]> git.proxmox.com Git - qemu.git/blob - linux-user/elfload.c
linux-user: fix compile failure if !CONFIG_USE_GUEST_BASE
[qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include <sys/time.h>
3 #include <sys/param.h>
4
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <unistd.h>
10 #include <sys/mman.h>
11 #include <sys/resource.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <time.h>
15
16 #include "qemu.h"
17 #include "disas.h"
18
19 #ifdef _ARCH_PPC64
20 #undef ARCH_DLINFO
21 #undef ELF_PLATFORM
22 #undef ELF_HWCAP
23 #undef ELF_CLASS
24 #undef ELF_DATA
25 #undef ELF_ARCH
26 #endif
27
28 #define ELF_OSABI ELFOSABI_SYSV
29
30 /* from personality.h */
31
32 /*
33 * Flags for bug emulation.
34 *
35 * These occupy the top three bytes.
36 */
37 enum {
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
40 descriptors (signal handling) */
41 MMAP_PAGE_ZERO = 0x0100000,
42 ADDR_COMPAT_LAYOUT = 0x0200000,
43 READ_IMPLIES_EXEC = 0x0400000,
44 ADDR_LIMIT_32BIT = 0x0800000,
45 SHORT_INODE = 0x1000000,
46 WHOLE_SECONDS = 0x2000000,
47 STICKY_TIMEOUTS = 0x4000000,
48 ADDR_LIMIT_3GB = 0x8000000,
49 };
50
51 /*
52 * Personality types.
53 *
54 * These go in the low byte. Avoid using the top bit, it will
55 * conflict with error returns.
56 */
57 enum {
58 PER_LINUX = 0x0000,
59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
67 PER_BSD = 0x0006,
68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70 PER_LINUX32 = 0x0008,
71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75 PER_RISCOS = 0x000c,
76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78 PER_OSF4 = 0x000f, /* OSF/1 v4 */
79 PER_HPUX = 0x0010,
80 PER_MASK = 0x00ff,
81 };
82
83 /*
84 * Return the base personality without flags.
85 */
86 #define personality(pers) (pers & PER_MASK)
87
88 /* this flag is uneffective under linux too, should be deleted */
89 #ifndef MAP_DENYWRITE
90 #define MAP_DENYWRITE 0
91 #endif
92
93 /* should probably go in elf.h */
94 #ifndef ELIBBAD
95 #define ELIBBAD 80
96 #endif
97
98 #ifdef TARGET_WORDS_BIGENDIAN
99 #define ELF_DATA ELFDATA2MSB
100 #else
101 #define ELF_DATA ELFDATA2LSB
102 #endif
103
104 typedef target_ulong target_elf_greg_t;
105 #ifdef USE_UID16
106 typedef target_ushort target_uid_t;
107 typedef target_ushort target_gid_t;
108 #else
109 typedef target_uint target_uid_t;
110 typedef target_uint target_gid_t;
111 #endif
112 typedef target_int target_pid_t;
113
114 #ifdef TARGET_I386
115
116 #define ELF_PLATFORM get_elf_platform()
117
118 static const char *get_elf_platform(void)
119 {
120 static char elf_platform[] = "i386";
121 int family = (thread_env->cpuid_version >> 8) & 0xff;
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
127 }
128
129 #define ELF_HWCAP get_elf_hwcap()
130
131 static uint32_t get_elf_hwcap(void)
132 {
133 return thread_env->cpuid_features;
134 }
135
136 #ifdef TARGET_X86_64
137 #define ELF_START_MMAP 0x2aaaaab000ULL
138 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
139
140 #define ELF_CLASS ELFCLASS64
141 #define ELF_ARCH EM_X86_64
142
143 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
144 {
145 regs->rax = 0;
146 regs->rsp = infop->start_stack;
147 regs->rip = infop->entry;
148 }
149
150 #define ELF_NREG 27
151 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
152
153 /*
154 * Note that ELF_NREG should be 29 as there should be place for
155 * TRAPNO and ERR "registers" as well but linux doesn't dump
156 * those.
157 *
158 * See linux kernel: arch/x86/include/asm/elf.h
159 */
160 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
161 {
162 (*regs)[0] = env->regs[15];
163 (*regs)[1] = env->regs[14];
164 (*regs)[2] = env->regs[13];
165 (*regs)[3] = env->regs[12];
166 (*regs)[4] = env->regs[R_EBP];
167 (*regs)[5] = env->regs[R_EBX];
168 (*regs)[6] = env->regs[11];
169 (*regs)[7] = env->regs[10];
170 (*regs)[8] = env->regs[9];
171 (*regs)[9] = env->regs[8];
172 (*regs)[10] = env->regs[R_EAX];
173 (*regs)[11] = env->regs[R_ECX];
174 (*regs)[12] = env->regs[R_EDX];
175 (*regs)[13] = env->regs[R_ESI];
176 (*regs)[14] = env->regs[R_EDI];
177 (*regs)[15] = env->regs[R_EAX]; /* XXX */
178 (*regs)[16] = env->eip;
179 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
180 (*regs)[18] = env->eflags;
181 (*regs)[19] = env->regs[R_ESP];
182 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
183 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
184 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
185 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
186 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
187 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
188 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
189 }
190
191 #else
192
193 #define ELF_START_MMAP 0x80000000
194
195 /*
196 * This is used to ensure we don't load something for the wrong architecture.
197 */
198 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
199
200 /*
201 * These are used to set parameters in the core dumps.
202 */
203 #define ELF_CLASS ELFCLASS32
204 #define ELF_ARCH EM_386
205
206 static inline void init_thread(struct target_pt_regs *regs,
207 struct image_info *infop)
208 {
209 regs->esp = infop->start_stack;
210 regs->eip = infop->entry;
211
212 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
213 starts %edx contains a pointer to a function which might be
214 registered using `atexit'. This provides a mean for the
215 dynamic linker to call DT_FINI functions for shared libraries
216 that have been loaded before the code runs.
217
218 A value of 0 tells we have no such handler. */
219 regs->edx = 0;
220 }
221
222 #define ELF_NREG 17
223 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
224
225 /*
226 * Note that ELF_NREG should be 19 as there should be place for
227 * TRAPNO and ERR "registers" as well but linux doesn't dump
228 * those.
229 *
230 * See linux kernel: arch/x86/include/asm/elf.h
231 */
232 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
233 {
234 (*regs)[0] = env->regs[R_EBX];
235 (*regs)[1] = env->regs[R_ECX];
236 (*regs)[2] = env->regs[R_EDX];
237 (*regs)[3] = env->regs[R_ESI];
238 (*regs)[4] = env->regs[R_EDI];
239 (*regs)[5] = env->regs[R_EBP];
240 (*regs)[6] = env->regs[R_EAX];
241 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
242 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
243 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
244 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
245 (*regs)[11] = env->regs[R_EAX]; /* XXX */
246 (*regs)[12] = env->eip;
247 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
248 (*regs)[14] = env->eflags;
249 (*regs)[15] = env->regs[R_ESP];
250 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
251 }
252 #endif
253
254 #define USE_ELF_CORE_DUMP
255 #define ELF_EXEC_PAGESIZE 4096
256
257 #endif
258
259 #ifdef TARGET_ARM
260
261 #define ELF_START_MMAP 0x80000000
262
263 #define elf_check_arch(x) ( (x) == EM_ARM )
264
265 #define ELF_CLASS ELFCLASS32
266 #define ELF_ARCH EM_ARM
267
268 static inline void init_thread(struct target_pt_regs *regs,
269 struct image_info *infop)
270 {
271 abi_long stack = infop->start_stack;
272 memset(regs, 0, sizeof(*regs));
273 regs->ARM_cpsr = 0x10;
274 if (infop->entry & 1)
275 regs->ARM_cpsr |= CPSR_T;
276 regs->ARM_pc = infop->entry & 0xfffffffe;
277 regs->ARM_sp = infop->start_stack;
278 /* FIXME - what to for failure of get_user()? */
279 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
280 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
281 /* XXX: it seems that r0 is zeroed after ! */
282 regs->ARM_r0 = 0;
283 /* For uClinux PIC binaries. */
284 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
285 regs->ARM_r10 = infop->start_data;
286 }
287
288 #define ELF_NREG 18
289 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
290
291 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
292 {
293 (*regs)[0] = tswapl(env->regs[0]);
294 (*regs)[1] = tswapl(env->regs[1]);
295 (*regs)[2] = tswapl(env->regs[2]);
296 (*regs)[3] = tswapl(env->regs[3]);
297 (*regs)[4] = tswapl(env->regs[4]);
298 (*regs)[5] = tswapl(env->regs[5]);
299 (*regs)[6] = tswapl(env->regs[6]);
300 (*regs)[7] = tswapl(env->regs[7]);
301 (*regs)[8] = tswapl(env->regs[8]);
302 (*regs)[9] = tswapl(env->regs[9]);
303 (*regs)[10] = tswapl(env->regs[10]);
304 (*regs)[11] = tswapl(env->regs[11]);
305 (*regs)[12] = tswapl(env->regs[12]);
306 (*regs)[13] = tswapl(env->regs[13]);
307 (*regs)[14] = tswapl(env->regs[14]);
308 (*regs)[15] = tswapl(env->regs[15]);
309
310 (*regs)[16] = tswapl(cpsr_read((CPUState *)env));
311 (*regs)[17] = tswapl(env->regs[0]); /* XXX */
312 }
313
314 #define USE_ELF_CORE_DUMP
315 #define ELF_EXEC_PAGESIZE 4096
316
317 enum
318 {
319 ARM_HWCAP_ARM_SWP = 1 << 0,
320 ARM_HWCAP_ARM_HALF = 1 << 1,
321 ARM_HWCAP_ARM_THUMB = 1 << 2,
322 ARM_HWCAP_ARM_26BIT = 1 << 3,
323 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
324 ARM_HWCAP_ARM_FPA = 1 << 5,
325 ARM_HWCAP_ARM_VFP = 1 << 6,
326 ARM_HWCAP_ARM_EDSP = 1 << 7,
327 ARM_HWCAP_ARM_JAVA = 1 << 8,
328 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
329 ARM_HWCAP_ARM_THUMBEE = 1 << 10,
330 ARM_HWCAP_ARM_NEON = 1 << 11,
331 ARM_HWCAP_ARM_VFPv3 = 1 << 12,
332 ARM_HWCAP_ARM_VFPv3D16 = 1 << 13,
333 };
334
335 #define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \
336 | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \
337 | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \
338 | ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 )
339
340 #endif
341
342 #ifdef TARGET_SPARC
343 #ifdef TARGET_SPARC64
344
345 #define ELF_START_MMAP 0x80000000
346
347 #ifndef TARGET_ABI32
348 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
349 #else
350 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
351 #endif
352
353 #define ELF_CLASS ELFCLASS64
354 #define ELF_ARCH EM_SPARCV9
355
356 #define STACK_BIAS 2047
357
358 static inline void init_thread(struct target_pt_regs *regs,
359 struct image_info *infop)
360 {
361 #ifndef TARGET_ABI32
362 regs->tstate = 0;
363 #endif
364 regs->pc = infop->entry;
365 regs->npc = regs->pc + 4;
366 regs->y = 0;
367 #ifdef TARGET_ABI32
368 regs->u_regs[14] = infop->start_stack - 16 * 4;
369 #else
370 if (personality(infop->personality) == PER_LINUX32)
371 regs->u_regs[14] = infop->start_stack - 16 * 4;
372 else
373 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
374 #endif
375 }
376
377 #else
378 #define ELF_START_MMAP 0x80000000
379
380 #define elf_check_arch(x) ( (x) == EM_SPARC )
381
382 #define ELF_CLASS ELFCLASS32
383 #define ELF_ARCH EM_SPARC
384
385 static inline void init_thread(struct target_pt_regs *regs,
386 struct image_info *infop)
387 {
388 regs->psr = 0;
389 regs->pc = infop->entry;
390 regs->npc = regs->pc + 4;
391 regs->y = 0;
392 regs->u_regs[14] = infop->start_stack - 16 * 4;
393 }
394
395 #endif
396 #endif
397
398 #ifdef TARGET_PPC
399
400 #define ELF_START_MMAP 0x80000000
401
402 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
403
404 #define elf_check_arch(x) ( (x) == EM_PPC64 )
405
406 #define ELF_CLASS ELFCLASS64
407
408 #else
409
410 #define elf_check_arch(x) ( (x) == EM_PPC )
411
412 #define ELF_CLASS ELFCLASS32
413
414 #endif
415
416 #define ELF_ARCH EM_PPC
417
418 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
419 See arch/powerpc/include/asm/cputable.h. */
420 enum {
421 QEMU_PPC_FEATURE_32 = 0x80000000,
422 QEMU_PPC_FEATURE_64 = 0x40000000,
423 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
424 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
425 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
426 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
427 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
428 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
429 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
430 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
431 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
432 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
433 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
434 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
435 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
436 QEMU_PPC_FEATURE_CELL = 0x00010000,
437 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
438 QEMU_PPC_FEATURE_SMT = 0x00004000,
439 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
440 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
441 QEMU_PPC_FEATURE_PA6T = 0x00000800,
442 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
443 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
444 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
445 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
446 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
447
448 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
449 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
450 };
451
452 #define ELF_HWCAP get_elf_hwcap()
453
454 static uint32_t get_elf_hwcap(void)
455 {
456 CPUState *e = thread_env;
457 uint32_t features = 0;
458
459 /* We don't have to be terribly complete here; the high points are
460 Altivec/FP/SPE support. Anything else is just a bonus. */
461 #define GET_FEATURE(flag, feature) \
462 do {if (e->insns_flags & flag) features |= feature; } while(0)
463 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
464 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
465 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
466 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
467 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
468 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
469 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
470 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
471 #undef GET_FEATURE
472
473 return features;
474 }
475
476 /*
477 * The requirements here are:
478 * - keep the final alignment of sp (sp & 0xf)
479 * - make sure the 32-bit value at the first 16 byte aligned position of
480 * AUXV is greater than 16 for glibc compatibility.
481 * AT_IGNOREPPC is used for that.
482 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
483 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
484 */
485 #define DLINFO_ARCH_ITEMS 5
486 #define ARCH_DLINFO \
487 do { \
488 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
489 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
490 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
491 /* \
492 * Now handle glibc compatibility. \
493 */ \
494 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
495 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
496 } while (0)
497
498 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
499 {
500 _regs->gpr[1] = infop->start_stack;
501 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
502 _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_addr;
503 infop->entry = ldq_raw(infop->entry) + infop->load_addr;
504 #endif
505 _regs->nip = infop->entry;
506 }
507
508 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
509 #define ELF_NREG 48
510 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
511
512 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
513 {
514 int i;
515 target_ulong ccr = 0;
516
517 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
518 (*regs)[i] = tswapl(env->gpr[i]);
519 }
520
521 (*regs)[32] = tswapl(env->nip);
522 (*regs)[33] = tswapl(env->msr);
523 (*regs)[35] = tswapl(env->ctr);
524 (*regs)[36] = tswapl(env->lr);
525 (*regs)[37] = tswapl(env->xer);
526
527 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
528 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
529 }
530 (*regs)[38] = tswapl(ccr);
531 }
532
533 #define USE_ELF_CORE_DUMP
534 #define ELF_EXEC_PAGESIZE 4096
535
536 #endif
537
538 #ifdef TARGET_MIPS
539
540 #define ELF_START_MMAP 0x80000000
541
542 #define elf_check_arch(x) ( (x) == EM_MIPS )
543
544 #ifdef TARGET_MIPS64
545 #define ELF_CLASS ELFCLASS64
546 #else
547 #define ELF_CLASS ELFCLASS32
548 #endif
549 #define ELF_ARCH EM_MIPS
550
551 static inline void init_thread(struct target_pt_regs *regs,
552 struct image_info *infop)
553 {
554 regs->cp0_status = 2 << CP0St_KSU;
555 regs->cp0_epc = infop->entry;
556 regs->regs[29] = infop->start_stack;
557 }
558
559 /* See linux kernel: arch/mips/include/asm/elf.h. */
560 #define ELF_NREG 45
561 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
562
563 /* See linux kernel: arch/mips/include/asm/reg.h. */
564 enum {
565 #ifdef TARGET_MIPS64
566 TARGET_EF_R0 = 0,
567 #else
568 TARGET_EF_R0 = 6,
569 #endif
570 TARGET_EF_R26 = TARGET_EF_R0 + 26,
571 TARGET_EF_R27 = TARGET_EF_R0 + 27,
572 TARGET_EF_LO = TARGET_EF_R0 + 32,
573 TARGET_EF_HI = TARGET_EF_R0 + 33,
574 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
575 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
576 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
577 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
578 };
579
580 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
581 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
582 {
583 int i;
584
585 for (i = 0; i < TARGET_EF_R0; i++) {
586 (*regs)[i] = 0;
587 }
588 (*regs)[TARGET_EF_R0] = 0;
589
590 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
591 (*regs)[TARGET_EF_R0 + i] = tswapl(env->active_tc.gpr[i]);
592 }
593
594 (*regs)[TARGET_EF_R26] = 0;
595 (*regs)[TARGET_EF_R27] = 0;
596 (*regs)[TARGET_EF_LO] = tswapl(env->active_tc.LO[0]);
597 (*regs)[TARGET_EF_HI] = tswapl(env->active_tc.HI[0]);
598 (*regs)[TARGET_EF_CP0_EPC] = tswapl(env->active_tc.PC);
599 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapl(env->CP0_BadVAddr);
600 (*regs)[TARGET_EF_CP0_STATUS] = tswapl(env->CP0_Status);
601 (*regs)[TARGET_EF_CP0_CAUSE] = tswapl(env->CP0_Cause);
602 }
603
604 #define USE_ELF_CORE_DUMP
605 #define ELF_EXEC_PAGESIZE 4096
606
607 #endif /* TARGET_MIPS */
608
609 #ifdef TARGET_MICROBLAZE
610
611 #define ELF_START_MMAP 0x80000000
612
613 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
614
615 #define ELF_CLASS ELFCLASS32
616 #define ELF_ARCH EM_MICROBLAZE
617
618 static inline void init_thread(struct target_pt_regs *regs,
619 struct image_info *infop)
620 {
621 regs->pc = infop->entry;
622 regs->r1 = infop->start_stack;
623
624 }
625
626 #define ELF_EXEC_PAGESIZE 4096
627
628 #define USE_ELF_CORE_DUMP
629 #define ELF_NREG 38
630 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
631
632 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
633 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
634 {
635 int i, pos = 0;
636
637 for (i = 0; i < 32; i++) {
638 (*regs)[pos++] = tswapl(env->regs[i]);
639 }
640
641 for (i = 0; i < 6; i++) {
642 (*regs)[pos++] = tswapl(env->sregs[i]);
643 }
644 }
645
646 #endif /* TARGET_MICROBLAZE */
647
648 #ifdef TARGET_SH4
649
650 #define ELF_START_MMAP 0x80000000
651
652 #define elf_check_arch(x) ( (x) == EM_SH )
653
654 #define ELF_CLASS ELFCLASS32
655 #define ELF_ARCH EM_SH
656
657 static inline void init_thread(struct target_pt_regs *regs,
658 struct image_info *infop)
659 {
660 /* Check other registers XXXXX */
661 regs->pc = infop->entry;
662 regs->regs[15] = infop->start_stack;
663 }
664
665 /* See linux kernel: arch/sh/include/asm/elf.h. */
666 #define ELF_NREG 23
667 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
668
669 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
670 enum {
671 TARGET_REG_PC = 16,
672 TARGET_REG_PR = 17,
673 TARGET_REG_SR = 18,
674 TARGET_REG_GBR = 19,
675 TARGET_REG_MACH = 20,
676 TARGET_REG_MACL = 21,
677 TARGET_REG_SYSCALL = 22
678 };
679
680 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
681 const CPUState *env)
682 {
683 int i;
684
685 for (i = 0; i < 16; i++) {
686 (*regs[i]) = tswapl(env->gregs[i]);
687 }
688
689 (*regs)[TARGET_REG_PC] = tswapl(env->pc);
690 (*regs)[TARGET_REG_PR] = tswapl(env->pr);
691 (*regs)[TARGET_REG_SR] = tswapl(env->sr);
692 (*regs)[TARGET_REG_GBR] = tswapl(env->gbr);
693 (*regs)[TARGET_REG_MACH] = tswapl(env->mach);
694 (*regs)[TARGET_REG_MACL] = tswapl(env->macl);
695 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
696 }
697
698 #define USE_ELF_CORE_DUMP
699 #define ELF_EXEC_PAGESIZE 4096
700
701 #endif
702
703 #ifdef TARGET_CRIS
704
705 #define ELF_START_MMAP 0x80000000
706
707 #define elf_check_arch(x) ( (x) == EM_CRIS )
708
709 #define ELF_CLASS ELFCLASS32
710 #define ELF_ARCH EM_CRIS
711
712 static inline void init_thread(struct target_pt_regs *regs,
713 struct image_info *infop)
714 {
715 regs->erp = infop->entry;
716 }
717
718 #define ELF_EXEC_PAGESIZE 8192
719
720 #endif
721
722 #ifdef TARGET_M68K
723
724 #define ELF_START_MMAP 0x80000000
725
726 #define elf_check_arch(x) ( (x) == EM_68K )
727
728 #define ELF_CLASS ELFCLASS32
729 #define ELF_ARCH EM_68K
730
731 /* ??? Does this need to do anything?
732 #define ELF_PLAT_INIT(_r) */
733
734 static inline void init_thread(struct target_pt_regs *regs,
735 struct image_info *infop)
736 {
737 regs->usp = infop->start_stack;
738 regs->sr = 0;
739 regs->pc = infop->entry;
740 }
741
742 /* See linux kernel: arch/m68k/include/asm/elf.h. */
743 #define ELF_NREG 20
744 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
745
746 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
747 {
748 (*regs)[0] = tswapl(env->dregs[1]);
749 (*regs)[1] = tswapl(env->dregs[2]);
750 (*regs)[2] = tswapl(env->dregs[3]);
751 (*regs)[3] = tswapl(env->dregs[4]);
752 (*regs)[4] = tswapl(env->dregs[5]);
753 (*regs)[5] = tswapl(env->dregs[6]);
754 (*regs)[6] = tswapl(env->dregs[7]);
755 (*regs)[7] = tswapl(env->aregs[0]);
756 (*regs)[8] = tswapl(env->aregs[1]);
757 (*regs)[9] = tswapl(env->aregs[2]);
758 (*regs)[10] = tswapl(env->aregs[3]);
759 (*regs)[11] = tswapl(env->aregs[4]);
760 (*regs)[12] = tswapl(env->aregs[5]);
761 (*regs)[13] = tswapl(env->aregs[6]);
762 (*regs)[14] = tswapl(env->dregs[0]);
763 (*regs)[15] = tswapl(env->aregs[7]);
764 (*regs)[16] = tswapl(env->dregs[0]); /* FIXME: orig_d0 */
765 (*regs)[17] = tswapl(env->sr);
766 (*regs)[18] = tswapl(env->pc);
767 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
768 }
769
770 #define USE_ELF_CORE_DUMP
771 #define ELF_EXEC_PAGESIZE 8192
772
773 #endif
774
775 #ifdef TARGET_ALPHA
776
777 #define ELF_START_MMAP (0x30000000000ULL)
778
779 #define elf_check_arch(x) ( (x) == ELF_ARCH )
780
781 #define ELF_CLASS ELFCLASS64
782 #define ELF_ARCH EM_ALPHA
783
784 static inline void init_thread(struct target_pt_regs *regs,
785 struct image_info *infop)
786 {
787 regs->pc = infop->entry;
788 regs->ps = 8;
789 regs->usp = infop->start_stack;
790 }
791
792 #define ELF_EXEC_PAGESIZE 8192
793
794 #endif /* TARGET_ALPHA */
795
796 #ifndef ELF_PLATFORM
797 #define ELF_PLATFORM (NULL)
798 #endif
799
800 #ifndef ELF_HWCAP
801 #define ELF_HWCAP 0
802 #endif
803
804 #ifdef TARGET_ABI32
805 #undef ELF_CLASS
806 #define ELF_CLASS ELFCLASS32
807 #undef bswaptls
808 #define bswaptls(ptr) bswap32s(ptr)
809 #endif
810
811 #include "elf.h"
812
813 struct exec
814 {
815 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
816 unsigned int a_text; /* length of text, in bytes */
817 unsigned int a_data; /* length of data, in bytes */
818 unsigned int a_bss; /* length of uninitialized data area, in bytes */
819 unsigned int a_syms; /* length of symbol table data in file, in bytes */
820 unsigned int a_entry; /* start address */
821 unsigned int a_trsize; /* length of relocation info for text, in bytes */
822 unsigned int a_drsize; /* length of relocation info for data, in bytes */
823 };
824
825
826 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
827 #define OMAGIC 0407
828 #define NMAGIC 0410
829 #define ZMAGIC 0413
830 #define QMAGIC 0314
831
832 /* Necessary parameters */
833 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
834 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
835 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
836
837 #define DLINFO_ITEMS 12
838
839 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
840 {
841 memcpy(to, from, n);
842 }
843
844 #ifdef BSWAP_NEEDED
845 static void bswap_ehdr(struct elfhdr *ehdr)
846 {
847 bswap16s(&ehdr->e_type); /* Object file type */
848 bswap16s(&ehdr->e_machine); /* Architecture */
849 bswap32s(&ehdr->e_version); /* Object file version */
850 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
851 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
852 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
853 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
854 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
855 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
856 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
857 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
858 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
859 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
860 }
861
862 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
863 {
864 int i;
865 for (i = 0; i < phnum; ++i, ++phdr) {
866 bswap32s(&phdr->p_type); /* Segment type */
867 bswap32s(&phdr->p_flags); /* Segment flags */
868 bswaptls(&phdr->p_offset); /* Segment file offset */
869 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
870 bswaptls(&phdr->p_paddr); /* Segment physical address */
871 bswaptls(&phdr->p_filesz); /* Segment size in file */
872 bswaptls(&phdr->p_memsz); /* Segment size in memory */
873 bswaptls(&phdr->p_align); /* Segment alignment */
874 }
875 }
876
877 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
878 {
879 int i;
880 for (i = 0; i < shnum; ++i, ++shdr) {
881 bswap32s(&shdr->sh_name);
882 bswap32s(&shdr->sh_type);
883 bswaptls(&shdr->sh_flags);
884 bswaptls(&shdr->sh_addr);
885 bswaptls(&shdr->sh_offset);
886 bswaptls(&shdr->sh_size);
887 bswap32s(&shdr->sh_link);
888 bswap32s(&shdr->sh_info);
889 bswaptls(&shdr->sh_addralign);
890 bswaptls(&shdr->sh_entsize);
891 }
892 }
893
894 static void bswap_sym(struct elf_sym *sym)
895 {
896 bswap32s(&sym->st_name);
897 bswaptls(&sym->st_value);
898 bswaptls(&sym->st_size);
899 bswap16s(&sym->st_shndx);
900 }
901 #else
902 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
903 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
904 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
905 static inline void bswap_sym(struct elf_sym *sym) { }
906 #endif
907
908 #ifdef USE_ELF_CORE_DUMP
909 static int elf_core_dump(int, const CPUState *);
910 #endif /* USE_ELF_CORE_DUMP */
911 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
912
913 /* Verify the portions of EHDR within E_IDENT for the target.
914 This can be performed before bswapping the entire header. */
915 static bool elf_check_ident(struct elfhdr *ehdr)
916 {
917 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
918 && ehdr->e_ident[EI_MAG1] == ELFMAG1
919 && ehdr->e_ident[EI_MAG2] == ELFMAG2
920 && ehdr->e_ident[EI_MAG3] == ELFMAG3
921 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
922 && ehdr->e_ident[EI_DATA] == ELF_DATA
923 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
924 }
925
926 /* Verify the portions of EHDR outside of E_IDENT for the target.
927 This has to wait until after bswapping the header. */
928 static bool elf_check_ehdr(struct elfhdr *ehdr)
929 {
930 return (elf_check_arch(ehdr->e_machine)
931 && ehdr->e_ehsize == sizeof(struct elfhdr)
932 && ehdr->e_phentsize == sizeof(struct elf_phdr)
933 && ehdr->e_shentsize == sizeof(struct elf_shdr)
934 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
935 }
936
937 /*
938 * 'copy_elf_strings()' copies argument/envelope strings from user
939 * memory to free pages in kernel mem. These are in a format ready
940 * to be put directly into the top of new user memory.
941 *
942 */
943 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
944 abi_ulong p)
945 {
946 char *tmp, *tmp1, *pag = NULL;
947 int len, offset = 0;
948
949 if (!p) {
950 return 0; /* bullet-proofing */
951 }
952 while (argc-- > 0) {
953 tmp = argv[argc];
954 if (!tmp) {
955 fprintf(stderr, "VFS: argc is wrong");
956 exit(-1);
957 }
958 tmp1 = tmp;
959 while (*tmp++);
960 len = tmp - tmp1;
961 if (p < len) { /* this shouldn't happen - 128kB */
962 return 0;
963 }
964 while (len) {
965 --p; --tmp; --len;
966 if (--offset < 0) {
967 offset = p % TARGET_PAGE_SIZE;
968 pag = (char *)page[p/TARGET_PAGE_SIZE];
969 if (!pag) {
970 pag = (char *)malloc(TARGET_PAGE_SIZE);
971 memset(pag, 0, TARGET_PAGE_SIZE);
972 page[p/TARGET_PAGE_SIZE] = pag;
973 if (!pag)
974 return 0;
975 }
976 }
977 if (len == 0 || offset == 0) {
978 *(pag + offset) = *tmp;
979 }
980 else {
981 int bytes_to_copy = (len > offset) ? offset : len;
982 tmp -= bytes_to_copy;
983 p -= bytes_to_copy;
984 offset -= bytes_to_copy;
985 len -= bytes_to_copy;
986 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
987 }
988 }
989 }
990 return p;
991 }
992
993 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
994 struct image_info *info)
995 {
996 abi_ulong stack_base, size, error, guard;
997 int i;
998
999 /* Create enough stack to hold everything. If we don't use
1000 it for args, we'll use it for something else. */
1001 size = guest_stack_size;
1002 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
1003 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1004 }
1005 guard = TARGET_PAGE_SIZE;
1006 if (guard < qemu_real_host_page_size) {
1007 guard = qemu_real_host_page_size;
1008 }
1009
1010 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1011 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1012 if (error == -1) {
1013 perror("mmap stack");
1014 exit(-1);
1015 }
1016
1017 /* We reserve one extra page at the top of the stack as guard. */
1018 target_mprotect(error, guard, PROT_NONE);
1019
1020 info->stack_limit = error + guard;
1021 stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1022 p += stack_base;
1023
1024 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1025 if (bprm->page[i]) {
1026 info->rss++;
1027 /* FIXME - check return value of memcpy_to_target() for failure */
1028 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
1029 free(bprm->page[i]);
1030 }
1031 stack_base += TARGET_PAGE_SIZE;
1032 }
1033 return p;
1034 }
1035
1036 /* Map and zero the bss. We need to explicitly zero any fractional pages
1037 after the data section (i.e. bss). */
1038 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1039 {
1040 uintptr_t host_start, host_map_start, host_end;
1041
1042 last_bss = TARGET_PAGE_ALIGN(last_bss);
1043
1044 /* ??? There is confusion between qemu_real_host_page_size and
1045 qemu_host_page_size here and elsewhere in target_mmap, which
1046 may lead to the end of the data section mapping from the file
1047 not being mapped. At least there was an explicit test and
1048 comment for that here, suggesting that "the file size must
1049 be known". The comment probably pre-dates the introduction
1050 of the fstat system call in target_mmap which does in fact
1051 find out the size. What isn't clear is if the workaround
1052 here is still actually needed. For now, continue with it,
1053 but merge it with the "normal" mmap that would allocate the bss. */
1054
1055 host_start = (uintptr_t) g2h(elf_bss);
1056 host_end = (uintptr_t) g2h(last_bss);
1057 host_map_start = (host_start + qemu_real_host_page_size - 1);
1058 host_map_start &= -qemu_real_host_page_size;
1059
1060 if (host_map_start < host_end) {
1061 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1062 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1063 if (p == MAP_FAILED) {
1064 perror("cannot mmap brk");
1065 exit(-1);
1066 }
1067
1068 /* Since we didn't use target_mmap, make sure to record
1069 the validity of the pages with qemu. */
1070 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot|PAGE_VALID);
1071 }
1072
1073 if (host_start < host_map_start) {
1074 memset((void *)host_start, 0, host_map_start - host_start);
1075 }
1076 }
1077
1078 #ifdef CONFIG_USE_FDPIC
1079 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1080 {
1081 uint16_t n;
1082 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1083
1084 /* elf32_fdpic_loadseg */
1085 n = info->nsegs;
1086 while (n--) {
1087 sp -= 12;
1088 put_user_u32(loadsegs[n].addr, sp+0);
1089 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1090 put_user_u32(loadsegs[n].p_memsz, sp+8);
1091 }
1092
1093 /* elf32_fdpic_loadmap */
1094 sp -= 4;
1095 put_user_u16(0, sp+0); /* version */
1096 put_user_u16(info->nsegs, sp+2); /* nsegs */
1097
1098 info->personality = PER_LINUX_FDPIC;
1099 info->loadmap_addr = sp;
1100
1101 return sp;
1102 }
1103 #endif
1104
1105 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1106 struct elfhdr *exec,
1107 struct image_info *info,
1108 struct image_info *interp_info)
1109 {
1110 abi_ulong sp;
1111 int size;
1112 abi_ulong u_platform;
1113 const char *k_platform;
1114 const int n = sizeof(elf_addr_t);
1115
1116 sp = p;
1117
1118 #ifdef CONFIG_USE_FDPIC
1119 /* Needs to be before we load the env/argc/... */
1120 if (elf_is_fdpic(exec)) {
1121 /* Need 4 byte alignment for these structs */
1122 sp &= ~3;
1123 sp = loader_build_fdpic_loadmap(info, sp);
1124 info->other_info = interp_info;
1125 if (interp_info) {
1126 interp_info->other_info = info;
1127 sp = loader_build_fdpic_loadmap(interp_info, sp);
1128 }
1129 }
1130 #endif
1131
1132 u_platform = 0;
1133 k_platform = ELF_PLATFORM;
1134 if (k_platform) {
1135 size_t len = strlen(k_platform) + 1;
1136 sp -= (len + n - 1) & ~(n - 1);
1137 u_platform = sp;
1138 /* FIXME - check return value of memcpy_to_target() for failure */
1139 memcpy_to_target(sp, k_platform, len);
1140 }
1141 /*
1142 * Force 16 byte _final_ alignment here for generality.
1143 */
1144 sp = sp &~ (abi_ulong)15;
1145 size = (DLINFO_ITEMS + 1) * 2;
1146 if (k_platform)
1147 size += 2;
1148 #ifdef DLINFO_ARCH_ITEMS
1149 size += DLINFO_ARCH_ITEMS * 2;
1150 #endif
1151 size += envc + argc + 2;
1152 size += 1; /* argc itself */
1153 size *= n;
1154 if (size & 15)
1155 sp -= 16 - (size & 15);
1156
1157 /* This is correct because Linux defines
1158 * elf_addr_t as Elf32_Off / Elf64_Off
1159 */
1160 #define NEW_AUX_ENT(id, val) do { \
1161 sp -= n; put_user_ual(val, sp); \
1162 sp -= n; put_user_ual(id, sp); \
1163 } while(0)
1164
1165 NEW_AUX_ENT (AT_NULL, 0);
1166
1167 /* There must be exactly DLINFO_ITEMS entries here. */
1168 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1169 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1170 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1171 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1172 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1173 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1174 NEW_AUX_ENT(AT_ENTRY, info->entry);
1175 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1176 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1177 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1178 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1179 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1180 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1181 if (k_platform)
1182 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1183 #ifdef ARCH_DLINFO
1184 /*
1185 * ARCH_DLINFO must come last so platform specific code can enforce
1186 * special alignment requirements on the AUXV if necessary (eg. PPC).
1187 */
1188 ARCH_DLINFO;
1189 #endif
1190 #undef NEW_AUX_ENT
1191
1192 info->saved_auxv = sp;
1193
1194 sp = loader_build_argptr(envc, argc, sp, p, 0);
1195 return sp;
1196 }
1197
1198 /* Load an ELF image into the address space.
1199
1200 IMAGE_NAME is the filename of the image, to use in error messages.
1201 IMAGE_FD is the open file descriptor for the image.
1202
1203 BPRM_BUF is a copy of the beginning of the file; this of course
1204 contains the elf file header at offset 0. It is assumed that this
1205 buffer is sufficiently aligned to present no problems to the host
1206 in accessing data at aligned offsets within the buffer.
1207
1208 On return: INFO values will be filled in, as necessary or available. */
1209
1210 static void load_elf_image(const char *image_name, int image_fd,
1211 struct image_info *info, char **pinterp_name,
1212 char bprm_buf[BPRM_BUF_SIZE])
1213 {
1214 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1215 struct elf_phdr *phdr;
1216 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1217 int i, retval;
1218 const char *errmsg;
1219
1220 /* First of all, some simple consistency checks */
1221 errmsg = "Invalid ELF image for this architecture";
1222 if (!elf_check_ident(ehdr)) {
1223 goto exit_errmsg;
1224 }
1225 bswap_ehdr(ehdr);
1226 if (!elf_check_ehdr(ehdr)) {
1227 goto exit_errmsg;
1228 }
1229
1230 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1231 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1232 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1233 } else {
1234 phdr = (struct elf_phdr *) alloca(i);
1235 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1236 if (retval != i) {
1237 goto exit_read;
1238 }
1239 }
1240 bswap_phdr(phdr, ehdr->e_phnum);
1241
1242 #ifdef CONFIG_USE_FDPIC
1243 info->nsegs = 0;
1244 info->pt_dynamic_addr = 0;
1245 #endif
1246
1247 /* Find the maximum size of the image and allocate an appropriate
1248 amount of memory to handle that. */
1249 loaddr = -1, hiaddr = 0;
1250 for (i = 0; i < ehdr->e_phnum; ++i) {
1251 if (phdr[i].p_type == PT_LOAD) {
1252 abi_ulong a = phdr[i].p_vaddr;
1253 if (a < loaddr) {
1254 loaddr = a;
1255 }
1256 a += phdr[i].p_memsz;
1257 if (a > hiaddr) {
1258 hiaddr = a;
1259 }
1260 #ifdef CONFIG_USE_FDPIC
1261 ++info->nsegs;
1262 #endif
1263 }
1264 }
1265
1266 load_addr = loaddr;
1267 if (ehdr->e_type == ET_DYN) {
1268 /* The image indicates that it can be loaded anywhere. Find a
1269 location that can hold the memory space required. If the
1270 image is pre-linked, LOADDR will be non-zero. Since we do
1271 not supply MAP_FIXED here we'll use that address if and
1272 only if it remains available. */
1273 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1274 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1275 -1, 0);
1276 if (load_addr == -1) {
1277 goto exit_perror;
1278 }
1279 } else if (pinterp_name != NULL) {
1280 /* This is the main executable. Make sure that the low
1281 address does not conflict with MMAP_MIN_ADDR or the
1282 QEMU application itself. */
1283 #if defined(CONFIG_USE_GUEST_BASE)
1284 /*
1285 * In case where user has not explicitly set the guest_base, we
1286 * probe here that should we set it automatically.
1287 */
1288 if (!have_guest_base && !reserved_va) {
1289 unsigned long host_start, real_start, host_size;
1290
1291 /* Round addresses to page boundaries. */
1292 loaddr &= qemu_host_page_mask;
1293 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1294
1295 if (loaddr < mmap_min_addr) {
1296 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1297 } else {
1298 host_start = loaddr;
1299 if (host_start != loaddr) {
1300 errmsg = "Address overflow loading ELF binary";
1301 goto exit_errmsg;
1302 }
1303 }
1304 host_size = hiaddr - loaddr;
1305 while (1) {
1306 /* Do not use mmap_find_vma here because that is limited to the
1307 guest address space. We are going to make the
1308 guest address space fit whatever we're given. */
1309 real_start = (unsigned long)
1310 mmap((void *)host_start, host_size, PROT_NONE,
1311 MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0);
1312 if (real_start == (unsigned long)-1) {
1313 goto exit_perror;
1314 }
1315 if (real_start == host_start) {
1316 break;
1317 }
1318 /* That address didn't work. Unmap and try a different one.
1319 The address the host picked because is typically right at
1320 the top of the host address space and leaves the guest with
1321 no usable address space. Resort to a linear search. We
1322 already compensated for mmap_min_addr, so this should not
1323 happen often. Probably means we got unlucky and host
1324 address space randomization put a shared library somewhere
1325 inconvenient. */
1326 munmap((void *)real_start, host_size);
1327 host_start += qemu_host_page_size;
1328 if (host_start == loaddr) {
1329 /* Theoretically possible if host doesn't have any suitably
1330 aligned areas. Normally the first mmap will fail. */
1331 errmsg = "Unable to find space for application";
1332 goto exit_errmsg;
1333 }
1334 }
1335 qemu_log("Relocating guest address space from 0x"
1336 TARGET_ABI_FMT_lx " to 0x%lx\n", loaddr, real_start);
1337 guest_base = real_start - loaddr;
1338 }
1339 #endif
1340 }
1341 load_bias = load_addr - loaddr;
1342
1343 #ifdef CONFIG_USE_FDPIC
1344 {
1345 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1346 qemu_malloc(sizeof(*loadsegs) * info->nsegs);
1347
1348 for (i = 0; i < ehdr->e_phnum; ++i) {
1349 switch (phdr[i].p_type) {
1350 case PT_DYNAMIC:
1351 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1352 break;
1353 case PT_LOAD:
1354 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1355 loadsegs->p_vaddr = phdr[i].p_vaddr;
1356 loadsegs->p_memsz = phdr[i].p_memsz;
1357 ++loadsegs;
1358 break;
1359 }
1360 }
1361 }
1362 #endif
1363
1364 info->load_bias = load_bias;
1365 info->load_addr = load_addr;
1366 info->entry = ehdr->e_entry + load_bias;
1367 info->start_code = -1;
1368 info->end_code = 0;
1369 info->start_data = -1;
1370 info->end_data = 0;
1371 info->brk = 0;
1372
1373 for (i = 0; i < ehdr->e_phnum; i++) {
1374 struct elf_phdr *eppnt = phdr + i;
1375 if (eppnt->p_type == PT_LOAD) {
1376 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
1377 int elf_prot = 0;
1378
1379 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1380 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1381 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1382
1383 vaddr = load_bias + eppnt->p_vaddr;
1384 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1385 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1386
1387 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1388 elf_prot, MAP_PRIVATE | MAP_FIXED,
1389 image_fd, eppnt->p_offset - vaddr_po);
1390 if (error == -1) {
1391 goto exit_perror;
1392 }
1393
1394 vaddr_ef = vaddr + eppnt->p_filesz;
1395 vaddr_em = vaddr + eppnt->p_memsz;
1396
1397 /* If the load segment requests extra zeros (e.g. bss), map it. */
1398 if (vaddr_ef < vaddr_em) {
1399 zero_bss(vaddr_ef, vaddr_em, elf_prot);
1400 }
1401
1402 /* Find the full program boundaries. */
1403 if (elf_prot & PROT_EXEC) {
1404 if (vaddr < info->start_code) {
1405 info->start_code = vaddr;
1406 }
1407 if (vaddr_ef > info->end_code) {
1408 info->end_code = vaddr_ef;
1409 }
1410 }
1411 if (elf_prot & PROT_WRITE) {
1412 if (vaddr < info->start_data) {
1413 info->start_data = vaddr;
1414 }
1415 if (vaddr_ef > info->end_data) {
1416 info->end_data = vaddr_ef;
1417 }
1418 if (vaddr_em > info->brk) {
1419 info->brk = vaddr_em;
1420 }
1421 }
1422 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1423 char *interp_name;
1424
1425 if (*pinterp_name) {
1426 errmsg = "Multiple PT_INTERP entries";
1427 goto exit_errmsg;
1428 }
1429 interp_name = malloc(eppnt->p_filesz);
1430 if (!interp_name) {
1431 goto exit_perror;
1432 }
1433
1434 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1435 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1436 eppnt->p_filesz);
1437 } else {
1438 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1439 eppnt->p_offset);
1440 if (retval != eppnt->p_filesz) {
1441 goto exit_perror;
1442 }
1443 }
1444 if (interp_name[eppnt->p_filesz - 1] != 0) {
1445 errmsg = "Invalid PT_INTERP entry";
1446 goto exit_errmsg;
1447 }
1448 *pinterp_name = interp_name;
1449 }
1450 }
1451
1452 if (info->end_data == 0) {
1453 info->start_data = info->end_code;
1454 info->end_data = info->end_code;
1455 info->brk = info->end_code;
1456 }
1457
1458 if (qemu_log_enabled()) {
1459 load_symbols(ehdr, image_fd, load_bias);
1460 }
1461
1462 close(image_fd);
1463 return;
1464
1465 exit_read:
1466 if (retval >= 0) {
1467 errmsg = "Incomplete read of file header";
1468 goto exit_errmsg;
1469 }
1470 exit_perror:
1471 errmsg = strerror(errno);
1472 exit_errmsg:
1473 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1474 exit(-1);
1475 }
1476
1477 static void load_elf_interp(const char *filename, struct image_info *info,
1478 char bprm_buf[BPRM_BUF_SIZE])
1479 {
1480 int fd, retval;
1481
1482 fd = open(path(filename), O_RDONLY);
1483 if (fd < 0) {
1484 goto exit_perror;
1485 }
1486
1487 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
1488 if (retval < 0) {
1489 goto exit_perror;
1490 }
1491 if (retval < BPRM_BUF_SIZE) {
1492 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
1493 }
1494
1495 load_elf_image(filename, fd, info, NULL, bprm_buf);
1496 return;
1497
1498 exit_perror:
1499 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
1500 exit(-1);
1501 }
1502
1503 static int symfind(const void *s0, const void *s1)
1504 {
1505 struct elf_sym *key = (struct elf_sym *)s0;
1506 struct elf_sym *sym = (struct elf_sym *)s1;
1507 int result = 0;
1508 if (key->st_value < sym->st_value) {
1509 result = -1;
1510 } else if (key->st_value >= sym->st_value + sym->st_size) {
1511 result = 1;
1512 }
1513 return result;
1514 }
1515
1516 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
1517 {
1518 #if ELF_CLASS == ELFCLASS32
1519 struct elf_sym *syms = s->disas_symtab.elf32;
1520 #else
1521 struct elf_sym *syms = s->disas_symtab.elf64;
1522 #endif
1523
1524 // binary search
1525 struct elf_sym key;
1526 struct elf_sym *sym;
1527
1528 key.st_value = orig_addr;
1529
1530 sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), symfind);
1531 if (sym != NULL) {
1532 return s->disas_strtab + sym->st_name;
1533 }
1534
1535 return "";
1536 }
1537
1538 /* FIXME: This should use elf_ops.h */
1539 static int symcmp(const void *s0, const void *s1)
1540 {
1541 struct elf_sym *sym0 = (struct elf_sym *)s0;
1542 struct elf_sym *sym1 = (struct elf_sym *)s1;
1543 return (sym0->st_value < sym1->st_value)
1544 ? -1
1545 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
1546 }
1547
1548 /* Best attempt to load symbols from this ELF object. */
1549 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
1550 {
1551 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1552 struct elf_shdr *shdr;
1553 char *strings;
1554 struct syminfo *s;
1555 struct elf_sym *syms, *new_syms;
1556
1557 shnum = hdr->e_shnum;
1558 i = shnum * sizeof(struct elf_shdr);
1559 shdr = (struct elf_shdr *)alloca(i);
1560 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
1561 return;
1562 }
1563
1564 bswap_shdr(shdr, shnum);
1565 for (i = 0; i < shnum; ++i) {
1566 if (shdr[i].sh_type == SHT_SYMTAB) {
1567 sym_idx = i;
1568 str_idx = shdr[i].sh_link;
1569 goto found;
1570 }
1571 }
1572
1573 /* There will be no symbol table if the file was stripped. */
1574 return;
1575
1576 found:
1577 /* Now know where the strtab and symtab are. Snarf them. */
1578 s = malloc(sizeof(*s));
1579 if (!s) {
1580 return;
1581 }
1582
1583 i = shdr[str_idx].sh_size;
1584 s->disas_strtab = strings = malloc(i);
1585 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
1586 free(s);
1587 free(strings);
1588 return;
1589 }
1590
1591 i = shdr[sym_idx].sh_size;
1592 syms = malloc(i);
1593 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
1594 free(s);
1595 free(strings);
1596 free(syms);
1597 return;
1598 }
1599
1600 nsyms = i / sizeof(struct elf_sym);
1601 for (i = 0; i < nsyms; ) {
1602 bswap_sym(syms + i);
1603 /* Throw away entries which we do not need. */
1604 if (syms[i].st_shndx == SHN_UNDEF
1605 || syms[i].st_shndx >= SHN_LORESERVE
1606 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
1607 if (i < --nsyms) {
1608 syms[i] = syms[nsyms];
1609 }
1610 } else {
1611 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
1612 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
1613 syms[i].st_value &= ~(target_ulong)1;
1614 #endif
1615 syms[i].st_value += load_bias;
1616 i++;
1617 }
1618 }
1619
1620 /* Attempt to free the storage associated with the local symbols
1621 that we threw away. Whether or not this has any effect on the
1622 memory allocation depends on the malloc implementation and how
1623 many symbols we managed to discard. */
1624 new_syms = realloc(syms, nsyms * sizeof(*syms));
1625 if (new_syms == NULL) {
1626 free(s);
1627 free(syms);
1628 free(strings);
1629 return;
1630 }
1631 syms = new_syms;
1632
1633 qsort(syms, nsyms, sizeof(*syms), symcmp);
1634
1635 s->disas_num_syms = nsyms;
1636 #if ELF_CLASS == ELFCLASS32
1637 s->disas_symtab.elf32 = syms;
1638 #else
1639 s->disas_symtab.elf64 = syms;
1640 #endif
1641 s->lookup_symbol = lookup_symbolxx;
1642 s->next = syminfos;
1643 syminfos = s;
1644 }
1645
1646 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
1647 struct image_info * info)
1648 {
1649 struct image_info interp_info;
1650 struct elfhdr elf_ex;
1651 char *elf_interpreter = NULL;
1652
1653 info->start_mmap = (abi_ulong)ELF_START_MMAP;
1654 info->mmap = 0;
1655 info->rss = 0;
1656
1657 load_elf_image(bprm->filename, bprm->fd, info,
1658 &elf_interpreter, bprm->buf);
1659
1660 /* ??? We need a copy of the elf header for passing to create_elf_tables.
1661 If we do nothing, we'll have overwritten this when we re-use bprm->buf
1662 when we load the interpreter. */
1663 elf_ex = *(struct elfhdr *)bprm->buf;
1664
1665 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
1666 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
1667 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
1668 if (!bprm->p) {
1669 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
1670 exit(-1);
1671 }
1672
1673 /* Do this so that we can load the interpreter, if need be. We will
1674 change some of these later */
1675 bprm->p = setup_arg_pages(bprm->p, bprm, info);
1676
1677 if (elf_interpreter) {
1678 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
1679
1680 /* If the program interpreter is one of these two, then assume
1681 an iBCS2 image. Otherwise assume a native linux image. */
1682
1683 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
1684 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
1685 info->personality = PER_SVR4;
1686
1687 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1688 and some applications "depend" upon this behavior. Since
1689 we do not have the power to recompile these, we emulate
1690 the SVr4 behavior. Sigh. */
1691 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
1692 MAP_FIXED | MAP_PRIVATE, -1, 0);
1693 }
1694 }
1695
1696 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
1697 info, (elf_interpreter ? &interp_info : NULL));
1698 info->start_stack = bprm->p;
1699
1700 /* If we have an interpreter, set that as the program's entry point.
1701 Copy the load_addr as well, to help PPC64 interpret the entry
1702 point as a function descriptor. Do this after creating elf tables
1703 so that we copy the original program entry point into the AUXV. */
1704 if (elf_interpreter) {
1705 info->load_addr = interp_info.load_addr;
1706 info->entry = interp_info.entry;
1707 free(elf_interpreter);
1708 }
1709
1710 #ifdef USE_ELF_CORE_DUMP
1711 bprm->core_dump = &elf_core_dump;
1712 #endif
1713
1714 return 0;
1715 }
1716
1717 #ifdef USE_ELF_CORE_DUMP
1718 /*
1719 * Definitions to generate Intel SVR4-like core files.
1720 * These mostly have the same names as the SVR4 types with "target_elf_"
1721 * tacked on the front to prevent clashes with linux definitions,
1722 * and the typedef forms have been avoided. This is mostly like
1723 * the SVR4 structure, but more Linuxy, with things that Linux does
1724 * not support and which gdb doesn't really use excluded.
1725 *
1726 * Fields we don't dump (their contents is zero) in linux-user qemu
1727 * are marked with XXX.
1728 *
1729 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
1730 *
1731 * Porting ELF coredump for target is (quite) simple process. First you
1732 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
1733 * the target resides):
1734 *
1735 * #define USE_ELF_CORE_DUMP
1736 *
1737 * Next you define type of register set used for dumping. ELF specification
1738 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
1739 *
1740 * typedef <target_regtype> target_elf_greg_t;
1741 * #define ELF_NREG <number of registers>
1742 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
1743 *
1744 * Last step is to implement target specific function that copies registers
1745 * from given cpu into just specified register set. Prototype is:
1746 *
1747 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
1748 * const CPUState *env);
1749 *
1750 * Parameters:
1751 * regs - copy register values into here (allocated and zeroed by caller)
1752 * env - copy registers from here
1753 *
1754 * Example for ARM target is provided in this file.
1755 */
1756
1757 /* An ELF note in memory */
1758 struct memelfnote {
1759 const char *name;
1760 size_t namesz;
1761 size_t namesz_rounded;
1762 int type;
1763 size_t datasz;
1764 size_t datasz_rounded;
1765 void *data;
1766 size_t notesz;
1767 };
1768
1769 struct target_elf_siginfo {
1770 target_int si_signo; /* signal number */
1771 target_int si_code; /* extra code */
1772 target_int si_errno; /* errno */
1773 };
1774
1775 struct target_elf_prstatus {
1776 struct target_elf_siginfo pr_info; /* Info associated with signal */
1777 target_short pr_cursig; /* Current signal */
1778 target_ulong pr_sigpend; /* XXX */
1779 target_ulong pr_sighold; /* XXX */
1780 target_pid_t pr_pid;
1781 target_pid_t pr_ppid;
1782 target_pid_t pr_pgrp;
1783 target_pid_t pr_sid;
1784 struct target_timeval pr_utime; /* XXX User time */
1785 struct target_timeval pr_stime; /* XXX System time */
1786 struct target_timeval pr_cutime; /* XXX Cumulative user time */
1787 struct target_timeval pr_cstime; /* XXX Cumulative system time */
1788 target_elf_gregset_t pr_reg; /* GP registers */
1789 target_int pr_fpvalid; /* XXX */
1790 };
1791
1792 #define ELF_PRARGSZ (80) /* Number of chars for args */
1793
1794 struct target_elf_prpsinfo {
1795 char pr_state; /* numeric process state */
1796 char pr_sname; /* char for pr_state */
1797 char pr_zomb; /* zombie */
1798 char pr_nice; /* nice val */
1799 target_ulong pr_flag; /* flags */
1800 target_uid_t pr_uid;
1801 target_gid_t pr_gid;
1802 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
1803 /* Lots missing */
1804 char pr_fname[16]; /* filename of executable */
1805 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
1806 };
1807
1808 /* Here is the structure in which status of each thread is captured. */
1809 struct elf_thread_status {
1810 QTAILQ_ENTRY(elf_thread_status) ets_link;
1811 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
1812 #if 0
1813 elf_fpregset_t fpu; /* NT_PRFPREG */
1814 struct task_struct *thread;
1815 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1816 #endif
1817 struct memelfnote notes[1];
1818 int num_notes;
1819 };
1820
1821 struct elf_note_info {
1822 struct memelfnote *notes;
1823 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
1824 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1825
1826 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
1827 #if 0
1828 /*
1829 * Current version of ELF coredump doesn't support
1830 * dumping fp regs etc.
1831 */
1832 elf_fpregset_t *fpu;
1833 elf_fpxregset_t *xfpu;
1834 int thread_status_size;
1835 #endif
1836 int notes_size;
1837 int numnote;
1838 };
1839
1840 struct vm_area_struct {
1841 abi_ulong vma_start; /* start vaddr of memory region */
1842 abi_ulong vma_end; /* end vaddr of memory region */
1843 abi_ulong vma_flags; /* protection etc. flags for the region */
1844 QTAILQ_ENTRY(vm_area_struct) vma_link;
1845 };
1846
1847 struct mm_struct {
1848 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
1849 int mm_count; /* number of mappings */
1850 };
1851
1852 static struct mm_struct *vma_init(void);
1853 static void vma_delete(struct mm_struct *);
1854 static int vma_add_mapping(struct mm_struct *, abi_ulong,
1855 abi_ulong, abi_ulong);
1856 static int vma_get_mapping_count(const struct mm_struct *);
1857 static struct vm_area_struct *vma_first(const struct mm_struct *);
1858 static struct vm_area_struct *vma_next(struct vm_area_struct *);
1859 static abi_ulong vma_dump_size(const struct vm_area_struct *);
1860 static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
1861 unsigned long flags);
1862
1863 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
1864 static void fill_note(struct memelfnote *, const char *, int,
1865 unsigned int, void *);
1866 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
1867 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
1868 static void fill_auxv_note(struct memelfnote *, const TaskState *);
1869 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
1870 static size_t note_size(const struct memelfnote *);
1871 static void free_note_info(struct elf_note_info *);
1872 static int fill_note_info(struct elf_note_info *, long, const CPUState *);
1873 static void fill_thread_info(struct elf_note_info *, const CPUState *);
1874 static int core_dump_filename(const TaskState *, char *, size_t);
1875
1876 static int dump_write(int, const void *, size_t);
1877 static int write_note(struct memelfnote *, int);
1878 static int write_note_info(struct elf_note_info *, int);
1879
1880 #ifdef BSWAP_NEEDED
1881 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
1882 {
1883 prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo);
1884 prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code);
1885 prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno);
1886 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
1887 prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend);
1888 prstatus->pr_sighold = tswapl(prstatus->pr_sighold);
1889 prstatus->pr_pid = tswap32(prstatus->pr_pid);
1890 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
1891 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
1892 prstatus->pr_sid = tswap32(prstatus->pr_sid);
1893 /* cpu times are not filled, so we skip them */
1894 /* regs should be in correct format already */
1895 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
1896 }
1897
1898 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
1899 {
1900 psinfo->pr_flag = tswapl(psinfo->pr_flag);
1901 psinfo->pr_uid = tswap16(psinfo->pr_uid);
1902 psinfo->pr_gid = tswap16(psinfo->pr_gid);
1903 psinfo->pr_pid = tswap32(psinfo->pr_pid);
1904 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
1905 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
1906 psinfo->pr_sid = tswap32(psinfo->pr_sid);
1907 }
1908
1909 static void bswap_note(struct elf_note *en)
1910 {
1911 bswap32s(&en->n_namesz);
1912 bswap32s(&en->n_descsz);
1913 bswap32s(&en->n_type);
1914 }
1915 #else
1916 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
1917 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
1918 static inline void bswap_note(struct elf_note *en) { }
1919 #endif /* BSWAP_NEEDED */
1920
1921 /*
1922 * Minimal support for linux memory regions. These are needed
1923 * when we are finding out what memory exactly belongs to
1924 * emulated process. No locks needed here, as long as
1925 * thread that received the signal is stopped.
1926 */
1927
1928 static struct mm_struct *vma_init(void)
1929 {
1930 struct mm_struct *mm;
1931
1932 if ((mm = qemu_malloc(sizeof (*mm))) == NULL)
1933 return (NULL);
1934
1935 mm->mm_count = 0;
1936 QTAILQ_INIT(&mm->mm_mmap);
1937
1938 return (mm);
1939 }
1940
1941 static void vma_delete(struct mm_struct *mm)
1942 {
1943 struct vm_area_struct *vma;
1944
1945 while ((vma = vma_first(mm)) != NULL) {
1946 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
1947 qemu_free(vma);
1948 }
1949 qemu_free(mm);
1950 }
1951
1952 static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
1953 abi_ulong end, abi_ulong flags)
1954 {
1955 struct vm_area_struct *vma;
1956
1957 if ((vma = qemu_mallocz(sizeof (*vma))) == NULL)
1958 return (-1);
1959
1960 vma->vma_start = start;
1961 vma->vma_end = end;
1962 vma->vma_flags = flags;
1963
1964 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
1965 mm->mm_count++;
1966
1967 return (0);
1968 }
1969
1970 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
1971 {
1972 return (QTAILQ_FIRST(&mm->mm_mmap));
1973 }
1974
1975 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
1976 {
1977 return (QTAILQ_NEXT(vma, vma_link));
1978 }
1979
1980 static int vma_get_mapping_count(const struct mm_struct *mm)
1981 {
1982 return (mm->mm_count);
1983 }
1984
1985 /*
1986 * Calculate file (dump) size of given memory region.
1987 */
1988 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
1989 {
1990 /* if we cannot even read the first page, skip it */
1991 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
1992 return (0);
1993
1994 /*
1995 * Usually we don't dump executable pages as they contain
1996 * non-writable code that debugger can read directly from
1997 * target library etc. However, thread stacks are marked
1998 * also executable so we read in first page of given region
1999 * and check whether it contains elf header. If there is
2000 * no elf header, we dump it.
2001 */
2002 if (vma->vma_flags & PROT_EXEC) {
2003 char page[TARGET_PAGE_SIZE];
2004
2005 copy_from_user(page, vma->vma_start, sizeof (page));
2006 if ((page[EI_MAG0] == ELFMAG0) &&
2007 (page[EI_MAG1] == ELFMAG1) &&
2008 (page[EI_MAG2] == ELFMAG2) &&
2009 (page[EI_MAG3] == ELFMAG3)) {
2010 /*
2011 * Mappings are possibly from ELF binary. Don't dump
2012 * them.
2013 */
2014 return (0);
2015 }
2016 }
2017
2018 return (vma->vma_end - vma->vma_start);
2019 }
2020
2021 static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
2022 unsigned long flags)
2023 {
2024 struct mm_struct *mm = (struct mm_struct *)priv;
2025
2026 vma_add_mapping(mm, start, end, flags);
2027 return (0);
2028 }
2029
2030 static void fill_note(struct memelfnote *note, const char *name, int type,
2031 unsigned int sz, void *data)
2032 {
2033 unsigned int namesz;
2034
2035 namesz = strlen(name) + 1;
2036 note->name = name;
2037 note->namesz = namesz;
2038 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2039 note->type = type;
2040 note->datasz = sz;
2041 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2042
2043 note->data = data;
2044
2045 /*
2046 * We calculate rounded up note size here as specified by
2047 * ELF document.
2048 */
2049 note->notesz = sizeof (struct elf_note) +
2050 note->namesz_rounded + note->datasz_rounded;
2051 }
2052
2053 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2054 uint32_t flags)
2055 {
2056 (void) memset(elf, 0, sizeof(*elf));
2057
2058 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2059 elf->e_ident[EI_CLASS] = ELF_CLASS;
2060 elf->e_ident[EI_DATA] = ELF_DATA;
2061 elf->e_ident[EI_VERSION] = EV_CURRENT;
2062 elf->e_ident[EI_OSABI] = ELF_OSABI;
2063
2064 elf->e_type = ET_CORE;
2065 elf->e_machine = machine;
2066 elf->e_version = EV_CURRENT;
2067 elf->e_phoff = sizeof(struct elfhdr);
2068 elf->e_flags = flags;
2069 elf->e_ehsize = sizeof(struct elfhdr);
2070 elf->e_phentsize = sizeof(struct elf_phdr);
2071 elf->e_phnum = segs;
2072
2073 bswap_ehdr(elf);
2074 }
2075
2076 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2077 {
2078 phdr->p_type = PT_NOTE;
2079 phdr->p_offset = offset;
2080 phdr->p_vaddr = 0;
2081 phdr->p_paddr = 0;
2082 phdr->p_filesz = sz;
2083 phdr->p_memsz = 0;
2084 phdr->p_flags = 0;
2085 phdr->p_align = 0;
2086
2087 bswap_phdr(phdr, 1);
2088 }
2089
2090 static size_t note_size(const struct memelfnote *note)
2091 {
2092 return (note->notesz);
2093 }
2094
2095 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2096 const TaskState *ts, int signr)
2097 {
2098 (void) memset(prstatus, 0, sizeof (*prstatus));
2099 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2100 prstatus->pr_pid = ts->ts_tid;
2101 prstatus->pr_ppid = getppid();
2102 prstatus->pr_pgrp = getpgrp();
2103 prstatus->pr_sid = getsid(0);
2104
2105 bswap_prstatus(prstatus);
2106 }
2107
2108 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2109 {
2110 char *filename, *base_filename;
2111 unsigned int i, len;
2112
2113 (void) memset(psinfo, 0, sizeof (*psinfo));
2114
2115 len = ts->info->arg_end - ts->info->arg_start;
2116 if (len >= ELF_PRARGSZ)
2117 len = ELF_PRARGSZ - 1;
2118 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2119 return -EFAULT;
2120 for (i = 0; i < len; i++)
2121 if (psinfo->pr_psargs[i] == 0)
2122 psinfo->pr_psargs[i] = ' ';
2123 psinfo->pr_psargs[len] = 0;
2124
2125 psinfo->pr_pid = getpid();
2126 psinfo->pr_ppid = getppid();
2127 psinfo->pr_pgrp = getpgrp();
2128 psinfo->pr_sid = getsid(0);
2129 psinfo->pr_uid = getuid();
2130 psinfo->pr_gid = getgid();
2131
2132 filename = strdup(ts->bprm->filename);
2133 base_filename = strdup(basename(filename));
2134 (void) strncpy(psinfo->pr_fname, base_filename,
2135 sizeof(psinfo->pr_fname));
2136 free(base_filename);
2137 free(filename);
2138
2139 bswap_psinfo(psinfo);
2140 return (0);
2141 }
2142
2143 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2144 {
2145 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2146 elf_addr_t orig_auxv = auxv;
2147 abi_ulong val;
2148 void *ptr;
2149 int i, len;
2150
2151 /*
2152 * Auxiliary vector is stored in target process stack. It contains
2153 * {type, value} pairs that we need to dump into note. This is not
2154 * strictly necessary but we do it here for sake of completeness.
2155 */
2156
2157 /* find out lenght of the vector, AT_NULL is terminator */
2158 i = len = 0;
2159 do {
2160 get_user_ual(val, auxv);
2161 i += 2;
2162 auxv += 2 * sizeof (elf_addr_t);
2163 } while (val != AT_NULL);
2164 len = i * sizeof (elf_addr_t);
2165
2166 /* read in whole auxv vector and copy it to memelfnote */
2167 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2168 if (ptr != NULL) {
2169 fill_note(note, "CORE", NT_AUXV, len, ptr);
2170 unlock_user(ptr, auxv, len);
2171 }
2172 }
2173
2174 /*
2175 * Constructs name of coredump file. We have following convention
2176 * for the name:
2177 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2178 *
2179 * Returns 0 in case of success, -1 otherwise (errno is set).
2180 */
2181 static int core_dump_filename(const TaskState *ts, char *buf,
2182 size_t bufsize)
2183 {
2184 char timestamp[64];
2185 char *filename = NULL;
2186 char *base_filename = NULL;
2187 struct timeval tv;
2188 struct tm tm;
2189
2190 assert(bufsize >= PATH_MAX);
2191
2192 if (gettimeofday(&tv, NULL) < 0) {
2193 (void) fprintf(stderr, "unable to get current timestamp: %s",
2194 strerror(errno));
2195 return (-1);
2196 }
2197
2198 filename = strdup(ts->bprm->filename);
2199 base_filename = strdup(basename(filename));
2200 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2201 localtime_r(&tv.tv_sec, &tm));
2202 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2203 base_filename, timestamp, (int)getpid());
2204 free(base_filename);
2205 free(filename);
2206
2207 return (0);
2208 }
2209
2210 static int dump_write(int fd, const void *ptr, size_t size)
2211 {
2212 const char *bufp = (const char *)ptr;
2213 ssize_t bytes_written, bytes_left;
2214 struct rlimit dumpsize;
2215 off_t pos;
2216
2217 bytes_written = 0;
2218 getrlimit(RLIMIT_CORE, &dumpsize);
2219 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2220 if (errno == ESPIPE) { /* not a seekable stream */
2221 bytes_left = size;
2222 } else {
2223 return pos;
2224 }
2225 } else {
2226 if (dumpsize.rlim_cur <= pos) {
2227 return -1;
2228 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2229 bytes_left = size;
2230 } else {
2231 size_t limit_left=dumpsize.rlim_cur - pos;
2232 bytes_left = limit_left >= size ? size : limit_left ;
2233 }
2234 }
2235
2236 /*
2237 * In normal conditions, single write(2) should do but
2238 * in case of socket etc. this mechanism is more portable.
2239 */
2240 do {
2241 bytes_written = write(fd, bufp, bytes_left);
2242 if (bytes_written < 0) {
2243 if (errno == EINTR)
2244 continue;
2245 return (-1);
2246 } else if (bytes_written == 0) { /* eof */
2247 return (-1);
2248 }
2249 bufp += bytes_written;
2250 bytes_left -= bytes_written;
2251 } while (bytes_left > 0);
2252
2253 return (0);
2254 }
2255
2256 static int write_note(struct memelfnote *men, int fd)
2257 {
2258 struct elf_note en;
2259
2260 en.n_namesz = men->namesz;
2261 en.n_type = men->type;
2262 en.n_descsz = men->datasz;
2263
2264 bswap_note(&en);
2265
2266 if (dump_write(fd, &en, sizeof(en)) != 0)
2267 return (-1);
2268 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2269 return (-1);
2270 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2271 return (-1);
2272
2273 return (0);
2274 }
2275
2276 static void fill_thread_info(struct elf_note_info *info, const CPUState *env)
2277 {
2278 TaskState *ts = (TaskState *)env->opaque;
2279 struct elf_thread_status *ets;
2280
2281 ets = qemu_mallocz(sizeof (*ets));
2282 ets->num_notes = 1; /* only prstatus is dumped */
2283 fill_prstatus(&ets->prstatus, ts, 0);
2284 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2285 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2286 &ets->prstatus);
2287
2288 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2289
2290 info->notes_size += note_size(&ets->notes[0]);
2291 }
2292
2293 static int fill_note_info(struct elf_note_info *info,
2294 long signr, const CPUState *env)
2295 {
2296 #define NUMNOTES 3
2297 CPUState *cpu = NULL;
2298 TaskState *ts = (TaskState *)env->opaque;
2299 int i;
2300
2301 (void) memset(info, 0, sizeof (*info));
2302
2303 QTAILQ_INIT(&info->thread_list);
2304
2305 info->notes = qemu_mallocz(NUMNOTES * sizeof (struct memelfnote));
2306 if (info->notes == NULL)
2307 return (-ENOMEM);
2308 info->prstatus = qemu_mallocz(sizeof (*info->prstatus));
2309 if (info->prstatus == NULL)
2310 return (-ENOMEM);
2311 info->psinfo = qemu_mallocz(sizeof (*info->psinfo));
2312 if (info->prstatus == NULL)
2313 return (-ENOMEM);
2314
2315 /*
2316 * First fill in status (and registers) of current thread
2317 * including process info & aux vector.
2318 */
2319 fill_prstatus(info->prstatus, ts, signr);
2320 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2321 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2322 sizeof (*info->prstatus), info->prstatus);
2323 fill_psinfo(info->psinfo, ts);
2324 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2325 sizeof (*info->psinfo), info->psinfo);
2326 fill_auxv_note(&info->notes[2], ts);
2327 info->numnote = 3;
2328
2329 info->notes_size = 0;
2330 for (i = 0; i < info->numnote; i++)
2331 info->notes_size += note_size(&info->notes[i]);
2332
2333 /* read and fill status of all threads */
2334 cpu_list_lock();
2335 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2336 if (cpu == thread_env)
2337 continue;
2338 fill_thread_info(info, cpu);
2339 }
2340 cpu_list_unlock();
2341
2342 return (0);
2343 }
2344
2345 static void free_note_info(struct elf_note_info *info)
2346 {
2347 struct elf_thread_status *ets;
2348
2349 while (!QTAILQ_EMPTY(&info->thread_list)) {
2350 ets = QTAILQ_FIRST(&info->thread_list);
2351 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2352 qemu_free(ets);
2353 }
2354
2355 qemu_free(info->prstatus);
2356 qemu_free(info->psinfo);
2357 qemu_free(info->notes);
2358 }
2359
2360 static int write_note_info(struct elf_note_info *info, int fd)
2361 {
2362 struct elf_thread_status *ets;
2363 int i, error = 0;
2364
2365 /* write prstatus, psinfo and auxv for current thread */
2366 for (i = 0; i < info->numnote; i++)
2367 if ((error = write_note(&info->notes[i], fd)) != 0)
2368 return (error);
2369
2370 /* write prstatus for each thread */
2371 for (ets = info->thread_list.tqh_first; ets != NULL;
2372 ets = ets->ets_link.tqe_next) {
2373 if ((error = write_note(&ets->notes[0], fd)) != 0)
2374 return (error);
2375 }
2376
2377 return (0);
2378 }
2379
2380 /*
2381 * Write out ELF coredump.
2382 *
2383 * See documentation of ELF object file format in:
2384 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2385 *
2386 * Coredump format in linux is following:
2387 *
2388 * 0 +----------------------+ \
2389 * | ELF header | ET_CORE |
2390 * +----------------------+ |
2391 * | ELF program headers | |--- headers
2392 * | - NOTE section | |
2393 * | - PT_LOAD sections | |
2394 * +----------------------+ /
2395 * | NOTEs: |
2396 * | - NT_PRSTATUS |
2397 * | - NT_PRSINFO |
2398 * | - NT_AUXV |
2399 * +----------------------+ <-- aligned to target page
2400 * | Process memory dump |
2401 * : :
2402 * . .
2403 * : :
2404 * | |
2405 * +----------------------+
2406 *
2407 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2408 * NT_PRSINFO -> struct elf_prpsinfo
2409 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2410 *
2411 * Format follows System V format as close as possible. Current
2412 * version limitations are as follows:
2413 * - no floating point registers are dumped
2414 *
2415 * Function returns 0 in case of success, negative errno otherwise.
2416 *
2417 * TODO: make this work also during runtime: it should be
2418 * possible to force coredump from running process and then
2419 * continue processing. For example qemu could set up SIGUSR2
2420 * handler (provided that target process haven't registered
2421 * handler for that) that does the dump when signal is received.
2422 */
2423 static int elf_core_dump(int signr, const CPUState *env)
2424 {
2425 const TaskState *ts = (const TaskState *)env->opaque;
2426 struct vm_area_struct *vma = NULL;
2427 char corefile[PATH_MAX];
2428 struct elf_note_info info;
2429 struct elfhdr elf;
2430 struct elf_phdr phdr;
2431 struct rlimit dumpsize;
2432 struct mm_struct *mm = NULL;
2433 off_t offset = 0, data_offset = 0;
2434 int segs = 0;
2435 int fd = -1;
2436
2437 errno = 0;
2438 getrlimit(RLIMIT_CORE, &dumpsize);
2439 if (dumpsize.rlim_cur == 0)
2440 return 0;
2441
2442 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2443 return (-errno);
2444
2445 if ((fd = open(corefile, O_WRONLY | O_CREAT,
2446 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2447 return (-errno);
2448
2449 /*
2450 * Walk through target process memory mappings and
2451 * set up structure containing this information. After
2452 * this point vma_xxx functions can be used.
2453 */
2454 if ((mm = vma_init()) == NULL)
2455 goto out;
2456
2457 walk_memory_regions(mm, vma_walker);
2458 segs = vma_get_mapping_count(mm);
2459
2460 /*
2461 * Construct valid coredump ELF header. We also
2462 * add one more segment for notes.
2463 */
2464 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2465 if (dump_write(fd, &elf, sizeof (elf)) != 0)
2466 goto out;
2467
2468 /* fill in in-memory version of notes */
2469 if (fill_note_info(&info, signr, env) < 0)
2470 goto out;
2471
2472 offset += sizeof (elf); /* elf header */
2473 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
2474
2475 /* write out notes program header */
2476 fill_elf_note_phdr(&phdr, info.notes_size, offset);
2477
2478 offset += info.notes_size;
2479 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2480 goto out;
2481
2482 /*
2483 * ELF specification wants data to start at page boundary so
2484 * we align it here.
2485 */
2486 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2487
2488 /*
2489 * Write program headers for memory regions mapped in
2490 * the target process.
2491 */
2492 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2493 (void) memset(&phdr, 0, sizeof (phdr));
2494
2495 phdr.p_type = PT_LOAD;
2496 phdr.p_offset = offset;
2497 phdr.p_vaddr = vma->vma_start;
2498 phdr.p_paddr = 0;
2499 phdr.p_filesz = vma_dump_size(vma);
2500 offset += phdr.p_filesz;
2501 phdr.p_memsz = vma->vma_end - vma->vma_start;
2502 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2503 if (vma->vma_flags & PROT_WRITE)
2504 phdr.p_flags |= PF_W;
2505 if (vma->vma_flags & PROT_EXEC)
2506 phdr.p_flags |= PF_X;
2507 phdr.p_align = ELF_EXEC_PAGESIZE;
2508
2509 bswap_phdr(&phdr, 1);
2510 dump_write(fd, &phdr, sizeof (phdr));
2511 }
2512
2513 /*
2514 * Next we write notes just after program headers. No
2515 * alignment needed here.
2516 */
2517 if (write_note_info(&info, fd) < 0)
2518 goto out;
2519
2520 /* align data to page boundary */
2521 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
2522 goto out;
2523
2524 /*
2525 * Finally we can dump process memory into corefile as well.
2526 */
2527 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2528 abi_ulong addr;
2529 abi_ulong end;
2530
2531 end = vma->vma_start + vma_dump_size(vma);
2532
2533 for (addr = vma->vma_start; addr < end;
2534 addr += TARGET_PAGE_SIZE) {
2535 char page[TARGET_PAGE_SIZE];
2536 int error;
2537
2538 /*
2539 * Read in page from target process memory and
2540 * write it to coredump file.
2541 */
2542 error = copy_from_user(page, addr, sizeof (page));
2543 if (error != 0) {
2544 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
2545 addr);
2546 errno = -error;
2547 goto out;
2548 }
2549 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
2550 goto out;
2551 }
2552 }
2553
2554 out:
2555 free_note_info(&info);
2556 if (mm != NULL)
2557 vma_delete(mm);
2558 (void) close(fd);
2559
2560 if (errno != 0)
2561 return (-errno);
2562 return (0);
2563 }
2564 #endif /* USE_ELF_CORE_DUMP */
2565
2566 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
2567 {
2568 init_thread(regs, infop);
2569 }