]> git.proxmox.com Git - qemu.git/blob - linux-user/main.c
Merge remote-tracking branch 'stefanha/block' into staging
[qemu.git] / linux-user / main.c
1 /*
2 * qemu user main
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include <stdlib.h>
20 #include <stdio.h>
21 #include <stdarg.h>
22 #include <string.h>
23 #include <errno.h>
24 #include <unistd.h>
25 #include <sys/mman.h>
26 #include <sys/syscall.h>
27 #include <sys/resource.h>
28
29 #include "qemu.h"
30 #include "qemu-common.h"
31 #include "qemu/cache-utils.h"
32 #include "cpu.h"
33 #include "tcg.h"
34 #include "qemu/timer.h"
35 #include "qemu/envlist.h"
36 #include "elf.h"
37
38 char *exec_path;
39
40 int singlestep;
41 const char *filename;
42 const char *argv0;
43 int gdbstub_port;
44 envlist_t *envlist;
45 const char *cpu_model;
46 unsigned long mmap_min_addr;
47 #if defined(CONFIG_USE_GUEST_BASE)
48 unsigned long guest_base;
49 int have_guest_base;
50 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64)
51 /*
52 * When running 32-on-64 we should make sure we can fit all of the possible
53 * guest address space into a contiguous chunk of virtual host memory.
54 *
55 * This way we will never overlap with our own libraries or binaries or stack
56 * or anything else that QEMU maps.
57 */
58 # ifdef TARGET_MIPS
59 /* MIPS only supports 31 bits of virtual address space for user space */
60 unsigned long reserved_va = 0x77000000;
61 # else
62 unsigned long reserved_va = 0xf7000000;
63 # endif
64 #else
65 unsigned long reserved_va;
66 #endif
67 #endif
68
69 static void usage(void);
70
71 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
72 const char *qemu_uname_release = CONFIG_UNAME_RELEASE;
73
74 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
75 we allocate a bigger stack. Need a better solution, for example
76 by remapping the process stack directly at the right place */
77 unsigned long guest_stack_size = 8 * 1024 * 1024UL;
78
79 void gemu_log(const char *fmt, ...)
80 {
81 va_list ap;
82
83 va_start(ap, fmt);
84 vfprintf(stderr, fmt, ap);
85 va_end(ap);
86 }
87
88 #if defined(TARGET_I386)
89 int cpu_get_pic_interrupt(CPUX86State *env)
90 {
91 return -1;
92 }
93 #endif
94
95 /***********************************************************/
96 /* Helper routines for implementing atomic operations. */
97
98 /* To implement exclusive operations we force all cpus to syncronise.
99 We don't require a full sync, only that no cpus are executing guest code.
100 The alternative is to map target atomic ops onto host equivalents,
101 which requires quite a lot of per host/target work. */
102 static pthread_mutex_t cpu_list_mutex = PTHREAD_MUTEX_INITIALIZER;
103 static pthread_mutex_t exclusive_lock = PTHREAD_MUTEX_INITIALIZER;
104 static pthread_cond_t exclusive_cond = PTHREAD_COND_INITIALIZER;
105 static pthread_cond_t exclusive_resume = PTHREAD_COND_INITIALIZER;
106 static int pending_cpus;
107
108 /* Make sure everything is in a consistent state for calling fork(). */
109 void fork_start(void)
110 {
111 pthread_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
112 pthread_mutex_lock(&exclusive_lock);
113 mmap_fork_start();
114 }
115
116 void fork_end(int child)
117 {
118 mmap_fork_end(child);
119 if (child) {
120 /* Child processes created by fork() only have a single thread.
121 Discard information about the parent threads. */
122 first_cpu = thread_cpu;
123 first_cpu->next_cpu = NULL;
124 pending_cpus = 0;
125 pthread_mutex_init(&exclusive_lock, NULL);
126 pthread_mutex_init(&cpu_list_mutex, NULL);
127 pthread_cond_init(&exclusive_cond, NULL);
128 pthread_cond_init(&exclusive_resume, NULL);
129 pthread_mutex_init(&tcg_ctx.tb_ctx.tb_lock, NULL);
130 gdbserver_fork((CPUArchState *)thread_cpu->env_ptr);
131 } else {
132 pthread_mutex_unlock(&exclusive_lock);
133 pthread_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
134 }
135 }
136
137 /* Wait for pending exclusive operations to complete. The exclusive lock
138 must be held. */
139 static inline void exclusive_idle(void)
140 {
141 while (pending_cpus) {
142 pthread_cond_wait(&exclusive_resume, &exclusive_lock);
143 }
144 }
145
146 /* Start an exclusive operation.
147 Must only be called from outside cpu_arm_exec. */
148 static inline void start_exclusive(void)
149 {
150 CPUState *other_cpu;
151
152 pthread_mutex_lock(&exclusive_lock);
153 exclusive_idle();
154
155 pending_cpus = 1;
156 /* Make all other cpus stop executing. */
157 for (other_cpu = first_cpu; other_cpu; other_cpu = other_cpu->next_cpu) {
158 if (other_cpu->running) {
159 pending_cpus++;
160 cpu_exit(other_cpu);
161 }
162 }
163 if (pending_cpus > 1) {
164 pthread_cond_wait(&exclusive_cond, &exclusive_lock);
165 }
166 }
167
168 /* Finish an exclusive operation. */
169 static inline void end_exclusive(void)
170 {
171 pending_cpus = 0;
172 pthread_cond_broadcast(&exclusive_resume);
173 pthread_mutex_unlock(&exclusive_lock);
174 }
175
176 /* Wait for exclusive ops to finish, and begin cpu execution. */
177 static inline void cpu_exec_start(CPUState *cpu)
178 {
179 pthread_mutex_lock(&exclusive_lock);
180 exclusive_idle();
181 cpu->running = true;
182 pthread_mutex_unlock(&exclusive_lock);
183 }
184
185 /* Mark cpu as not executing, and release pending exclusive ops. */
186 static inline void cpu_exec_end(CPUState *cpu)
187 {
188 pthread_mutex_lock(&exclusive_lock);
189 cpu->running = false;
190 if (pending_cpus > 1) {
191 pending_cpus--;
192 if (pending_cpus == 1) {
193 pthread_cond_signal(&exclusive_cond);
194 }
195 }
196 exclusive_idle();
197 pthread_mutex_unlock(&exclusive_lock);
198 }
199
200 void cpu_list_lock(void)
201 {
202 pthread_mutex_lock(&cpu_list_mutex);
203 }
204
205 void cpu_list_unlock(void)
206 {
207 pthread_mutex_unlock(&cpu_list_mutex);
208 }
209
210
211 #ifdef TARGET_I386
212 /***********************************************************/
213 /* CPUX86 core interface */
214
215 void cpu_smm_update(CPUX86State *env)
216 {
217 }
218
219 uint64_t cpu_get_tsc(CPUX86State *env)
220 {
221 return cpu_get_real_ticks();
222 }
223
224 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
225 int flags)
226 {
227 unsigned int e1, e2;
228 uint32_t *p;
229 e1 = (addr << 16) | (limit & 0xffff);
230 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
231 e2 |= flags;
232 p = ptr;
233 p[0] = tswap32(e1);
234 p[1] = tswap32(e2);
235 }
236
237 static uint64_t *idt_table;
238 #ifdef TARGET_X86_64
239 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
240 uint64_t addr, unsigned int sel)
241 {
242 uint32_t *p, e1, e2;
243 e1 = (addr & 0xffff) | (sel << 16);
244 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
245 p = ptr;
246 p[0] = tswap32(e1);
247 p[1] = tswap32(e2);
248 p[2] = tswap32(addr >> 32);
249 p[3] = 0;
250 }
251 /* only dpl matters as we do only user space emulation */
252 static void set_idt(int n, unsigned int dpl)
253 {
254 set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
255 }
256 #else
257 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
258 uint32_t addr, unsigned int sel)
259 {
260 uint32_t *p, e1, e2;
261 e1 = (addr & 0xffff) | (sel << 16);
262 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
263 p = ptr;
264 p[0] = tswap32(e1);
265 p[1] = tswap32(e2);
266 }
267
268 /* only dpl matters as we do only user space emulation */
269 static void set_idt(int n, unsigned int dpl)
270 {
271 set_gate(idt_table + n, 0, dpl, 0, 0);
272 }
273 #endif
274
275 void cpu_loop(CPUX86State *env)
276 {
277 CPUState *cs = CPU(x86_env_get_cpu(env));
278 int trapnr;
279 abi_ulong pc;
280 target_siginfo_t info;
281
282 for(;;) {
283 trapnr = cpu_x86_exec(env);
284 switch(trapnr) {
285 case 0x80:
286 /* linux syscall from int $0x80 */
287 env->regs[R_EAX] = do_syscall(env,
288 env->regs[R_EAX],
289 env->regs[R_EBX],
290 env->regs[R_ECX],
291 env->regs[R_EDX],
292 env->regs[R_ESI],
293 env->regs[R_EDI],
294 env->regs[R_EBP],
295 0, 0);
296 break;
297 #ifndef TARGET_ABI32
298 case EXCP_SYSCALL:
299 /* linux syscall from syscall instruction */
300 env->regs[R_EAX] = do_syscall(env,
301 env->regs[R_EAX],
302 env->regs[R_EDI],
303 env->regs[R_ESI],
304 env->regs[R_EDX],
305 env->regs[10],
306 env->regs[8],
307 env->regs[9],
308 0, 0);
309 env->eip = env->exception_next_eip;
310 break;
311 #endif
312 case EXCP0B_NOSEG:
313 case EXCP0C_STACK:
314 info.si_signo = SIGBUS;
315 info.si_errno = 0;
316 info.si_code = TARGET_SI_KERNEL;
317 info._sifields._sigfault._addr = 0;
318 queue_signal(env, info.si_signo, &info);
319 break;
320 case EXCP0D_GPF:
321 /* XXX: potential problem if ABI32 */
322 #ifndef TARGET_X86_64
323 if (env->eflags & VM_MASK) {
324 handle_vm86_fault(env);
325 } else
326 #endif
327 {
328 info.si_signo = SIGSEGV;
329 info.si_errno = 0;
330 info.si_code = TARGET_SI_KERNEL;
331 info._sifields._sigfault._addr = 0;
332 queue_signal(env, info.si_signo, &info);
333 }
334 break;
335 case EXCP0E_PAGE:
336 info.si_signo = SIGSEGV;
337 info.si_errno = 0;
338 if (!(env->error_code & 1))
339 info.si_code = TARGET_SEGV_MAPERR;
340 else
341 info.si_code = TARGET_SEGV_ACCERR;
342 info._sifields._sigfault._addr = env->cr[2];
343 queue_signal(env, info.si_signo, &info);
344 break;
345 case EXCP00_DIVZ:
346 #ifndef TARGET_X86_64
347 if (env->eflags & VM_MASK) {
348 handle_vm86_trap(env, trapnr);
349 } else
350 #endif
351 {
352 /* division by zero */
353 info.si_signo = SIGFPE;
354 info.si_errno = 0;
355 info.si_code = TARGET_FPE_INTDIV;
356 info._sifields._sigfault._addr = env->eip;
357 queue_signal(env, info.si_signo, &info);
358 }
359 break;
360 case EXCP01_DB:
361 case EXCP03_INT3:
362 #ifndef TARGET_X86_64
363 if (env->eflags & VM_MASK) {
364 handle_vm86_trap(env, trapnr);
365 } else
366 #endif
367 {
368 info.si_signo = SIGTRAP;
369 info.si_errno = 0;
370 if (trapnr == EXCP01_DB) {
371 info.si_code = TARGET_TRAP_BRKPT;
372 info._sifields._sigfault._addr = env->eip;
373 } else {
374 info.si_code = TARGET_SI_KERNEL;
375 info._sifields._sigfault._addr = 0;
376 }
377 queue_signal(env, info.si_signo, &info);
378 }
379 break;
380 case EXCP04_INTO:
381 case EXCP05_BOUND:
382 #ifndef TARGET_X86_64
383 if (env->eflags & VM_MASK) {
384 handle_vm86_trap(env, trapnr);
385 } else
386 #endif
387 {
388 info.si_signo = SIGSEGV;
389 info.si_errno = 0;
390 info.si_code = TARGET_SI_KERNEL;
391 info._sifields._sigfault._addr = 0;
392 queue_signal(env, info.si_signo, &info);
393 }
394 break;
395 case EXCP06_ILLOP:
396 info.si_signo = SIGILL;
397 info.si_errno = 0;
398 info.si_code = TARGET_ILL_ILLOPN;
399 info._sifields._sigfault._addr = env->eip;
400 queue_signal(env, info.si_signo, &info);
401 break;
402 case EXCP_INTERRUPT:
403 /* just indicate that signals should be handled asap */
404 break;
405 case EXCP_DEBUG:
406 {
407 int sig;
408
409 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
410 if (sig)
411 {
412 info.si_signo = sig;
413 info.si_errno = 0;
414 info.si_code = TARGET_TRAP_BRKPT;
415 queue_signal(env, info.si_signo, &info);
416 }
417 }
418 break;
419 default:
420 pc = env->segs[R_CS].base + env->eip;
421 fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
422 (long)pc, trapnr);
423 abort();
424 }
425 process_pending_signals(env);
426 }
427 }
428 #endif
429
430 #ifdef TARGET_ARM
431
432 #define get_user_code_u32(x, gaddr, doswap) \
433 ({ abi_long __r = get_user_u32((x), (gaddr)); \
434 if (!__r && (doswap)) { \
435 (x) = bswap32(x); \
436 } \
437 __r; \
438 })
439
440 #define get_user_code_u16(x, gaddr, doswap) \
441 ({ abi_long __r = get_user_u16((x), (gaddr)); \
442 if (!__r && (doswap)) { \
443 (x) = bswap16(x); \
444 } \
445 __r; \
446 })
447
448 /*
449 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
450 * Input:
451 * r0 = pointer to oldval
452 * r1 = pointer to newval
453 * r2 = pointer to target value
454 *
455 * Output:
456 * r0 = 0 if *ptr was changed, non-0 if no exchange happened
457 * C set if *ptr was changed, clear if no exchange happened
458 *
459 * Note segv's in kernel helpers are a bit tricky, we can set the
460 * data address sensibly but the PC address is just the entry point.
461 */
462 static void arm_kernel_cmpxchg64_helper(CPUARMState *env)
463 {
464 uint64_t oldval, newval, val;
465 uint32_t addr, cpsr;
466 target_siginfo_t info;
467
468 /* Based on the 32 bit code in do_kernel_trap */
469
470 /* XXX: This only works between threads, not between processes.
471 It's probably possible to implement this with native host
472 operations. However things like ldrex/strex are much harder so
473 there's not much point trying. */
474 start_exclusive();
475 cpsr = cpsr_read(env);
476 addr = env->regs[2];
477
478 if (get_user_u64(oldval, env->regs[0])) {
479 env->cp15.c6_data = env->regs[0];
480 goto segv;
481 };
482
483 if (get_user_u64(newval, env->regs[1])) {
484 env->cp15.c6_data = env->regs[1];
485 goto segv;
486 };
487
488 if (get_user_u64(val, addr)) {
489 env->cp15.c6_data = addr;
490 goto segv;
491 }
492
493 if (val == oldval) {
494 val = newval;
495
496 if (put_user_u64(val, addr)) {
497 env->cp15.c6_data = addr;
498 goto segv;
499 };
500
501 env->regs[0] = 0;
502 cpsr |= CPSR_C;
503 } else {
504 env->regs[0] = -1;
505 cpsr &= ~CPSR_C;
506 }
507 cpsr_write(env, cpsr, CPSR_C);
508 end_exclusive();
509 return;
510
511 segv:
512 end_exclusive();
513 /* We get the PC of the entry address - which is as good as anything,
514 on a real kernel what you get depends on which mode it uses. */
515 info.si_signo = SIGSEGV;
516 info.si_errno = 0;
517 /* XXX: check env->error_code */
518 info.si_code = TARGET_SEGV_MAPERR;
519 info._sifields._sigfault._addr = env->cp15.c6_data;
520 queue_signal(env, info.si_signo, &info);
521
522 end_exclusive();
523 }
524
525 /* Handle a jump to the kernel code page. */
526 static int
527 do_kernel_trap(CPUARMState *env)
528 {
529 uint32_t addr;
530 uint32_t cpsr;
531 uint32_t val;
532
533 switch (env->regs[15]) {
534 case 0xffff0fa0: /* __kernel_memory_barrier */
535 /* ??? No-op. Will need to do better for SMP. */
536 break;
537 case 0xffff0fc0: /* __kernel_cmpxchg */
538 /* XXX: This only works between threads, not between processes.
539 It's probably possible to implement this with native host
540 operations. However things like ldrex/strex are much harder so
541 there's not much point trying. */
542 start_exclusive();
543 cpsr = cpsr_read(env);
544 addr = env->regs[2];
545 /* FIXME: This should SEGV if the access fails. */
546 if (get_user_u32(val, addr))
547 val = ~env->regs[0];
548 if (val == env->regs[0]) {
549 val = env->regs[1];
550 /* FIXME: Check for segfaults. */
551 put_user_u32(val, addr);
552 env->regs[0] = 0;
553 cpsr |= CPSR_C;
554 } else {
555 env->regs[0] = -1;
556 cpsr &= ~CPSR_C;
557 }
558 cpsr_write(env, cpsr, CPSR_C);
559 end_exclusive();
560 break;
561 case 0xffff0fe0: /* __kernel_get_tls */
562 env->regs[0] = env->cp15.c13_tls2;
563 break;
564 case 0xffff0f60: /* __kernel_cmpxchg64 */
565 arm_kernel_cmpxchg64_helper(env);
566 break;
567
568 default:
569 return 1;
570 }
571 /* Jump back to the caller. */
572 addr = env->regs[14];
573 if (addr & 1) {
574 env->thumb = 1;
575 addr &= ~1;
576 }
577 env->regs[15] = addr;
578
579 return 0;
580 }
581
582 static int do_strex(CPUARMState *env)
583 {
584 uint32_t val;
585 int size;
586 int rc = 1;
587 int segv = 0;
588 uint32_t addr;
589 start_exclusive();
590 addr = env->exclusive_addr;
591 if (addr != env->exclusive_test) {
592 goto fail;
593 }
594 size = env->exclusive_info & 0xf;
595 switch (size) {
596 case 0:
597 segv = get_user_u8(val, addr);
598 break;
599 case 1:
600 segv = get_user_u16(val, addr);
601 break;
602 case 2:
603 case 3:
604 segv = get_user_u32(val, addr);
605 break;
606 default:
607 abort();
608 }
609 if (segv) {
610 env->cp15.c6_data = addr;
611 goto done;
612 }
613 if (val != env->exclusive_val) {
614 goto fail;
615 }
616 if (size == 3) {
617 segv = get_user_u32(val, addr + 4);
618 if (segv) {
619 env->cp15.c6_data = addr + 4;
620 goto done;
621 }
622 if (val != env->exclusive_high) {
623 goto fail;
624 }
625 }
626 val = env->regs[(env->exclusive_info >> 8) & 0xf];
627 switch (size) {
628 case 0:
629 segv = put_user_u8(val, addr);
630 break;
631 case 1:
632 segv = put_user_u16(val, addr);
633 break;
634 case 2:
635 case 3:
636 segv = put_user_u32(val, addr);
637 break;
638 }
639 if (segv) {
640 env->cp15.c6_data = addr;
641 goto done;
642 }
643 if (size == 3) {
644 val = env->regs[(env->exclusive_info >> 12) & 0xf];
645 segv = put_user_u32(val, addr + 4);
646 if (segv) {
647 env->cp15.c6_data = addr + 4;
648 goto done;
649 }
650 }
651 rc = 0;
652 fail:
653 env->regs[15] += 4;
654 env->regs[(env->exclusive_info >> 4) & 0xf] = rc;
655 done:
656 end_exclusive();
657 return segv;
658 }
659
660 void cpu_loop(CPUARMState *env)
661 {
662 CPUState *cs = CPU(arm_env_get_cpu(env));
663 int trapnr;
664 unsigned int n, insn;
665 target_siginfo_t info;
666 uint32_t addr;
667
668 for(;;) {
669 cpu_exec_start(cs);
670 trapnr = cpu_arm_exec(env);
671 cpu_exec_end(cs);
672 switch(trapnr) {
673 case EXCP_UDEF:
674 {
675 TaskState *ts = env->opaque;
676 uint32_t opcode;
677 int rc;
678
679 /* we handle the FPU emulation here, as Linux */
680 /* we get the opcode */
681 /* FIXME - what to do if get_user() fails? */
682 get_user_code_u32(opcode, env->regs[15], env->bswap_code);
683
684 rc = EmulateAll(opcode, &ts->fpa, env);
685 if (rc == 0) { /* illegal instruction */
686 info.si_signo = SIGILL;
687 info.si_errno = 0;
688 info.si_code = TARGET_ILL_ILLOPN;
689 info._sifields._sigfault._addr = env->regs[15];
690 queue_signal(env, info.si_signo, &info);
691 } else if (rc < 0) { /* FP exception */
692 int arm_fpe=0;
693
694 /* translate softfloat flags to FPSR flags */
695 if (-rc & float_flag_invalid)
696 arm_fpe |= BIT_IOC;
697 if (-rc & float_flag_divbyzero)
698 arm_fpe |= BIT_DZC;
699 if (-rc & float_flag_overflow)
700 arm_fpe |= BIT_OFC;
701 if (-rc & float_flag_underflow)
702 arm_fpe |= BIT_UFC;
703 if (-rc & float_flag_inexact)
704 arm_fpe |= BIT_IXC;
705
706 FPSR fpsr = ts->fpa.fpsr;
707 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
708
709 if (fpsr & (arm_fpe << 16)) { /* exception enabled? */
710 info.si_signo = SIGFPE;
711 info.si_errno = 0;
712
713 /* ordered by priority, least first */
714 if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES;
715 if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND;
716 if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF;
717 if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV;
718 if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV;
719
720 info._sifields._sigfault._addr = env->regs[15];
721 queue_signal(env, info.si_signo, &info);
722 } else {
723 env->regs[15] += 4;
724 }
725
726 /* accumulate unenabled exceptions */
727 if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC))
728 fpsr |= BIT_IXC;
729 if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC))
730 fpsr |= BIT_UFC;
731 if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC))
732 fpsr |= BIT_OFC;
733 if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC))
734 fpsr |= BIT_DZC;
735 if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC))
736 fpsr |= BIT_IOC;
737 ts->fpa.fpsr=fpsr;
738 } else { /* everything OK */
739 /* increment PC */
740 env->regs[15] += 4;
741 }
742 }
743 break;
744 case EXCP_SWI:
745 case EXCP_BKPT:
746 {
747 env->eabi = 1;
748 /* system call */
749 if (trapnr == EXCP_BKPT) {
750 if (env->thumb) {
751 /* FIXME - what to do if get_user() fails? */
752 get_user_code_u16(insn, env->regs[15], env->bswap_code);
753 n = insn & 0xff;
754 env->regs[15] += 2;
755 } else {
756 /* FIXME - what to do if get_user() fails? */
757 get_user_code_u32(insn, env->regs[15], env->bswap_code);
758 n = (insn & 0xf) | ((insn >> 4) & 0xff0);
759 env->regs[15] += 4;
760 }
761 } else {
762 if (env->thumb) {
763 /* FIXME - what to do if get_user() fails? */
764 get_user_code_u16(insn, env->regs[15] - 2,
765 env->bswap_code);
766 n = insn & 0xff;
767 } else {
768 /* FIXME - what to do if get_user() fails? */
769 get_user_code_u32(insn, env->regs[15] - 4,
770 env->bswap_code);
771 n = insn & 0xffffff;
772 }
773 }
774
775 if (n == ARM_NR_cacheflush) {
776 /* nop */
777 } else if (n == ARM_NR_semihosting
778 || n == ARM_NR_thumb_semihosting) {
779 env->regs[0] = do_arm_semihosting (env);
780 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) {
781 /* linux syscall */
782 if (env->thumb || n == 0) {
783 n = env->regs[7];
784 } else {
785 n -= ARM_SYSCALL_BASE;
786 env->eabi = 0;
787 }
788 if ( n > ARM_NR_BASE) {
789 switch (n) {
790 case ARM_NR_cacheflush:
791 /* nop */
792 break;
793 case ARM_NR_set_tls:
794 cpu_set_tls(env, env->regs[0]);
795 env->regs[0] = 0;
796 break;
797 default:
798 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n",
799 n);
800 env->regs[0] = -TARGET_ENOSYS;
801 break;
802 }
803 } else {
804 env->regs[0] = do_syscall(env,
805 n,
806 env->regs[0],
807 env->regs[1],
808 env->regs[2],
809 env->regs[3],
810 env->regs[4],
811 env->regs[5],
812 0, 0);
813 }
814 } else {
815 goto error;
816 }
817 }
818 break;
819 case EXCP_INTERRUPT:
820 /* just indicate that signals should be handled asap */
821 break;
822 case EXCP_PREFETCH_ABORT:
823 addr = env->cp15.c6_insn;
824 goto do_segv;
825 case EXCP_DATA_ABORT:
826 addr = env->cp15.c6_data;
827 do_segv:
828 {
829 info.si_signo = SIGSEGV;
830 info.si_errno = 0;
831 /* XXX: check env->error_code */
832 info.si_code = TARGET_SEGV_MAPERR;
833 info._sifields._sigfault._addr = addr;
834 queue_signal(env, info.si_signo, &info);
835 }
836 break;
837 case EXCP_DEBUG:
838 {
839 int sig;
840
841 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
842 if (sig)
843 {
844 info.si_signo = sig;
845 info.si_errno = 0;
846 info.si_code = TARGET_TRAP_BRKPT;
847 queue_signal(env, info.si_signo, &info);
848 }
849 }
850 break;
851 case EXCP_KERNEL_TRAP:
852 if (do_kernel_trap(env))
853 goto error;
854 break;
855 case EXCP_STREX:
856 if (do_strex(env)) {
857 addr = env->cp15.c6_data;
858 goto do_segv;
859 }
860 break;
861 default:
862 error:
863 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
864 trapnr);
865 cpu_dump_state(cs, stderr, fprintf, 0);
866 abort();
867 }
868 process_pending_signals(env);
869 }
870 }
871
872 #endif
873
874 #ifdef TARGET_UNICORE32
875
876 void cpu_loop(CPUUniCore32State *env)
877 {
878 CPUState *cs = CPU(uc32_env_get_cpu(env));
879 int trapnr;
880 unsigned int n, insn;
881 target_siginfo_t info;
882
883 for (;;) {
884 cpu_exec_start(cs);
885 trapnr = uc32_cpu_exec(env);
886 cpu_exec_end(cs);
887 switch (trapnr) {
888 case UC32_EXCP_PRIV:
889 {
890 /* system call */
891 get_user_u32(insn, env->regs[31] - 4);
892 n = insn & 0xffffff;
893
894 if (n >= UC32_SYSCALL_BASE) {
895 /* linux syscall */
896 n -= UC32_SYSCALL_BASE;
897 if (n == UC32_SYSCALL_NR_set_tls) {
898 cpu_set_tls(env, env->regs[0]);
899 env->regs[0] = 0;
900 } else {
901 env->regs[0] = do_syscall(env,
902 n,
903 env->regs[0],
904 env->regs[1],
905 env->regs[2],
906 env->regs[3],
907 env->regs[4],
908 env->regs[5],
909 0, 0);
910 }
911 } else {
912 goto error;
913 }
914 }
915 break;
916 case UC32_EXCP_DTRAP:
917 case UC32_EXCP_ITRAP:
918 info.si_signo = SIGSEGV;
919 info.si_errno = 0;
920 /* XXX: check env->error_code */
921 info.si_code = TARGET_SEGV_MAPERR;
922 info._sifields._sigfault._addr = env->cp0.c4_faultaddr;
923 queue_signal(env, info.si_signo, &info);
924 break;
925 case EXCP_INTERRUPT:
926 /* just indicate that signals should be handled asap */
927 break;
928 case EXCP_DEBUG:
929 {
930 int sig;
931
932 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
933 if (sig) {
934 info.si_signo = sig;
935 info.si_errno = 0;
936 info.si_code = TARGET_TRAP_BRKPT;
937 queue_signal(env, info.si_signo, &info);
938 }
939 }
940 break;
941 default:
942 goto error;
943 }
944 process_pending_signals(env);
945 }
946
947 error:
948 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
949 cpu_dump_state(cs, stderr, fprintf, 0);
950 abort();
951 }
952 #endif
953
954 #ifdef TARGET_SPARC
955 #define SPARC64_STACK_BIAS 2047
956
957 //#define DEBUG_WIN
958
959 /* WARNING: dealing with register windows _is_ complicated. More info
960 can be found at http://www.sics.se/~psm/sparcstack.html */
961 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
962 {
963 index = (index + cwp * 16) % (16 * env->nwindows);
964 /* wrap handling : if cwp is on the last window, then we use the
965 registers 'after' the end */
966 if (index < 8 && env->cwp == env->nwindows - 1)
967 index += 16 * env->nwindows;
968 return index;
969 }
970
971 /* save the register window 'cwp1' */
972 static inline void save_window_offset(CPUSPARCState *env, int cwp1)
973 {
974 unsigned int i;
975 abi_ulong sp_ptr;
976
977 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
978 #ifdef TARGET_SPARC64
979 if (sp_ptr & 3)
980 sp_ptr += SPARC64_STACK_BIAS;
981 #endif
982 #if defined(DEBUG_WIN)
983 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
984 sp_ptr, cwp1);
985 #endif
986 for(i = 0; i < 16; i++) {
987 /* FIXME - what to do if put_user() fails? */
988 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
989 sp_ptr += sizeof(abi_ulong);
990 }
991 }
992
993 static void save_window(CPUSPARCState *env)
994 {
995 #ifndef TARGET_SPARC64
996 unsigned int new_wim;
997 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
998 ((1LL << env->nwindows) - 1);
999 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
1000 env->wim = new_wim;
1001 #else
1002 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
1003 env->cansave++;
1004 env->canrestore--;
1005 #endif
1006 }
1007
1008 static void restore_window(CPUSPARCState *env)
1009 {
1010 #ifndef TARGET_SPARC64
1011 unsigned int new_wim;
1012 #endif
1013 unsigned int i, cwp1;
1014 abi_ulong sp_ptr;
1015
1016 #ifndef TARGET_SPARC64
1017 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
1018 ((1LL << env->nwindows) - 1);
1019 #endif
1020
1021 /* restore the invalid window */
1022 cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1023 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
1024 #ifdef TARGET_SPARC64
1025 if (sp_ptr & 3)
1026 sp_ptr += SPARC64_STACK_BIAS;
1027 #endif
1028 #if defined(DEBUG_WIN)
1029 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
1030 sp_ptr, cwp1);
1031 #endif
1032 for(i = 0; i < 16; i++) {
1033 /* FIXME - what to do if get_user() fails? */
1034 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
1035 sp_ptr += sizeof(abi_ulong);
1036 }
1037 #ifdef TARGET_SPARC64
1038 env->canrestore++;
1039 if (env->cleanwin < env->nwindows - 1)
1040 env->cleanwin++;
1041 env->cansave--;
1042 #else
1043 env->wim = new_wim;
1044 #endif
1045 }
1046
1047 static void flush_windows(CPUSPARCState *env)
1048 {
1049 int offset, cwp1;
1050
1051 offset = 1;
1052 for(;;) {
1053 /* if restore would invoke restore_window(), then we can stop */
1054 cwp1 = cpu_cwp_inc(env, env->cwp + offset);
1055 #ifndef TARGET_SPARC64
1056 if (env->wim & (1 << cwp1))
1057 break;
1058 #else
1059 if (env->canrestore == 0)
1060 break;
1061 env->cansave++;
1062 env->canrestore--;
1063 #endif
1064 save_window_offset(env, cwp1);
1065 offset++;
1066 }
1067 cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1068 #ifndef TARGET_SPARC64
1069 /* set wim so that restore will reload the registers */
1070 env->wim = 1 << cwp1;
1071 #endif
1072 #if defined(DEBUG_WIN)
1073 printf("flush_windows: nb=%d\n", offset - 1);
1074 #endif
1075 }
1076
1077 void cpu_loop (CPUSPARCState *env)
1078 {
1079 CPUState *cs = CPU(sparc_env_get_cpu(env));
1080 int trapnr;
1081 abi_long ret;
1082 target_siginfo_t info;
1083
1084 while (1) {
1085 trapnr = cpu_sparc_exec (env);
1086
1087 /* Compute PSR before exposing state. */
1088 if (env->cc_op != CC_OP_FLAGS) {
1089 cpu_get_psr(env);
1090 }
1091
1092 switch (trapnr) {
1093 #ifndef TARGET_SPARC64
1094 case 0x88:
1095 case 0x90:
1096 #else
1097 case 0x110:
1098 case 0x16d:
1099 #endif
1100 ret = do_syscall (env, env->gregs[1],
1101 env->regwptr[0], env->regwptr[1],
1102 env->regwptr[2], env->regwptr[3],
1103 env->regwptr[4], env->regwptr[5],
1104 0, 0);
1105 if ((abi_ulong)ret >= (abi_ulong)(-515)) {
1106 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1107 env->xcc |= PSR_CARRY;
1108 #else
1109 env->psr |= PSR_CARRY;
1110 #endif
1111 ret = -ret;
1112 } else {
1113 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1114 env->xcc &= ~PSR_CARRY;
1115 #else
1116 env->psr &= ~PSR_CARRY;
1117 #endif
1118 }
1119 env->regwptr[0] = ret;
1120 /* next instruction */
1121 env->pc = env->npc;
1122 env->npc = env->npc + 4;
1123 break;
1124 case 0x83: /* flush windows */
1125 #ifdef TARGET_ABI32
1126 case 0x103:
1127 #endif
1128 flush_windows(env);
1129 /* next instruction */
1130 env->pc = env->npc;
1131 env->npc = env->npc + 4;
1132 break;
1133 #ifndef TARGET_SPARC64
1134 case TT_WIN_OVF: /* window overflow */
1135 save_window(env);
1136 break;
1137 case TT_WIN_UNF: /* window underflow */
1138 restore_window(env);
1139 break;
1140 case TT_TFAULT:
1141 case TT_DFAULT:
1142 {
1143 info.si_signo = TARGET_SIGSEGV;
1144 info.si_errno = 0;
1145 /* XXX: check env->error_code */
1146 info.si_code = TARGET_SEGV_MAPERR;
1147 info._sifields._sigfault._addr = env->mmuregs[4];
1148 queue_signal(env, info.si_signo, &info);
1149 }
1150 break;
1151 #else
1152 case TT_SPILL: /* window overflow */
1153 save_window(env);
1154 break;
1155 case TT_FILL: /* window underflow */
1156 restore_window(env);
1157 break;
1158 case TT_TFAULT:
1159 case TT_DFAULT:
1160 {
1161 info.si_signo = TARGET_SIGSEGV;
1162 info.si_errno = 0;
1163 /* XXX: check env->error_code */
1164 info.si_code = TARGET_SEGV_MAPERR;
1165 if (trapnr == TT_DFAULT)
1166 info._sifields._sigfault._addr = env->dmmuregs[4];
1167 else
1168 info._sifields._sigfault._addr = cpu_tsptr(env)->tpc;
1169 queue_signal(env, info.si_signo, &info);
1170 }
1171 break;
1172 #ifndef TARGET_ABI32
1173 case 0x16e:
1174 flush_windows(env);
1175 sparc64_get_context(env);
1176 break;
1177 case 0x16f:
1178 flush_windows(env);
1179 sparc64_set_context(env);
1180 break;
1181 #endif
1182 #endif
1183 case EXCP_INTERRUPT:
1184 /* just indicate that signals should be handled asap */
1185 break;
1186 case TT_ILL_INSN:
1187 {
1188 info.si_signo = TARGET_SIGILL;
1189 info.si_errno = 0;
1190 info.si_code = TARGET_ILL_ILLOPC;
1191 info._sifields._sigfault._addr = env->pc;
1192 queue_signal(env, info.si_signo, &info);
1193 }
1194 break;
1195 case EXCP_DEBUG:
1196 {
1197 int sig;
1198
1199 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
1200 if (sig)
1201 {
1202 info.si_signo = sig;
1203 info.si_errno = 0;
1204 info.si_code = TARGET_TRAP_BRKPT;
1205 queue_signal(env, info.si_signo, &info);
1206 }
1207 }
1208 break;
1209 default:
1210 printf ("Unhandled trap: 0x%x\n", trapnr);
1211 cpu_dump_state(cs, stderr, fprintf, 0);
1212 exit (1);
1213 }
1214 process_pending_signals (env);
1215 }
1216 }
1217
1218 #endif
1219
1220 #ifdef TARGET_PPC
1221 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env)
1222 {
1223 /* TO FIX */
1224 return 0;
1225 }
1226
1227 uint64_t cpu_ppc_load_tbl(CPUPPCState *env)
1228 {
1229 return cpu_ppc_get_tb(env);
1230 }
1231
1232 uint32_t cpu_ppc_load_tbu(CPUPPCState *env)
1233 {
1234 return cpu_ppc_get_tb(env) >> 32;
1235 }
1236
1237 uint64_t cpu_ppc_load_atbl(CPUPPCState *env)
1238 {
1239 return cpu_ppc_get_tb(env);
1240 }
1241
1242 uint32_t cpu_ppc_load_atbu(CPUPPCState *env)
1243 {
1244 return cpu_ppc_get_tb(env) >> 32;
1245 }
1246
1247 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env)
1248 __attribute__ (( alias ("cpu_ppc_load_tbu") ));
1249
1250 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env)
1251 {
1252 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1253 }
1254
1255 /* XXX: to be fixed */
1256 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1257 {
1258 return -1;
1259 }
1260
1261 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1262 {
1263 return -1;
1264 }
1265
1266 #define EXCP_DUMP(env, fmt, ...) \
1267 do { \
1268 CPUState *cs = ENV_GET_CPU(env); \
1269 fprintf(stderr, fmt , ## __VA_ARGS__); \
1270 cpu_dump_state(cs, stderr, fprintf, 0); \
1271 qemu_log(fmt, ## __VA_ARGS__); \
1272 if (qemu_log_enabled()) { \
1273 log_cpu_state(cs, 0); \
1274 } \
1275 } while (0)
1276
1277 static int do_store_exclusive(CPUPPCState *env)
1278 {
1279 target_ulong addr;
1280 target_ulong page_addr;
1281 target_ulong val;
1282 int flags;
1283 int segv = 0;
1284
1285 addr = env->reserve_ea;
1286 page_addr = addr & TARGET_PAGE_MASK;
1287 start_exclusive();
1288 mmap_lock();
1289 flags = page_get_flags(page_addr);
1290 if ((flags & PAGE_READ) == 0) {
1291 segv = 1;
1292 } else {
1293 int reg = env->reserve_info & 0x1f;
1294 int size = (env->reserve_info >> 5) & 0xf;
1295 int stored = 0;
1296
1297 if (addr == env->reserve_addr) {
1298 switch (size) {
1299 case 1: segv = get_user_u8(val, addr); break;
1300 case 2: segv = get_user_u16(val, addr); break;
1301 case 4: segv = get_user_u32(val, addr); break;
1302 #if defined(TARGET_PPC64)
1303 case 8: segv = get_user_u64(val, addr); break;
1304 #endif
1305 default: abort();
1306 }
1307 if (!segv && val == env->reserve_val) {
1308 val = env->gpr[reg];
1309 switch (size) {
1310 case 1: segv = put_user_u8(val, addr); break;
1311 case 2: segv = put_user_u16(val, addr); break;
1312 case 4: segv = put_user_u32(val, addr); break;
1313 #if defined(TARGET_PPC64)
1314 case 8: segv = put_user_u64(val, addr); break;
1315 #endif
1316 default: abort();
1317 }
1318 if (!segv) {
1319 stored = 1;
1320 }
1321 }
1322 }
1323 env->crf[0] = (stored << 1) | xer_so;
1324 env->reserve_addr = (target_ulong)-1;
1325 }
1326 if (!segv) {
1327 env->nip += 4;
1328 }
1329 mmap_unlock();
1330 end_exclusive();
1331 return segv;
1332 }
1333
1334 void cpu_loop(CPUPPCState *env)
1335 {
1336 CPUState *cs = CPU(ppc_env_get_cpu(env));
1337 target_siginfo_t info;
1338 int trapnr;
1339 target_ulong ret;
1340
1341 for(;;) {
1342 cpu_exec_start(cs);
1343 trapnr = cpu_ppc_exec(env);
1344 cpu_exec_end(cs);
1345 switch(trapnr) {
1346 case POWERPC_EXCP_NONE:
1347 /* Just go on */
1348 break;
1349 case POWERPC_EXCP_CRITICAL: /* Critical input */
1350 cpu_abort(env, "Critical interrupt while in user mode. "
1351 "Aborting\n");
1352 break;
1353 case POWERPC_EXCP_MCHECK: /* Machine check exception */
1354 cpu_abort(env, "Machine check exception while in user mode. "
1355 "Aborting\n");
1356 break;
1357 case POWERPC_EXCP_DSI: /* Data storage exception */
1358 EXCP_DUMP(env, "Invalid data memory access: 0x" TARGET_FMT_lx "\n",
1359 env->spr[SPR_DAR]);
1360 /* XXX: check this. Seems bugged */
1361 switch (env->error_code & 0xFF000000) {
1362 case 0x40000000:
1363 info.si_signo = TARGET_SIGSEGV;
1364 info.si_errno = 0;
1365 info.si_code = TARGET_SEGV_MAPERR;
1366 break;
1367 case 0x04000000:
1368 info.si_signo = TARGET_SIGILL;
1369 info.si_errno = 0;
1370 info.si_code = TARGET_ILL_ILLADR;
1371 break;
1372 case 0x08000000:
1373 info.si_signo = TARGET_SIGSEGV;
1374 info.si_errno = 0;
1375 info.si_code = TARGET_SEGV_ACCERR;
1376 break;
1377 default:
1378 /* Let's send a regular segfault... */
1379 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1380 env->error_code);
1381 info.si_signo = TARGET_SIGSEGV;
1382 info.si_errno = 0;
1383 info.si_code = TARGET_SEGV_MAPERR;
1384 break;
1385 }
1386 info._sifields._sigfault._addr = env->nip;
1387 queue_signal(env, info.si_signo, &info);
1388 break;
1389 case POWERPC_EXCP_ISI: /* Instruction storage exception */
1390 EXCP_DUMP(env, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx
1391 "\n", env->spr[SPR_SRR0]);
1392 /* XXX: check this */
1393 switch (env->error_code & 0xFF000000) {
1394 case 0x40000000:
1395 info.si_signo = TARGET_SIGSEGV;
1396 info.si_errno = 0;
1397 info.si_code = TARGET_SEGV_MAPERR;
1398 break;
1399 case 0x10000000:
1400 case 0x08000000:
1401 info.si_signo = TARGET_SIGSEGV;
1402 info.si_errno = 0;
1403 info.si_code = TARGET_SEGV_ACCERR;
1404 break;
1405 default:
1406 /* Let's send a regular segfault... */
1407 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1408 env->error_code);
1409 info.si_signo = TARGET_SIGSEGV;
1410 info.si_errno = 0;
1411 info.si_code = TARGET_SEGV_MAPERR;
1412 break;
1413 }
1414 info._sifields._sigfault._addr = env->nip - 4;
1415 queue_signal(env, info.si_signo, &info);
1416 break;
1417 case POWERPC_EXCP_EXTERNAL: /* External input */
1418 cpu_abort(env, "External interrupt while in user mode. "
1419 "Aborting\n");
1420 break;
1421 case POWERPC_EXCP_ALIGN: /* Alignment exception */
1422 EXCP_DUMP(env, "Unaligned memory access\n");
1423 /* XXX: check this */
1424 info.si_signo = TARGET_SIGBUS;
1425 info.si_errno = 0;
1426 info.si_code = TARGET_BUS_ADRALN;
1427 info._sifields._sigfault._addr = env->nip - 4;
1428 queue_signal(env, info.si_signo, &info);
1429 break;
1430 case POWERPC_EXCP_PROGRAM: /* Program exception */
1431 /* XXX: check this */
1432 switch (env->error_code & ~0xF) {
1433 case POWERPC_EXCP_FP:
1434 EXCP_DUMP(env, "Floating point program exception\n");
1435 info.si_signo = TARGET_SIGFPE;
1436 info.si_errno = 0;
1437 switch (env->error_code & 0xF) {
1438 case POWERPC_EXCP_FP_OX:
1439 info.si_code = TARGET_FPE_FLTOVF;
1440 break;
1441 case POWERPC_EXCP_FP_UX:
1442 info.si_code = TARGET_FPE_FLTUND;
1443 break;
1444 case POWERPC_EXCP_FP_ZX:
1445 case POWERPC_EXCP_FP_VXZDZ:
1446 info.si_code = TARGET_FPE_FLTDIV;
1447 break;
1448 case POWERPC_EXCP_FP_XX:
1449 info.si_code = TARGET_FPE_FLTRES;
1450 break;
1451 case POWERPC_EXCP_FP_VXSOFT:
1452 info.si_code = TARGET_FPE_FLTINV;
1453 break;
1454 case POWERPC_EXCP_FP_VXSNAN:
1455 case POWERPC_EXCP_FP_VXISI:
1456 case POWERPC_EXCP_FP_VXIDI:
1457 case POWERPC_EXCP_FP_VXIMZ:
1458 case POWERPC_EXCP_FP_VXVC:
1459 case POWERPC_EXCP_FP_VXSQRT:
1460 case POWERPC_EXCP_FP_VXCVI:
1461 info.si_code = TARGET_FPE_FLTSUB;
1462 break;
1463 default:
1464 EXCP_DUMP(env, "Unknown floating point exception (%02x)\n",
1465 env->error_code);
1466 break;
1467 }
1468 break;
1469 case POWERPC_EXCP_INVAL:
1470 EXCP_DUMP(env, "Invalid instruction\n");
1471 info.si_signo = TARGET_SIGILL;
1472 info.si_errno = 0;
1473 switch (env->error_code & 0xF) {
1474 case POWERPC_EXCP_INVAL_INVAL:
1475 info.si_code = TARGET_ILL_ILLOPC;
1476 break;
1477 case POWERPC_EXCP_INVAL_LSWX:
1478 info.si_code = TARGET_ILL_ILLOPN;
1479 break;
1480 case POWERPC_EXCP_INVAL_SPR:
1481 info.si_code = TARGET_ILL_PRVREG;
1482 break;
1483 case POWERPC_EXCP_INVAL_FP:
1484 info.si_code = TARGET_ILL_COPROC;
1485 break;
1486 default:
1487 EXCP_DUMP(env, "Unknown invalid operation (%02x)\n",
1488 env->error_code & 0xF);
1489 info.si_code = TARGET_ILL_ILLADR;
1490 break;
1491 }
1492 break;
1493 case POWERPC_EXCP_PRIV:
1494 EXCP_DUMP(env, "Privilege violation\n");
1495 info.si_signo = TARGET_SIGILL;
1496 info.si_errno = 0;
1497 switch (env->error_code & 0xF) {
1498 case POWERPC_EXCP_PRIV_OPC:
1499 info.si_code = TARGET_ILL_PRVOPC;
1500 break;
1501 case POWERPC_EXCP_PRIV_REG:
1502 info.si_code = TARGET_ILL_PRVREG;
1503 break;
1504 default:
1505 EXCP_DUMP(env, "Unknown privilege violation (%02x)\n",
1506 env->error_code & 0xF);
1507 info.si_code = TARGET_ILL_PRVOPC;
1508 break;
1509 }
1510 break;
1511 case POWERPC_EXCP_TRAP:
1512 cpu_abort(env, "Tried to call a TRAP\n");
1513 break;
1514 default:
1515 /* Should not happen ! */
1516 cpu_abort(env, "Unknown program exception (%02x)\n",
1517 env->error_code);
1518 break;
1519 }
1520 info._sifields._sigfault._addr = env->nip - 4;
1521 queue_signal(env, info.si_signo, &info);
1522 break;
1523 case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */
1524 EXCP_DUMP(env, "No floating point allowed\n");
1525 info.si_signo = TARGET_SIGILL;
1526 info.si_errno = 0;
1527 info.si_code = TARGET_ILL_COPROC;
1528 info._sifields._sigfault._addr = env->nip - 4;
1529 queue_signal(env, info.si_signo, &info);
1530 break;
1531 case POWERPC_EXCP_SYSCALL: /* System call exception */
1532 cpu_abort(env, "Syscall exception while in user mode. "
1533 "Aborting\n");
1534 break;
1535 case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */
1536 EXCP_DUMP(env, "No APU instruction allowed\n");
1537 info.si_signo = TARGET_SIGILL;
1538 info.si_errno = 0;
1539 info.si_code = TARGET_ILL_COPROC;
1540 info._sifields._sigfault._addr = env->nip - 4;
1541 queue_signal(env, info.si_signo, &info);
1542 break;
1543 case POWERPC_EXCP_DECR: /* Decrementer exception */
1544 cpu_abort(env, "Decrementer interrupt while in user mode. "
1545 "Aborting\n");
1546 break;
1547 case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */
1548 cpu_abort(env, "Fix interval timer interrupt while in user mode. "
1549 "Aborting\n");
1550 break;
1551 case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */
1552 cpu_abort(env, "Watchdog timer interrupt while in user mode. "
1553 "Aborting\n");
1554 break;
1555 case POWERPC_EXCP_DTLB: /* Data TLB error */
1556 cpu_abort(env, "Data TLB exception while in user mode. "
1557 "Aborting\n");
1558 break;
1559 case POWERPC_EXCP_ITLB: /* Instruction TLB error */
1560 cpu_abort(env, "Instruction TLB exception while in user mode. "
1561 "Aborting\n");
1562 break;
1563 case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */
1564 EXCP_DUMP(env, "No SPE/floating-point instruction allowed\n");
1565 info.si_signo = TARGET_SIGILL;
1566 info.si_errno = 0;
1567 info.si_code = TARGET_ILL_COPROC;
1568 info._sifields._sigfault._addr = env->nip - 4;
1569 queue_signal(env, info.si_signo, &info);
1570 break;
1571 case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */
1572 cpu_abort(env, "Embedded floating-point data IRQ not handled\n");
1573 break;
1574 case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */
1575 cpu_abort(env, "Embedded floating-point round IRQ not handled\n");
1576 break;
1577 case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */
1578 cpu_abort(env, "Performance monitor exception not handled\n");
1579 break;
1580 case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */
1581 cpu_abort(env, "Doorbell interrupt while in user mode. "
1582 "Aborting\n");
1583 break;
1584 case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */
1585 cpu_abort(env, "Doorbell critical interrupt while in user mode. "
1586 "Aborting\n");
1587 break;
1588 case POWERPC_EXCP_RESET: /* System reset exception */
1589 cpu_abort(env, "Reset interrupt while in user mode. "
1590 "Aborting\n");
1591 break;
1592 case POWERPC_EXCP_DSEG: /* Data segment exception */
1593 cpu_abort(env, "Data segment exception while in user mode. "
1594 "Aborting\n");
1595 break;
1596 case POWERPC_EXCP_ISEG: /* Instruction segment exception */
1597 cpu_abort(env, "Instruction segment exception "
1598 "while in user mode. Aborting\n");
1599 break;
1600 /* PowerPC 64 with hypervisor mode support */
1601 case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */
1602 cpu_abort(env, "Hypervisor decrementer interrupt "
1603 "while in user mode. Aborting\n");
1604 break;
1605 case POWERPC_EXCP_TRACE: /* Trace exception */
1606 /* Nothing to do:
1607 * we use this exception to emulate step-by-step execution mode.
1608 */
1609 break;
1610 /* PowerPC 64 with hypervisor mode support */
1611 case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */
1612 cpu_abort(env, "Hypervisor data storage exception "
1613 "while in user mode. Aborting\n");
1614 break;
1615 case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */
1616 cpu_abort(env, "Hypervisor instruction storage exception "
1617 "while in user mode. Aborting\n");
1618 break;
1619 case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */
1620 cpu_abort(env, "Hypervisor data segment exception "
1621 "while in user mode. Aborting\n");
1622 break;
1623 case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */
1624 cpu_abort(env, "Hypervisor instruction segment exception "
1625 "while in user mode. Aborting\n");
1626 break;
1627 case POWERPC_EXCP_VPU: /* Vector unavailable exception */
1628 EXCP_DUMP(env, "No Altivec instructions allowed\n");
1629 info.si_signo = TARGET_SIGILL;
1630 info.si_errno = 0;
1631 info.si_code = TARGET_ILL_COPROC;
1632 info._sifields._sigfault._addr = env->nip - 4;
1633 queue_signal(env, info.si_signo, &info);
1634 break;
1635 case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */
1636 cpu_abort(env, "Programmable interval timer interrupt "
1637 "while in user mode. Aborting\n");
1638 break;
1639 case POWERPC_EXCP_IO: /* IO error exception */
1640 cpu_abort(env, "IO error exception while in user mode. "
1641 "Aborting\n");
1642 break;
1643 case POWERPC_EXCP_RUNM: /* Run mode exception */
1644 cpu_abort(env, "Run mode exception while in user mode. "
1645 "Aborting\n");
1646 break;
1647 case POWERPC_EXCP_EMUL: /* Emulation trap exception */
1648 cpu_abort(env, "Emulation trap exception not handled\n");
1649 break;
1650 case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */
1651 cpu_abort(env, "Instruction fetch TLB exception "
1652 "while in user-mode. Aborting");
1653 break;
1654 case POWERPC_EXCP_DLTLB: /* Data load TLB miss */
1655 cpu_abort(env, "Data load TLB exception while in user-mode. "
1656 "Aborting");
1657 break;
1658 case POWERPC_EXCP_DSTLB: /* Data store TLB miss */
1659 cpu_abort(env, "Data store TLB exception while in user-mode. "
1660 "Aborting");
1661 break;
1662 case POWERPC_EXCP_FPA: /* Floating-point assist exception */
1663 cpu_abort(env, "Floating-point assist exception not handled\n");
1664 break;
1665 case POWERPC_EXCP_IABR: /* Instruction address breakpoint */
1666 cpu_abort(env, "Instruction address breakpoint exception "
1667 "not handled\n");
1668 break;
1669 case POWERPC_EXCP_SMI: /* System management interrupt */
1670 cpu_abort(env, "System management interrupt while in user mode. "
1671 "Aborting\n");
1672 break;
1673 case POWERPC_EXCP_THERM: /* Thermal interrupt */
1674 cpu_abort(env, "Thermal interrupt interrupt while in user mode. "
1675 "Aborting\n");
1676 break;
1677 case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */
1678 cpu_abort(env, "Performance monitor exception not handled\n");
1679 break;
1680 case POWERPC_EXCP_VPUA: /* Vector assist exception */
1681 cpu_abort(env, "Vector assist exception not handled\n");
1682 break;
1683 case POWERPC_EXCP_SOFTP: /* Soft patch exception */
1684 cpu_abort(env, "Soft patch exception not handled\n");
1685 break;
1686 case POWERPC_EXCP_MAINT: /* Maintenance exception */
1687 cpu_abort(env, "Maintenance exception while in user mode. "
1688 "Aborting\n");
1689 break;
1690 case POWERPC_EXCP_STOP: /* stop translation */
1691 /* We did invalidate the instruction cache. Go on */
1692 break;
1693 case POWERPC_EXCP_BRANCH: /* branch instruction: */
1694 /* We just stopped because of a branch. Go on */
1695 break;
1696 case POWERPC_EXCP_SYSCALL_USER:
1697 /* system call in user-mode emulation */
1698 /* WARNING:
1699 * PPC ABI uses overflow flag in cr0 to signal an error
1700 * in syscalls.
1701 */
1702 env->crf[0] &= ~0x1;
1703 ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4],
1704 env->gpr[5], env->gpr[6], env->gpr[7],
1705 env->gpr[8], 0, 0);
1706 if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) {
1707 /* Returning from a successful sigreturn syscall.
1708 Avoid corrupting register state. */
1709 break;
1710 }
1711 if (ret > (target_ulong)(-515)) {
1712 env->crf[0] |= 0x1;
1713 ret = -ret;
1714 }
1715 env->gpr[3] = ret;
1716 break;
1717 case POWERPC_EXCP_STCX:
1718 if (do_store_exclusive(env)) {
1719 info.si_signo = TARGET_SIGSEGV;
1720 info.si_errno = 0;
1721 info.si_code = TARGET_SEGV_MAPERR;
1722 info._sifields._sigfault._addr = env->nip;
1723 queue_signal(env, info.si_signo, &info);
1724 }
1725 break;
1726 case EXCP_DEBUG:
1727 {
1728 int sig;
1729
1730 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
1731 if (sig) {
1732 info.si_signo = sig;
1733 info.si_errno = 0;
1734 info.si_code = TARGET_TRAP_BRKPT;
1735 queue_signal(env, info.si_signo, &info);
1736 }
1737 }
1738 break;
1739 case EXCP_INTERRUPT:
1740 /* just indicate that signals should be handled asap */
1741 break;
1742 default:
1743 cpu_abort(env, "Unknown exception 0x%d. Aborting\n", trapnr);
1744 break;
1745 }
1746 process_pending_signals(env);
1747 }
1748 }
1749 #endif
1750
1751 #ifdef TARGET_MIPS
1752
1753 # ifdef TARGET_ABI_MIPSO32
1754 # define MIPS_SYS(name, args) args,
1755 static const uint8_t mips_syscall_args[] = {
1756 MIPS_SYS(sys_syscall , 8) /* 4000 */
1757 MIPS_SYS(sys_exit , 1)
1758 MIPS_SYS(sys_fork , 0)
1759 MIPS_SYS(sys_read , 3)
1760 MIPS_SYS(sys_write , 3)
1761 MIPS_SYS(sys_open , 3) /* 4005 */
1762 MIPS_SYS(sys_close , 1)
1763 MIPS_SYS(sys_waitpid , 3)
1764 MIPS_SYS(sys_creat , 2)
1765 MIPS_SYS(sys_link , 2)
1766 MIPS_SYS(sys_unlink , 1) /* 4010 */
1767 MIPS_SYS(sys_execve , 0)
1768 MIPS_SYS(sys_chdir , 1)
1769 MIPS_SYS(sys_time , 1)
1770 MIPS_SYS(sys_mknod , 3)
1771 MIPS_SYS(sys_chmod , 2) /* 4015 */
1772 MIPS_SYS(sys_lchown , 3)
1773 MIPS_SYS(sys_ni_syscall , 0)
1774 MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */
1775 MIPS_SYS(sys_lseek , 3)
1776 MIPS_SYS(sys_getpid , 0) /* 4020 */
1777 MIPS_SYS(sys_mount , 5)
1778 MIPS_SYS(sys_oldumount , 1)
1779 MIPS_SYS(sys_setuid , 1)
1780 MIPS_SYS(sys_getuid , 0)
1781 MIPS_SYS(sys_stime , 1) /* 4025 */
1782 MIPS_SYS(sys_ptrace , 4)
1783 MIPS_SYS(sys_alarm , 1)
1784 MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */
1785 MIPS_SYS(sys_pause , 0)
1786 MIPS_SYS(sys_utime , 2) /* 4030 */
1787 MIPS_SYS(sys_ni_syscall , 0)
1788 MIPS_SYS(sys_ni_syscall , 0)
1789 MIPS_SYS(sys_access , 2)
1790 MIPS_SYS(sys_nice , 1)
1791 MIPS_SYS(sys_ni_syscall , 0) /* 4035 */
1792 MIPS_SYS(sys_sync , 0)
1793 MIPS_SYS(sys_kill , 2)
1794 MIPS_SYS(sys_rename , 2)
1795 MIPS_SYS(sys_mkdir , 2)
1796 MIPS_SYS(sys_rmdir , 1) /* 4040 */
1797 MIPS_SYS(sys_dup , 1)
1798 MIPS_SYS(sys_pipe , 0)
1799 MIPS_SYS(sys_times , 1)
1800 MIPS_SYS(sys_ni_syscall , 0)
1801 MIPS_SYS(sys_brk , 1) /* 4045 */
1802 MIPS_SYS(sys_setgid , 1)
1803 MIPS_SYS(sys_getgid , 0)
1804 MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */
1805 MIPS_SYS(sys_geteuid , 0)
1806 MIPS_SYS(sys_getegid , 0) /* 4050 */
1807 MIPS_SYS(sys_acct , 0)
1808 MIPS_SYS(sys_umount , 2)
1809 MIPS_SYS(sys_ni_syscall , 0)
1810 MIPS_SYS(sys_ioctl , 3)
1811 MIPS_SYS(sys_fcntl , 3) /* 4055 */
1812 MIPS_SYS(sys_ni_syscall , 2)
1813 MIPS_SYS(sys_setpgid , 2)
1814 MIPS_SYS(sys_ni_syscall , 0)
1815 MIPS_SYS(sys_olduname , 1)
1816 MIPS_SYS(sys_umask , 1) /* 4060 */
1817 MIPS_SYS(sys_chroot , 1)
1818 MIPS_SYS(sys_ustat , 2)
1819 MIPS_SYS(sys_dup2 , 2)
1820 MIPS_SYS(sys_getppid , 0)
1821 MIPS_SYS(sys_getpgrp , 0) /* 4065 */
1822 MIPS_SYS(sys_setsid , 0)
1823 MIPS_SYS(sys_sigaction , 3)
1824 MIPS_SYS(sys_sgetmask , 0)
1825 MIPS_SYS(sys_ssetmask , 1)
1826 MIPS_SYS(sys_setreuid , 2) /* 4070 */
1827 MIPS_SYS(sys_setregid , 2)
1828 MIPS_SYS(sys_sigsuspend , 0)
1829 MIPS_SYS(sys_sigpending , 1)
1830 MIPS_SYS(sys_sethostname , 2)
1831 MIPS_SYS(sys_setrlimit , 2) /* 4075 */
1832 MIPS_SYS(sys_getrlimit , 2)
1833 MIPS_SYS(sys_getrusage , 2)
1834 MIPS_SYS(sys_gettimeofday, 2)
1835 MIPS_SYS(sys_settimeofday, 2)
1836 MIPS_SYS(sys_getgroups , 2) /* 4080 */
1837 MIPS_SYS(sys_setgroups , 2)
1838 MIPS_SYS(sys_ni_syscall , 0) /* old_select */
1839 MIPS_SYS(sys_symlink , 2)
1840 MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */
1841 MIPS_SYS(sys_readlink , 3) /* 4085 */
1842 MIPS_SYS(sys_uselib , 1)
1843 MIPS_SYS(sys_swapon , 2)
1844 MIPS_SYS(sys_reboot , 3)
1845 MIPS_SYS(old_readdir , 3)
1846 MIPS_SYS(old_mmap , 6) /* 4090 */
1847 MIPS_SYS(sys_munmap , 2)
1848 MIPS_SYS(sys_truncate , 2)
1849 MIPS_SYS(sys_ftruncate , 2)
1850 MIPS_SYS(sys_fchmod , 2)
1851 MIPS_SYS(sys_fchown , 3) /* 4095 */
1852 MIPS_SYS(sys_getpriority , 2)
1853 MIPS_SYS(sys_setpriority , 3)
1854 MIPS_SYS(sys_ni_syscall , 0)
1855 MIPS_SYS(sys_statfs , 2)
1856 MIPS_SYS(sys_fstatfs , 2) /* 4100 */
1857 MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */
1858 MIPS_SYS(sys_socketcall , 2)
1859 MIPS_SYS(sys_syslog , 3)
1860 MIPS_SYS(sys_setitimer , 3)
1861 MIPS_SYS(sys_getitimer , 2) /* 4105 */
1862 MIPS_SYS(sys_newstat , 2)
1863 MIPS_SYS(sys_newlstat , 2)
1864 MIPS_SYS(sys_newfstat , 2)
1865 MIPS_SYS(sys_uname , 1)
1866 MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */
1867 MIPS_SYS(sys_vhangup , 0)
1868 MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */
1869 MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */
1870 MIPS_SYS(sys_wait4 , 4)
1871 MIPS_SYS(sys_swapoff , 1) /* 4115 */
1872 MIPS_SYS(sys_sysinfo , 1)
1873 MIPS_SYS(sys_ipc , 6)
1874 MIPS_SYS(sys_fsync , 1)
1875 MIPS_SYS(sys_sigreturn , 0)
1876 MIPS_SYS(sys_clone , 6) /* 4120 */
1877 MIPS_SYS(sys_setdomainname, 2)
1878 MIPS_SYS(sys_newuname , 1)
1879 MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */
1880 MIPS_SYS(sys_adjtimex , 1)
1881 MIPS_SYS(sys_mprotect , 3) /* 4125 */
1882 MIPS_SYS(sys_sigprocmask , 3)
1883 MIPS_SYS(sys_ni_syscall , 0) /* was create_module */
1884 MIPS_SYS(sys_init_module , 5)
1885 MIPS_SYS(sys_delete_module, 1)
1886 MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */
1887 MIPS_SYS(sys_quotactl , 0)
1888 MIPS_SYS(sys_getpgid , 1)
1889 MIPS_SYS(sys_fchdir , 1)
1890 MIPS_SYS(sys_bdflush , 2)
1891 MIPS_SYS(sys_sysfs , 3) /* 4135 */
1892 MIPS_SYS(sys_personality , 1)
1893 MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */
1894 MIPS_SYS(sys_setfsuid , 1)
1895 MIPS_SYS(sys_setfsgid , 1)
1896 MIPS_SYS(sys_llseek , 5) /* 4140 */
1897 MIPS_SYS(sys_getdents , 3)
1898 MIPS_SYS(sys_select , 5)
1899 MIPS_SYS(sys_flock , 2)
1900 MIPS_SYS(sys_msync , 3)
1901 MIPS_SYS(sys_readv , 3) /* 4145 */
1902 MIPS_SYS(sys_writev , 3)
1903 MIPS_SYS(sys_cacheflush , 3)
1904 MIPS_SYS(sys_cachectl , 3)
1905 MIPS_SYS(sys_sysmips , 4)
1906 MIPS_SYS(sys_ni_syscall , 0) /* 4150 */
1907 MIPS_SYS(sys_getsid , 1)
1908 MIPS_SYS(sys_fdatasync , 0)
1909 MIPS_SYS(sys_sysctl , 1)
1910 MIPS_SYS(sys_mlock , 2)
1911 MIPS_SYS(sys_munlock , 2) /* 4155 */
1912 MIPS_SYS(sys_mlockall , 1)
1913 MIPS_SYS(sys_munlockall , 0)
1914 MIPS_SYS(sys_sched_setparam, 2)
1915 MIPS_SYS(sys_sched_getparam, 2)
1916 MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */
1917 MIPS_SYS(sys_sched_getscheduler, 1)
1918 MIPS_SYS(sys_sched_yield , 0)
1919 MIPS_SYS(sys_sched_get_priority_max, 1)
1920 MIPS_SYS(sys_sched_get_priority_min, 1)
1921 MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */
1922 MIPS_SYS(sys_nanosleep, 2)
1923 MIPS_SYS(sys_mremap , 5)
1924 MIPS_SYS(sys_accept , 3)
1925 MIPS_SYS(sys_bind , 3)
1926 MIPS_SYS(sys_connect , 3) /* 4170 */
1927 MIPS_SYS(sys_getpeername , 3)
1928 MIPS_SYS(sys_getsockname , 3)
1929 MIPS_SYS(sys_getsockopt , 5)
1930 MIPS_SYS(sys_listen , 2)
1931 MIPS_SYS(sys_recv , 4) /* 4175 */
1932 MIPS_SYS(sys_recvfrom , 6)
1933 MIPS_SYS(sys_recvmsg , 3)
1934 MIPS_SYS(sys_send , 4)
1935 MIPS_SYS(sys_sendmsg , 3)
1936 MIPS_SYS(sys_sendto , 6) /* 4180 */
1937 MIPS_SYS(sys_setsockopt , 5)
1938 MIPS_SYS(sys_shutdown , 2)
1939 MIPS_SYS(sys_socket , 3)
1940 MIPS_SYS(sys_socketpair , 4)
1941 MIPS_SYS(sys_setresuid , 3) /* 4185 */
1942 MIPS_SYS(sys_getresuid , 3)
1943 MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */
1944 MIPS_SYS(sys_poll , 3)
1945 MIPS_SYS(sys_nfsservctl , 3)
1946 MIPS_SYS(sys_setresgid , 3) /* 4190 */
1947 MIPS_SYS(sys_getresgid , 3)
1948 MIPS_SYS(sys_prctl , 5)
1949 MIPS_SYS(sys_rt_sigreturn, 0)
1950 MIPS_SYS(sys_rt_sigaction, 4)
1951 MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */
1952 MIPS_SYS(sys_rt_sigpending, 2)
1953 MIPS_SYS(sys_rt_sigtimedwait, 4)
1954 MIPS_SYS(sys_rt_sigqueueinfo, 3)
1955 MIPS_SYS(sys_rt_sigsuspend, 0)
1956 MIPS_SYS(sys_pread64 , 6) /* 4200 */
1957 MIPS_SYS(sys_pwrite64 , 6)
1958 MIPS_SYS(sys_chown , 3)
1959 MIPS_SYS(sys_getcwd , 2)
1960 MIPS_SYS(sys_capget , 2)
1961 MIPS_SYS(sys_capset , 2) /* 4205 */
1962 MIPS_SYS(sys_sigaltstack , 2)
1963 MIPS_SYS(sys_sendfile , 4)
1964 MIPS_SYS(sys_ni_syscall , 0)
1965 MIPS_SYS(sys_ni_syscall , 0)
1966 MIPS_SYS(sys_mmap2 , 6) /* 4210 */
1967 MIPS_SYS(sys_truncate64 , 4)
1968 MIPS_SYS(sys_ftruncate64 , 4)
1969 MIPS_SYS(sys_stat64 , 2)
1970 MIPS_SYS(sys_lstat64 , 2)
1971 MIPS_SYS(sys_fstat64 , 2) /* 4215 */
1972 MIPS_SYS(sys_pivot_root , 2)
1973 MIPS_SYS(sys_mincore , 3)
1974 MIPS_SYS(sys_madvise , 3)
1975 MIPS_SYS(sys_getdents64 , 3)
1976 MIPS_SYS(sys_fcntl64 , 3) /* 4220 */
1977 MIPS_SYS(sys_ni_syscall , 0)
1978 MIPS_SYS(sys_gettid , 0)
1979 MIPS_SYS(sys_readahead , 5)
1980 MIPS_SYS(sys_setxattr , 5)
1981 MIPS_SYS(sys_lsetxattr , 5) /* 4225 */
1982 MIPS_SYS(sys_fsetxattr , 5)
1983 MIPS_SYS(sys_getxattr , 4)
1984 MIPS_SYS(sys_lgetxattr , 4)
1985 MIPS_SYS(sys_fgetxattr , 4)
1986 MIPS_SYS(sys_listxattr , 3) /* 4230 */
1987 MIPS_SYS(sys_llistxattr , 3)
1988 MIPS_SYS(sys_flistxattr , 3)
1989 MIPS_SYS(sys_removexattr , 2)
1990 MIPS_SYS(sys_lremovexattr, 2)
1991 MIPS_SYS(sys_fremovexattr, 2) /* 4235 */
1992 MIPS_SYS(sys_tkill , 2)
1993 MIPS_SYS(sys_sendfile64 , 5)
1994 MIPS_SYS(sys_futex , 6)
1995 MIPS_SYS(sys_sched_setaffinity, 3)
1996 MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */
1997 MIPS_SYS(sys_io_setup , 2)
1998 MIPS_SYS(sys_io_destroy , 1)
1999 MIPS_SYS(sys_io_getevents, 5)
2000 MIPS_SYS(sys_io_submit , 3)
2001 MIPS_SYS(sys_io_cancel , 3) /* 4245 */
2002 MIPS_SYS(sys_exit_group , 1)
2003 MIPS_SYS(sys_lookup_dcookie, 3)
2004 MIPS_SYS(sys_epoll_create, 1)
2005 MIPS_SYS(sys_epoll_ctl , 4)
2006 MIPS_SYS(sys_epoll_wait , 3) /* 4250 */
2007 MIPS_SYS(sys_remap_file_pages, 5)
2008 MIPS_SYS(sys_set_tid_address, 1)
2009 MIPS_SYS(sys_restart_syscall, 0)
2010 MIPS_SYS(sys_fadvise64_64, 7)
2011 MIPS_SYS(sys_statfs64 , 3) /* 4255 */
2012 MIPS_SYS(sys_fstatfs64 , 2)
2013 MIPS_SYS(sys_timer_create, 3)
2014 MIPS_SYS(sys_timer_settime, 4)
2015 MIPS_SYS(sys_timer_gettime, 2)
2016 MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */
2017 MIPS_SYS(sys_timer_delete, 1)
2018 MIPS_SYS(sys_clock_settime, 2)
2019 MIPS_SYS(sys_clock_gettime, 2)
2020 MIPS_SYS(sys_clock_getres, 2)
2021 MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */
2022 MIPS_SYS(sys_tgkill , 3)
2023 MIPS_SYS(sys_utimes , 2)
2024 MIPS_SYS(sys_mbind , 4)
2025 MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */
2026 MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */
2027 MIPS_SYS(sys_mq_open , 4)
2028 MIPS_SYS(sys_mq_unlink , 1)
2029 MIPS_SYS(sys_mq_timedsend, 5)
2030 MIPS_SYS(sys_mq_timedreceive, 5)
2031 MIPS_SYS(sys_mq_notify , 2) /* 4275 */
2032 MIPS_SYS(sys_mq_getsetattr, 3)
2033 MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */
2034 MIPS_SYS(sys_waitid , 4)
2035 MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */
2036 MIPS_SYS(sys_add_key , 5)
2037 MIPS_SYS(sys_request_key, 4)
2038 MIPS_SYS(sys_keyctl , 5)
2039 MIPS_SYS(sys_set_thread_area, 1)
2040 MIPS_SYS(sys_inotify_init, 0)
2041 MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */
2042 MIPS_SYS(sys_inotify_rm_watch, 2)
2043 MIPS_SYS(sys_migrate_pages, 4)
2044 MIPS_SYS(sys_openat, 4)
2045 MIPS_SYS(sys_mkdirat, 3)
2046 MIPS_SYS(sys_mknodat, 4) /* 4290 */
2047 MIPS_SYS(sys_fchownat, 5)
2048 MIPS_SYS(sys_futimesat, 3)
2049 MIPS_SYS(sys_fstatat64, 4)
2050 MIPS_SYS(sys_unlinkat, 3)
2051 MIPS_SYS(sys_renameat, 4) /* 4295 */
2052 MIPS_SYS(sys_linkat, 5)
2053 MIPS_SYS(sys_symlinkat, 3)
2054 MIPS_SYS(sys_readlinkat, 4)
2055 MIPS_SYS(sys_fchmodat, 3)
2056 MIPS_SYS(sys_faccessat, 3) /* 4300 */
2057 MIPS_SYS(sys_pselect6, 6)
2058 MIPS_SYS(sys_ppoll, 5)
2059 MIPS_SYS(sys_unshare, 1)
2060 MIPS_SYS(sys_splice, 6)
2061 MIPS_SYS(sys_sync_file_range, 7) /* 4305 */
2062 MIPS_SYS(sys_tee, 4)
2063 MIPS_SYS(sys_vmsplice, 4)
2064 MIPS_SYS(sys_move_pages, 6)
2065 MIPS_SYS(sys_set_robust_list, 2)
2066 MIPS_SYS(sys_get_robust_list, 3) /* 4310 */
2067 MIPS_SYS(sys_kexec_load, 4)
2068 MIPS_SYS(sys_getcpu, 3)
2069 MIPS_SYS(sys_epoll_pwait, 6)
2070 MIPS_SYS(sys_ioprio_set, 3)
2071 MIPS_SYS(sys_ioprio_get, 2)
2072 MIPS_SYS(sys_utimensat, 4)
2073 MIPS_SYS(sys_signalfd, 3)
2074 MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */
2075 MIPS_SYS(sys_eventfd, 1)
2076 MIPS_SYS(sys_fallocate, 6) /* 4320 */
2077 MIPS_SYS(sys_timerfd_create, 2)
2078 MIPS_SYS(sys_timerfd_gettime, 2)
2079 MIPS_SYS(sys_timerfd_settime, 4)
2080 MIPS_SYS(sys_signalfd4, 4)
2081 MIPS_SYS(sys_eventfd2, 2) /* 4325 */
2082 MIPS_SYS(sys_epoll_create1, 1)
2083 MIPS_SYS(sys_dup3, 3)
2084 MIPS_SYS(sys_pipe2, 2)
2085 MIPS_SYS(sys_inotify_init1, 1)
2086 MIPS_SYS(sys_preadv, 6) /* 4330 */
2087 MIPS_SYS(sys_pwritev, 6)
2088 MIPS_SYS(sys_rt_tgsigqueueinfo, 4)
2089 MIPS_SYS(sys_perf_event_open, 5)
2090 MIPS_SYS(sys_accept4, 4)
2091 MIPS_SYS(sys_recvmmsg, 5) /* 4335 */
2092 MIPS_SYS(sys_fanotify_init, 2)
2093 MIPS_SYS(sys_fanotify_mark, 6)
2094 MIPS_SYS(sys_prlimit64, 4)
2095 MIPS_SYS(sys_name_to_handle_at, 5)
2096 MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */
2097 MIPS_SYS(sys_clock_adjtime, 2)
2098 MIPS_SYS(sys_syncfs, 1)
2099 };
2100 # undef MIPS_SYS
2101 # endif /* O32 */
2102
2103 static int do_store_exclusive(CPUMIPSState *env)
2104 {
2105 target_ulong addr;
2106 target_ulong page_addr;
2107 target_ulong val;
2108 int flags;
2109 int segv = 0;
2110 int reg;
2111 int d;
2112
2113 addr = env->lladdr;
2114 page_addr = addr & TARGET_PAGE_MASK;
2115 start_exclusive();
2116 mmap_lock();
2117 flags = page_get_flags(page_addr);
2118 if ((flags & PAGE_READ) == 0) {
2119 segv = 1;
2120 } else {
2121 reg = env->llreg & 0x1f;
2122 d = (env->llreg & 0x20) != 0;
2123 if (d) {
2124 segv = get_user_s64(val, addr);
2125 } else {
2126 segv = get_user_s32(val, addr);
2127 }
2128 if (!segv) {
2129 if (val != env->llval) {
2130 env->active_tc.gpr[reg] = 0;
2131 } else {
2132 if (d) {
2133 segv = put_user_u64(env->llnewval, addr);
2134 } else {
2135 segv = put_user_u32(env->llnewval, addr);
2136 }
2137 if (!segv) {
2138 env->active_tc.gpr[reg] = 1;
2139 }
2140 }
2141 }
2142 }
2143 env->lladdr = -1;
2144 if (!segv) {
2145 env->active_tc.PC += 4;
2146 }
2147 mmap_unlock();
2148 end_exclusive();
2149 return segv;
2150 }
2151
2152 /* Break codes */
2153 enum {
2154 BRK_OVERFLOW = 6,
2155 BRK_DIVZERO = 7
2156 };
2157
2158 static int do_break(CPUMIPSState *env, target_siginfo_t *info,
2159 unsigned int code)
2160 {
2161 int ret = -1;
2162
2163 switch (code) {
2164 case BRK_OVERFLOW:
2165 case BRK_DIVZERO:
2166 info->si_signo = TARGET_SIGFPE;
2167 info->si_errno = 0;
2168 info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV;
2169 queue_signal(env, info->si_signo, &*info);
2170 ret = 0;
2171 break;
2172 default:
2173 break;
2174 }
2175
2176 return ret;
2177 }
2178
2179 void cpu_loop(CPUMIPSState *env)
2180 {
2181 CPUState *cs = CPU(mips_env_get_cpu(env));
2182 target_siginfo_t info;
2183 int trapnr;
2184 abi_long ret;
2185 # ifdef TARGET_ABI_MIPSO32
2186 unsigned int syscall_num;
2187 # endif
2188
2189 for(;;) {
2190 cpu_exec_start(cs);
2191 trapnr = cpu_mips_exec(env);
2192 cpu_exec_end(cs);
2193 switch(trapnr) {
2194 case EXCP_SYSCALL:
2195 env->active_tc.PC += 4;
2196 # ifdef TARGET_ABI_MIPSO32
2197 syscall_num = env->active_tc.gpr[2] - 4000;
2198 if (syscall_num >= sizeof(mips_syscall_args)) {
2199 ret = -TARGET_ENOSYS;
2200 } else {
2201 int nb_args;
2202 abi_ulong sp_reg;
2203 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0;
2204
2205 nb_args = mips_syscall_args[syscall_num];
2206 sp_reg = env->active_tc.gpr[29];
2207 switch (nb_args) {
2208 /* these arguments are taken from the stack */
2209 case 8:
2210 if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) {
2211 goto done_syscall;
2212 }
2213 case 7:
2214 if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) {
2215 goto done_syscall;
2216 }
2217 case 6:
2218 if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) {
2219 goto done_syscall;
2220 }
2221 case 5:
2222 if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) {
2223 goto done_syscall;
2224 }
2225 default:
2226 break;
2227 }
2228 ret = do_syscall(env, env->active_tc.gpr[2],
2229 env->active_tc.gpr[4],
2230 env->active_tc.gpr[5],
2231 env->active_tc.gpr[6],
2232 env->active_tc.gpr[7],
2233 arg5, arg6, arg7, arg8);
2234 }
2235 done_syscall:
2236 # else
2237 ret = do_syscall(env, env->active_tc.gpr[2],
2238 env->active_tc.gpr[4], env->active_tc.gpr[5],
2239 env->active_tc.gpr[6], env->active_tc.gpr[7],
2240 env->active_tc.gpr[8], env->active_tc.gpr[9],
2241 env->active_tc.gpr[10], env->active_tc.gpr[11]);
2242 # endif /* O32 */
2243 if (ret == -TARGET_QEMU_ESIGRETURN) {
2244 /* Returning from a successful sigreturn syscall.
2245 Avoid clobbering register state. */
2246 break;
2247 }
2248 if ((abi_ulong)ret >= (abi_ulong)-1133) {
2249 env->active_tc.gpr[7] = 1; /* error flag */
2250 ret = -ret;
2251 } else {
2252 env->active_tc.gpr[7] = 0; /* error flag */
2253 }
2254 env->active_tc.gpr[2] = ret;
2255 break;
2256 case EXCP_TLBL:
2257 case EXCP_TLBS:
2258 case EXCP_AdEL:
2259 case EXCP_AdES:
2260 info.si_signo = TARGET_SIGSEGV;
2261 info.si_errno = 0;
2262 /* XXX: check env->error_code */
2263 info.si_code = TARGET_SEGV_MAPERR;
2264 info._sifields._sigfault._addr = env->CP0_BadVAddr;
2265 queue_signal(env, info.si_signo, &info);
2266 break;
2267 case EXCP_CpU:
2268 case EXCP_RI:
2269 info.si_signo = TARGET_SIGILL;
2270 info.si_errno = 0;
2271 info.si_code = 0;
2272 queue_signal(env, info.si_signo, &info);
2273 break;
2274 case EXCP_INTERRUPT:
2275 /* just indicate that signals should be handled asap */
2276 break;
2277 case EXCP_DEBUG:
2278 {
2279 int sig;
2280
2281 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2282 if (sig)
2283 {
2284 info.si_signo = sig;
2285 info.si_errno = 0;
2286 info.si_code = TARGET_TRAP_BRKPT;
2287 queue_signal(env, info.si_signo, &info);
2288 }
2289 }
2290 break;
2291 case EXCP_SC:
2292 if (do_store_exclusive(env)) {
2293 info.si_signo = TARGET_SIGSEGV;
2294 info.si_errno = 0;
2295 info.si_code = TARGET_SEGV_MAPERR;
2296 info._sifields._sigfault._addr = env->active_tc.PC;
2297 queue_signal(env, info.si_signo, &info);
2298 }
2299 break;
2300 case EXCP_DSPDIS:
2301 info.si_signo = TARGET_SIGILL;
2302 info.si_errno = 0;
2303 info.si_code = TARGET_ILL_ILLOPC;
2304 queue_signal(env, info.si_signo, &info);
2305 break;
2306 /* The code below was inspired by the MIPS Linux kernel trap
2307 * handling code in arch/mips/kernel/traps.c.
2308 */
2309 case EXCP_BREAK:
2310 {
2311 abi_ulong trap_instr;
2312 unsigned int code;
2313
2314 if (env->hflags & MIPS_HFLAG_M16) {
2315 if (env->insn_flags & ASE_MICROMIPS) {
2316 /* microMIPS mode */
2317 abi_ulong instr[2];
2318
2319 ret = get_user_u16(instr[0], env->active_tc.PC) ||
2320 get_user_u16(instr[1], env->active_tc.PC + 2);
2321
2322 trap_instr = (instr[0] << 16) | instr[1];
2323 } else {
2324 /* MIPS16e mode */
2325 ret = get_user_u16(trap_instr, env->active_tc.PC);
2326 if (ret != 0) {
2327 goto error;
2328 }
2329 code = (trap_instr >> 6) & 0x3f;
2330 if (do_break(env, &info, code) != 0) {
2331 goto error;
2332 }
2333 break;
2334 }
2335 } else {
2336 ret = get_user_ual(trap_instr, env->active_tc.PC);
2337 }
2338
2339 if (ret != 0) {
2340 goto error;
2341 }
2342
2343 /* As described in the original Linux kernel code, the
2344 * below checks on 'code' are to work around an old
2345 * assembly bug.
2346 */
2347 code = ((trap_instr >> 6) & ((1 << 20) - 1));
2348 if (code >= (1 << 10)) {
2349 code >>= 10;
2350 }
2351
2352 if (do_break(env, &info, code) != 0) {
2353 goto error;
2354 }
2355 }
2356 break;
2357 case EXCP_TRAP:
2358 {
2359 abi_ulong trap_instr;
2360 unsigned int code = 0;
2361
2362 if (env->hflags & MIPS_HFLAG_M16) {
2363 /* microMIPS mode */
2364 abi_ulong instr[2];
2365
2366 ret = get_user_u16(instr[0], env->active_tc.PC) ||
2367 get_user_u16(instr[1], env->active_tc.PC + 2);
2368
2369 trap_instr = (instr[0] << 16) | instr[1];
2370 } else {
2371 ret = get_user_ual(trap_instr, env->active_tc.PC);
2372 }
2373
2374 if (ret != 0) {
2375 goto error;
2376 }
2377
2378 /* The immediate versions don't provide a code. */
2379 if (!(trap_instr & 0xFC000000)) {
2380 if (env->hflags & MIPS_HFLAG_M16) {
2381 /* microMIPS mode */
2382 code = ((trap_instr >> 12) & ((1 << 4) - 1));
2383 } else {
2384 code = ((trap_instr >> 6) & ((1 << 10) - 1));
2385 }
2386 }
2387
2388 if (do_break(env, &info, code) != 0) {
2389 goto error;
2390 }
2391 }
2392 break;
2393 default:
2394 error:
2395 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
2396 trapnr);
2397 cpu_dump_state(cs, stderr, fprintf, 0);
2398 abort();
2399 }
2400 process_pending_signals(env);
2401 }
2402 }
2403 #endif
2404
2405 #ifdef TARGET_OPENRISC
2406
2407 void cpu_loop(CPUOpenRISCState *env)
2408 {
2409 CPUState *cs = CPU(openrisc_env_get_cpu(env));
2410 int trapnr, gdbsig;
2411
2412 for (;;) {
2413 trapnr = cpu_exec(env);
2414 gdbsig = 0;
2415
2416 switch (trapnr) {
2417 case EXCP_RESET:
2418 qemu_log("\nReset request, exit, pc is %#x\n", env->pc);
2419 exit(1);
2420 break;
2421 case EXCP_BUSERR:
2422 qemu_log("\nBus error, exit, pc is %#x\n", env->pc);
2423 gdbsig = SIGBUS;
2424 break;
2425 case EXCP_DPF:
2426 case EXCP_IPF:
2427 cpu_dump_state(cs, stderr, fprintf, 0);
2428 gdbsig = TARGET_SIGSEGV;
2429 break;
2430 case EXCP_TICK:
2431 qemu_log("\nTick time interrupt pc is %#x\n", env->pc);
2432 break;
2433 case EXCP_ALIGN:
2434 qemu_log("\nAlignment pc is %#x\n", env->pc);
2435 gdbsig = SIGBUS;
2436 break;
2437 case EXCP_ILLEGAL:
2438 qemu_log("\nIllegal instructionpc is %#x\n", env->pc);
2439 gdbsig = SIGILL;
2440 break;
2441 case EXCP_INT:
2442 qemu_log("\nExternal interruptpc is %#x\n", env->pc);
2443 break;
2444 case EXCP_DTLBMISS:
2445 case EXCP_ITLBMISS:
2446 qemu_log("\nTLB miss\n");
2447 break;
2448 case EXCP_RANGE:
2449 qemu_log("\nRange\n");
2450 gdbsig = SIGSEGV;
2451 break;
2452 case EXCP_SYSCALL:
2453 env->pc += 4; /* 0xc00; */
2454 env->gpr[11] = do_syscall(env,
2455 env->gpr[11], /* return value */
2456 env->gpr[3], /* r3 - r7 are params */
2457 env->gpr[4],
2458 env->gpr[5],
2459 env->gpr[6],
2460 env->gpr[7],
2461 env->gpr[8], 0, 0);
2462 break;
2463 case EXCP_FPE:
2464 qemu_log("\nFloating point error\n");
2465 break;
2466 case EXCP_TRAP:
2467 qemu_log("\nTrap\n");
2468 gdbsig = SIGTRAP;
2469 break;
2470 case EXCP_NR:
2471 qemu_log("\nNR\n");
2472 break;
2473 default:
2474 qemu_log("\nqemu: unhandled CPU exception %#x - aborting\n",
2475 trapnr);
2476 cpu_dump_state(cs, stderr, fprintf, 0);
2477 gdbsig = TARGET_SIGILL;
2478 break;
2479 }
2480 if (gdbsig) {
2481 gdb_handlesig(cs, gdbsig);
2482 if (gdbsig != TARGET_SIGTRAP) {
2483 exit(1);
2484 }
2485 }
2486
2487 process_pending_signals(env);
2488 }
2489 }
2490
2491 #endif /* TARGET_OPENRISC */
2492
2493 #ifdef TARGET_SH4
2494 void cpu_loop(CPUSH4State *env)
2495 {
2496 CPUState *cs = CPU(sh_env_get_cpu(env));
2497 int trapnr, ret;
2498 target_siginfo_t info;
2499
2500 while (1) {
2501 trapnr = cpu_sh4_exec (env);
2502
2503 switch (trapnr) {
2504 case 0x160:
2505 env->pc += 2;
2506 ret = do_syscall(env,
2507 env->gregs[3],
2508 env->gregs[4],
2509 env->gregs[5],
2510 env->gregs[6],
2511 env->gregs[7],
2512 env->gregs[0],
2513 env->gregs[1],
2514 0, 0);
2515 env->gregs[0] = ret;
2516 break;
2517 case EXCP_INTERRUPT:
2518 /* just indicate that signals should be handled asap */
2519 break;
2520 case EXCP_DEBUG:
2521 {
2522 int sig;
2523
2524 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2525 if (sig)
2526 {
2527 info.si_signo = sig;
2528 info.si_errno = 0;
2529 info.si_code = TARGET_TRAP_BRKPT;
2530 queue_signal(env, info.si_signo, &info);
2531 }
2532 }
2533 break;
2534 case 0xa0:
2535 case 0xc0:
2536 info.si_signo = SIGSEGV;
2537 info.si_errno = 0;
2538 info.si_code = TARGET_SEGV_MAPERR;
2539 info._sifields._sigfault._addr = env->tea;
2540 queue_signal(env, info.si_signo, &info);
2541 break;
2542
2543 default:
2544 printf ("Unhandled trap: 0x%x\n", trapnr);
2545 cpu_dump_state(cs, stderr, fprintf, 0);
2546 exit (1);
2547 }
2548 process_pending_signals (env);
2549 }
2550 }
2551 #endif
2552
2553 #ifdef TARGET_CRIS
2554 void cpu_loop(CPUCRISState *env)
2555 {
2556 CPUState *cs = CPU(cris_env_get_cpu(env));
2557 int trapnr, ret;
2558 target_siginfo_t info;
2559
2560 while (1) {
2561 trapnr = cpu_cris_exec (env);
2562 switch (trapnr) {
2563 case 0xaa:
2564 {
2565 info.si_signo = SIGSEGV;
2566 info.si_errno = 0;
2567 /* XXX: check env->error_code */
2568 info.si_code = TARGET_SEGV_MAPERR;
2569 info._sifields._sigfault._addr = env->pregs[PR_EDA];
2570 queue_signal(env, info.si_signo, &info);
2571 }
2572 break;
2573 case EXCP_INTERRUPT:
2574 /* just indicate that signals should be handled asap */
2575 break;
2576 case EXCP_BREAK:
2577 ret = do_syscall(env,
2578 env->regs[9],
2579 env->regs[10],
2580 env->regs[11],
2581 env->regs[12],
2582 env->regs[13],
2583 env->pregs[7],
2584 env->pregs[11],
2585 0, 0);
2586 env->regs[10] = ret;
2587 break;
2588 case EXCP_DEBUG:
2589 {
2590 int sig;
2591
2592 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2593 if (sig)
2594 {
2595 info.si_signo = sig;
2596 info.si_errno = 0;
2597 info.si_code = TARGET_TRAP_BRKPT;
2598 queue_signal(env, info.si_signo, &info);
2599 }
2600 }
2601 break;
2602 default:
2603 printf ("Unhandled trap: 0x%x\n", trapnr);
2604 cpu_dump_state(cs, stderr, fprintf, 0);
2605 exit (1);
2606 }
2607 process_pending_signals (env);
2608 }
2609 }
2610 #endif
2611
2612 #ifdef TARGET_MICROBLAZE
2613 void cpu_loop(CPUMBState *env)
2614 {
2615 CPUState *cs = CPU(mb_env_get_cpu(env));
2616 int trapnr, ret;
2617 target_siginfo_t info;
2618
2619 while (1) {
2620 trapnr = cpu_mb_exec (env);
2621 switch (trapnr) {
2622 case 0xaa:
2623 {
2624 info.si_signo = SIGSEGV;
2625 info.si_errno = 0;
2626 /* XXX: check env->error_code */
2627 info.si_code = TARGET_SEGV_MAPERR;
2628 info._sifields._sigfault._addr = 0;
2629 queue_signal(env, info.si_signo, &info);
2630 }
2631 break;
2632 case EXCP_INTERRUPT:
2633 /* just indicate that signals should be handled asap */
2634 break;
2635 case EXCP_BREAK:
2636 /* Return address is 4 bytes after the call. */
2637 env->regs[14] += 4;
2638 env->sregs[SR_PC] = env->regs[14];
2639 ret = do_syscall(env,
2640 env->regs[12],
2641 env->regs[5],
2642 env->regs[6],
2643 env->regs[7],
2644 env->regs[8],
2645 env->regs[9],
2646 env->regs[10],
2647 0, 0);
2648 env->regs[3] = ret;
2649 break;
2650 case EXCP_HW_EXCP:
2651 env->regs[17] = env->sregs[SR_PC] + 4;
2652 if (env->iflags & D_FLAG) {
2653 env->sregs[SR_ESR] |= 1 << 12;
2654 env->sregs[SR_PC] -= 4;
2655 /* FIXME: if branch was immed, replay the imm as well. */
2656 }
2657
2658 env->iflags &= ~(IMM_FLAG | D_FLAG);
2659
2660 switch (env->sregs[SR_ESR] & 31) {
2661 case ESR_EC_DIVZERO:
2662 info.si_signo = SIGFPE;
2663 info.si_errno = 0;
2664 info.si_code = TARGET_FPE_FLTDIV;
2665 info._sifields._sigfault._addr = 0;
2666 queue_signal(env, info.si_signo, &info);
2667 break;
2668 case ESR_EC_FPU:
2669 info.si_signo = SIGFPE;
2670 info.si_errno = 0;
2671 if (env->sregs[SR_FSR] & FSR_IO) {
2672 info.si_code = TARGET_FPE_FLTINV;
2673 }
2674 if (env->sregs[SR_FSR] & FSR_DZ) {
2675 info.si_code = TARGET_FPE_FLTDIV;
2676 }
2677 info._sifields._sigfault._addr = 0;
2678 queue_signal(env, info.si_signo, &info);
2679 break;
2680 default:
2681 printf ("Unhandled hw-exception: 0x%x\n",
2682 env->sregs[SR_ESR] & ESR_EC_MASK);
2683 cpu_dump_state(cs, stderr, fprintf, 0);
2684 exit (1);
2685 break;
2686 }
2687 break;
2688 case EXCP_DEBUG:
2689 {
2690 int sig;
2691
2692 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2693 if (sig)
2694 {
2695 info.si_signo = sig;
2696 info.si_errno = 0;
2697 info.si_code = TARGET_TRAP_BRKPT;
2698 queue_signal(env, info.si_signo, &info);
2699 }
2700 }
2701 break;
2702 default:
2703 printf ("Unhandled trap: 0x%x\n", trapnr);
2704 cpu_dump_state(cs, stderr, fprintf, 0);
2705 exit (1);
2706 }
2707 process_pending_signals (env);
2708 }
2709 }
2710 #endif
2711
2712 #ifdef TARGET_M68K
2713
2714 void cpu_loop(CPUM68KState *env)
2715 {
2716 CPUState *cs = CPU(m68k_env_get_cpu(env));
2717 int trapnr;
2718 unsigned int n;
2719 target_siginfo_t info;
2720 TaskState *ts = env->opaque;
2721
2722 for(;;) {
2723 trapnr = cpu_m68k_exec(env);
2724 switch(trapnr) {
2725 case EXCP_ILLEGAL:
2726 {
2727 if (ts->sim_syscalls) {
2728 uint16_t nr;
2729 nr = lduw(env->pc + 2);
2730 env->pc += 4;
2731 do_m68k_simcall(env, nr);
2732 } else {
2733 goto do_sigill;
2734 }
2735 }
2736 break;
2737 case EXCP_HALT_INSN:
2738 /* Semihosing syscall. */
2739 env->pc += 4;
2740 do_m68k_semihosting(env, env->dregs[0]);
2741 break;
2742 case EXCP_LINEA:
2743 case EXCP_LINEF:
2744 case EXCP_UNSUPPORTED:
2745 do_sigill:
2746 info.si_signo = SIGILL;
2747 info.si_errno = 0;
2748 info.si_code = TARGET_ILL_ILLOPN;
2749 info._sifields._sigfault._addr = env->pc;
2750 queue_signal(env, info.si_signo, &info);
2751 break;
2752 case EXCP_TRAP0:
2753 {
2754 ts->sim_syscalls = 0;
2755 n = env->dregs[0];
2756 env->pc += 2;
2757 env->dregs[0] = do_syscall(env,
2758 n,
2759 env->dregs[1],
2760 env->dregs[2],
2761 env->dregs[3],
2762 env->dregs[4],
2763 env->dregs[5],
2764 env->aregs[0],
2765 0, 0);
2766 }
2767 break;
2768 case EXCP_INTERRUPT:
2769 /* just indicate that signals should be handled asap */
2770 break;
2771 case EXCP_ACCESS:
2772 {
2773 info.si_signo = SIGSEGV;
2774 info.si_errno = 0;
2775 /* XXX: check env->error_code */
2776 info.si_code = TARGET_SEGV_MAPERR;
2777 info._sifields._sigfault._addr = env->mmu.ar;
2778 queue_signal(env, info.si_signo, &info);
2779 }
2780 break;
2781 case EXCP_DEBUG:
2782 {
2783 int sig;
2784
2785 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2786 if (sig)
2787 {
2788 info.si_signo = sig;
2789 info.si_errno = 0;
2790 info.si_code = TARGET_TRAP_BRKPT;
2791 queue_signal(env, info.si_signo, &info);
2792 }
2793 }
2794 break;
2795 default:
2796 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
2797 trapnr);
2798 cpu_dump_state(cs, stderr, fprintf, 0);
2799 abort();
2800 }
2801 process_pending_signals(env);
2802 }
2803 }
2804 #endif /* TARGET_M68K */
2805
2806 #ifdef TARGET_ALPHA
2807 static void do_store_exclusive(CPUAlphaState *env, int reg, int quad)
2808 {
2809 target_ulong addr, val, tmp;
2810 target_siginfo_t info;
2811 int ret = 0;
2812
2813 addr = env->lock_addr;
2814 tmp = env->lock_st_addr;
2815 env->lock_addr = -1;
2816 env->lock_st_addr = 0;
2817
2818 start_exclusive();
2819 mmap_lock();
2820
2821 if (addr == tmp) {
2822 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
2823 goto do_sigsegv;
2824 }
2825
2826 if (val == env->lock_value) {
2827 tmp = env->ir[reg];
2828 if (quad ? put_user_u64(tmp, addr) : put_user_u32(tmp, addr)) {
2829 goto do_sigsegv;
2830 }
2831 ret = 1;
2832 }
2833 }
2834 env->ir[reg] = ret;
2835 env->pc += 4;
2836
2837 mmap_unlock();
2838 end_exclusive();
2839 return;
2840
2841 do_sigsegv:
2842 mmap_unlock();
2843 end_exclusive();
2844
2845 info.si_signo = TARGET_SIGSEGV;
2846 info.si_errno = 0;
2847 info.si_code = TARGET_SEGV_MAPERR;
2848 info._sifields._sigfault._addr = addr;
2849 queue_signal(env, TARGET_SIGSEGV, &info);
2850 }
2851
2852 void cpu_loop(CPUAlphaState *env)
2853 {
2854 CPUState *cs = CPU(alpha_env_get_cpu(env));
2855 int trapnr;
2856 target_siginfo_t info;
2857 abi_long sysret;
2858
2859 while (1) {
2860 trapnr = cpu_alpha_exec (env);
2861
2862 /* All of the traps imply a transition through PALcode, which
2863 implies an REI instruction has been executed. Which means
2864 that the intr_flag should be cleared. */
2865 env->intr_flag = 0;
2866
2867 switch (trapnr) {
2868 case EXCP_RESET:
2869 fprintf(stderr, "Reset requested. Exit\n");
2870 exit(1);
2871 break;
2872 case EXCP_MCHK:
2873 fprintf(stderr, "Machine check exception. Exit\n");
2874 exit(1);
2875 break;
2876 case EXCP_SMP_INTERRUPT:
2877 case EXCP_CLK_INTERRUPT:
2878 case EXCP_DEV_INTERRUPT:
2879 fprintf(stderr, "External interrupt. Exit\n");
2880 exit(1);
2881 break;
2882 case EXCP_MMFAULT:
2883 env->lock_addr = -1;
2884 info.si_signo = TARGET_SIGSEGV;
2885 info.si_errno = 0;
2886 info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID
2887 ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR);
2888 info._sifields._sigfault._addr = env->trap_arg0;
2889 queue_signal(env, info.si_signo, &info);
2890 break;
2891 case EXCP_UNALIGN:
2892 env->lock_addr = -1;
2893 info.si_signo = TARGET_SIGBUS;
2894 info.si_errno = 0;
2895 info.si_code = TARGET_BUS_ADRALN;
2896 info._sifields._sigfault._addr = env->trap_arg0;
2897 queue_signal(env, info.si_signo, &info);
2898 break;
2899 case EXCP_OPCDEC:
2900 do_sigill:
2901 env->lock_addr = -1;
2902 info.si_signo = TARGET_SIGILL;
2903 info.si_errno = 0;
2904 info.si_code = TARGET_ILL_ILLOPC;
2905 info._sifields._sigfault._addr = env->pc;
2906 queue_signal(env, info.si_signo, &info);
2907 break;
2908 case EXCP_ARITH:
2909 env->lock_addr = -1;
2910 info.si_signo = TARGET_SIGFPE;
2911 info.si_errno = 0;
2912 info.si_code = TARGET_FPE_FLTINV;
2913 info._sifields._sigfault._addr = env->pc;
2914 queue_signal(env, info.si_signo, &info);
2915 break;
2916 case EXCP_FEN:
2917 /* No-op. Linux simply re-enables the FPU. */
2918 break;
2919 case EXCP_CALL_PAL:
2920 env->lock_addr = -1;
2921 switch (env->error_code) {
2922 case 0x80:
2923 /* BPT */
2924 info.si_signo = TARGET_SIGTRAP;
2925 info.si_errno = 0;
2926 info.si_code = TARGET_TRAP_BRKPT;
2927 info._sifields._sigfault._addr = env->pc;
2928 queue_signal(env, info.si_signo, &info);
2929 break;
2930 case 0x81:
2931 /* BUGCHK */
2932 info.si_signo = TARGET_SIGTRAP;
2933 info.si_errno = 0;
2934 info.si_code = 0;
2935 info._sifields._sigfault._addr = env->pc;
2936 queue_signal(env, info.si_signo, &info);
2937 break;
2938 case 0x83:
2939 /* CALLSYS */
2940 trapnr = env->ir[IR_V0];
2941 sysret = do_syscall(env, trapnr,
2942 env->ir[IR_A0], env->ir[IR_A1],
2943 env->ir[IR_A2], env->ir[IR_A3],
2944 env->ir[IR_A4], env->ir[IR_A5],
2945 0, 0);
2946 if (trapnr == TARGET_NR_sigreturn
2947 || trapnr == TARGET_NR_rt_sigreturn) {
2948 break;
2949 }
2950 /* Syscall writes 0 to V0 to bypass error check, similar
2951 to how this is handled internal to Linux kernel.
2952 (Ab)use trapnr temporarily as boolean indicating error. */
2953 trapnr = (env->ir[IR_V0] != 0 && sysret < 0);
2954 env->ir[IR_V0] = (trapnr ? -sysret : sysret);
2955 env->ir[IR_A3] = trapnr;
2956 break;
2957 case 0x86:
2958 /* IMB */
2959 /* ??? We can probably elide the code using page_unprotect
2960 that is checking for self-modifying code. Instead we
2961 could simply call tb_flush here. Until we work out the
2962 changes required to turn off the extra write protection,
2963 this can be a no-op. */
2964 break;
2965 case 0x9E:
2966 /* RDUNIQUE */
2967 /* Handled in the translator for usermode. */
2968 abort();
2969 case 0x9F:
2970 /* WRUNIQUE */
2971 /* Handled in the translator for usermode. */
2972 abort();
2973 case 0xAA:
2974 /* GENTRAP */
2975 info.si_signo = TARGET_SIGFPE;
2976 switch (env->ir[IR_A0]) {
2977 case TARGET_GEN_INTOVF:
2978 info.si_code = TARGET_FPE_INTOVF;
2979 break;
2980 case TARGET_GEN_INTDIV:
2981 info.si_code = TARGET_FPE_INTDIV;
2982 break;
2983 case TARGET_GEN_FLTOVF:
2984 info.si_code = TARGET_FPE_FLTOVF;
2985 break;
2986 case TARGET_GEN_FLTUND:
2987 info.si_code = TARGET_FPE_FLTUND;
2988 break;
2989 case TARGET_GEN_FLTINV:
2990 info.si_code = TARGET_FPE_FLTINV;
2991 break;
2992 case TARGET_GEN_FLTINE:
2993 info.si_code = TARGET_FPE_FLTRES;
2994 break;
2995 case TARGET_GEN_ROPRAND:
2996 info.si_code = 0;
2997 break;
2998 default:
2999 info.si_signo = TARGET_SIGTRAP;
3000 info.si_code = 0;
3001 break;
3002 }
3003 info.si_errno = 0;
3004 info._sifields._sigfault._addr = env->pc;
3005 queue_signal(env, info.si_signo, &info);
3006 break;
3007 default:
3008 goto do_sigill;
3009 }
3010 break;
3011 case EXCP_DEBUG:
3012 info.si_signo = gdb_handlesig(cs, TARGET_SIGTRAP);
3013 if (info.si_signo) {
3014 env->lock_addr = -1;
3015 info.si_errno = 0;
3016 info.si_code = TARGET_TRAP_BRKPT;
3017 queue_signal(env, info.si_signo, &info);
3018 }
3019 break;
3020 case EXCP_STL_C:
3021 case EXCP_STQ_C:
3022 do_store_exclusive(env, env->error_code, trapnr - EXCP_STL_C);
3023 break;
3024 case EXCP_INTERRUPT:
3025 /* Just indicate that signals should be handled asap. */
3026 break;
3027 default:
3028 printf ("Unhandled trap: 0x%x\n", trapnr);
3029 cpu_dump_state(cs, stderr, fprintf, 0);
3030 exit (1);
3031 }
3032 process_pending_signals (env);
3033 }
3034 }
3035 #endif /* TARGET_ALPHA */
3036
3037 #ifdef TARGET_S390X
3038 void cpu_loop(CPUS390XState *env)
3039 {
3040 CPUState *cs = CPU(s390_env_get_cpu(env));
3041 int trapnr, n, sig;
3042 target_siginfo_t info;
3043 target_ulong addr;
3044
3045 while (1) {
3046 trapnr = cpu_s390x_exec(env);
3047 switch (trapnr) {
3048 case EXCP_INTERRUPT:
3049 /* Just indicate that signals should be handled asap. */
3050 break;
3051
3052 case EXCP_SVC:
3053 n = env->int_svc_code;
3054 if (!n) {
3055 /* syscalls > 255 */
3056 n = env->regs[1];
3057 }
3058 env->psw.addr += env->int_svc_ilen;
3059 env->regs[2] = do_syscall(env, n, env->regs[2], env->regs[3],
3060 env->regs[4], env->regs[5],
3061 env->regs[6], env->regs[7], 0, 0);
3062 break;
3063
3064 case EXCP_DEBUG:
3065 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
3066 if (sig) {
3067 n = TARGET_TRAP_BRKPT;
3068 goto do_signal_pc;
3069 }
3070 break;
3071 case EXCP_PGM:
3072 n = env->int_pgm_code;
3073 switch (n) {
3074 case PGM_OPERATION:
3075 case PGM_PRIVILEGED:
3076 sig = SIGILL;
3077 n = TARGET_ILL_ILLOPC;
3078 goto do_signal_pc;
3079 case PGM_PROTECTION:
3080 case PGM_ADDRESSING:
3081 sig = SIGSEGV;
3082 /* XXX: check env->error_code */
3083 n = TARGET_SEGV_MAPERR;
3084 addr = env->__excp_addr;
3085 goto do_signal;
3086 case PGM_EXECUTE:
3087 case PGM_SPECIFICATION:
3088 case PGM_SPECIAL_OP:
3089 case PGM_OPERAND:
3090 do_sigill_opn:
3091 sig = SIGILL;
3092 n = TARGET_ILL_ILLOPN;
3093 goto do_signal_pc;
3094
3095 case PGM_FIXPT_OVERFLOW:
3096 sig = SIGFPE;
3097 n = TARGET_FPE_INTOVF;
3098 goto do_signal_pc;
3099 case PGM_FIXPT_DIVIDE:
3100 sig = SIGFPE;
3101 n = TARGET_FPE_INTDIV;
3102 goto do_signal_pc;
3103
3104 case PGM_DATA:
3105 n = (env->fpc >> 8) & 0xff;
3106 if (n == 0xff) {
3107 /* compare-and-trap */
3108 goto do_sigill_opn;
3109 } else {
3110 /* An IEEE exception, simulated or otherwise. */
3111 if (n & 0x80) {
3112 n = TARGET_FPE_FLTINV;
3113 } else if (n & 0x40) {
3114 n = TARGET_FPE_FLTDIV;
3115 } else if (n & 0x20) {
3116 n = TARGET_FPE_FLTOVF;
3117 } else if (n & 0x10) {
3118 n = TARGET_FPE_FLTUND;
3119 } else if (n & 0x08) {
3120 n = TARGET_FPE_FLTRES;
3121 } else {
3122 /* ??? Quantum exception; BFP, DFP error. */
3123 goto do_sigill_opn;
3124 }
3125 sig = SIGFPE;
3126 goto do_signal_pc;
3127 }
3128
3129 default:
3130 fprintf(stderr, "Unhandled program exception: %#x\n", n);
3131 cpu_dump_state(cs, stderr, fprintf, 0);
3132 exit(1);
3133 }
3134 break;
3135
3136 do_signal_pc:
3137 addr = env->psw.addr;
3138 do_signal:
3139 info.si_signo = sig;
3140 info.si_errno = 0;
3141 info.si_code = n;
3142 info._sifields._sigfault._addr = addr;
3143 queue_signal(env, info.si_signo, &info);
3144 break;
3145
3146 default:
3147 fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr);
3148 cpu_dump_state(cs, stderr, fprintf, 0);
3149 exit(1);
3150 }
3151 process_pending_signals (env);
3152 }
3153 }
3154
3155 #endif /* TARGET_S390X */
3156
3157 THREAD CPUState *thread_cpu;
3158
3159 void task_settid(TaskState *ts)
3160 {
3161 if (ts->ts_tid == 0) {
3162 ts->ts_tid = (pid_t)syscall(SYS_gettid);
3163 }
3164 }
3165
3166 void stop_all_tasks(void)
3167 {
3168 /*
3169 * We trust that when using NPTL, start_exclusive()
3170 * handles thread stopping correctly.
3171 */
3172 start_exclusive();
3173 }
3174
3175 /* Assumes contents are already zeroed. */
3176 void init_task_state(TaskState *ts)
3177 {
3178 int i;
3179
3180 ts->used = 1;
3181 ts->first_free = ts->sigqueue_table;
3182 for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) {
3183 ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1];
3184 }
3185 ts->sigqueue_table[i].next = NULL;
3186 }
3187
3188 static void handle_arg_help(const char *arg)
3189 {
3190 usage();
3191 }
3192
3193 static void handle_arg_log(const char *arg)
3194 {
3195 int mask;
3196
3197 mask = qemu_str_to_log_mask(arg);
3198 if (!mask) {
3199 qemu_print_log_usage(stdout);
3200 exit(1);
3201 }
3202 qemu_set_log(mask);
3203 }
3204
3205 static void handle_arg_log_filename(const char *arg)
3206 {
3207 qemu_set_log_filename(arg);
3208 }
3209
3210 static void handle_arg_set_env(const char *arg)
3211 {
3212 char *r, *p, *token;
3213 r = p = strdup(arg);
3214 while ((token = strsep(&p, ",")) != NULL) {
3215 if (envlist_setenv(envlist, token) != 0) {
3216 usage();
3217 }
3218 }
3219 free(r);
3220 }
3221
3222 static void handle_arg_unset_env(const char *arg)
3223 {
3224 char *r, *p, *token;
3225 r = p = strdup(arg);
3226 while ((token = strsep(&p, ",")) != NULL) {
3227 if (envlist_unsetenv(envlist, token) != 0) {
3228 usage();
3229 }
3230 }
3231 free(r);
3232 }
3233
3234 static void handle_arg_argv0(const char *arg)
3235 {
3236 argv0 = strdup(arg);
3237 }
3238
3239 static void handle_arg_stack_size(const char *arg)
3240 {
3241 char *p;
3242 guest_stack_size = strtoul(arg, &p, 0);
3243 if (guest_stack_size == 0) {
3244 usage();
3245 }
3246
3247 if (*p == 'M') {
3248 guest_stack_size *= 1024 * 1024;
3249 } else if (*p == 'k' || *p == 'K') {
3250 guest_stack_size *= 1024;
3251 }
3252 }
3253
3254 static void handle_arg_ld_prefix(const char *arg)
3255 {
3256 interp_prefix = strdup(arg);
3257 }
3258
3259 static void handle_arg_pagesize(const char *arg)
3260 {
3261 qemu_host_page_size = atoi(arg);
3262 if (qemu_host_page_size == 0 ||
3263 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
3264 fprintf(stderr, "page size must be a power of two\n");
3265 exit(1);
3266 }
3267 }
3268
3269 static void handle_arg_gdb(const char *arg)
3270 {
3271 gdbstub_port = atoi(arg);
3272 }
3273
3274 static void handle_arg_uname(const char *arg)
3275 {
3276 qemu_uname_release = strdup(arg);
3277 }
3278
3279 static void handle_arg_cpu(const char *arg)
3280 {
3281 cpu_model = strdup(arg);
3282 if (cpu_model == NULL || is_help_option(cpu_model)) {
3283 /* XXX: implement xxx_cpu_list for targets that still miss it */
3284 #if defined(cpu_list)
3285 cpu_list(stdout, &fprintf);
3286 #endif
3287 exit(1);
3288 }
3289 }
3290
3291 #if defined(CONFIG_USE_GUEST_BASE)
3292 static void handle_arg_guest_base(const char *arg)
3293 {
3294 guest_base = strtol(arg, NULL, 0);
3295 have_guest_base = 1;
3296 }
3297
3298 static void handle_arg_reserved_va(const char *arg)
3299 {
3300 char *p;
3301 int shift = 0;
3302 reserved_va = strtoul(arg, &p, 0);
3303 switch (*p) {
3304 case 'k':
3305 case 'K':
3306 shift = 10;
3307 break;
3308 case 'M':
3309 shift = 20;
3310 break;
3311 case 'G':
3312 shift = 30;
3313 break;
3314 }
3315 if (shift) {
3316 unsigned long unshifted = reserved_va;
3317 p++;
3318 reserved_va <<= shift;
3319 if (((reserved_va >> shift) != unshifted)
3320 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS
3321 || (reserved_va > (1ul << TARGET_VIRT_ADDR_SPACE_BITS))
3322 #endif
3323 ) {
3324 fprintf(stderr, "Reserved virtual address too big\n");
3325 exit(1);
3326 }
3327 }
3328 if (*p) {
3329 fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p);
3330 exit(1);
3331 }
3332 }
3333 #endif
3334
3335 static void handle_arg_singlestep(const char *arg)
3336 {
3337 singlestep = 1;
3338 }
3339
3340 static void handle_arg_strace(const char *arg)
3341 {
3342 do_strace = 1;
3343 }
3344
3345 static void handle_arg_version(const char *arg)
3346 {
3347 printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION
3348 ", Copyright (c) 2003-2008 Fabrice Bellard\n");
3349 exit(0);
3350 }
3351
3352 struct qemu_argument {
3353 const char *argv;
3354 const char *env;
3355 bool has_arg;
3356 void (*handle_opt)(const char *arg);
3357 const char *example;
3358 const char *help;
3359 };
3360
3361 static const struct qemu_argument arg_table[] = {
3362 {"h", "", false, handle_arg_help,
3363 "", "print this help"},
3364 {"g", "QEMU_GDB", true, handle_arg_gdb,
3365 "port", "wait gdb connection to 'port'"},
3366 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix,
3367 "path", "set the elf interpreter prefix to 'path'"},
3368 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size,
3369 "size", "set the stack size to 'size' bytes"},
3370 {"cpu", "QEMU_CPU", true, handle_arg_cpu,
3371 "model", "select CPU (-cpu help for list)"},
3372 {"E", "QEMU_SET_ENV", true, handle_arg_set_env,
3373 "var=value", "sets targets environment variable (see below)"},
3374 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env,
3375 "var", "unsets targets environment variable (see below)"},
3376 {"0", "QEMU_ARGV0", true, handle_arg_argv0,
3377 "argv0", "forces target process argv[0] to be 'argv0'"},
3378 {"r", "QEMU_UNAME", true, handle_arg_uname,
3379 "uname", "set qemu uname release string to 'uname'"},
3380 #if defined(CONFIG_USE_GUEST_BASE)
3381 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base,
3382 "address", "set guest_base address to 'address'"},
3383 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va,
3384 "size", "reserve 'size' bytes for guest virtual address space"},
3385 #endif
3386 {"d", "QEMU_LOG", true, handle_arg_log,
3387 "item[,...]", "enable logging of specified items "
3388 "(use '-d help' for a list of items)"},
3389 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename,
3390 "logfile", "write logs to 'logfile' (default stderr)"},
3391 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize,
3392 "pagesize", "set the host page size to 'pagesize'"},
3393 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep,
3394 "", "run in singlestep mode"},
3395 {"strace", "QEMU_STRACE", false, handle_arg_strace,
3396 "", "log system calls"},
3397 {"version", "QEMU_VERSION", false, handle_arg_version,
3398 "", "display version information and exit"},
3399 {NULL, NULL, false, NULL, NULL, NULL}
3400 };
3401
3402 static void usage(void)
3403 {
3404 const struct qemu_argument *arginfo;
3405 int maxarglen;
3406 int maxenvlen;
3407
3408 printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n"
3409 "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n"
3410 "\n"
3411 "Options and associated environment variables:\n"
3412 "\n");
3413
3414 /* Calculate column widths. We must always have at least enough space
3415 * for the column header.
3416 */
3417 maxarglen = strlen("Argument");
3418 maxenvlen = strlen("Env-variable");
3419
3420 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3421 int arglen = strlen(arginfo->argv);
3422 if (arginfo->has_arg) {
3423 arglen += strlen(arginfo->example) + 1;
3424 }
3425 if (strlen(arginfo->env) > maxenvlen) {
3426 maxenvlen = strlen(arginfo->env);
3427 }
3428 if (arglen > maxarglen) {
3429 maxarglen = arglen;
3430 }
3431 }
3432
3433 printf("%-*s %-*s Description\n", maxarglen+1, "Argument",
3434 maxenvlen, "Env-variable");
3435
3436 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3437 if (arginfo->has_arg) {
3438 printf("-%s %-*s %-*s %s\n", arginfo->argv,
3439 (int)(maxarglen - strlen(arginfo->argv) - 1),
3440 arginfo->example, maxenvlen, arginfo->env, arginfo->help);
3441 } else {
3442 printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv,
3443 maxenvlen, arginfo->env,
3444 arginfo->help);
3445 }
3446 }
3447
3448 printf("\n"
3449 "Defaults:\n"
3450 "QEMU_LD_PREFIX = %s\n"
3451 "QEMU_STACK_SIZE = %ld byte\n",
3452 interp_prefix,
3453 guest_stack_size);
3454
3455 printf("\n"
3456 "You can use -E and -U options or the QEMU_SET_ENV and\n"
3457 "QEMU_UNSET_ENV environment variables to set and unset\n"
3458 "environment variables for the target process.\n"
3459 "It is possible to provide several variables by separating them\n"
3460 "by commas in getsubopt(3) style. Additionally it is possible to\n"
3461 "provide the -E and -U options multiple times.\n"
3462 "The following lines are equivalent:\n"
3463 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
3464 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n"
3465 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n"
3466 "Note that if you provide several changes to a single variable\n"
3467 "the last change will stay in effect.\n");
3468
3469 exit(1);
3470 }
3471
3472 static int parse_args(int argc, char **argv)
3473 {
3474 const char *r;
3475 int optind;
3476 const struct qemu_argument *arginfo;
3477
3478 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3479 if (arginfo->env == NULL) {
3480 continue;
3481 }
3482
3483 r = getenv(arginfo->env);
3484 if (r != NULL) {
3485 arginfo->handle_opt(r);
3486 }
3487 }
3488
3489 optind = 1;
3490 for (;;) {
3491 if (optind >= argc) {
3492 break;
3493 }
3494 r = argv[optind];
3495 if (r[0] != '-') {
3496 break;
3497 }
3498 optind++;
3499 r++;
3500 if (!strcmp(r, "-")) {
3501 break;
3502 }
3503
3504 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3505 if (!strcmp(r, arginfo->argv)) {
3506 if (arginfo->has_arg) {
3507 if (optind >= argc) {
3508 usage();
3509 }
3510 arginfo->handle_opt(argv[optind]);
3511 optind++;
3512 } else {
3513 arginfo->handle_opt(NULL);
3514 }
3515 break;
3516 }
3517 }
3518
3519 /* no option matched the current argv */
3520 if (arginfo->handle_opt == NULL) {
3521 usage();
3522 }
3523 }
3524
3525 if (optind >= argc) {
3526 usage();
3527 }
3528
3529 filename = argv[optind];
3530 exec_path = argv[optind];
3531
3532 return optind;
3533 }
3534
3535 int main(int argc, char **argv, char **envp)
3536 {
3537 struct target_pt_regs regs1, *regs = &regs1;
3538 struct image_info info1, *info = &info1;
3539 struct linux_binprm bprm;
3540 TaskState *ts;
3541 CPUArchState *env;
3542 CPUState *cpu;
3543 int optind;
3544 char **target_environ, **wrk;
3545 char **target_argv;
3546 int target_argc;
3547 int i;
3548 int ret;
3549
3550 module_call_init(MODULE_INIT_QOM);
3551
3552 qemu_cache_utils_init(envp);
3553
3554 if ((envlist = envlist_create()) == NULL) {
3555 (void) fprintf(stderr, "Unable to allocate envlist\n");
3556 exit(1);
3557 }
3558
3559 /* add current environment into the list */
3560 for (wrk = environ; *wrk != NULL; wrk++) {
3561 (void) envlist_setenv(envlist, *wrk);
3562 }
3563
3564 /* Read the stack limit from the kernel. If it's "unlimited",
3565 then we can do little else besides use the default. */
3566 {
3567 struct rlimit lim;
3568 if (getrlimit(RLIMIT_STACK, &lim) == 0
3569 && lim.rlim_cur != RLIM_INFINITY
3570 && lim.rlim_cur == (target_long)lim.rlim_cur) {
3571 guest_stack_size = lim.rlim_cur;
3572 }
3573 }
3574
3575 cpu_model = NULL;
3576 #if defined(cpudef_setup)
3577 cpudef_setup(); /* parse cpu definitions in target config file (TBD) */
3578 #endif
3579
3580 optind = parse_args(argc, argv);
3581
3582 /* Zero out regs */
3583 memset(regs, 0, sizeof(struct target_pt_regs));
3584
3585 /* Zero out image_info */
3586 memset(info, 0, sizeof(struct image_info));
3587
3588 memset(&bprm, 0, sizeof (bprm));
3589
3590 /* Scan interp_prefix dir for replacement files. */
3591 init_paths(interp_prefix);
3592
3593 if (cpu_model == NULL) {
3594 #if defined(TARGET_I386)
3595 #ifdef TARGET_X86_64
3596 cpu_model = "qemu64";
3597 #else
3598 cpu_model = "qemu32";
3599 #endif
3600 #elif defined(TARGET_ARM)
3601 cpu_model = "any";
3602 #elif defined(TARGET_UNICORE32)
3603 cpu_model = "any";
3604 #elif defined(TARGET_M68K)
3605 cpu_model = "any";
3606 #elif defined(TARGET_SPARC)
3607 #ifdef TARGET_SPARC64
3608 cpu_model = "TI UltraSparc II";
3609 #else
3610 cpu_model = "Fujitsu MB86904";
3611 #endif
3612 #elif defined(TARGET_MIPS)
3613 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64)
3614 cpu_model = "20Kc";
3615 #else
3616 cpu_model = "24Kf";
3617 #endif
3618 #elif defined TARGET_OPENRISC
3619 cpu_model = "or1200";
3620 #elif defined(TARGET_PPC)
3621 #ifdef TARGET_PPC64
3622 cpu_model = "970fx";
3623 #else
3624 cpu_model = "750";
3625 #endif
3626 #else
3627 cpu_model = "any";
3628 #endif
3629 }
3630 tcg_exec_init(0);
3631 cpu_exec_init_all();
3632 /* NOTE: we need to init the CPU at this stage to get
3633 qemu_host_page_size */
3634 env = cpu_init(cpu_model);
3635 if (!env) {
3636 fprintf(stderr, "Unable to find CPU definition\n");
3637 exit(1);
3638 }
3639 cpu = ENV_GET_CPU(env);
3640 cpu_reset(cpu);
3641
3642 thread_cpu = cpu;
3643
3644 if (getenv("QEMU_STRACE")) {
3645 do_strace = 1;
3646 }
3647
3648 target_environ = envlist_to_environ(envlist, NULL);
3649 envlist_free(envlist);
3650
3651 #if defined(CONFIG_USE_GUEST_BASE)
3652 /*
3653 * Now that page sizes are configured in cpu_init() we can do
3654 * proper page alignment for guest_base.
3655 */
3656 guest_base = HOST_PAGE_ALIGN(guest_base);
3657
3658 if (reserved_va || have_guest_base) {
3659 guest_base = init_guest_space(guest_base, reserved_va, 0,
3660 have_guest_base);
3661 if (guest_base == (unsigned long)-1) {
3662 fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address "
3663 "space for use as guest address space (check your virtual "
3664 "memory ulimit setting or reserve less using -R option)\n",
3665 reserved_va);
3666 exit(1);
3667 }
3668
3669 if (reserved_va) {
3670 mmap_next_start = reserved_va;
3671 }
3672 }
3673 #endif /* CONFIG_USE_GUEST_BASE */
3674
3675 /*
3676 * Read in mmap_min_addr kernel parameter. This value is used
3677 * When loading the ELF image to determine whether guest_base
3678 * is needed. It is also used in mmap_find_vma.
3679 */
3680 {
3681 FILE *fp;
3682
3683 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
3684 unsigned long tmp;
3685 if (fscanf(fp, "%lu", &tmp) == 1) {
3686 mmap_min_addr = tmp;
3687 qemu_log("host mmap_min_addr=0x%lx\n", mmap_min_addr);
3688 }
3689 fclose(fp);
3690 }
3691 }
3692
3693 /*
3694 * Prepare copy of argv vector for target.
3695 */
3696 target_argc = argc - optind;
3697 target_argv = calloc(target_argc + 1, sizeof (char *));
3698 if (target_argv == NULL) {
3699 (void) fprintf(stderr, "Unable to allocate memory for target_argv\n");
3700 exit(1);
3701 }
3702
3703 /*
3704 * If argv0 is specified (using '-0' switch) we replace
3705 * argv[0] pointer with the given one.
3706 */
3707 i = 0;
3708 if (argv0 != NULL) {
3709 target_argv[i++] = strdup(argv0);
3710 }
3711 for (; i < target_argc; i++) {
3712 target_argv[i] = strdup(argv[optind + i]);
3713 }
3714 target_argv[target_argc] = NULL;
3715
3716 ts = g_malloc0 (sizeof(TaskState));
3717 init_task_state(ts);
3718 /* build Task State */
3719 ts->info = info;
3720 ts->bprm = &bprm;
3721 env->opaque = ts;
3722 task_settid(ts);
3723
3724 ret = loader_exec(filename, target_argv, target_environ, regs,
3725 info, &bprm);
3726 if (ret != 0) {
3727 printf("Error while loading %s: %s\n", filename, strerror(-ret));
3728 _exit(1);
3729 }
3730
3731 for (wrk = target_environ; *wrk; wrk++) {
3732 free(*wrk);
3733 }
3734
3735 free(target_environ);
3736
3737 if (qemu_log_enabled()) {
3738 #if defined(CONFIG_USE_GUEST_BASE)
3739 qemu_log("guest_base 0x%lx\n", guest_base);
3740 #endif
3741 log_page_dump();
3742
3743 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
3744 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code);
3745 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n",
3746 info->start_code);
3747 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n",
3748 info->start_data);
3749 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data);
3750 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
3751 info->start_stack);
3752 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk);
3753 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry);
3754 }
3755
3756 target_set_brk(info->brk);
3757 syscall_init();
3758 signal_init();
3759
3760 #if defined(CONFIG_USE_GUEST_BASE)
3761 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
3762 generating the prologue until now so that the prologue can take
3763 the real value of GUEST_BASE into account. */
3764 tcg_prologue_init(&tcg_ctx);
3765 #endif
3766
3767 #if defined(TARGET_I386)
3768 cpu_x86_set_cpl(env, 3);
3769
3770 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
3771 env->hflags |= HF_PE_MASK;
3772 if (env->features[FEAT_1_EDX] & CPUID_SSE) {
3773 env->cr[4] |= CR4_OSFXSR_MASK;
3774 env->hflags |= HF_OSFXSR_MASK;
3775 }
3776 #ifndef TARGET_ABI32
3777 /* enable 64 bit mode if possible */
3778 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
3779 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
3780 exit(1);
3781 }
3782 env->cr[4] |= CR4_PAE_MASK;
3783 env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
3784 env->hflags |= HF_LMA_MASK;
3785 #endif
3786
3787 /* flags setup : we activate the IRQs by default as in user mode */
3788 env->eflags |= IF_MASK;
3789
3790 /* linux register setup */
3791 #ifndef TARGET_ABI32
3792 env->regs[R_EAX] = regs->rax;
3793 env->regs[R_EBX] = regs->rbx;
3794 env->regs[R_ECX] = regs->rcx;
3795 env->regs[R_EDX] = regs->rdx;
3796 env->regs[R_ESI] = regs->rsi;
3797 env->regs[R_EDI] = regs->rdi;
3798 env->regs[R_EBP] = regs->rbp;
3799 env->regs[R_ESP] = regs->rsp;
3800 env->eip = regs->rip;
3801 #else
3802 env->regs[R_EAX] = regs->eax;
3803 env->regs[R_EBX] = regs->ebx;
3804 env->regs[R_ECX] = regs->ecx;
3805 env->regs[R_EDX] = regs->edx;
3806 env->regs[R_ESI] = regs->esi;
3807 env->regs[R_EDI] = regs->edi;
3808 env->regs[R_EBP] = regs->ebp;
3809 env->regs[R_ESP] = regs->esp;
3810 env->eip = regs->eip;
3811 #endif
3812
3813 /* linux interrupt setup */
3814 #ifndef TARGET_ABI32
3815 env->idt.limit = 511;
3816 #else
3817 env->idt.limit = 255;
3818 #endif
3819 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
3820 PROT_READ|PROT_WRITE,
3821 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
3822 idt_table = g2h(env->idt.base);
3823 set_idt(0, 0);
3824 set_idt(1, 0);
3825 set_idt(2, 0);
3826 set_idt(3, 3);
3827 set_idt(4, 3);
3828 set_idt(5, 0);
3829 set_idt(6, 0);
3830 set_idt(7, 0);
3831 set_idt(8, 0);
3832 set_idt(9, 0);
3833 set_idt(10, 0);
3834 set_idt(11, 0);
3835 set_idt(12, 0);
3836 set_idt(13, 0);
3837 set_idt(14, 0);
3838 set_idt(15, 0);
3839 set_idt(16, 0);
3840 set_idt(17, 0);
3841 set_idt(18, 0);
3842 set_idt(19, 0);
3843 set_idt(0x80, 3);
3844
3845 /* linux segment setup */
3846 {
3847 uint64_t *gdt_table;
3848 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
3849 PROT_READ|PROT_WRITE,
3850 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
3851 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
3852 gdt_table = g2h(env->gdt.base);
3853 #ifdef TARGET_ABI32
3854 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
3855 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
3856 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
3857 #else
3858 /* 64 bit code segment */
3859 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
3860 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
3861 DESC_L_MASK |
3862 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
3863 #endif
3864 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
3865 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
3866 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
3867 }
3868 cpu_x86_load_seg(env, R_CS, __USER_CS);
3869 cpu_x86_load_seg(env, R_SS, __USER_DS);
3870 #ifdef TARGET_ABI32
3871 cpu_x86_load_seg(env, R_DS, __USER_DS);
3872 cpu_x86_load_seg(env, R_ES, __USER_DS);
3873 cpu_x86_load_seg(env, R_FS, __USER_DS);
3874 cpu_x86_load_seg(env, R_GS, __USER_DS);
3875 /* This hack makes Wine work... */
3876 env->segs[R_FS].selector = 0;
3877 #else
3878 cpu_x86_load_seg(env, R_DS, 0);
3879 cpu_x86_load_seg(env, R_ES, 0);
3880 cpu_x86_load_seg(env, R_FS, 0);
3881 cpu_x86_load_seg(env, R_GS, 0);
3882 #endif
3883 #elif defined(TARGET_ARM)
3884 {
3885 int i;
3886 cpsr_write(env, regs->uregs[16], 0xffffffff);
3887 for(i = 0; i < 16; i++) {
3888 env->regs[i] = regs->uregs[i];
3889 }
3890 /* Enable BE8. */
3891 if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4
3892 && (info->elf_flags & EF_ARM_BE8)) {
3893 env->bswap_code = 1;
3894 }
3895 }
3896 #elif defined(TARGET_UNICORE32)
3897 {
3898 int i;
3899 cpu_asr_write(env, regs->uregs[32], 0xffffffff);
3900 for (i = 0; i < 32; i++) {
3901 env->regs[i] = regs->uregs[i];
3902 }
3903 }
3904 #elif defined(TARGET_SPARC)
3905 {
3906 int i;
3907 env->pc = regs->pc;
3908 env->npc = regs->npc;
3909 env->y = regs->y;
3910 for(i = 0; i < 8; i++)
3911 env->gregs[i] = regs->u_regs[i];
3912 for(i = 0; i < 8; i++)
3913 env->regwptr[i] = regs->u_regs[i + 8];
3914 }
3915 #elif defined(TARGET_PPC)
3916 {
3917 int i;
3918
3919 #if defined(TARGET_PPC64)
3920 #if defined(TARGET_ABI32)
3921 env->msr &= ~((target_ulong)1 << MSR_SF);
3922 #else
3923 env->msr |= (target_ulong)1 << MSR_SF;
3924 #endif
3925 #endif
3926 env->nip = regs->nip;
3927 for(i = 0; i < 32; i++) {
3928 env->gpr[i] = regs->gpr[i];
3929 }
3930 }
3931 #elif defined(TARGET_M68K)
3932 {
3933 env->pc = regs->pc;
3934 env->dregs[0] = regs->d0;
3935 env->dregs[1] = regs->d1;
3936 env->dregs[2] = regs->d2;
3937 env->dregs[3] = regs->d3;
3938 env->dregs[4] = regs->d4;
3939 env->dregs[5] = regs->d5;
3940 env->dregs[6] = regs->d6;
3941 env->dregs[7] = regs->d7;
3942 env->aregs[0] = regs->a0;
3943 env->aregs[1] = regs->a1;
3944 env->aregs[2] = regs->a2;
3945 env->aregs[3] = regs->a3;
3946 env->aregs[4] = regs->a4;
3947 env->aregs[5] = regs->a5;
3948 env->aregs[6] = regs->a6;
3949 env->aregs[7] = regs->usp;
3950 env->sr = regs->sr;
3951 ts->sim_syscalls = 1;
3952 }
3953 #elif defined(TARGET_MICROBLAZE)
3954 {
3955 env->regs[0] = regs->r0;
3956 env->regs[1] = regs->r1;
3957 env->regs[2] = regs->r2;
3958 env->regs[3] = regs->r3;
3959 env->regs[4] = regs->r4;
3960 env->regs[5] = regs->r5;
3961 env->regs[6] = regs->r6;
3962 env->regs[7] = regs->r7;
3963 env->regs[8] = regs->r8;
3964 env->regs[9] = regs->r9;
3965 env->regs[10] = regs->r10;
3966 env->regs[11] = regs->r11;
3967 env->regs[12] = regs->r12;
3968 env->regs[13] = regs->r13;
3969 env->regs[14] = regs->r14;
3970 env->regs[15] = regs->r15;
3971 env->regs[16] = regs->r16;
3972 env->regs[17] = regs->r17;
3973 env->regs[18] = regs->r18;
3974 env->regs[19] = regs->r19;
3975 env->regs[20] = regs->r20;
3976 env->regs[21] = regs->r21;
3977 env->regs[22] = regs->r22;
3978 env->regs[23] = regs->r23;
3979 env->regs[24] = regs->r24;
3980 env->regs[25] = regs->r25;
3981 env->regs[26] = regs->r26;
3982 env->regs[27] = regs->r27;
3983 env->regs[28] = regs->r28;
3984 env->regs[29] = regs->r29;
3985 env->regs[30] = regs->r30;
3986 env->regs[31] = regs->r31;
3987 env->sregs[SR_PC] = regs->pc;
3988 }
3989 #elif defined(TARGET_MIPS)
3990 {
3991 int i;
3992
3993 for(i = 0; i < 32; i++) {
3994 env->active_tc.gpr[i] = regs->regs[i];
3995 }
3996 env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1;
3997 if (regs->cp0_epc & 1) {
3998 env->hflags |= MIPS_HFLAG_M16;
3999 }
4000 }
4001 #elif defined(TARGET_OPENRISC)
4002 {
4003 int i;
4004
4005 for (i = 0; i < 32; i++) {
4006 env->gpr[i] = regs->gpr[i];
4007 }
4008
4009 env->sr = regs->sr;
4010 env->pc = regs->pc;
4011 }
4012 #elif defined(TARGET_SH4)
4013 {
4014 int i;
4015
4016 for(i = 0; i < 16; i++) {
4017 env->gregs[i] = regs->regs[i];
4018 }
4019 env->pc = regs->pc;
4020 }
4021 #elif defined(TARGET_ALPHA)
4022 {
4023 int i;
4024
4025 for(i = 0; i < 28; i++) {
4026 env->ir[i] = ((abi_ulong *)regs)[i];
4027 }
4028 env->ir[IR_SP] = regs->usp;
4029 env->pc = regs->pc;
4030 }
4031 #elif defined(TARGET_CRIS)
4032 {
4033 env->regs[0] = regs->r0;
4034 env->regs[1] = regs->r1;
4035 env->regs[2] = regs->r2;
4036 env->regs[3] = regs->r3;
4037 env->regs[4] = regs->r4;
4038 env->regs[5] = regs->r5;
4039 env->regs[6] = regs->r6;
4040 env->regs[7] = regs->r7;
4041 env->regs[8] = regs->r8;
4042 env->regs[9] = regs->r9;
4043 env->regs[10] = regs->r10;
4044 env->regs[11] = regs->r11;
4045 env->regs[12] = regs->r12;
4046 env->regs[13] = regs->r13;
4047 env->regs[14] = info->start_stack;
4048 env->regs[15] = regs->acr;
4049 env->pc = regs->erp;
4050 }
4051 #elif defined(TARGET_S390X)
4052 {
4053 int i;
4054 for (i = 0; i < 16; i++) {
4055 env->regs[i] = regs->gprs[i];
4056 }
4057 env->psw.mask = regs->psw.mask;
4058 env->psw.addr = regs->psw.addr;
4059 }
4060 #else
4061 #error unsupported target CPU
4062 #endif
4063
4064 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
4065 ts->stack_base = info->start_stack;
4066 ts->heap_base = info->brk;
4067 /* This will be filled in on the first SYS_HEAPINFO call. */
4068 ts->heap_limit = 0;
4069 #endif
4070
4071 if (gdbstub_port) {
4072 if (gdbserver_start(gdbstub_port) < 0) {
4073 fprintf(stderr, "qemu: could not open gdbserver on port %d\n",
4074 gdbstub_port);
4075 exit(1);
4076 }
4077 gdb_handlesig(cpu, 0);
4078 }
4079 cpu_loop(env);
4080 /* never exits */
4081 return 0;
4082 }