]> git.proxmox.com Git - qemu.git/blob - linux-user/elfload.c
Merge branch 'linux-user-for-upstream' of git://git.linaro.org/people/rikuvoipio...
[qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include <sys/time.h>
3 #include <sys/param.h>
4
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <unistd.h>
10 #include <sys/mman.h>
11 #include <sys/resource.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <time.h>
15
16 #include "qemu.h"
17 #include "disas.h"
18
19 #ifdef _ARCH_PPC64
20 #undef ARCH_DLINFO
21 #undef ELF_PLATFORM
22 #undef ELF_HWCAP
23 #undef ELF_CLASS
24 #undef ELF_DATA
25 #undef ELF_ARCH
26 #endif
27
28 #define ELF_OSABI ELFOSABI_SYSV
29
30 /* from personality.h */
31
32 /*
33 * Flags for bug emulation.
34 *
35 * These occupy the top three bytes.
36 */
37 enum {
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
40 descriptors (signal handling) */
41 MMAP_PAGE_ZERO = 0x0100000,
42 ADDR_COMPAT_LAYOUT = 0x0200000,
43 READ_IMPLIES_EXEC = 0x0400000,
44 ADDR_LIMIT_32BIT = 0x0800000,
45 SHORT_INODE = 0x1000000,
46 WHOLE_SECONDS = 0x2000000,
47 STICKY_TIMEOUTS = 0x4000000,
48 ADDR_LIMIT_3GB = 0x8000000,
49 };
50
51 /*
52 * Personality types.
53 *
54 * These go in the low byte. Avoid using the top bit, it will
55 * conflict with error returns.
56 */
57 enum {
58 PER_LINUX = 0x0000,
59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
67 PER_BSD = 0x0006,
68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70 PER_LINUX32 = 0x0008,
71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75 PER_RISCOS = 0x000c,
76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78 PER_OSF4 = 0x000f, /* OSF/1 v4 */
79 PER_HPUX = 0x0010,
80 PER_MASK = 0x00ff,
81 };
82
83 /*
84 * Return the base personality without flags.
85 */
86 #define personality(pers) (pers & PER_MASK)
87
88 /* this flag is uneffective under linux too, should be deleted */
89 #ifndef MAP_DENYWRITE
90 #define MAP_DENYWRITE 0
91 #endif
92
93 /* should probably go in elf.h */
94 #ifndef ELIBBAD
95 #define ELIBBAD 80
96 #endif
97
98 #ifdef TARGET_WORDS_BIGENDIAN
99 #define ELF_DATA ELFDATA2MSB
100 #else
101 #define ELF_DATA ELFDATA2LSB
102 #endif
103
104 typedef target_ulong target_elf_greg_t;
105 #ifdef USE_UID16
106 typedef target_ushort target_uid_t;
107 typedef target_ushort target_gid_t;
108 #else
109 typedef target_uint target_uid_t;
110 typedef target_uint target_gid_t;
111 #endif
112 typedef target_int target_pid_t;
113
114 #ifdef TARGET_I386
115
116 #define ELF_PLATFORM get_elf_platform()
117
118 static const char *get_elf_platform(void)
119 {
120 static char elf_platform[] = "i386";
121 int family = (thread_env->cpuid_version >> 8) & 0xff;
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
127 }
128
129 #define ELF_HWCAP get_elf_hwcap()
130
131 static uint32_t get_elf_hwcap(void)
132 {
133 return thread_env->cpuid_features;
134 }
135
136 #ifdef TARGET_X86_64
137 #define ELF_START_MMAP 0x2aaaaab000ULL
138 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
139
140 #define ELF_CLASS ELFCLASS64
141 #define ELF_ARCH EM_X86_64
142
143 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
144 {
145 regs->rax = 0;
146 regs->rsp = infop->start_stack;
147 regs->rip = infop->entry;
148 }
149
150 #define ELF_NREG 27
151 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
152
153 /*
154 * Note that ELF_NREG should be 29 as there should be place for
155 * TRAPNO and ERR "registers" as well but linux doesn't dump
156 * those.
157 *
158 * See linux kernel: arch/x86/include/asm/elf.h
159 */
160 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
161 {
162 (*regs)[0] = env->regs[15];
163 (*regs)[1] = env->regs[14];
164 (*regs)[2] = env->regs[13];
165 (*regs)[3] = env->regs[12];
166 (*regs)[4] = env->regs[R_EBP];
167 (*regs)[5] = env->regs[R_EBX];
168 (*regs)[6] = env->regs[11];
169 (*regs)[7] = env->regs[10];
170 (*regs)[8] = env->regs[9];
171 (*regs)[9] = env->regs[8];
172 (*regs)[10] = env->regs[R_EAX];
173 (*regs)[11] = env->regs[R_ECX];
174 (*regs)[12] = env->regs[R_EDX];
175 (*regs)[13] = env->regs[R_ESI];
176 (*regs)[14] = env->regs[R_EDI];
177 (*regs)[15] = env->regs[R_EAX]; /* XXX */
178 (*regs)[16] = env->eip;
179 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
180 (*regs)[18] = env->eflags;
181 (*regs)[19] = env->regs[R_ESP];
182 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
183 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
184 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
185 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
186 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
187 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
188 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
189 }
190
191 #else
192
193 #define ELF_START_MMAP 0x80000000
194
195 /*
196 * This is used to ensure we don't load something for the wrong architecture.
197 */
198 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
199
200 /*
201 * These are used to set parameters in the core dumps.
202 */
203 #define ELF_CLASS ELFCLASS32
204 #define ELF_ARCH EM_386
205
206 static inline void init_thread(struct target_pt_regs *regs,
207 struct image_info *infop)
208 {
209 regs->esp = infop->start_stack;
210 regs->eip = infop->entry;
211
212 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
213 starts %edx contains a pointer to a function which might be
214 registered using `atexit'. This provides a mean for the
215 dynamic linker to call DT_FINI functions for shared libraries
216 that have been loaded before the code runs.
217
218 A value of 0 tells we have no such handler. */
219 regs->edx = 0;
220 }
221
222 #define ELF_NREG 17
223 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
224
225 /*
226 * Note that ELF_NREG should be 19 as there should be place for
227 * TRAPNO and ERR "registers" as well but linux doesn't dump
228 * those.
229 *
230 * See linux kernel: arch/x86/include/asm/elf.h
231 */
232 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
233 {
234 (*regs)[0] = env->regs[R_EBX];
235 (*regs)[1] = env->regs[R_ECX];
236 (*regs)[2] = env->regs[R_EDX];
237 (*regs)[3] = env->regs[R_ESI];
238 (*regs)[4] = env->regs[R_EDI];
239 (*regs)[5] = env->regs[R_EBP];
240 (*regs)[6] = env->regs[R_EAX];
241 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
242 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
243 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
244 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
245 (*regs)[11] = env->regs[R_EAX]; /* XXX */
246 (*regs)[12] = env->eip;
247 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
248 (*regs)[14] = env->eflags;
249 (*regs)[15] = env->regs[R_ESP];
250 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
251 }
252 #endif
253
254 #define USE_ELF_CORE_DUMP
255 #define ELF_EXEC_PAGESIZE 4096
256
257 #endif
258
259 #ifdef TARGET_ARM
260
261 #define ELF_START_MMAP 0x80000000
262
263 #define elf_check_arch(x) ( (x) == EM_ARM )
264
265 #define ELF_CLASS ELFCLASS32
266 #define ELF_ARCH EM_ARM
267
268 static inline void init_thread(struct target_pt_regs *regs,
269 struct image_info *infop)
270 {
271 abi_long stack = infop->start_stack;
272 memset(regs, 0, sizeof(*regs));
273 regs->ARM_cpsr = 0x10;
274 if (infop->entry & 1)
275 regs->ARM_cpsr |= CPSR_T;
276 regs->ARM_pc = infop->entry & 0xfffffffe;
277 regs->ARM_sp = infop->start_stack;
278 /* FIXME - what to for failure of get_user()? */
279 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
280 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
281 /* XXX: it seems that r0 is zeroed after ! */
282 regs->ARM_r0 = 0;
283 /* For uClinux PIC binaries. */
284 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
285 regs->ARM_r10 = infop->start_data;
286 }
287
288 #define ELF_NREG 18
289 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
290
291 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
292 {
293 (*regs)[0] = tswapl(env->regs[0]);
294 (*regs)[1] = tswapl(env->regs[1]);
295 (*regs)[2] = tswapl(env->regs[2]);
296 (*regs)[3] = tswapl(env->regs[3]);
297 (*regs)[4] = tswapl(env->regs[4]);
298 (*regs)[5] = tswapl(env->regs[5]);
299 (*regs)[6] = tswapl(env->regs[6]);
300 (*regs)[7] = tswapl(env->regs[7]);
301 (*regs)[8] = tswapl(env->regs[8]);
302 (*regs)[9] = tswapl(env->regs[9]);
303 (*regs)[10] = tswapl(env->regs[10]);
304 (*regs)[11] = tswapl(env->regs[11]);
305 (*regs)[12] = tswapl(env->regs[12]);
306 (*regs)[13] = tswapl(env->regs[13]);
307 (*regs)[14] = tswapl(env->regs[14]);
308 (*regs)[15] = tswapl(env->regs[15]);
309
310 (*regs)[16] = tswapl(cpsr_read((CPUState *)env));
311 (*regs)[17] = tswapl(env->regs[0]); /* XXX */
312 }
313
314 #define USE_ELF_CORE_DUMP
315 #define ELF_EXEC_PAGESIZE 4096
316
317 enum
318 {
319 ARM_HWCAP_ARM_SWP = 1 << 0,
320 ARM_HWCAP_ARM_HALF = 1 << 1,
321 ARM_HWCAP_ARM_THUMB = 1 << 2,
322 ARM_HWCAP_ARM_26BIT = 1 << 3,
323 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
324 ARM_HWCAP_ARM_FPA = 1 << 5,
325 ARM_HWCAP_ARM_VFP = 1 << 6,
326 ARM_HWCAP_ARM_EDSP = 1 << 7,
327 ARM_HWCAP_ARM_JAVA = 1 << 8,
328 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
329 ARM_HWCAP_ARM_THUMBEE = 1 << 10,
330 ARM_HWCAP_ARM_NEON = 1 << 11,
331 ARM_HWCAP_ARM_VFPv3 = 1 << 12,
332 ARM_HWCAP_ARM_VFPv3D16 = 1 << 13,
333 };
334
335 #define TARGET_HAS_GUEST_VALIDATE_BASE
336 /* We want the opportunity to check the suggested base */
337 bool guest_validate_base(unsigned long guest_base)
338 {
339 unsigned long real_start, test_page_addr;
340
341 /* We need to check that we can force a fault on access to the
342 * commpage at 0xffff0fxx
343 */
344 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
345 /* Note it needs to be writeable to let us initialise it */
346 real_start = (unsigned long)
347 mmap((void *)test_page_addr, qemu_host_page_size,
348 PROT_READ | PROT_WRITE,
349 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
350
351 /* If we can't map it then try another address */
352 if (real_start == -1ul) {
353 return 0;
354 }
355
356 if (real_start != test_page_addr) {
357 /* OS didn't put the page where we asked - unmap and reject */
358 munmap((void *)real_start, qemu_host_page_size);
359 return 0;
360 }
361
362 /* Leave the page mapped
363 * Populate it (mmap should have left it all 0'd)
364 */
365
366 /* Kernel helper versions */
367 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
368
369 /* Now it's populated make it RO */
370 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
371 perror("Protecting guest commpage");
372 exit(-1);
373 }
374
375 return 1; /* All good */
376 }
377
378 #define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \
379 | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \
380 | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \
381 | ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 )
382
383 #endif
384
385 #ifdef TARGET_UNICORE32
386
387 #define ELF_START_MMAP 0x80000000
388
389 #define elf_check_arch(x) ((x) == EM_UNICORE32)
390
391 #define ELF_CLASS ELFCLASS32
392 #define ELF_DATA ELFDATA2LSB
393 #define ELF_ARCH EM_UNICORE32
394
395 static inline void init_thread(struct target_pt_regs *regs,
396 struct image_info *infop)
397 {
398 abi_long stack = infop->start_stack;
399 memset(regs, 0, sizeof(*regs));
400 regs->UC32_REG_asr = 0x10;
401 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
402 regs->UC32_REG_sp = infop->start_stack;
403 /* FIXME - what to for failure of get_user()? */
404 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
405 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
406 /* XXX: it seems that r0 is zeroed after ! */
407 regs->UC32_REG_00 = 0;
408 }
409
410 #define ELF_NREG 34
411 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
412
413 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
414 {
415 (*regs)[0] = env->regs[0];
416 (*regs)[1] = env->regs[1];
417 (*regs)[2] = env->regs[2];
418 (*regs)[3] = env->regs[3];
419 (*regs)[4] = env->regs[4];
420 (*regs)[5] = env->regs[5];
421 (*regs)[6] = env->regs[6];
422 (*regs)[7] = env->regs[7];
423 (*regs)[8] = env->regs[8];
424 (*regs)[9] = env->regs[9];
425 (*regs)[10] = env->regs[10];
426 (*regs)[11] = env->regs[11];
427 (*regs)[12] = env->regs[12];
428 (*regs)[13] = env->regs[13];
429 (*regs)[14] = env->regs[14];
430 (*regs)[15] = env->regs[15];
431 (*regs)[16] = env->regs[16];
432 (*regs)[17] = env->regs[17];
433 (*regs)[18] = env->regs[18];
434 (*regs)[19] = env->regs[19];
435 (*regs)[20] = env->regs[20];
436 (*regs)[21] = env->regs[21];
437 (*regs)[22] = env->regs[22];
438 (*regs)[23] = env->regs[23];
439 (*regs)[24] = env->regs[24];
440 (*regs)[25] = env->regs[25];
441 (*regs)[26] = env->regs[26];
442 (*regs)[27] = env->regs[27];
443 (*regs)[28] = env->regs[28];
444 (*regs)[29] = env->regs[29];
445 (*regs)[30] = env->regs[30];
446 (*regs)[31] = env->regs[31];
447
448 (*regs)[32] = cpu_asr_read((CPUState *)env);
449 (*regs)[33] = env->regs[0]; /* XXX */
450 }
451
452 #define USE_ELF_CORE_DUMP
453 #define ELF_EXEC_PAGESIZE 4096
454
455 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
456
457 #endif
458
459 #ifdef TARGET_SPARC
460 #ifdef TARGET_SPARC64
461
462 #define ELF_START_MMAP 0x80000000
463 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
464 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
465 #ifndef TARGET_ABI32
466 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
467 #else
468 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
469 #endif
470
471 #define ELF_CLASS ELFCLASS64
472 #define ELF_ARCH EM_SPARCV9
473
474 #define STACK_BIAS 2047
475
476 static inline void init_thread(struct target_pt_regs *regs,
477 struct image_info *infop)
478 {
479 #ifndef TARGET_ABI32
480 regs->tstate = 0;
481 #endif
482 regs->pc = infop->entry;
483 regs->npc = regs->pc + 4;
484 regs->y = 0;
485 #ifdef TARGET_ABI32
486 regs->u_regs[14] = infop->start_stack - 16 * 4;
487 #else
488 if (personality(infop->personality) == PER_LINUX32)
489 regs->u_regs[14] = infop->start_stack - 16 * 4;
490 else
491 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
492 #endif
493 }
494
495 #else
496 #define ELF_START_MMAP 0x80000000
497 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
498 | HWCAP_SPARC_MULDIV)
499 #define elf_check_arch(x) ( (x) == EM_SPARC )
500
501 #define ELF_CLASS ELFCLASS32
502 #define ELF_ARCH EM_SPARC
503
504 static inline void init_thread(struct target_pt_regs *regs,
505 struct image_info *infop)
506 {
507 regs->psr = 0;
508 regs->pc = infop->entry;
509 regs->npc = regs->pc + 4;
510 regs->y = 0;
511 regs->u_regs[14] = infop->start_stack - 16 * 4;
512 }
513
514 #endif
515 #endif
516
517 #ifdef TARGET_PPC
518
519 #define ELF_START_MMAP 0x80000000
520
521 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
522
523 #define elf_check_arch(x) ( (x) == EM_PPC64 )
524
525 #define ELF_CLASS ELFCLASS64
526
527 #else
528
529 #define elf_check_arch(x) ( (x) == EM_PPC )
530
531 #define ELF_CLASS ELFCLASS32
532
533 #endif
534
535 #define ELF_ARCH EM_PPC
536
537 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
538 See arch/powerpc/include/asm/cputable.h. */
539 enum {
540 QEMU_PPC_FEATURE_32 = 0x80000000,
541 QEMU_PPC_FEATURE_64 = 0x40000000,
542 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
543 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
544 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
545 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
546 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
547 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
548 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
549 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
550 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
551 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
552 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
553 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
554 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
555 QEMU_PPC_FEATURE_CELL = 0x00010000,
556 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
557 QEMU_PPC_FEATURE_SMT = 0x00004000,
558 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
559 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
560 QEMU_PPC_FEATURE_PA6T = 0x00000800,
561 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
562 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
563 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
564 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
565 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
566
567 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
568 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
569 };
570
571 #define ELF_HWCAP get_elf_hwcap()
572
573 static uint32_t get_elf_hwcap(void)
574 {
575 CPUState *e = thread_env;
576 uint32_t features = 0;
577
578 /* We don't have to be terribly complete here; the high points are
579 Altivec/FP/SPE support. Anything else is just a bonus. */
580 #define GET_FEATURE(flag, feature) \
581 do {if (e->insns_flags & flag) features |= feature; } while(0)
582 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
583 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
584 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
585 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
586 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
587 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
588 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
589 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
590 #undef GET_FEATURE
591
592 return features;
593 }
594
595 /*
596 * The requirements here are:
597 * - keep the final alignment of sp (sp & 0xf)
598 * - make sure the 32-bit value at the first 16 byte aligned position of
599 * AUXV is greater than 16 for glibc compatibility.
600 * AT_IGNOREPPC is used for that.
601 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
602 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
603 */
604 #define DLINFO_ARCH_ITEMS 5
605 #define ARCH_DLINFO \
606 do { \
607 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
608 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
609 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
610 /* \
611 * Now handle glibc compatibility. \
612 */ \
613 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
614 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
615 } while (0)
616
617 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
618 {
619 _regs->gpr[1] = infop->start_stack;
620 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
621 _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_bias;
622 infop->entry = ldq_raw(infop->entry) + infop->load_bias;
623 #endif
624 _regs->nip = infop->entry;
625 }
626
627 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
628 #define ELF_NREG 48
629 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
630
631 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
632 {
633 int i;
634 target_ulong ccr = 0;
635
636 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
637 (*regs)[i] = tswapl(env->gpr[i]);
638 }
639
640 (*regs)[32] = tswapl(env->nip);
641 (*regs)[33] = tswapl(env->msr);
642 (*regs)[35] = tswapl(env->ctr);
643 (*regs)[36] = tswapl(env->lr);
644 (*regs)[37] = tswapl(env->xer);
645
646 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
647 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
648 }
649 (*regs)[38] = tswapl(ccr);
650 }
651
652 #define USE_ELF_CORE_DUMP
653 #define ELF_EXEC_PAGESIZE 4096
654
655 #endif
656
657 #ifdef TARGET_MIPS
658
659 #define ELF_START_MMAP 0x80000000
660
661 #define elf_check_arch(x) ( (x) == EM_MIPS )
662
663 #ifdef TARGET_MIPS64
664 #define ELF_CLASS ELFCLASS64
665 #else
666 #define ELF_CLASS ELFCLASS32
667 #endif
668 #define ELF_ARCH EM_MIPS
669
670 static inline void init_thread(struct target_pt_regs *regs,
671 struct image_info *infop)
672 {
673 regs->cp0_status = 2 << CP0St_KSU;
674 regs->cp0_epc = infop->entry;
675 regs->regs[29] = infop->start_stack;
676 }
677
678 /* See linux kernel: arch/mips/include/asm/elf.h. */
679 #define ELF_NREG 45
680 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
681
682 /* See linux kernel: arch/mips/include/asm/reg.h. */
683 enum {
684 #ifdef TARGET_MIPS64
685 TARGET_EF_R0 = 0,
686 #else
687 TARGET_EF_R0 = 6,
688 #endif
689 TARGET_EF_R26 = TARGET_EF_R0 + 26,
690 TARGET_EF_R27 = TARGET_EF_R0 + 27,
691 TARGET_EF_LO = TARGET_EF_R0 + 32,
692 TARGET_EF_HI = TARGET_EF_R0 + 33,
693 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
694 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
695 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
696 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
697 };
698
699 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
700 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
701 {
702 int i;
703
704 for (i = 0; i < TARGET_EF_R0; i++) {
705 (*regs)[i] = 0;
706 }
707 (*regs)[TARGET_EF_R0] = 0;
708
709 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
710 (*regs)[TARGET_EF_R0 + i] = tswapl(env->active_tc.gpr[i]);
711 }
712
713 (*regs)[TARGET_EF_R26] = 0;
714 (*regs)[TARGET_EF_R27] = 0;
715 (*regs)[TARGET_EF_LO] = tswapl(env->active_tc.LO[0]);
716 (*regs)[TARGET_EF_HI] = tswapl(env->active_tc.HI[0]);
717 (*regs)[TARGET_EF_CP0_EPC] = tswapl(env->active_tc.PC);
718 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapl(env->CP0_BadVAddr);
719 (*regs)[TARGET_EF_CP0_STATUS] = tswapl(env->CP0_Status);
720 (*regs)[TARGET_EF_CP0_CAUSE] = tswapl(env->CP0_Cause);
721 }
722
723 #define USE_ELF_CORE_DUMP
724 #define ELF_EXEC_PAGESIZE 4096
725
726 #endif /* TARGET_MIPS */
727
728 #ifdef TARGET_MICROBLAZE
729
730 #define ELF_START_MMAP 0x80000000
731
732 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
733
734 #define ELF_CLASS ELFCLASS32
735 #define ELF_ARCH EM_MICROBLAZE
736
737 static inline void init_thread(struct target_pt_regs *regs,
738 struct image_info *infop)
739 {
740 regs->pc = infop->entry;
741 regs->r1 = infop->start_stack;
742
743 }
744
745 #define ELF_EXEC_PAGESIZE 4096
746
747 #define USE_ELF_CORE_DUMP
748 #define ELF_NREG 38
749 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
750
751 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
752 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
753 {
754 int i, pos = 0;
755
756 for (i = 0; i < 32; i++) {
757 (*regs)[pos++] = tswapl(env->regs[i]);
758 }
759
760 for (i = 0; i < 6; i++) {
761 (*regs)[pos++] = tswapl(env->sregs[i]);
762 }
763 }
764
765 #endif /* TARGET_MICROBLAZE */
766
767 #ifdef TARGET_SH4
768
769 #define ELF_START_MMAP 0x80000000
770
771 #define elf_check_arch(x) ( (x) == EM_SH )
772
773 #define ELF_CLASS ELFCLASS32
774 #define ELF_ARCH EM_SH
775
776 static inline void init_thread(struct target_pt_regs *regs,
777 struct image_info *infop)
778 {
779 /* Check other registers XXXXX */
780 regs->pc = infop->entry;
781 regs->regs[15] = infop->start_stack;
782 }
783
784 /* See linux kernel: arch/sh/include/asm/elf.h. */
785 #define ELF_NREG 23
786 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
787
788 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
789 enum {
790 TARGET_REG_PC = 16,
791 TARGET_REG_PR = 17,
792 TARGET_REG_SR = 18,
793 TARGET_REG_GBR = 19,
794 TARGET_REG_MACH = 20,
795 TARGET_REG_MACL = 21,
796 TARGET_REG_SYSCALL = 22
797 };
798
799 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
800 const CPUState *env)
801 {
802 int i;
803
804 for (i = 0; i < 16; i++) {
805 (*regs[i]) = tswapl(env->gregs[i]);
806 }
807
808 (*regs)[TARGET_REG_PC] = tswapl(env->pc);
809 (*regs)[TARGET_REG_PR] = tswapl(env->pr);
810 (*regs)[TARGET_REG_SR] = tswapl(env->sr);
811 (*regs)[TARGET_REG_GBR] = tswapl(env->gbr);
812 (*regs)[TARGET_REG_MACH] = tswapl(env->mach);
813 (*regs)[TARGET_REG_MACL] = tswapl(env->macl);
814 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
815 }
816
817 #define USE_ELF_CORE_DUMP
818 #define ELF_EXEC_PAGESIZE 4096
819
820 #endif
821
822 #ifdef TARGET_CRIS
823
824 #define ELF_START_MMAP 0x80000000
825
826 #define elf_check_arch(x) ( (x) == EM_CRIS )
827
828 #define ELF_CLASS ELFCLASS32
829 #define ELF_ARCH EM_CRIS
830
831 static inline void init_thread(struct target_pt_regs *regs,
832 struct image_info *infop)
833 {
834 regs->erp = infop->entry;
835 }
836
837 #define ELF_EXEC_PAGESIZE 8192
838
839 #endif
840
841 #ifdef TARGET_M68K
842
843 #define ELF_START_MMAP 0x80000000
844
845 #define elf_check_arch(x) ( (x) == EM_68K )
846
847 #define ELF_CLASS ELFCLASS32
848 #define ELF_ARCH EM_68K
849
850 /* ??? Does this need to do anything?
851 #define ELF_PLAT_INIT(_r) */
852
853 static inline void init_thread(struct target_pt_regs *regs,
854 struct image_info *infop)
855 {
856 regs->usp = infop->start_stack;
857 regs->sr = 0;
858 regs->pc = infop->entry;
859 }
860
861 /* See linux kernel: arch/m68k/include/asm/elf.h. */
862 #define ELF_NREG 20
863 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
864
865 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
866 {
867 (*regs)[0] = tswapl(env->dregs[1]);
868 (*regs)[1] = tswapl(env->dregs[2]);
869 (*regs)[2] = tswapl(env->dregs[3]);
870 (*regs)[3] = tswapl(env->dregs[4]);
871 (*regs)[4] = tswapl(env->dregs[5]);
872 (*regs)[5] = tswapl(env->dregs[6]);
873 (*regs)[6] = tswapl(env->dregs[7]);
874 (*regs)[7] = tswapl(env->aregs[0]);
875 (*regs)[8] = tswapl(env->aregs[1]);
876 (*regs)[9] = tswapl(env->aregs[2]);
877 (*regs)[10] = tswapl(env->aregs[3]);
878 (*regs)[11] = tswapl(env->aregs[4]);
879 (*regs)[12] = tswapl(env->aregs[5]);
880 (*regs)[13] = tswapl(env->aregs[6]);
881 (*regs)[14] = tswapl(env->dregs[0]);
882 (*regs)[15] = tswapl(env->aregs[7]);
883 (*regs)[16] = tswapl(env->dregs[0]); /* FIXME: orig_d0 */
884 (*regs)[17] = tswapl(env->sr);
885 (*regs)[18] = tswapl(env->pc);
886 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
887 }
888
889 #define USE_ELF_CORE_DUMP
890 #define ELF_EXEC_PAGESIZE 8192
891
892 #endif
893
894 #ifdef TARGET_ALPHA
895
896 #define ELF_START_MMAP (0x30000000000ULL)
897
898 #define elf_check_arch(x) ( (x) == ELF_ARCH )
899
900 #define ELF_CLASS ELFCLASS64
901 #define ELF_ARCH EM_ALPHA
902
903 static inline void init_thread(struct target_pt_regs *regs,
904 struct image_info *infop)
905 {
906 regs->pc = infop->entry;
907 regs->ps = 8;
908 regs->usp = infop->start_stack;
909 }
910
911 #define ELF_EXEC_PAGESIZE 8192
912
913 #endif /* TARGET_ALPHA */
914
915 #ifdef TARGET_S390X
916
917 #define ELF_START_MMAP (0x20000000000ULL)
918
919 #define elf_check_arch(x) ( (x) == ELF_ARCH )
920
921 #define ELF_CLASS ELFCLASS64
922 #define ELF_DATA ELFDATA2MSB
923 #define ELF_ARCH EM_S390
924
925 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
926 {
927 regs->psw.addr = infop->entry;
928 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
929 regs->gprs[15] = infop->start_stack;
930 }
931
932 #endif /* TARGET_S390X */
933
934 #ifndef ELF_PLATFORM
935 #define ELF_PLATFORM (NULL)
936 #endif
937
938 #ifndef ELF_HWCAP
939 #define ELF_HWCAP 0
940 #endif
941
942 #ifdef TARGET_ABI32
943 #undef ELF_CLASS
944 #define ELF_CLASS ELFCLASS32
945 #undef bswaptls
946 #define bswaptls(ptr) bswap32s(ptr)
947 #endif
948
949 #include "elf.h"
950
951 struct exec
952 {
953 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
954 unsigned int a_text; /* length of text, in bytes */
955 unsigned int a_data; /* length of data, in bytes */
956 unsigned int a_bss; /* length of uninitialized data area, in bytes */
957 unsigned int a_syms; /* length of symbol table data in file, in bytes */
958 unsigned int a_entry; /* start address */
959 unsigned int a_trsize; /* length of relocation info for text, in bytes */
960 unsigned int a_drsize; /* length of relocation info for data, in bytes */
961 };
962
963
964 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
965 #define OMAGIC 0407
966 #define NMAGIC 0410
967 #define ZMAGIC 0413
968 #define QMAGIC 0314
969
970 /* Necessary parameters */
971 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
972 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
973 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
974
975 #define DLINFO_ITEMS 13
976
977 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
978 {
979 memcpy(to, from, n);
980 }
981
982 #ifdef BSWAP_NEEDED
983 static void bswap_ehdr(struct elfhdr *ehdr)
984 {
985 bswap16s(&ehdr->e_type); /* Object file type */
986 bswap16s(&ehdr->e_machine); /* Architecture */
987 bswap32s(&ehdr->e_version); /* Object file version */
988 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
989 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
990 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
991 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
992 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
993 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
994 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
995 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
996 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
997 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
998 }
999
1000 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1001 {
1002 int i;
1003 for (i = 0; i < phnum; ++i, ++phdr) {
1004 bswap32s(&phdr->p_type); /* Segment type */
1005 bswap32s(&phdr->p_flags); /* Segment flags */
1006 bswaptls(&phdr->p_offset); /* Segment file offset */
1007 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1008 bswaptls(&phdr->p_paddr); /* Segment physical address */
1009 bswaptls(&phdr->p_filesz); /* Segment size in file */
1010 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1011 bswaptls(&phdr->p_align); /* Segment alignment */
1012 }
1013 }
1014
1015 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1016 {
1017 int i;
1018 for (i = 0; i < shnum; ++i, ++shdr) {
1019 bswap32s(&shdr->sh_name);
1020 bswap32s(&shdr->sh_type);
1021 bswaptls(&shdr->sh_flags);
1022 bswaptls(&shdr->sh_addr);
1023 bswaptls(&shdr->sh_offset);
1024 bswaptls(&shdr->sh_size);
1025 bswap32s(&shdr->sh_link);
1026 bswap32s(&shdr->sh_info);
1027 bswaptls(&shdr->sh_addralign);
1028 bswaptls(&shdr->sh_entsize);
1029 }
1030 }
1031
1032 static void bswap_sym(struct elf_sym *sym)
1033 {
1034 bswap32s(&sym->st_name);
1035 bswaptls(&sym->st_value);
1036 bswaptls(&sym->st_size);
1037 bswap16s(&sym->st_shndx);
1038 }
1039 #else
1040 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1041 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1042 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1043 static inline void bswap_sym(struct elf_sym *sym) { }
1044 #endif
1045
1046 #ifdef USE_ELF_CORE_DUMP
1047 static int elf_core_dump(int, const CPUState *);
1048 #endif /* USE_ELF_CORE_DUMP */
1049 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1050
1051 /* Verify the portions of EHDR within E_IDENT for the target.
1052 This can be performed before bswapping the entire header. */
1053 static bool elf_check_ident(struct elfhdr *ehdr)
1054 {
1055 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1056 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1057 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1058 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1059 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1060 && ehdr->e_ident[EI_DATA] == ELF_DATA
1061 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1062 }
1063
1064 /* Verify the portions of EHDR outside of E_IDENT for the target.
1065 This has to wait until after bswapping the header. */
1066 static bool elf_check_ehdr(struct elfhdr *ehdr)
1067 {
1068 return (elf_check_arch(ehdr->e_machine)
1069 && ehdr->e_ehsize == sizeof(struct elfhdr)
1070 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1071 && ehdr->e_shentsize == sizeof(struct elf_shdr)
1072 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1073 }
1074
1075 /*
1076 * 'copy_elf_strings()' copies argument/envelope strings from user
1077 * memory to free pages in kernel mem. These are in a format ready
1078 * to be put directly into the top of new user memory.
1079 *
1080 */
1081 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1082 abi_ulong p)
1083 {
1084 char *tmp, *tmp1, *pag = NULL;
1085 int len, offset = 0;
1086
1087 if (!p) {
1088 return 0; /* bullet-proofing */
1089 }
1090 while (argc-- > 0) {
1091 tmp = argv[argc];
1092 if (!tmp) {
1093 fprintf(stderr, "VFS: argc is wrong");
1094 exit(-1);
1095 }
1096 tmp1 = tmp;
1097 while (*tmp++);
1098 len = tmp - tmp1;
1099 if (p < len) { /* this shouldn't happen - 128kB */
1100 return 0;
1101 }
1102 while (len) {
1103 --p; --tmp; --len;
1104 if (--offset < 0) {
1105 offset = p % TARGET_PAGE_SIZE;
1106 pag = (char *)page[p/TARGET_PAGE_SIZE];
1107 if (!pag) {
1108 pag = g_try_malloc0(TARGET_PAGE_SIZE);
1109 page[p/TARGET_PAGE_SIZE] = pag;
1110 if (!pag)
1111 return 0;
1112 }
1113 }
1114 if (len == 0 || offset == 0) {
1115 *(pag + offset) = *tmp;
1116 }
1117 else {
1118 int bytes_to_copy = (len > offset) ? offset : len;
1119 tmp -= bytes_to_copy;
1120 p -= bytes_to_copy;
1121 offset -= bytes_to_copy;
1122 len -= bytes_to_copy;
1123 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1124 }
1125 }
1126 }
1127 return p;
1128 }
1129
1130 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1131 struct image_info *info)
1132 {
1133 abi_ulong stack_base, size, error, guard;
1134 int i;
1135
1136 /* Create enough stack to hold everything. If we don't use
1137 it for args, we'll use it for something else. */
1138 size = guest_stack_size;
1139 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
1140 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1141 }
1142 guard = TARGET_PAGE_SIZE;
1143 if (guard < qemu_real_host_page_size) {
1144 guard = qemu_real_host_page_size;
1145 }
1146
1147 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1148 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1149 if (error == -1) {
1150 perror("mmap stack");
1151 exit(-1);
1152 }
1153
1154 /* We reserve one extra page at the top of the stack as guard. */
1155 target_mprotect(error, guard, PROT_NONE);
1156
1157 info->stack_limit = error + guard;
1158 stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1159 p += stack_base;
1160
1161 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1162 if (bprm->page[i]) {
1163 info->rss++;
1164 /* FIXME - check return value of memcpy_to_target() for failure */
1165 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
1166 g_free(bprm->page[i]);
1167 }
1168 stack_base += TARGET_PAGE_SIZE;
1169 }
1170 return p;
1171 }
1172
1173 /* Map and zero the bss. We need to explicitly zero any fractional pages
1174 after the data section (i.e. bss). */
1175 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1176 {
1177 uintptr_t host_start, host_map_start, host_end;
1178
1179 last_bss = TARGET_PAGE_ALIGN(last_bss);
1180
1181 /* ??? There is confusion between qemu_real_host_page_size and
1182 qemu_host_page_size here and elsewhere in target_mmap, which
1183 may lead to the end of the data section mapping from the file
1184 not being mapped. At least there was an explicit test and
1185 comment for that here, suggesting that "the file size must
1186 be known". The comment probably pre-dates the introduction
1187 of the fstat system call in target_mmap which does in fact
1188 find out the size. What isn't clear is if the workaround
1189 here is still actually needed. For now, continue with it,
1190 but merge it with the "normal" mmap that would allocate the bss. */
1191
1192 host_start = (uintptr_t) g2h(elf_bss);
1193 host_end = (uintptr_t) g2h(last_bss);
1194 host_map_start = (host_start + qemu_real_host_page_size - 1);
1195 host_map_start &= -qemu_real_host_page_size;
1196
1197 if (host_map_start < host_end) {
1198 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1199 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1200 if (p == MAP_FAILED) {
1201 perror("cannot mmap brk");
1202 exit(-1);
1203 }
1204
1205 /* Since we didn't use target_mmap, make sure to record
1206 the validity of the pages with qemu. */
1207 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot|PAGE_VALID);
1208 }
1209
1210 if (host_start < host_map_start) {
1211 memset((void *)host_start, 0, host_map_start - host_start);
1212 }
1213 }
1214
1215 #ifdef CONFIG_USE_FDPIC
1216 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1217 {
1218 uint16_t n;
1219 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1220
1221 /* elf32_fdpic_loadseg */
1222 n = info->nsegs;
1223 while (n--) {
1224 sp -= 12;
1225 put_user_u32(loadsegs[n].addr, sp+0);
1226 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1227 put_user_u32(loadsegs[n].p_memsz, sp+8);
1228 }
1229
1230 /* elf32_fdpic_loadmap */
1231 sp -= 4;
1232 put_user_u16(0, sp+0); /* version */
1233 put_user_u16(info->nsegs, sp+2); /* nsegs */
1234
1235 info->personality = PER_LINUX_FDPIC;
1236 info->loadmap_addr = sp;
1237
1238 return sp;
1239 }
1240 #endif
1241
1242 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1243 struct elfhdr *exec,
1244 struct image_info *info,
1245 struct image_info *interp_info)
1246 {
1247 abi_ulong sp;
1248 abi_ulong sp_auxv;
1249 int size;
1250 int i;
1251 abi_ulong u_rand_bytes;
1252 uint8_t k_rand_bytes[16];
1253 abi_ulong u_platform;
1254 const char *k_platform;
1255 const int n = sizeof(elf_addr_t);
1256
1257 sp = p;
1258
1259 #ifdef CONFIG_USE_FDPIC
1260 /* Needs to be before we load the env/argc/... */
1261 if (elf_is_fdpic(exec)) {
1262 /* Need 4 byte alignment for these structs */
1263 sp &= ~3;
1264 sp = loader_build_fdpic_loadmap(info, sp);
1265 info->other_info = interp_info;
1266 if (interp_info) {
1267 interp_info->other_info = info;
1268 sp = loader_build_fdpic_loadmap(interp_info, sp);
1269 }
1270 }
1271 #endif
1272
1273 u_platform = 0;
1274 k_platform = ELF_PLATFORM;
1275 if (k_platform) {
1276 size_t len = strlen(k_platform) + 1;
1277 sp -= (len + n - 1) & ~(n - 1);
1278 u_platform = sp;
1279 /* FIXME - check return value of memcpy_to_target() for failure */
1280 memcpy_to_target(sp, k_platform, len);
1281 }
1282
1283 /*
1284 * Generate 16 random bytes for userspace PRNG seeding (not
1285 * cryptically secure but it's not the aim of QEMU).
1286 */
1287 srand((unsigned int) time(NULL));
1288 for (i = 0; i < 16; i++) {
1289 k_rand_bytes[i] = rand();
1290 }
1291 sp -= 16;
1292 u_rand_bytes = sp;
1293 /* FIXME - check return value of memcpy_to_target() for failure */
1294 memcpy_to_target(sp, k_rand_bytes, 16);
1295
1296 /*
1297 * Force 16 byte _final_ alignment here for generality.
1298 */
1299 sp = sp &~ (abi_ulong)15;
1300 size = (DLINFO_ITEMS + 1) * 2;
1301 if (k_platform)
1302 size += 2;
1303 #ifdef DLINFO_ARCH_ITEMS
1304 size += DLINFO_ARCH_ITEMS * 2;
1305 #endif
1306 size += envc + argc + 2;
1307 size += 1; /* argc itself */
1308 size *= n;
1309 if (size & 15)
1310 sp -= 16 - (size & 15);
1311
1312 /* This is correct because Linux defines
1313 * elf_addr_t as Elf32_Off / Elf64_Off
1314 */
1315 #define NEW_AUX_ENT(id, val) do { \
1316 sp -= n; put_user_ual(val, sp); \
1317 sp -= n; put_user_ual(id, sp); \
1318 } while(0)
1319
1320 sp_auxv = sp;
1321 NEW_AUX_ENT (AT_NULL, 0);
1322
1323 /* There must be exactly DLINFO_ITEMS entries here. */
1324 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1325 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1326 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1327 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1328 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1329 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1330 NEW_AUX_ENT(AT_ENTRY, info->entry);
1331 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1332 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1333 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1334 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1335 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1336 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1337 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1338
1339 if (k_platform)
1340 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1341 #ifdef ARCH_DLINFO
1342 /*
1343 * ARCH_DLINFO must come last so platform specific code can enforce
1344 * special alignment requirements on the AUXV if necessary (eg. PPC).
1345 */
1346 ARCH_DLINFO;
1347 #endif
1348 #undef NEW_AUX_ENT
1349
1350 info->saved_auxv = sp;
1351 info->auxv_len = sp_auxv - sp;
1352
1353 sp = loader_build_argptr(envc, argc, sp, p, 0);
1354 return sp;
1355 }
1356
1357 #ifndef TARGET_HAS_GUEST_VALIDATE_BASE
1358 /* If the guest doesn't have a validation function just agree */
1359 bool guest_validate_base(unsigned long guest_base)
1360 {
1361 return 1;
1362 }
1363 #endif
1364
1365 static void probe_guest_base(const char *image_name,
1366 abi_ulong loaddr, abi_ulong hiaddr)
1367 {
1368 /* Probe for a suitable guest base address, if the user has not set
1369 * it explicitly, and set guest_base appropriately.
1370 * In case of error we will print a suitable message and exit.
1371 */
1372 #if defined(CONFIG_USE_GUEST_BASE)
1373 const char *errmsg;
1374 if (!have_guest_base && !reserved_va) {
1375 unsigned long host_start, real_start, host_size;
1376
1377 /* Round addresses to page boundaries. */
1378 loaddr &= qemu_host_page_mask;
1379 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1380
1381 if (loaddr < mmap_min_addr) {
1382 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1383 } else {
1384 host_start = loaddr;
1385 if (host_start != loaddr) {
1386 errmsg = "Address overflow loading ELF binary";
1387 goto exit_errmsg;
1388 }
1389 }
1390 host_size = hiaddr - loaddr;
1391 while (1) {
1392 /* Do not use mmap_find_vma here because that is limited to the
1393 guest address space. We are going to make the
1394 guest address space fit whatever we're given. */
1395 real_start = (unsigned long)
1396 mmap((void *)host_start, host_size, PROT_NONE,
1397 MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0);
1398 if (real_start == (unsigned long)-1) {
1399 goto exit_perror;
1400 }
1401 guest_base = real_start - loaddr;
1402 if ((real_start == host_start) &&
1403 guest_validate_base(guest_base)) {
1404 break;
1405 }
1406 /* That address didn't work. Unmap and try a different one.
1407 The address the host picked because is typically right at
1408 the top of the host address space and leaves the guest with
1409 no usable address space. Resort to a linear search. We
1410 already compensated for mmap_min_addr, so this should not
1411 happen often. Probably means we got unlucky and host
1412 address space randomization put a shared library somewhere
1413 inconvenient. */
1414 munmap((void *)real_start, host_size);
1415 host_start += qemu_host_page_size;
1416 if (host_start == loaddr) {
1417 /* Theoretically possible if host doesn't have any suitably
1418 aligned areas. Normally the first mmap will fail. */
1419 errmsg = "Unable to find space for application";
1420 goto exit_errmsg;
1421 }
1422 }
1423 qemu_log("Relocating guest address space from 0x"
1424 TARGET_ABI_FMT_lx " to 0x%lx\n",
1425 loaddr, real_start);
1426 }
1427 return;
1428
1429 exit_perror:
1430 errmsg = strerror(errno);
1431 exit_errmsg:
1432 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1433 exit(-1);
1434 #endif
1435 }
1436
1437
1438 /* Load an ELF image into the address space.
1439
1440 IMAGE_NAME is the filename of the image, to use in error messages.
1441 IMAGE_FD is the open file descriptor for the image.
1442
1443 BPRM_BUF is a copy of the beginning of the file; this of course
1444 contains the elf file header at offset 0. It is assumed that this
1445 buffer is sufficiently aligned to present no problems to the host
1446 in accessing data at aligned offsets within the buffer.
1447
1448 On return: INFO values will be filled in, as necessary or available. */
1449
1450 static void load_elf_image(const char *image_name, int image_fd,
1451 struct image_info *info, char **pinterp_name,
1452 char bprm_buf[BPRM_BUF_SIZE])
1453 {
1454 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1455 struct elf_phdr *phdr;
1456 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1457 int i, retval;
1458 const char *errmsg;
1459
1460 /* First of all, some simple consistency checks */
1461 errmsg = "Invalid ELF image for this architecture";
1462 if (!elf_check_ident(ehdr)) {
1463 goto exit_errmsg;
1464 }
1465 bswap_ehdr(ehdr);
1466 if (!elf_check_ehdr(ehdr)) {
1467 goto exit_errmsg;
1468 }
1469
1470 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1471 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1472 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1473 } else {
1474 phdr = (struct elf_phdr *) alloca(i);
1475 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1476 if (retval != i) {
1477 goto exit_read;
1478 }
1479 }
1480 bswap_phdr(phdr, ehdr->e_phnum);
1481
1482 #ifdef CONFIG_USE_FDPIC
1483 info->nsegs = 0;
1484 info->pt_dynamic_addr = 0;
1485 #endif
1486
1487 /* Find the maximum size of the image and allocate an appropriate
1488 amount of memory to handle that. */
1489 loaddr = -1, hiaddr = 0;
1490 for (i = 0; i < ehdr->e_phnum; ++i) {
1491 if (phdr[i].p_type == PT_LOAD) {
1492 abi_ulong a = phdr[i].p_vaddr;
1493 if (a < loaddr) {
1494 loaddr = a;
1495 }
1496 a += phdr[i].p_memsz;
1497 if (a > hiaddr) {
1498 hiaddr = a;
1499 }
1500 #ifdef CONFIG_USE_FDPIC
1501 ++info->nsegs;
1502 #endif
1503 }
1504 }
1505
1506 load_addr = loaddr;
1507 if (ehdr->e_type == ET_DYN) {
1508 /* The image indicates that it can be loaded anywhere. Find a
1509 location that can hold the memory space required. If the
1510 image is pre-linked, LOADDR will be non-zero. Since we do
1511 not supply MAP_FIXED here we'll use that address if and
1512 only if it remains available. */
1513 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1514 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1515 -1, 0);
1516 if (load_addr == -1) {
1517 goto exit_perror;
1518 }
1519 } else if (pinterp_name != NULL) {
1520 /* This is the main executable. Make sure that the low
1521 address does not conflict with MMAP_MIN_ADDR or the
1522 QEMU application itself. */
1523 probe_guest_base(image_name, loaddr, hiaddr);
1524 }
1525 load_bias = load_addr - loaddr;
1526
1527 #ifdef CONFIG_USE_FDPIC
1528 {
1529 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1530 g_malloc(sizeof(*loadsegs) * info->nsegs);
1531
1532 for (i = 0; i < ehdr->e_phnum; ++i) {
1533 switch (phdr[i].p_type) {
1534 case PT_DYNAMIC:
1535 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1536 break;
1537 case PT_LOAD:
1538 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1539 loadsegs->p_vaddr = phdr[i].p_vaddr;
1540 loadsegs->p_memsz = phdr[i].p_memsz;
1541 ++loadsegs;
1542 break;
1543 }
1544 }
1545 }
1546 #endif
1547
1548 info->load_bias = load_bias;
1549 info->load_addr = load_addr;
1550 info->entry = ehdr->e_entry + load_bias;
1551 info->start_code = -1;
1552 info->end_code = 0;
1553 info->start_data = -1;
1554 info->end_data = 0;
1555 info->brk = 0;
1556
1557 for (i = 0; i < ehdr->e_phnum; i++) {
1558 struct elf_phdr *eppnt = phdr + i;
1559 if (eppnt->p_type == PT_LOAD) {
1560 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
1561 int elf_prot = 0;
1562
1563 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1564 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1565 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1566
1567 vaddr = load_bias + eppnt->p_vaddr;
1568 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1569 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1570
1571 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1572 elf_prot, MAP_PRIVATE | MAP_FIXED,
1573 image_fd, eppnt->p_offset - vaddr_po);
1574 if (error == -1) {
1575 goto exit_perror;
1576 }
1577
1578 vaddr_ef = vaddr + eppnt->p_filesz;
1579 vaddr_em = vaddr + eppnt->p_memsz;
1580
1581 /* If the load segment requests extra zeros (e.g. bss), map it. */
1582 if (vaddr_ef < vaddr_em) {
1583 zero_bss(vaddr_ef, vaddr_em, elf_prot);
1584 }
1585
1586 /* Find the full program boundaries. */
1587 if (elf_prot & PROT_EXEC) {
1588 if (vaddr < info->start_code) {
1589 info->start_code = vaddr;
1590 }
1591 if (vaddr_ef > info->end_code) {
1592 info->end_code = vaddr_ef;
1593 }
1594 }
1595 if (elf_prot & PROT_WRITE) {
1596 if (vaddr < info->start_data) {
1597 info->start_data = vaddr;
1598 }
1599 if (vaddr_ef > info->end_data) {
1600 info->end_data = vaddr_ef;
1601 }
1602 if (vaddr_em > info->brk) {
1603 info->brk = vaddr_em;
1604 }
1605 }
1606 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1607 char *interp_name;
1608
1609 if (*pinterp_name) {
1610 errmsg = "Multiple PT_INTERP entries";
1611 goto exit_errmsg;
1612 }
1613 interp_name = malloc(eppnt->p_filesz);
1614 if (!interp_name) {
1615 goto exit_perror;
1616 }
1617
1618 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1619 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1620 eppnt->p_filesz);
1621 } else {
1622 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1623 eppnt->p_offset);
1624 if (retval != eppnt->p_filesz) {
1625 goto exit_perror;
1626 }
1627 }
1628 if (interp_name[eppnt->p_filesz - 1] != 0) {
1629 errmsg = "Invalid PT_INTERP entry";
1630 goto exit_errmsg;
1631 }
1632 *pinterp_name = interp_name;
1633 }
1634 }
1635
1636 if (info->end_data == 0) {
1637 info->start_data = info->end_code;
1638 info->end_data = info->end_code;
1639 info->brk = info->end_code;
1640 }
1641
1642 if (qemu_log_enabled()) {
1643 load_symbols(ehdr, image_fd, load_bias);
1644 }
1645
1646 close(image_fd);
1647 return;
1648
1649 exit_read:
1650 if (retval >= 0) {
1651 errmsg = "Incomplete read of file header";
1652 goto exit_errmsg;
1653 }
1654 exit_perror:
1655 errmsg = strerror(errno);
1656 exit_errmsg:
1657 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1658 exit(-1);
1659 }
1660
1661 static void load_elf_interp(const char *filename, struct image_info *info,
1662 char bprm_buf[BPRM_BUF_SIZE])
1663 {
1664 int fd, retval;
1665
1666 fd = open(path(filename), O_RDONLY);
1667 if (fd < 0) {
1668 goto exit_perror;
1669 }
1670
1671 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
1672 if (retval < 0) {
1673 goto exit_perror;
1674 }
1675 if (retval < BPRM_BUF_SIZE) {
1676 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
1677 }
1678
1679 load_elf_image(filename, fd, info, NULL, bprm_buf);
1680 return;
1681
1682 exit_perror:
1683 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
1684 exit(-1);
1685 }
1686
1687 static int symfind(const void *s0, const void *s1)
1688 {
1689 target_ulong addr = *(target_ulong *)s0;
1690 struct elf_sym *sym = (struct elf_sym *)s1;
1691 int result = 0;
1692 if (addr < sym->st_value) {
1693 result = -1;
1694 } else if (addr >= sym->st_value + sym->st_size) {
1695 result = 1;
1696 }
1697 return result;
1698 }
1699
1700 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
1701 {
1702 #if ELF_CLASS == ELFCLASS32
1703 struct elf_sym *syms = s->disas_symtab.elf32;
1704 #else
1705 struct elf_sym *syms = s->disas_symtab.elf64;
1706 #endif
1707
1708 // binary search
1709 struct elf_sym *sym;
1710
1711 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
1712 if (sym != NULL) {
1713 return s->disas_strtab + sym->st_name;
1714 }
1715
1716 return "";
1717 }
1718
1719 /* FIXME: This should use elf_ops.h */
1720 static int symcmp(const void *s0, const void *s1)
1721 {
1722 struct elf_sym *sym0 = (struct elf_sym *)s0;
1723 struct elf_sym *sym1 = (struct elf_sym *)s1;
1724 return (sym0->st_value < sym1->st_value)
1725 ? -1
1726 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
1727 }
1728
1729 /* Best attempt to load symbols from this ELF object. */
1730 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
1731 {
1732 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1733 struct elf_shdr *shdr;
1734 char *strings = NULL;
1735 struct syminfo *s = NULL;
1736 struct elf_sym *new_syms, *syms = NULL;
1737
1738 shnum = hdr->e_shnum;
1739 i = shnum * sizeof(struct elf_shdr);
1740 shdr = (struct elf_shdr *)alloca(i);
1741 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
1742 return;
1743 }
1744
1745 bswap_shdr(shdr, shnum);
1746 for (i = 0; i < shnum; ++i) {
1747 if (shdr[i].sh_type == SHT_SYMTAB) {
1748 sym_idx = i;
1749 str_idx = shdr[i].sh_link;
1750 goto found;
1751 }
1752 }
1753
1754 /* There will be no symbol table if the file was stripped. */
1755 return;
1756
1757 found:
1758 /* Now know where the strtab and symtab are. Snarf them. */
1759 s = malloc(sizeof(*s));
1760 if (!s) {
1761 goto give_up;
1762 }
1763
1764 i = shdr[str_idx].sh_size;
1765 s->disas_strtab = strings = malloc(i);
1766 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
1767 goto give_up;
1768 }
1769
1770 i = shdr[sym_idx].sh_size;
1771 syms = malloc(i);
1772 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
1773 goto give_up;
1774 }
1775
1776 nsyms = i / sizeof(struct elf_sym);
1777 for (i = 0; i < nsyms; ) {
1778 bswap_sym(syms + i);
1779 /* Throw away entries which we do not need. */
1780 if (syms[i].st_shndx == SHN_UNDEF
1781 || syms[i].st_shndx >= SHN_LORESERVE
1782 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
1783 if (i < --nsyms) {
1784 syms[i] = syms[nsyms];
1785 }
1786 } else {
1787 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
1788 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
1789 syms[i].st_value &= ~(target_ulong)1;
1790 #endif
1791 syms[i].st_value += load_bias;
1792 i++;
1793 }
1794 }
1795
1796 /* No "useful" symbol. */
1797 if (nsyms == 0) {
1798 goto give_up;
1799 }
1800
1801 /* Attempt to free the storage associated with the local symbols
1802 that we threw away. Whether or not this has any effect on the
1803 memory allocation depends on the malloc implementation and how
1804 many symbols we managed to discard. */
1805 new_syms = realloc(syms, nsyms * sizeof(*syms));
1806 if (new_syms == NULL) {
1807 goto give_up;
1808 }
1809 syms = new_syms;
1810
1811 qsort(syms, nsyms, sizeof(*syms), symcmp);
1812
1813 s->disas_num_syms = nsyms;
1814 #if ELF_CLASS == ELFCLASS32
1815 s->disas_symtab.elf32 = syms;
1816 #else
1817 s->disas_symtab.elf64 = syms;
1818 #endif
1819 s->lookup_symbol = lookup_symbolxx;
1820 s->next = syminfos;
1821 syminfos = s;
1822
1823 return;
1824
1825 give_up:
1826 free(s);
1827 free(strings);
1828 free(syms);
1829 }
1830
1831 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
1832 struct image_info * info)
1833 {
1834 struct image_info interp_info;
1835 struct elfhdr elf_ex;
1836 char *elf_interpreter = NULL;
1837
1838 info->start_mmap = (abi_ulong)ELF_START_MMAP;
1839 info->mmap = 0;
1840 info->rss = 0;
1841
1842 load_elf_image(bprm->filename, bprm->fd, info,
1843 &elf_interpreter, bprm->buf);
1844
1845 /* ??? We need a copy of the elf header for passing to create_elf_tables.
1846 If we do nothing, we'll have overwritten this when we re-use bprm->buf
1847 when we load the interpreter. */
1848 elf_ex = *(struct elfhdr *)bprm->buf;
1849
1850 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
1851 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
1852 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
1853 if (!bprm->p) {
1854 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
1855 exit(-1);
1856 }
1857
1858 /* Do this so that we can load the interpreter, if need be. We will
1859 change some of these later */
1860 bprm->p = setup_arg_pages(bprm->p, bprm, info);
1861
1862 if (elf_interpreter) {
1863 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
1864
1865 /* If the program interpreter is one of these two, then assume
1866 an iBCS2 image. Otherwise assume a native linux image. */
1867
1868 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
1869 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
1870 info->personality = PER_SVR4;
1871
1872 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1873 and some applications "depend" upon this behavior. Since
1874 we do not have the power to recompile these, we emulate
1875 the SVr4 behavior. Sigh. */
1876 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
1877 MAP_FIXED | MAP_PRIVATE, -1, 0);
1878 }
1879 }
1880
1881 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
1882 info, (elf_interpreter ? &interp_info : NULL));
1883 info->start_stack = bprm->p;
1884
1885 /* If we have an interpreter, set that as the program's entry point.
1886 Copy the load_bias as well, to help PPC64 interpret the entry
1887 point as a function descriptor. Do this after creating elf tables
1888 so that we copy the original program entry point into the AUXV. */
1889 if (elf_interpreter) {
1890 info->load_bias = interp_info.load_bias;
1891 info->entry = interp_info.entry;
1892 free(elf_interpreter);
1893 }
1894
1895 #ifdef USE_ELF_CORE_DUMP
1896 bprm->core_dump = &elf_core_dump;
1897 #endif
1898
1899 return 0;
1900 }
1901
1902 #ifdef USE_ELF_CORE_DUMP
1903 /*
1904 * Definitions to generate Intel SVR4-like core files.
1905 * These mostly have the same names as the SVR4 types with "target_elf_"
1906 * tacked on the front to prevent clashes with linux definitions,
1907 * and the typedef forms have been avoided. This is mostly like
1908 * the SVR4 structure, but more Linuxy, with things that Linux does
1909 * not support and which gdb doesn't really use excluded.
1910 *
1911 * Fields we don't dump (their contents is zero) in linux-user qemu
1912 * are marked with XXX.
1913 *
1914 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
1915 *
1916 * Porting ELF coredump for target is (quite) simple process. First you
1917 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
1918 * the target resides):
1919 *
1920 * #define USE_ELF_CORE_DUMP
1921 *
1922 * Next you define type of register set used for dumping. ELF specification
1923 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
1924 *
1925 * typedef <target_regtype> target_elf_greg_t;
1926 * #define ELF_NREG <number of registers>
1927 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
1928 *
1929 * Last step is to implement target specific function that copies registers
1930 * from given cpu into just specified register set. Prototype is:
1931 *
1932 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
1933 * const CPUState *env);
1934 *
1935 * Parameters:
1936 * regs - copy register values into here (allocated and zeroed by caller)
1937 * env - copy registers from here
1938 *
1939 * Example for ARM target is provided in this file.
1940 */
1941
1942 /* An ELF note in memory */
1943 struct memelfnote {
1944 const char *name;
1945 size_t namesz;
1946 size_t namesz_rounded;
1947 int type;
1948 size_t datasz;
1949 size_t datasz_rounded;
1950 void *data;
1951 size_t notesz;
1952 };
1953
1954 struct target_elf_siginfo {
1955 target_int si_signo; /* signal number */
1956 target_int si_code; /* extra code */
1957 target_int si_errno; /* errno */
1958 };
1959
1960 struct target_elf_prstatus {
1961 struct target_elf_siginfo pr_info; /* Info associated with signal */
1962 target_short pr_cursig; /* Current signal */
1963 target_ulong pr_sigpend; /* XXX */
1964 target_ulong pr_sighold; /* XXX */
1965 target_pid_t pr_pid;
1966 target_pid_t pr_ppid;
1967 target_pid_t pr_pgrp;
1968 target_pid_t pr_sid;
1969 struct target_timeval pr_utime; /* XXX User time */
1970 struct target_timeval pr_stime; /* XXX System time */
1971 struct target_timeval pr_cutime; /* XXX Cumulative user time */
1972 struct target_timeval pr_cstime; /* XXX Cumulative system time */
1973 target_elf_gregset_t pr_reg; /* GP registers */
1974 target_int pr_fpvalid; /* XXX */
1975 };
1976
1977 #define ELF_PRARGSZ (80) /* Number of chars for args */
1978
1979 struct target_elf_prpsinfo {
1980 char pr_state; /* numeric process state */
1981 char pr_sname; /* char for pr_state */
1982 char pr_zomb; /* zombie */
1983 char pr_nice; /* nice val */
1984 target_ulong pr_flag; /* flags */
1985 target_uid_t pr_uid;
1986 target_gid_t pr_gid;
1987 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
1988 /* Lots missing */
1989 char pr_fname[16]; /* filename of executable */
1990 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
1991 };
1992
1993 /* Here is the structure in which status of each thread is captured. */
1994 struct elf_thread_status {
1995 QTAILQ_ENTRY(elf_thread_status) ets_link;
1996 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
1997 #if 0
1998 elf_fpregset_t fpu; /* NT_PRFPREG */
1999 struct task_struct *thread;
2000 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2001 #endif
2002 struct memelfnote notes[1];
2003 int num_notes;
2004 };
2005
2006 struct elf_note_info {
2007 struct memelfnote *notes;
2008 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2009 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2010
2011 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2012 #if 0
2013 /*
2014 * Current version of ELF coredump doesn't support
2015 * dumping fp regs etc.
2016 */
2017 elf_fpregset_t *fpu;
2018 elf_fpxregset_t *xfpu;
2019 int thread_status_size;
2020 #endif
2021 int notes_size;
2022 int numnote;
2023 };
2024
2025 struct vm_area_struct {
2026 abi_ulong vma_start; /* start vaddr of memory region */
2027 abi_ulong vma_end; /* end vaddr of memory region */
2028 abi_ulong vma_flags; /* protection etc. flags for the region */
2029 QTAILQ_ENTRY(vm_area_struct) vma_link;
2030 };
2031
2032 struct mm_struct {
2033 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2034 int mm_count; /* number of mappings */
2035 };
2036
2037 static struct mm_struct *vma_init(void);
2038 static void vma_delete(struct mm_struct *);
2039 static int vma_add_mapping(struct mm_struct *, abi_ulong,
2040 abi_ulong, abi_ulong);
2041 static int vma_get_mapping_count(const struct mm_struct *);
2042 static struct vm_area_struct *vma_first(const struct mm_struct *);
2043 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2044 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2045 static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
2046 unsigned long flags);
2047
2048 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2049 static void fill_note(struct memelfnote *, const char *, int,
2050 unsigned int, void *);
2051 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2052 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2053 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2054 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2055 static size_t note_size(const struct memelfnote *);
2056 static void free_note_info(struct elf_note_info *);
2057 static int fill_note_info(struct elf_note_info *, long, const CPUState *);
2058 static void fill_thread_info(struct elf_note_info *, const CPUState *);
2059 static int core_dump_filename(const TaskState *, char *, size_t);
2060
2061 static int dump_write(int, const void *, size_t);
2062 static int write_note(struct memelfnote *, int);
2063 static int write_note_info(struct elf_note_info *, int);
2064
2065 #ifdef BSWAP_NEEDED
2066 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2067 {
2068 prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo);
2069 prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code);
2070 prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno);
2071 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2072 prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend);
2073 prstatus->pr_sighold = tswapl(prstatus->pr_sighold);
2074 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2075 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2076 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2077 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2078 /* cpu times are not filled, so we skip them */
2079 /* regs should be in correct format already */
2080 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2081 }
2082
2083 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2084 {
2085 psinfo->pr_flag = tswapl(psinfo->pr_flag);
2086 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2087 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2088 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2089 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2090 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2091 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2092 }
2093
2094 static void bswap_note(struct elf_note *en)
2095 {
2096 bswap32s(&en->n_namesz);
2097 bswap32s(&en->n_descsz);
2098 bswap32s(&en->n_type);
2099 }
2100 #else
2101 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2102 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2103 static inline void bswap_note(struct elf_note *en) { }
2104 #endif /* BSWAP_NEEDED */
2105
2106 /*
2107 * Minimal support for linux memory regions. These are needed
2108 * when we are finding out what memory exactly belongs to
2109 * emulated process. No locks needed here, as long as
2110 * thread that received the signal is stopped.
2111 */
2112
2113 static struct mm_struct *vma_init(void)
2114 {
2115 struct mm_struct *mm;
2116
2117 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2118 return (NULL);
2119
2120 mm->mm_count = 0;
2121 QTAILQ_INIT(&mm->mm_mmap);
2122
2123 return (mm);
2124 }
2125
2126 static void vma_delete(struct mm_struct *mm)
2127 {
2128 struct vm_area_struct *vma;
2129
2130 while ((vma = vma_first(mm)) != NULL) {
2131 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2132 g_free(vma);
2133 }
2134 g_free(mm);
2135 }
2136
2137 static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
2138 abi_ulong end, abi_ulong flags)
2139 {
2140 struct vm_area_struct *vma;
2141
2142 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2143 return (-1);
2144
2145 vma->vma_start = start;
2146 vma->vma_end = end;
2147 vma->vma_flags = flags;
2148
2149 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2150 mm->mm_count++;
2151
2152 return (0);
2153 }
2154
2155 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2156 {
2157 return (QTAILQ_FIRST(&mm->mm_mmap));
2158 }
2159
2160 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2161 {
2162 return (QTAILQ_NEXT(vma, vma_link));
2163 }
2164
2165 static int vma_get_mapping_count(const struct mm_struct *mm)
2166 {
2167 return (mm->mm_count);
2168 }
2169
2170 /*
2171 * Calculate file (dump) size of given memory region.
2172 */
2173 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2174 {
2175 /* if we cannot even read the first page, skip it */
2176 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2177 return (0);
2178
2179 /*
2180 * Usually we don't dump executable pages as they contain
2181 * non-writable code that debugger can read directly from
2182 * target library etc. However, thread stacks are marked
2183 * also executable so we read in first page of given region
2184 * and check whether it contains elf header. If there is
2185 * no elf header, we dump it.
2186 */
2187 if (vma->vma_flags & PROT_EXEC) {
2188 char page[TARGET_PAGE_SIZE];
2189
2190 copy_from_user(page, vma->vma_start, sizeof (page));
2191 if ((page[EI_MAG0] == ELFMAG0) &&
2192 (page[EI_MAG1] == ELFMAG1) &&
2193 (page[EI_MAG2] == ELFMAG2) &&
2194 (page[EI_MAG3] == ELFMAG3)) {
2195 /*
2196 * Mappings are possibly from ELF binary. Don't dump
2197 * them.
2198 */
2199 return (0);
2200 }
2201 }
2202
2203 return (vma->vma_end - vma->vma_start);
2204 }
2205
2206 static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
2207 unsigned long flags)
2208 {
2209 struct mm_struct *mm = (struct mm_struct *)priv;
2210
2211 vma_add_mapping(mm, start, end, flags);
2212 return (0);
2213 }
2214
2215 static void fill_note(struct memelfnote *note, const char *name, int type,
2216 unsigned int sz, void *data)
2217 {
2218 unsigned int namesz;
2219
2220 namesz = strlen(name) + 1;
2221 note->name = name;
2222 note->namesz = namesz;
2223 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2224 note->type = type;
2225 note->datasz = sz;
2226 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2227
2228 note->data = data;
2229
2230 /*
2231 * We calculate rounded up note size here as specified by
2232 * ELF document.
2233 */
2234 note->notesz = sizeof (struct elf_note) +
2235 note->namesz_rounded + note->datasz_rounded;
2236 }
2237
2238 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2239 uint32_t flags)
2240 {
2241 (void) memset(elf, 0, sizeof(*elf));
2242
2243 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2244 elf->e_ident[EI_CLASS] = ELF_CLASS;
2245 elf->e_ident[EI_DATA] = ELF_DATA;
2246 elf->e_ident[EI_VERSION] = EV_CURRENT;
2247 elf->e_ident[EI_OSABI] = ELF_OSABI;
2248
2249 elf->e_type = ET_CORE;
2250 elf->e_machine = machine;
2251 elf->e_version = EV_CURRENT;
2252 elf->e_phoff = sizeof(struct elfhdr);
2253 elf->e_flags = flags;
2254 elf->e_ehsize = sizeof(struct elfhdr);
2255 elf->e_phentsize = sizeof(struct elf_phdr);
2256 elf->e_phnum = segs;
2257
2258 bswap_ehdr(elf);
2259 }
2260
2261 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2262 {
2263 phdr->p_type = PT_NOTE;
2264 phdr->p_offset = offset;
2265 phdr->p_vaddr = 0;
2266 phdr->p_paddr = 0;
2267 phdr->p_filesz = sz;
2268 phdr->p_memsz = 0;
2269 phdr->p_flags = 0;
2270 phdr->p_align = 0;
2271
2272 bswap_phdr(phdr, 1);
2273 }
2274
2275 static size_t note_size(const struct memelfnote *note)
2276 {
2277 return (note->notesz);
2278 }
2279
2280 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2281 const TaskState *ts, int signr)
2282 {
2283 (void) memset(prstatus, 0, sizeof (*prstatus));
2284 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2285 prstatus->pr_pid = ts->ts_tid;
2286 prstatus->pr_ppid = getppid();
2287 prstatus->pr_pgrp = getpgrp();
2288 prstatus->pr_sid = getsid(0);
2289
2290 bswap_prstatus(prstatus);
2291 }
2292
2293 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2294 {
2295 char *filename, *base_filename;
2296 unsigned int i, len;
2297
2298 (void) memset(psinfo, 0, sizeof (*psinfo));
2299
2300 len = ts->info->arg_end - ts->info->arg_start;
2301 if (len >= ELF_PRARGSZ)
2302 len = ELF_PRARGSZ - 1;
2303 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2304 return -EFAULT;
2305 for (i = 0; i < len; i++)
2306 if (psinfo->pr_psargs[i] == 0)
2307 psinfo->pr_psargs[i] = ' ';
2308 psinfo->pr_psargs[len] = 0;
2309
2310 psinfo->pr_pid = getpid();
2311 psinfo->pr_ppid = getppid();
2312 psinfo->pr_pgrp = getpgrp();
2313 psinfo->pr_sid = getsid(0);
2314 psinfo->pr_uid = getuid();
2315 psinfo->pr_gid = getgid();
2316
2317 filename = strdup(ts->bprm->filename);
2318 base_filename = strdup(basename(filename));
2319 (void) strncpy(psinfo->pr_fname, base_filename,
2320 sizeof(psinfo->pr_fname));
2321 free(base_filename);
2322 free(filename);
2323
2324 bswap_psinfo(psinfo);
2325 return (0);
2326 }
2327
2328 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2329 {
2330 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2331 elf_addr_t orig_auxv = auxv;
2332 void *ptr;
2333 int len = ts->info->auxv_len;
2334
2335 /*
2336 * Auxiliary vector is stored in target process stack. It contains
2337 * {type, value} pairs that we need to dump into note. This is not
2338 * strictly necessary but we do it here for sake of completeness.
2339 */
2340
2341 /* read in whole auxv vector and copy it to memelfnote */
2342 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2343 if (ptr != NULL) {
2344 fill_note(note, "CORE", NT_AUXV, len, ptr);
2345 unlock_user(ptr, auxv, len);
2346 }
2347 }
2348
2349 /*
2350 * Constructs name of coredump file. We have following convention
2351 * for the name:
2352 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2353 *
2354 * Returns 0 in case of success, -1 otherwise (errno is set).
2355 */
2356 static int core_dump_filename(const TaskState *ts, char *buf,
2357 size_t bufsize)
2358 {
2359 char timestamp[64];
2360 char *filename = NULL;
2361 char *base_filename = NULL;
2362 struct timeval tv;
2363 struct tm tm;
2364
2365 assert(bufsize >= PATH_MAX);
2366
2367 if (gettimeofday(&tv, NULL) < 0) {
2368 (void) fprintf(stderr, "unable to get current timestamp: %s",
2369 strerror(errno));
2370 return (-1);
2371 }
2372
2373 filename = strdup(ts->bprm->filename);
2374 base_filename = strdup(basename(filename));
2375 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2376 localtime_r(&tv.tv_sec, &tm));
2377 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2378 base_filename, timestamp, (int)getpid());
2379 free(base_filename);
2380 free(filename);
2381
2382 return (0);
2383 }
2384
2385 static int dump_write(int fd, const void *ptr, size_t size)
2386 {
2387 const char *bufp = (const char *)ptr;
2388 ssize_t bytes_written, bytes_left;
2389 struct rlimit dumpsize;
2390 off_t pos;
2391
2392 bytes_written = 0;
2393 getrlimit(RLIMIT_CORE, &dumpsize);
2394 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2395 if (errno == ESPIPE) { /* not a seekable stream */
2396 bytes_left = size;
2397 } else {
2398 return pos;
2399 }
2400 } else {
2401 if (dumpsize.rlim_cur <= pos) {
2402 return -1;
2403 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2404 bytes_left = size;
2405 } else {
2406 size_t limit_left=dumpsize.rlim_cur - pos;
2407 bytes_left = limit_left >= size ? size : limit_left ;
2408 }
2409 }
2410
2411 /*
2412 * In normal conditions, single write(2) should do but
2413 * in case of socket etc. this mechanism is more portable.
2414 */
2415 do {
2416 bytes_written = write(fd, bufp, bytes_left);
2417 if (bytes_written < 0) {
2418 if (errno == EINTR)
2419 continue;
2420 return (-1);
2421 } else if (bytes_written == 0) { /* eof */
2422 return (-1);
2423 }
2424 bufp += bytes_written;
2425 bytes_left -= bytes_written;
2426 } while (bytes_left > 0);
2427
2428 return (0);
2429 }
2430
2431 static int write_note(struct memelfnote *men, int fd)
2432 {
2433 struct elf_note en;
2434
2435 en.n_namesz = men->namesz;
2436 en.n_type = men->type;
2437 en.n_descsz = men->datasz;
2438
2439 bswap_note(&en);
2440
2441 if (dump_write(fd, &en, sizeof(en)) != 0)
2442 return (-1);
2443 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2444 return (-1);
2445 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2446 return (-1);
2447
2448 return (0);
2449 }
2450
2451 static void fill_thread_info(struct elf_note_info *info, const CPUState *env)
2452 {
2453 TaskState *ts = (TaskState *)env->opaque;
2454 struct elf_thread_status *ets;
2455
2456 ets = g_malloc0(sizeof (*ets));
2457 ets->num_notes = 1; /* only prstatus is dumped */
2458 fill_prstatus(&ets->prstatus, ts, 0);
2459 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2460 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2461 &ets->prstatus);
2462
2463 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2464
2465 info->notes_size += note_size(&ets->notes[0]);
2466 }
2467
2468 static int fill_note_info(struct elf_note_info *info,
2469 long signr, const CPUState *env)
2470 {
2471 #define NUMNOTES 3
2472 CPUState *cpu = NULL;
2473 TaskState *ts = (TaskState *)env->opaque;
2474 int i;
2475
2476 (void) memset(info, 0, sizeof (*info));
2477
2478 QTAILQ_INIT(&info->thread_list);
2479
2480 info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
2481 if (info->notes == NULL)
2482 return (-ENOMEM);
2483 info->prstatus = g_malloc0(sizeof (*info->prstatus));
2484 if (info->prstatus == NULL)
2485 return (-ENOMEM);
2486 info->psinfo = g_malloc0(sizeof (*info->psinfo));
2487 if (info->prstatus == NULL)
2488 return (-ENOMEM);
2489
2490 /*
2491 * First fill in status (and registers) of current thread
2492 * including process info & aux vector.
2493 */
2494 fill_prstatus(info->prstatus, ts, signr);
2495 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2496 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2497 sizeof (*info->prstatus), info->prstatus);
2498 fill_psinfo(info->psinfo, ts);
2499 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2500 sizeof (*info->psinfo), info->psinfo);
2501 fill_auxv_note(&info->notes[2], ts);
2502 info->numnote = 3;
2503
2504 info->notes_size = 0;
2505 for (i = 0; i < info->numnote; i++)
2506 info->notes_size += note_size(&info->notes[i]);
2507
2508 /* read and fill status of all threads */
2509 cpu_list_lock();
2510 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2511 if (cpu == thread_env)
2512 continue;
2513 fill_thread_info(info, cpu);
2514 }
2515 cpu_list_unlock();
2516
2517 return (0);
2518 }
2519
2520 static void free_note_info(struct elf_note_info *info)
2521 {
2522 struct elf_thread_status *ets;
2523
2524 while (!QTAILQ_EMPTY(&info->thread_list)) {
2525 ets = QTAILQ_FIRST(&info->thread_list);
2526 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2527 g_free(ets);
2528 }
2529
2530 g_free(info->prstatus);
2531 g_free(info->psinfo);
2532 g_free(info->notes);
2533 }
2534
2535 static int write_note_info(struct elf_note_info *info, int fd)
2536 {
2537 struct elf_thread_status *ets;
2538 int i, error = 0;
2539
2540 /* write prstatus, psinfo and auxv for current thread */
2541 for (i = 0; i < info->numnote; i++)
2542 if ((error = write_note(&info->notes[i], fd)) != 0)
2543 return (error);
2544
2545 /* write prstatus for each thread */
2546 for (ets = info->thread_list.tqh_first; ets != NULL;
2547 ets = ets->ets_link.tqe_next) {
2548 if ((error = write_note(&ets->notes[0], fd)) != 0)
2549 return (error);
2550 }
2551
2552 return (0);
2553 }
2554
2555 /*
2556 * Write out ELF coredump.
2557 *
2558 * See documentation of ELF object file format in:
2559 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2560 *
2561 * Coredump format in linux is following:
2562 *
2563 * 0 +----------------------+ \
2564 * | ELF header | ET_CORE |
2565 * +----------------------+ |
2566 * | ELF program headers | |--- headers
2567 * | - NOTE section | |
2568 * | - PT_LOAD sections | |
2569 * +----------------------+ /
2570 * | NOTEs: |
2571 * | - NT_PRSTATUS |
2572 * | - NT_PRSINFO |
2573 * | - NT_AUXV |
2574 * +----------------------+ <-- aligned to target page
2575 * | Process memory dump |
2576 * : :
2577 * . .
2578 * : :
2579 * | |
2580 * +----------------------+
2581 *
2582 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2583 * NT_PRSINFO -> struct elf_prpsinfo
2584 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2585 *
2586 * Format follows System V format as close as possible. Current
2587 * version limitations are as follows:
2588 * - no floating point registers are dumped
2589 *
2590 * Function returns 0 in case of success, negative errno otherwise.
2591 *
2592 * TODO: make this work also during runtime: it should be
2593 * possible to force coredump from running process and then
2594 * continue processing. For example qemu could set up SIGUSR2
2595 * handler (provided that target process haven't registered
2596 * handler for that) that does the dump when signal is received.
2597 */
2598 static int elf_core_dump(int signr, const CPUState *env)
2599 {
2600 const TaskState *ts = (const TaskState *)env->opaque;
2601 struct vm_area_struct *vma = NULL;
2602 char corefile[PATH_MAX];
2603 struct elf_note_info info;
2604 struct elfhdr elf;
2605 struct elf_phdr phdr;
2606 struct rlimit dumpsize;
2607 struct mm_struct *mm = NULL;
2608 off_t offset = 0, data_offset = 0;
2609 int segs = 0;
2610 int fd = -1;
2611
2612 errno = 0;
2613 getrlimit(RLIMIT_CORE, &dumpsize);
2614 if (dumpsize.rlim_cur == 0)
2615 return 0;
2616
2617 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2618 return (-errno);
2619
2620 if ((fd = open(corefile, O_WRONLY | O_CREAT,
2621 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2622 return (-errno);
2623
2624 /*
2625 * Walk through target process memory mappings and
2626 * set up structure containing this information. After
2627 * this point vma_xxx functions can be used.
2628 */
2629 if ((mm = vma_init()) == NULL)
2630 goto out;
2631
2632 walk_memory_regions(mm, vma_walker);
2633 segs = vma_get_mapping_count(mm);
2634
2635 /*
2636 * Construct valid coredump ELF header. We also
2637 * add one more segment for notes.
2638 */
2639 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2640 if (dump_write(fd, &elf, sizeof (elf)) != 0)
2641 goto out;
2642
2643 /* fill in in-memory version of notes */
2644 if (fill_note_info(&info, signr, env) < 0)
2645 goto out;
2646
2647 offset += sizeof (elf); /* elf header */
2648 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
2649
2650 /* write out notes program header */
2651 fill_elf_note_phdr(&phdr, info.notes_size, offset);
2652
2653 offset += info.notes_size;
2654 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2655 goto out;
2656
2657 /*
2658 * ELF specification wants data to start at page boundary so
2659 * we align it here.
2660 */
2661 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2662
2663 /*
2664 * Write program headers for memory regions mapped in
2665 * the target process.
2666 */
2667 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2668 (void) memset(&phdr, 0, sizeof (phdr));
2669
2670 phdr.p_type = PT_LOAD;
2671 phdr.p_offset = offset;
2672 phdr.p_vaddr = vma->vma_start;
2673 phdr.p_paddr = 0;
2674 phdr.p_filesz = vma_dump_size(vma);
2675 offset += phdr.p_filesz;
2676 phdr.p_memsz = vma->vma_end - vma->vma_start;
2677 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2678 if (vma->vma_flags & PROT_WRITE)
2679 phdr.p_flags |= PF_W;
2680 if (vma->vma_flags & PROT_EXEC)
2681 phdr.p_flags |= PF_X;
2682 phdr.p_align = ELF_EXEC_PAGESIZE;
2683
2684 bswap_phdr(&phdr, 1);
2685 dump_write(fd, &phdr, sizeof (phdr));
2686 }
2687
2688 /*
2689 * Next we write notes just after program headers. No
2690 * alignment needed here.
2691 */
2692 if (write_note_info(&info, fd) < 0)
2693 goto out;
2694
2695 /* align data to page boundary */
2696 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
2697 goto out;
2698
2699 /*
2700 * Finally we can dump process memory into corefile as well.
2701 */
2702 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2703 abi_ulong addr;
2704 abi_ulong end;
2705
2706 end = vma->vma_start + vma_dump_size(vma);
2707
2708 for (addr = vma->vma_start; addr < end;
2709 addr += TARGET_PAGE_SIZE) {
2710 char page[TARGET_PAGE_SIZE];
2711 int error;
2712
2713 /*
2714 * Read in page from target process memory and
2715 * write it to coredump file.
2716 */
2717 error = copy_from_user(page, addr, sizeof (page));
2718 if (error != 0) {
2719 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
2720 addr);
2721 errno = -error;
2722 goto out;
2723 }
2724 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
2725 goto out;
2726 }
2727 }
2728
2729 out:
2730 free_note_info(&info);
2731 if (mm != NULL)
2732 vma_delete(mm);
2733 (void) close(fd);
2734
2735 if (errno != 0)
2736 return (-errno);
2737 return (0);
2738 }
2739 #endif /* USE_ELF_CORE_DUMP */
2740
2741 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
2742 {
2743 init_thread(regs, infop);
2744 }