 if (mem == NULL) {
259 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
260 TARGET_FMT_plx "\n", __func__, phys_addr,
261 (target_phys_addr_t)(phys_addr + size - 1));
262 return -EINVAL;
263 }
264
265 old_flags = mem->flags;
266
267 flags = (mem->flags & ~mask) | flags;
268 mem->flags = flags;
269
270 /* If nothing changed effectively, no need to issue ioctl */
271 if (s->migration_log) {
272 flags |= KVM_MEM_LOG_DIRTY_PAGES;
273 }
274 if (flags == old_flags) {
275 return 0;
276 }
277
278 return kvm_set_user_memory_region(s, mem);
279 }
280
281 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
282 {
283 return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
284 KVM_MEM_LOG_DIRTY_PAGES);
285 }
286
287 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
288 {
289 return kvm_dirty_pages_log_change(phys_addr, size, 0,
290 KVM_MEM_LOG_DIRTY_PAGES);
291 }
292
293 static int kvm_set_migration_log(int enable)
294 {
295 KVMState *s = kvm_state;
296 KVMSlot *mem;
297 int i, err;
298
299 s->migration_log = enable;
300
301 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
302 mem = &s->slots[i];
303
304 if (!mem->memory_size) {
305 continue;
306 }
307 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
308 continue;
309 }
310 err = kvm_set_user_memory_region(s, mem);
311 if (err) {
312 return err;
313 }
314 }
315 return 0;
316 }
317
318 /* get kvm's dirty pages bitmap and update qemu's */
319 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
320 unsigned long *bitmap,
321 unsigned long offset,
322 unsigned long mem_size)
323 {
324 unsigned int i, j;
325 unsigned long page_number, addr, addr1, c;
326 ram_addr_t ram_addr;
327 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
328 HOST_LONG_BITS;
329
330 /*
331 * bitmap-traveling is faster than memory-traveling (for addr...)
332 * especially when most of the memory is not dirty.
333 */
334 for (i = 0; i < len; i++) {
335 if (bitmap[i] != 0) {
336 c = leul_to_cpu(bitmap[i]);
337 do {
338 j = ffsl(c) - 1;
339 c &= ~(1ul << j);
340 page_number = i * HOST_LONG_BITS + j;
341 addr1 = page_number * TARGET_PAGE_SIZE;
342 addr = offset + addr1;
343 ram_addr = cpu_get_physical_page_desc(addr);
344 cpu_physical_memory_set_dirty(ram_addr);
345 } while (c != 0);
346 }
347 }
348 return 0;
349 }
350
351 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
352
353 /**
354 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
355 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
356 * This means all bits are set to dirty.
357 *
358 * @start_add: start of logged region.
359 * @end_addr: end of logged region.
360 */
361 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
362 target_phys_addr_t end_addr)
363 {
364 KVMState *s = kvm_state;
365 unsigned long size, allocated_size = 0;
366 KVMDirtyLog d;
367 KVMSlot *mem;
368 int ret = 0;
369
370 d.dirty_bitmap = NULL;
371 while (start_addr < end_addr) {
372 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
373 if (mem == NULL) {
374 break;
375 }
376
377 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
378 if (!d.dirty_bitmap) {
379 d.dirty_bitmap = qemu_malloc(size);
380 } else if (size > allocated_size) {
381 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
382 }
383 allocated_size = size;
384 memset(d.dirty_bitmap, 0, allocated_size);
385
386 d.slot = mem->slot;
387
388 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
389 DPRINTF("ioctl failed %d\n", errno);
390 ret = -1;
391 break;
392 }
393
394 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
395 mem->start_addr, mem->memory_size);
396 start_addr = mem->start_addr + mem->memory_size;
397 }
398 qemu_free(d.dirty_bitmap);
399
400 return ret;
401 }
402
403 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
404 {
405 int ret = -ENOSYS;
406 KVMState *s = kvm_state;
407
408 if (s->coalesced_mmio) {
409 struct kvm_coalesced_mmio_zone zone;
410
411 zone.addr = start;
412 zone.size = size;
413
414 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
415 }
416
417 return ret;
418 }
419
420 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
421 {
422 int ret = -ENOSYS;
423 KVMState *s = kvm_state;
424
425 if (s->coalesced_mmio) {
426 struct kvm_coalesced_mmio_zone zone;
427
428 zone.addr = start;
429 zone.size = size;
430
431 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
432 }
433
434 return ret;
435 }
436
437 int kvm_check_extension(KVMState *s, unsigned int extension)
438 {
439 int ret;
440
441 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
442 if (ret < 0) {
443 ret = 0;
444 }
445
446 return ret;
447 }
448
449 static int kvm_check_many_ioeventfds(void)
450 {
451 /* Userspace can use ioeventfd for io notification. This requires a host
452 * that supports eventfd(2) and an I/O thread; since eventfd does not
453 * support SIGIO it cannot interrupt the vcpu.
454 *
455 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
456 * can avoid creating too many ioeventfds.
457 */
458 #if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
459 int ioeventfds[7];
460 int i, ret = 0;
461 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
462 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
463 if (ioeventfds[i] < 0) {
464 break;
465 }
466 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
467 if (ret < 0) {
468 close(ioeventfds[i]);
469 break;
470 }
471 }
472
473 /* Decide whether many devices are supported or not */
474 ret = i == ARRAY_SIZE(ioeventfds);
475
476 while (i-- > 0) {
477 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
478 close(ioeventfds[i]);
479 }
480 return ret;
481 #else
482 return 0;
483 #endif
484 }
485
486 static const KVMCapabilityInfo *
487 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
488 {
489 while (list->name) {
490 if (!kvm_check_extension(s, list->value)) {
491 return list;
492 }
493 list++;
494 }
495 return NULL;
496 }
497
498 static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
499 ram_addr_t phys_offset)
500 {
501 KVMState *s = kvm_state;
502 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
503 KVMSlot *mem, old;
504 int err;
505
506 /* kvm works in page size chunks, but the function may be called
507 with sub-page size and unaligned start address. */
508 size = TARGET_PAGE_ALIGN(size);
509 start_addr = TARGET_PAGE_ALIGN(start_addr);
510
511 /* KVM does not support read-only slots */
512 phys_offset &= ~IO_MEM_ROM;
513
514 while (1) {
515 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
516 if (!mem) {
517 break;
518 }
519
520 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
521 (start_addr + size <= mem->start_addr + mem->memory_size) &&
522 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
523 /* The new slot fits into the existing one and comes with
524 * identical parameters - nothing to be done. */
525 return;
526 }
527
528 old = *mem;
529
530 /* unregister the overlapping slot */
531 mem->memory_size = 0;
532 err = kvm_set_user_memory_region(s, mem);
533 if (err) {
534 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
535 __func__, strerror(-err));
536 abort();
537 }
538
539 /* Workaround for older KVM versions: we can't join slots, even not by
540 * unregistering the previous ones and then registering the larger
541 * slot. We have to maintain the existing fragmentation. Sigh.
542 *
543 * This workaround assumes that the new slot starts at the same
544 * address as the first existing one. If not or if some overlapping
545 * slot comes around later, we will fail (not seen in practice so far)
546 * - and actually require a recent KVM version. */
547 if (s->broken_set_mem_region &&
548 old.start_addr == start_addr && old.memory_size < size &&
549 flags < IO_MEM_UNASSIGNED) {
550 mem = kvm_alloc_slot(s);
551 mem->memory_size = old.memory_size;
552 mem->start_addr = old.start_addr;
553 mem->phys_offset = old.phys_offset;
554 mem->flags = 0;
555
556 err = kvm_set_user_memory_region(s, mem);
557 if (err) {
558 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
559 strerror(-err));
560 abort();
561 }
562
563 start_addr += old.memory_size;
564 phys_offset += old.memory_size;
565 size -= old.memory_size;
566 continue;
567 }
568
569 /* register prefix slot */
570 if (old.start_addr < start_addr) {
571 mem = kvm_alloc_slot(s);
572 mem->memory_size = start_addr - old.start_addr;
573 mem->start_addr = old.start_addr;
574 mem->phys_offset = old.phys_offset;
575 mem->flags = 0;
576
577 err = kvm_set_user_memory_region(s, mem);
578 if (err) {
579 fprintf(stderr, "%s: error registering prefix slot: %s\n",
580 __func__, strerror(-err));
581 abort();
582 }
583 }
584
585 /* register suffix slot */
586 if (old.start_addr + old.memory_size > start_addr + size) {
587 ram_addr_t size_delta;
588
589 mem = kvm_alloc_slot(s);
590 mem->start_addr = start_addr + size;
591 size_delta = mem->start_addr - old.start_addr;
592 mem->memory_size = old.memory_size - size_delta;
593 mem->phys_offset = old.phys_offset + size_delta;
594 mem->flags = 0;
595
596 err = kvm_set_user_memory_region(s, mem);
597 if (err) {
598 fprintf(stderr, "%s: error registering suffix slot: %s\n",
599 __func__, strerror(-err));
600 abort();
601 }
602 }
603 }
604
605 /* in case the KVM bug workaround already "consumed" the new slot */
606 if (!size) {
607 return;
608 }
609 /* KVM does not need to know about this memory */
610 if (flags >= IO_MEM_UNASSIGNED) {
611 return;
612 }
613 mem = kvm_alloc_slot(s);
614 mem->memory_size = size;
615 mem->start_addr = start_addr;
616 mem->phys_offset = phys_offset;
617 mem->flags = 0;
618
619 err = kvm_set_user_memory_region(s, mem);
620 if (err) {
621 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
622 strerror(-err));
623 abort();
624 }
625 }
626
627 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
628 target_phys_addr_t start_addr,
629 ram_addr_t size, ram_addr_t phys_offset)
630 {
631 kvm_set_phys_mem(start_addr, size, phys_offset);
632 }
633
634 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
635 target_phys_addr_t start_addr,
636 target_phys_addr_t end_addr)
637 {
638 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
639 }
640
641 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
642 int enable)
643 {
644 return kvm_set_migration_log(enable);
645 }
646
647 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
648 .set_memory = kvm_client_set_memory,
649 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
650 .migration_log = kvm_client_migration_log,
651 };
652
653 int kvm_init(void)
654 {
655 static const char upgrade_note[] =
656 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
657 "(see http://sourceforge.net/projects/kvm).\n";
658 KVMState *s;
659 const KVMCapabilityInfo *missing_cap;
660 int ret;
661 int i;
662
663 s = qemu_mallocz(sizeof(KVMState));
664
665 #ifdef KVM_CAP_SET_GUEST_DEBUG
666 QTAILQ_INIT(&s->kvm_sw_breakpoints);
667 #endif
668 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
669 s->slots[i].slot = i;
670 }
671 s->vmfd = -1;
672 s->fd = qemu_open("/dev/kvm", O_RDWR);
673 if (s->fd == -1) {
674 fprintf(stderr, "Could not access KVM kernel module: %m\n");
675 ret = -errno;
676 goto err;
677 }
678
679 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
680 if (ret < KVM_API_VERSION) {
681 if (ret > 0) {
682 ret = -EINVAL;
683 }
684 fprintf(stderr, "kvm version too old\n");
685 goto err;
686 }
687
688 if (ret > KVM_API_VERSION) {
689 ret = -EINVAL;
690 fprintf(stderr, "kvm version not supported\n");
691 goto err;
692 }
693
694 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
695 if (s->vmfd < 0) {
696 #ifdef TARGET_S390X
697 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
698 "your host kernel command line\n");
699 #endif
700 goto err;
701 }
702
703 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
704 if (!missing_cap) {
705 missing_cap =
706 kvm_check_extension_list(s, kvm_arch_required_capabilities);
707 }
708 if (missing_cap) {
709 ret = -EINVAL;
710 fprintf(stderr, "kvm does not support %s\n%s",
711 missing_cap->name, upgrade_note);
712 goto err;
713 }
714
715 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
716
717 s->broken_set_mem_region = 1;
718 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
719 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
720 if (ret > 0) {
721 s->broken_set_mem_region = 0;
722 }
723 #endif
724
725 s->vcpu_events = 0;
726 #ifdef KVM_CAP_VCPU_EVENTS
727 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
728 #endif
729
730 s->robust_singlestep = 0;
731 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
732 s->robust_singlestep =
733 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
734 #endif
735
736 s->debugregs = 0;
737 #ifdef KVM_CAP_DEBUGREGS
738 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
739 #endif
740
741 s->xsave = 0;
742 #ifdef KVM_CAP_XSAVE
743 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
744 #endif
745
746 s->xcrs = 0;
747 #ifdef KVM_CAP_XCRS
748 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
749 #endif
750
751 ret = kvm_arch_init(s);
752 if (ret < 0) {
753 goto err;
754 }
755
756 kvm_state = s;
757 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
758
759 s->many_ioeventfds = kvm_check_many_ioeventfds();
760
761 return 0;
762
763 err:
764 if (s) {
765 if (s->vmfd != -1) {
766 close(s->vmfd);
767 }
768 if (s->fd != -1) {
769 close(s->fd);
770 }
771 }
772 qemu_free(s);
773
774 return ret;
775 }
776
777 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
778 uint32_t count)
779 {
780 int i;
781 uint8_t *ptr = data;
782
783 for (i = 0; i < count; i++) {
784 if (direction == KVM_EXIT_IO_IN) {
785 switch (size) {
786 case 1:
787 stb_p(ptr, cpu_inb(port));
788 break;
789 case 2:
790 stw_p(ptr, cpu_inw(port));
791 break;
792 case 4:
793 stl_p(ptr, cpu_inl(port));
794 break;
795 }
796 } else {
797 switch (size) {
798 case 1:
799 cpu_outb(port, ldub_p(ptr));
800 break;
801 case 2:
802 cpu_outw(port, lduw_p(ptr));
803 break;
804 case 4:
805 cpu_outl(port, ldl_p(ptr));
806 break;
807 }
808 }
809
810 ptr += size;
811 }
812 }
813
814 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
815 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
816 {
817 fprintf(stderr, "KVM internal error.");
818 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
819 int i;
820
821 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
822 for (i = 0; i < run->internal.ndata; ++i) {
823 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
824 i, (uint64_t)run->internal.data[i]);
825 }
826 } else {
827 fprintf(stderr, "\n");
828 }
829 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
830 fprintf(stderr, "emulation failure\n");
831 if (!kvm_arch_stop_on_emulation_error(env)) {
832 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
833 return 0;
834 }
835 }
836 /* FIXME: Should trigger a qmp message to let management know
837 * something went wrong.
838 */
839 return -1;
840 }
841 #endif
842
843 void kvm_flush_coalesced_mmio_buffer(void)
844 {
845 KVMState *s = kvm_state;
846 if (s->coalesced_mmio_ring) {
847 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
848 while (ring->first != ring->last) {
849 struct kvm_coalesced_mmio *ent;
850
851 ent = &ring->coalesced_mmio[ring->first];
852
853 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
854 smp_wmb();
855 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
856 }
857 }
858 }
859
860 static void do_kvm_cpu_synchronize_state(void *_env)
861 {
862 CPUState *env = _env;
863
864 if (!env->kvm_vcpu_dirty) {
865 kvm_arch_get_registers(env);
866 env->kvm_vcpu_dirty = 1;
867 }
868 }
869
870 void kvm_cpu_synchronize_state(CPUState *env)
871 {
872 if (!env->kvm_vcpu_dirty) {
873 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
874 }
875 }
876
877 void kvm_cpu_synchronize_post_reset(CPUState *env)
878 {
879 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
880 env->kvm_vcpu_dirty = 0;
881 }
882
883 void kvm_cpu_synchronize_post_init(CPUState *env)
884 {
885 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
886 env->kvm_vcpu_dirty = 0;
887 }
888
889 int kvm_cpu_exec(CPUState *env)
890 {
891 struct kvm_run *run = env->kvm_run;
892 int ret;
893
894 DPRINTF("kvm_cpu_exec()\n");
895
896 if (kvm_arch_process_irqchip_events(env)) {
897 env->exit_request = 0;
898 env->exception_index = EXCP_HLT;
899 return 0;
900 }
901
902 do {
903 if (env->kvm_vcpu_dirty) {
904 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
905 env->kvm_vcpu_dirty = 0;
906 }
907
908 kvm_arch_pre_run(env, run);
909 if (env->exit_request) {
910 DPRINTF("interrupt exit requested\n");
911 /*
912 * KVM requires us to reenter the kernel after IO exits to complete
913 * instruction emulation. This self-signal will ensure that we
914 * leave ASAP again.
915 */
916 qemu_cpu_kick_self();
917 }
918 cpu_single_env = NULL;
919 qemu_mutex_unlock_iothread();
920
921 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
922
923 qemu_mutex_lock_iothread();
924 cpu_single_env = env;
925 kvm_arch_post_run(env, run);
926
927 kvm_flush_coalesced_mmio_buffer();
928
929 if (ret == -EINTR || ret == -EAGAIN) {
930 cpu_exit(env);
931 DPRINTF("io window exit\n");
932 ret = 0;
933 break;
934 }
935
936 if (ret < 0) {
937 DPRINTF("kvm run failed %s\n", strerror(-ret));
938 abort();
939 }
940
941 ret = 0; /* exit loop */
942 switch (run->exit_reason) {
943 case KVM_EXIT_IO:
944 DPRINTF("handle_io\n");
945 kvm_handle_io(run->io.port,
946 (uint8_t *)run + run->io.data_offset,
947 run->io.direction,
948 run->io.size,
949 run->io.count);
950 ret = 1;
951 break;
952 case KVM_EXIT_MMIO:
953 DPRINTF("handle_mmio\n");
954 cpu_physical_memory_rw(run->mmio.phys_addr,
955 run->mmio.data,
956 run->mmio.len,
957 run->mmio.is_write);
958 ret = 1;
959 break;
960 case KVM_EXIT_IRQ_WINDOW_OPEN:
961 DPRINTF("irq_window_open\n");
962 break;
963 case KVM_EXIT_SHUTDOWN:
964 DPRINTF("shutdown\n");
965 qemu_system_reset_request();
966 break;
967 case KVM_EXIT_UNKNOWN:
968 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
969 (uint64_t)run->hw.hardware_exit_reason);
970 ret = -1;
971 break;
972 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
973 case KVM_EXIT_INTERNAL_ERROR:
974 ret = kvm_handle_internal_error(env, run);
975 break;
976 #endif
977 case KVM_EXIT_DEBUG:
978 DPRINTF("kvm_exit_debug\n");
979 #ifdef KVM_CAP_SET_GUEST_DEBUG
980 if (kvm_arch_debug(&run->debug.arch)) {
981 env->exception_index = EXCP_DEBUG;
982 return 0;
983 }
984 /* re-enter, this exception was guest-internal */
985 ret = 1;
986 #endif /* KVM_CAP_SET_GUEST_DEBUG */
987 break;
988 default:
989 DPRINTF("kvm_arch_handle_exit\n");
990 ret = kvm_arch_handle_exit(env, run);
991 break;
992 }
993 } while (ret > 0);
994
995 if (ret < 0) {
996 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
997 vm_stop(0);
998 env->exit_request = 1;
999 }
1000 if (env->exit_request) {
1001 env->exit_request = 0;
1002 env->exception_index = EXCP_INTERRUPT;
1003 }
1004
1005 return ret;
1006 }
1007
1008 int kvm_ioctl(KVMState *s, int type, ...)
1009 {
1010 int ret;
1011 void *arg;
1012 va_list ap;
1013
1014 va_start(ap, type);
1015 arg = va_arg(ap, void *);
1016 va_end(ap);
1017
1018 ret = ioctl(s->fd, type, arg);
1019 if (ret == -1) {
1020 ret = -errno;
1021 }
1022 return ret;
1023 }
1024
1025 int kvm_vm_ioctl(KVMState *s, int type, ...)
1026 {
1027 int ret;
1028 void *arg;
1029 va_list ap;
1030
1031 va_start(ap, type);
1032 arg = va_arg(ap, void *);
1033 va_end(ap);
1034
1035 ret = ioctl(s->vmfd, type, arg);
1036 if (ret == -1) {
1037 ret = -errno;
1038 }
1039 return ret;
1040 }
1041
1042 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1043 {
1044 int ret;
1045 void *arg;
1046 va_list ap;
1047
1048 va_start(ap, type);
1049 arg = va_arg(ap, void *);
1050 va_end(ap);
1051
1052 ret = ioctl(env->kvm_fd, type, arg);
1053 if (ret == -1) {
1054 ret = -errno;
1055 }
1056 return ret;
1057 }
1058
1059 int kvm_has_sync_mmu(void)
1060 {
1061 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1062 }
1063
1064 int kvm_has_vcpu_events(void)
1065 {
1066 return kvm_state->vcpu_events;
1067 }
1068
1069 int kvm_has_robust_singlestep(void)
1070 {
1071 return kvm_state->robust_singlestep;
1072 }
1073
1074 int kvm_has_debugregs(void)
1075 {
1076 return kvm_state->debugregs;
1077 }
1078
1079 int kvm_has_xsave(void)
1080 {
1081 return kvm_state->xsave;
1082 }
1083
1084 int kvm_has_xcrs(void)
1085 {
1086 return kvm_state->xcrs;
1087 }
1088
1089 int kvm_has_many_ioeventfds(void)
1090 {
1091 if (!kvm_enabled()) {
1092 return 0;
1093 }
1094 return kvm_state->many_ioeventfds;
1095 }
1096
1097 void kvm_setup_guest_memory(void *start, size_t size)
1098 {
1099 if (!kvm_has_sync_mmu()) {
1100 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1101
1102 if (ret) {
1103 perror("qemu_madvise");
1104 fprintf(stderr,
1105 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1106 exit(1);
1107 }
1108 }
1109 }
1110
1111 #ifdef KVM_CAP_SET_GUEST_DEBUG
1112 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1113 target_ulong pc)
1114 {
1115 struct kvm_sw_breakpoint *bp;
1116
1117 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1118 if (bp->pc == pc) {
1119 return bp;
1120 }
1121 }
1122 return NULL;
1123 }
1124
1125 int kvm_sw_breakpoints_active(CPUState *env)
1126 {
1127 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1128 }
1129
1130 struct kvm_set_guest_debug_data {
1131 struct kvm_guest_debug dbg;
1132 CPUState *env;
1133 int err;
1134 };
1135
1136 static void kvm_invoke_set_guest_debug(void *data)
1137 {
1138 struct kvm_set_guest_debug_data *dbg_data = data;
1139 CPUState *env = dbg_data->env;
1140
1141 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1142 }
1143
1144 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1145 {
1146 struct kvm_set_guest_debug_data data;
1147
1148 data.dbg.control = reinject_trap;
1149
1150 if (env->singlestep_enabled) {
1151 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1152 }
1153 kvm_arch_update_guest_debug(env, &data.dbg);
1154 data.env = env;
1155
1156 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1157 return data.err;
1158 }
1159
1160 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1161 target_ulong len, int type)
1162 {
1163 struct kvm_sw_breakpoint *bp;
1164 CPUState *env;
1165 int err;
1166
1167 if (type == GDB_BREAKPOINT_SW) {
1168 bp = kvm_find_sw_breakpoint(current_env, addr);
1169 if (bp) {
1170 bp->use_count++;
1171 return 0;
1172 }
1173
1174 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1175 if (!bp) {
1176 return -ENOMEM;
1177 }
1178
1179 bp->pc = addr;
1180 bp->use_count = 1;
1181 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1182 if (err) {
1183 free(bp);
1184 return err;
1185 }
1186
1187 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1188 bp, entry);
1189 } else {
1190 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1191 if (err) {
1192 return err;
1193 }
1194 }
1195
1196 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1197 err = kvm_update_guest_debug(env, 0);
1198 if (err) {
1199 return err;
1200 }
1201 }
1202 return 0;
1203 }
1204
1205 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1206 target_ulong len, int type)
1207 {
1208 struct kvm_sw_breakpoint *bp;
1209 CPUState *env;
1210 int err;
1211
1212 if (type == GDB_BREAKPOINT_SW) {
1213 bp = kvm_find_sw_breakpoint(current_env, addr);
1214 if (!bp) {
1215 return -ENOENT;
1216 }
1217
1218 if (bp->use_count > 1) {
1219 bp->use_count--;
1220 return 0;
1221 }
1222
1223 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1224 if (err) {
1225 return err;
1226 }
1227
1228 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1229 qemu_free(bp);
1230 } else {
1231 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1232 if (err) {
1233 return err;
1234 }
1235 }
1236
1237 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1238 err = kvm_update_guest_debug(env, 0);
1239 if (err) {
1240 return err;
1241 }
1242 }
1243 return 0;
1244 }
1245
1246 void kvm_remove_all_breakpoints(CPUState *current_env)
1247 {
1248 struct kvm_sw_breakpoint *bp, *next;
1249 KVMState *s = current_env->kvm_state;
1250 CPUState *env;
1251
1252 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1253 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1254 /* Try harder to find a CPU that currently sees the breakpoint. */
1255 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1256 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1257 break;
1258 }
1259 }
1260 }
1261 }
1262 kvm_arch_remove_all_hw_breakpoints();
1263
1264 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1265 kvm_update_guest_debug(env, 0);
1266 }
1267 }
1268
1269 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1270
1271 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1272 {
1273 return -EINVAL;
1274 }
1275
1276 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1277 target_ulong len, int type)
1278 {
1279 return -EINVAL;
1280 }
1281
1282 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1283 target_ulong len, int type)
1284 {
1285 return -EINVAL;
1286 }
1287
1288 void kvm_remove_all_breakpoints(CPUState *current_env)
1289 {
1290 }
1291 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1292
1293 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1294 {
1295 struct kvm_signal_mask *sigmask;
1296 int r;
1297
1298 if (!sigset) {
1299 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1300 }
1301
1302 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1303
1304 sigmask->len = 8;
1305 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1306 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1307 free(sigmask);
1308
1309 return r;
1310 }
1311
1312 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1313 {
1314 #ifdef KVM_IOEVENTFD
1315 int ret;
1316 struct kvm_ioeventfd iofd;
1317
1318 iofd.datamatch = val;
1319 iofd.addr = addr;
1320 iofd.len = 4;
1321 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1322 iofd.fd = fd;
1323
1324 if (!kvm_enabled()) {
1325 return -ENOSYS;
1326 }
1327
1328 if (!assign) {
1329 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1330 }
1331
1332 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1333
1334 if (ret < 0) {
1335 return -errno;
1336 }
1337
1338 return 0;
1339 #else
1340 return -ENOSYS;
1341 #endif
1342 }
1343
1344 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1345 {
1346 #ifdef KVM_IOEVENTFD
1347 struct kvm_ioeventfd kick = {
1348 .datamatch = val,
1349 .addr = addr,
1350 .len = 2,
1351 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1352 .fd = fd,
1353 };
1354 int r;
1355 if (!kvm_enabled()) {
1356 return -ENOSYS;
1357 }
1358 if (!assign) {
1359 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1360 }
1361 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1362 if (r < 0) {
1363 return r;
1364 }
1365 return 0;
1366 #else
1367 return -ENOSYS;
1368 #endif
1369 }
1370
1371 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1372 {
1373 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1374 }
1375
1376 int kvm_on_sigbus(int code, void *addr)
1377 {
1378 return kvm_arch_on_sigbus(code, addr);
1379 }