]> git.proxmox.com Git - qemu.git/blob - linux-user/arm/nwfpe/single_cpdo.c
Update to a hopefully more future proof FSF address
[qemu.git] / linux-user / arm / nwfpe / single_cpdo.c
1 /*
2 NetWinder Floating Point Emulator
3 (c) Rebel.COM, 1998,1999
4
5 Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "fpa11.h"
22 #include "softfloat.h"
23 #include "fpopcode.h"
24
25 float32 float32_exp(float32 Fm);
26 float32 float32_ln(float32 Fm);
27 float32 float32_sin(float32 rFm);
28 float32 float32_cos(float32 rFm);
29 float32 float32_arcsin(float32 rFm);
30 float32 float32_arctan(float32 rFm);
31 float32 float32_log(float32 rFm);
32 float32 float32_tan(float32 rFm);
33 float32 float32_arccos(float32 rFm);
34 float32 float32_pow(float32 rFn,float32 rFm);
35 float32 float32_pol(float32 rFn,float32 rFm);
36
37 unsigned int SingleCPDO(const unsigned int opcode)
38 {
39 FPA11 *fpa11 = GET_FPA11();
40 float32 rFm, rFn = float32_zero;
41 unsigned int Fd, Fm, Fn, nRc = 1;
42
43 Fm = getFm(opcode);
44 if (CONSTANT_FM(opcode))
45 {
46 rFm = getSingleConstant(Fm);
47 }
48 else
49 {
50 switch (fpa11->fType[Fm])
51 {
52 case typeSingle:
53 rFm = fpa11->fpreg[Fm].fSingle;
54 break;
55
56 default: return 0;
57 }
58 }
59
60 if (!MONADIC_INSTRUCTION(opcode))
61 {
62 Fn = getFn(opcode);
63 switch (fpa11->fType[Fn])
64 {
65 case typeSingle:
66 rFn = fpa11->fpreg[Fn].fSingle;
67 break;
68
69 default: return 0;
70 }
71 }
72
73 Fd = getFd(opcode);
74 switch (opcode & MASK_ARITHMETIC_OPCODE)
75 {
76 /* dyadic opcodes */
77 case ADF_CODE:
78 fpa11->fpreg[Fd].fSingle = float32_add(rFn,rFm, &fpa11->fp_status);
79 break;
80
81 case MUF_CODE:
82 case FML_CODE:
83 fpa11->fpreg[Fd].fSingle = float32_mul(rFn,rFm, &fpa11->fp_status);
84 break;
85
86 case SUF_CODE:
87 fpa11->fpreg[Fd].fSingle = float32_sub(rFn,rFm, &fpa11->fp_status);
88 break;
89
90 case RSF_CODE:
91 fpa11->fpreg[Fd].fSingle = float32_sub(rFm,rFn, &fpa11->fp_status);
92 break;
93
94 case DVF_CODE:
95 case FDV_CODE:
96 fpa11->fpreg[Fd].fSingle = float32_div(rFn,rFm, &fpa11->fp_status);
97 break;
98
99 case RDF_CODE:
100 case FRD_CODE:
101 fpa11->fpreg[Fd].fSingle = float32_div(rFm,rFn, &fpa11->fp_status);
102 break;
103
104 #if 0
105 case POW_CODE:
106 fpa11->fpreg[Fd].fSingle = float32_pow(rFn,rFm);
107 break;
108
109 case RPW_CODE:
110 fpa11->fpreg[Fd].fSingle = float32_pow(rFm,rFn);
111 break;
112 #endif
113
114 case RMF_CODE:
115 fpa11->fpreg[Fd].fSingle = float32_rem(rFn,rFm, &fpa11->fp_status);
116 break;
117
118 #if 0
119 case POL_CODE:
120 fpa11->fpreg[Fd].fSingle = float32_pol(rFn,rFm);
121 break;
122 #endif
123
124 /* monadic opcodes */
125 case MVF_CODE:
126 fpa11->fpreg[Fd].fSingle = rFm;
127 break;
128
129 case MNF_CODE:
130 fpa11->fpreg[Fd].fSingle = float32_chs(rFm);
131 break;
132
133 case ABS_CODE:
134 fpa11->fpreg[Fd].fSingle = float32_abs(rFm);
135 break;
136
137 case RND_CODE:
138 case URD_CODE:
139 fpa11->fpreg[Fd].fSingle = float32_round_to_int(rFm, &fpa11->fp_status);
140 break;
141
142 case SQT_CODE:
143 fpa11->fpreg[Fd].fSingle = float32_sqrt(rFm, &fpa11->fp_status);
144 break;
145
146 #if 0
147 case LOG_CODE:
148 fpa11->fpreg[Fd].fSingle = float32_log(rFm);
149 break;
150
151 case LGN_CODE:
152 fpa11->fpreg[Fd].fSingle = float32_ln(rFm);
153 break;
154
155 case EXP_CODE:
156 fpa11->fpreg[Fd].fSingle = float32_exp(rFm);
157 break;
158
159 case SIN_CODE:
160 fpa11->fpreg[Fd].fSingle = float32_sin(rFm);
161 break;
162
163 case COS_CODE:
164 fpa11->fpreg[Fd].fSingle = float32_cos(rFm);
165 break;
166
167 case TAN_CODE:
168 fpa11->fpreg[Fd].fSingle = float32_tan(rFm);
169 break;
170
171 case ASN_CODE:
172 fpa11->fpreg[Fd].fSingle = float32_arcsin(rFm);
173 break;
174
175 case ACS_CODE:
176 fpa11->fpreg[Fd].fSingle = float32_arccos(rFm);
177 break;
178
179 case ATN_CODE:
180 fpa11->fpreg[Fd].fSingle = float32_arctan(rFm);
181 break;
182 #endif
183
184 case NRM_CODE:
185 break;
186
187 default:
188 {
189 nRc = 0;
190 }
191 }
192
193 if (0 != nRc) fpa11->fType[Fd] = typeSingle;
194 return nRc;
195 }
196
197 #if 0
198 float32 float32_exp(float32 Fm)
199 {
200 //series
201 }
202
203 float32 float32_ln(float32 Fm)
204 {
205 //series
206 }
207
208 float32 float32_sin(float32 rFm)
209 {
210 //series
211 }
212
213 float32 float32_cos(float32 rFm)
214 {
215 //series
216 }
217
218 float32 float32_arcsin(float32 rFm)
219 {
220 //series
221 }
222
223 float32 float32_arctan(float32 rFm)
224 {
225 //series
226 }
227
228 float32 float32_arccos(float32 rFm)
229 {
230 //return float32_sub(halfPi,float32_arcsin(rFm));
231 }
232
233 float32 float32_log(float32 rFm)
234 {
235 return float32_div(float32_ln(rFm),getSingleConstant(7));
236 }
237
238 float32 float32_tan(float32 rFm)
239 {
240 return float32_div(float32_sin(rFm),float32_cos(rFm));
241 }
242
243 float32 float32_pow(float32 rFn,float32 rFm)
244 {
245 return float32_exp(float32_mul(rFm,float32_ln(rFn)));
246 }
247
248 float32 float32_pol(float32 rFn,float32 rFm)
249 {
250 return float32_arctan(float32_div(rFn,rFm));
251 }
252 #endif