]> git.proxmox.com Git - qemu.git/blob - linux-user/main.c
linux-user: Fix pipe syscall return for SPARC
[qemu.git] / linux-user / main.c
1 /*
2 * qemu user main
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include <stdlib.h>
20 #include <stdio.h>
21 #include <stdarg.h>
22 #include <string.h>
23 #include <errno.h>
24 #include <unistd.h>
25 #include <sys/mman.h>
26 #include <sys/syscall.h>
27 #include <sys/resource.h>
28
29 #include "qemu.h"
30 #include "qemu-common.h"
31 #include "qemu/cache-utils.h"
32 #include "cpu.h"
33 #include "tcg.h"
34 #include "qemu/timer.h"
35 #include "qemu/envlist.h"
36 #include "elf.h"
37
38 char *exec_path;
39
40 int singlestep;
41 const char *filename;
42 const char *argv0;
43 int gdbstub_port;
44 envlist_t *envlist;
45 const char *cpu_model;
46 unsigned long mmap_min_addr;
47 #if defined(CONFIG_USE_GUEST_BASE)
48 unsigned long guest_base;
49 int have_guest_base;
50 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64)
51 /*
52 * When running 32-on-64 we should make sure we can fit all of the possible
53 * guest address space into a contiguous chunk of virtual host memory.
54 *
55 * This way we will never overlap with our own libraries or binaries or stack
56 * or anything else that QEMU maps.
57 */
58 # ifdef TARGET_MIPS
59 /* MIPS only supports 31 bits of virtual address space for user space */
60 unsigned long reserved_va = 0x77000000;
61 # else
62 unsigned long reserved_va = 0xf7000000;
63 # endif
64 #else
65 unsigned long reserved_va;
66 #endif
67 #endif
68
69 static void usage(void);
70
71 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
72 const char *qemu_uname_release = CONFIG_UNAME_RELEASE;
73
74 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
75 we allocate a bigger stack. Need a better solution, for example
76 by remapping the process stack directly at the right place */
77 unsigned long guest_stack_size = 8 * 1024 * 1024UL;
78
79 void gemu_log(const char *fmt, ...)
80 {
81 va_list ap;
82
83 va_start(ap, fmt);
84 vfprintf(stderr, fmt, ap);
85 va_end(ap);
86 }
87
88 #if defined(TARGET_I386)
89 int cpu_get_pic_interrupt(CPUX86State *env)
90 {
91 return -1;
92 }
93 #endif
94
95 /***********************************************************/
96 /* Helper routines for implementing atomic operations. */
97
98 /* To implement exclusive operations we force all cpus to syncronise.
99 We don't require a full sync, only that no cpus are executing guest code.
100 The alternative is to map target atomic ops onto host equivalents,
101 which requires quite a lot of per host/target work. */
102 static pthread_mutex_t cpu_list_mutex = PTHREAD_MUTEX_INITIALIZER;
103 static pthread_mutex_t exclusive_lock = PTHREAD_MUTEX_INITIALIZER;
104 static pthread_cond_t exclusive_cond = PTHREAD_COND_INITIALIZER;
105 static pthread_cond_t exclusive_resume = PTHREAD_COND_INITIALIZER;
106 static int pending_cpus;
107
108 /* Make sure everything is in a consistent state for calling fork(). */
109 void fork_start(void)
110 {
111 pthread_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
112 pthread_mutex_lock(&exclusive_lock);
113 mmap_fork_start();
114 }
115
116 void fork_end(int child)
117 {
118 mmap_fork_end(child);
119 if (child) {
120 /* Child processes created by fork() only have a single thread.
121 Discard information about the parent threads. */
122 first_cpu = thread_cpu;
123 first_cpu->next_cpu = NULL;
124 pending_cpus = 0;
125 pthread_mutex_init(&exclusive_lock, NULL);
126 pthread_mutex_init(&cpu_list_mutex, NULL);
127 pthread_cond_init(&exclusive_cond, NULL);
128 pthread_cond_init(&exclusive_resume, NULL);
129 pthread_mutex_init(&tcg_ctx.tb_ctx.tb_lock, NULL);
130 gdbserver_fork((CPUArchState *)thread_cpu->env_ptr);
131 } else {
132 pthread_mutex_unlock(&exclusive_lock);
133 pthread_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
134 }
135 }
136
137 /* Wait for pending exclusive operations to complete. The exclusive lock
138 must be held. */
139 static inline void exclusive_idle(void)
140 {
141 while (pending_cpus) {
142 pthread_cond_wait(&exclusive_resume, &exclusive_lock);
143 }
144 }
145
146 /* Start an exclusive operation.
147 Must only be called from outside cpu_arm_exec. */
148 static inline void start_exclusive(void)
149 {
150 CPUState *other_cpu;
151
152 pthread_mutex_lock(&exclusive_lock);
153 exclusive_idle();
154
155 pending_cpus = 1;
156 /* Make all other cpus stop executing. */
157 for (other_cpu = first_cpu; other_cpu; other_cpu = other_cpu->next_cpu) {
158 if (other_cpu->running) {
159 pending_cpus++;
160 cpu_exit(other_cpu);
161 }
162 }
163 if (pending_cpus > 1) {
164 pthread_cond_wait(&exclusive_cond, &exclusive_lock);
165 }
166 }
167
168 /* Finish an exclusive operation. */
169 static inline void end_exclusive(void)
170 {
171 pending_cpus = 0;
172 pthread_cond_broadcast(&exclusive_resume);
173 pthread_mutex_unlock(&exclusive_lock);
174 }
175
176 /* Wait for exclusive ops to finish, and begin cpu execution. */
177 static inline void cpu_exec_start(CPUState *cpu)
178 {
179 pthread_mutex_lock(&exclusive_lock);
180 exclusive_idle();
181 cpu->running = true;
182 pthread_mutex_unlock(&exclusive_lock);
183 }
184
185 /* Mark cpu as not executing, and release pending exclusive ops. */
186 static inline void cpu_exec_end(CPUState *cpu)
187 {
188 pthread_mutex_lock(&exclusive_lock);
189 cpu->running = false;
190 if (pending_cpus > 1) {
191 pending_cpus--;
192 if (pending_cpus == 1) {
193 pthread_cond_signal(&exclusive_cond);
194 }
195 }
196 exclusive_idle();
197 pthread_mutex_unlock(&exclusive_lock);
198 }
199
200 void cpu_list_lock(void)
201 {
202 pthread_mutex_lock(&cpu_list_mutex);
203 }
204
205 void cpu_list_unlock(void)
206 {
207 pthread_mutex_unlock(&cpu_list_mutex);
208 }
209
210
211 #ifdef TARGET_I386
212 /***********************************************************/
213 /* CPUX86 core interface */
214
215 void cpu_smm_update(CPUX86State *env)
216 {
217 }
218
219 uint64_t cpu_get_tsc(CPUX86State *env)
220 {
221 return cpu_get_real_ticks();
222 }
223
224 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
225 int flags)
226 {
227 unsigned int e1, e2;
228 uint32_t *p;
229 e1 = (addr << 16) | (limit & 0xffff);
230 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
231 e2 |= flags;
232 p = ptr;
233 p[0] = tswap32(e1);
234 p[1] = tswap32(e2);
235 }
236
237 static uint64_t *idt_table;
238 #ifdef TARGET_X86_64
239 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
240 uint64_t addr, unsigned int sel)
241 {
242 uint32_t *p, e1, e2;
243 e1 = (addr & 0xffff) | (sel << 16);
244 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
245 p = ptr;
246 p[0] = tswap32(e1);
247 p[1] = tswap32(e2);
248 p[2] = tswap32(addr >> 32);
249 p[3] = 0;
250 }
251 /* only dpl matters as we do only user space emulation */
252 static void set_idt(int n, unsigned int dpl)
253 {
254 set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
255 }
256 #else
257 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
258 uint32_t addr, unsigned int sel)
259 {
260 uint32_t *p, e1, e2;
261 e1 = (addr & 0xffff) | (sel << 16);
262 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
263 p = ptr;
264 p[0] = tswap32(e1);
265 p[1] = tswap32(e2);
266 }
267
268 /* only dpl matters as we do only user space emulation */
269 static void set_idt(int n, unsigned int dpl)
270 {
271 set_gate(idt_table + n, 0, dpl, 0, 0);
272 }
273 #endif
274
275 void cpu_loop(CPUX86State *env)
276 {
277 int trapnr;
278 abi_ulong pc;
279 target_siginfo_t info;
280
281 for(;;) {
282 trapnr = cpu_x86_exec(env);
283 switch(trapnr) {
284 case 0x80:
285 /* linux syscall from int $0x80 */
286 env->regs[R_EAX] = do_syscall(env,
287 env->regs[R_EAX],
288 env->regs[R_EBX],
289 env->regs[R_ECX],
290 env->regs[R_EDX],
291 env->regs[R_ESI],
292 env->regs[R_EDI],
293 env->regs[R_EBP],
294 0, 0);
295 break;
296 #ifndef TARGET_ABI32
297 case EXCP_SYSCALL:
298 /* linux syscall from syscall instruction */
299 env->regs[R_EAX] = do_syscall(env,
300 env->regs[R_EAX],
301 env->regs[R_EDI],
302 env->regs[R_ESI],
303 env->regs[R_EDX],
304 env->regs[10],
305 env->regs[8],
306 env->regs[9],
307 0, 0);
308 env->eip = env->exception_next_eip;
309 break;
310 #endif
311 case EXCP0B_NOSEG:
312 case EXCP0C_STACK:
313 info.si_signo = SIGBUS;
314 info.si_errno = 0;
315 info.si_code = TARGET_SI_KERNEL;
316 info._sifields._sigfault._addr = 0;
317 queue_signal(env, info.si_signo, &info);
318 break;
319 case EXCP0D_GPF:
320 /* XXX: potential problem if ABI32 */
321 #ifndef TARGET_X86_64
322 if (env->eflags & VM_MASK) {
323 handle_vm86_fault(env);
324 } else
325 #endif
326 {
327 info.si_signo = SIGSEGV;
328 info.si_errno = 0;
329 info.si_code = TARGET_SI_KERNEL;
330 info._sifields._sigfault._addr = 0;
331 queue_signal(env, info.si_signo, &info);
332 }
333 break;
334 case EXCP0E_PAGE:
335 info.si_signo = SIGSEGV;
336 info.si_errno = 0;
337 if (!(env->error_code & 1))
338 info.si_code = TARGET_SEGV_MAPERR;
339 else
340 info.si_code = TARGET_SEGV_ACCERR;
341 info._sifields._sigfault._addr = env->cr[2];
342 queue_signal(env, info.si_signo, &info);
343 break;
344 case EXCP00_DIVZ:
345 #ifndef TARGET_X86_64
346 if (env->eflags & VM_MASK) {
347 handle_vm86_trap(env, trapnr);
348 } else
349 #endif
350 {
351 /* division by zero */
352 info.si_signo = SIGFPE;
353 info.si_errno = 0;
354 info.si_code = TARGET_FPE_INTDIV;
355 info._sifields._sigfault._addr = env->eip;
356 queue_signal(env, info.si_signo, &info);
357 }
358 break;
359 case EXCP01_DB:
360 case EXCP03_INT3:
361 #ifndef TARGET_X86_64
362 if (env->eflags & VM_MASK) {
363 handle_vm86_trap(env, trapnr);
364 } else
365 #endif
366 {
367 info.si_signo = SIGTRAP;
368 info.si_errno = 0;
369 if (trapnr == EXCP01_DB) {
370 info.si_code = TARGET_TRAP_BRKPT;
371 info._sifields._sigfault._addr = env->eip;
372 } else {
373 info.si_code = TARGET_SI_KERNEL;
374 info._sifields._sigfault._addr = 0;
375 }
376 queue_signal(env, info.si_signo, &info);
377 }
378 break;
379 case EXCP04_INTO:
380 case EXCP05_BOUND:
381 #ifndef TARGET_X86_64
382 if (env->eflags & VM_MASK) {
383 handle_vm86_trap(env, trapnr);
384 } else
385 #endif
386 {
387 info.si_signo = SIGSEGV;
388 info.si_errno = 0;
389 info.si_code = TARGET_SI_KERNEL;
390 info._sifields._sigfault._addr = 0;
391 queue_signal(env, info.si_signo, &info);
392 }
393 break;
394 case EXCP06_ILLOP:
395 info.si_signo = SIGILL;
396 info.si_errno = 0;
397 info.si_code = TARGET_ILL_ILLOPN;
398 info._sifields._sigfault._addr = env->eip;
399 queue_signal(env, info.si_signo, &info);
400 break;
401 case EXCP_INTERRUPT:
402 /* just indicate that signals should be handled asap */
403 break;
404 case EXCP_DEBUG:
405 {
406 int sig;
407
408 sig = gdb_handlesig (env, TARGET_SIGTRAP);
409 if (sig)
410 {
411 info.si_signo = sig;
412 info.si_errno = 0;
413 info.si_code = TARGET_TRAP_BRKPT;
414 queue_signal(env, info.si_signo, &info);
415 }
416 }
417 break;
418 default:
419 pc = env->segs[R_CS].base + env->eip;
420 fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
421 (long)pc, trapnr);
422 abort();
423 }
424 process_pending_signals(env);
425 }
426 }
427 #endif
428
429 #ifdef TARGET_ARM
430
431 #define get_user_code_u32(x, gaddr, doswap) \
432 ({ abi_long __r = get_user_u32((x), (gaddr)); \
433 if (!__r && (doswap)) { \
434 (x) = bswap32(x); \
435 } \
436 __r; \
437 })
438
439 #define get_user_code_u16(x, gaddr, doswap) \
440 ({ abi_long __r = get_user_u16((x), (gaddr)); \
441 if (!__r && (doswap)) { \
442 (x) = bswap16(x); \
443 } \
444 __r; \
445 })
446
447 /*
448 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
449 * Input:
450 * r0 = pointer to oldval
451 * r1 = pointer to newval
452 * r2 = pointer to target value
453 *
454 * Output:
455 * r0 = 0 if *ptr was changed, non-0 if no exchange happened
456 * C set if *ptr was changed, clear if no exchange happened
457 *
458 * Note segv's in kernel helpers are a bit tricky, we can set the
459 * data address sensibly but the PC address is just the entry point.
460 */
461 static void arm_kernel_cmpxchg64_helper(CPUARMState *env)
462 {
463 uint64_t oldval, newval, val;
464 uint32_t addr, cpsr;
465 target_siginfo_t info;
466
467 /* Based on the 32 bit code in do_kernel_trap */
468
469 /* XXX: This only works between threads, not between processes.
470 It's probably possible to implement this with native host
471 operations. However things like ldrex/strex are much harder so
472 there's not much point trying. */
473 start_exclusive();
474 cpsr = cpsr_read(env);
475 addr = env->regs[2];
476
477 if (get_user_u64(oldval, env->regs[0])) {
478 env->cp15.c6_data = env->regs[0];
479 goto segv;
480 };
481
482 if (get_user_u64(newval, env->regs[1])) {
483 env->cp15.c6_data = env->regs[1];
484 goto segv;
485 };
486
487 if (get_user_u64(val, addr)) {
488 env->cp15.c6_data = addr;
489 goto segv;
490 }
491
492 if (val == oldval) {
493 val = newval;
494
495 if (put_user_u64(val, addr)) {
496 env->cp15.c6_data = addr;
497 goto segv;
498 };
499
500 env->regs[0] = 0;
501 cpsr |= CPSR_C;
502 } else {
503 env->regs[0] = -1;
504 cpsr &= ~CPSR_C;
505 }
506 cpsr_write(env, cpsr, CPSR_C);
507 end_exclusive();
508 return;
509
510 segv:
511 end_exclusive();
512 /* We get the PC of the entry address - which is as good as anything,
513 on a real kernel what you get depends on which mode it uses. */
514 info.si_signo = SIGSEGV;
515 info.si_errno = 0;
516 /* XXX: check env->error_code */
517 info.si_code = TARGET_SEGV_MAPERR;
518 info._sifields._sigfault._addr = env->cp15.c6_data;
519 queue_signal(env, info.si_signo, &info);
520
521 end_exclusive();
522 }
523
524 /* Handle a jump to the kernel code page. */
525 static int
526 do_kernel_trap(CPUARMState *env)
527 {
528 uint32_t addr;
529 uint32_t cpsr;
530 uint32_t val;
531
532 switch (env->regs[15]) {
533 case 0xffff0fa0: /* __kernel_memory_barrier */
534 /* ??? No-op. Will need to do better for SMP. */
535 break;
536 case 0xffff0fc0: /* __kernel_cmpxchg */
537 /* XXX: This only works between threads, not between processes.
538 It's probably possible to implement this with native host
539 operations. However things like ldrex/strex are much harder so
540 there's not much point trying. */
541 start_exclusive();
542 cpsr = cpsr_read(env);
543 addr = env->regs[2];
544 /* FIXME: This should SEGV if the access fails. */
545 if (get_user_u32(val, addr))
546 val = ~env->regs[0];
547 if (val == env->regs[0]) {
548 val = env->regs[1];
549 /* FIXME: Check for segfaults. */
550 put_user_u32(val, addr);
551 env->regs[0] = 0;
552 cpsr |= CPSR_C;
553 } else {
554 env->regs[0] = -1;
555 cpsr &= ~CPSR_C;
556 }
557 cpsr_write(env, cpsr, CPSR_C);
558 end_exclusive();
559 break;
560 case 0xffff0fe0: /* __kernel_get_tls */
561 env->regs[0] = env->cp15.c13_tls2;
562 break;
563 case 0xffff0f60: /* __kernel_cmpxchg64 */
564 arm_kernel_cmpxchg64_helper(env);
565 break;
566
567 default:
568 return 1;
569 }
570 /* Jump back to the caller. */
571 addr = env->regs[14];
572 if (addr & 1) {
573 env->thumb = 1;
574 addr &= ~1;
575 }
576 env->regs[15] = addr;
577
578 return 0;
579 }
580
581 static int do_strex(CPUARMState *env)
582 {
583 uint32_t val;
584 int size;
585 int rc = 1;
586 int segv = 0;
587 uint32_t addr;
588 start_exclusive();
589 addr = env->exclusive_addr;
590 if (addr != env->exclusive_test) {
591 goto fail;
592 }
593 size = env->exclusive_info & 0xf;
594 switch (size) {
595 case 0:
596 segv = get_user_u8(val, addr);
597 break;
598 case 1:
599 segv = get_user_u16(val, addr);
600 break;
601 case 2:
602 case 3:
603 segv = get_user_u32(val, addr);
604 break;
605 default:
606 abort();
607 }
608 if (segv) {
609 env->cp15.c6_data = addr;
610 goto done;
611 }
612 if (val != env->exclusive_val) {
613 goto fail;
614 }
615 if (size == 3) {
616 segv = get_user_u32(val, addr + 4);
617 if (segv) {
618 env->cp15.c6_data = addr + 4;
619 goto done;
620 }
621 if (val != env->exclusive_high) {
622 goto fail;
623 }
624 }
625 val = env->regs[(env->exclusive_info >> 8) & 0xf];
626 switch (size) {
627 case 0:
628 segv = put_user_u8(val, addr);
629 break;
630 case 1:
631 segv = put_user_u16(val, addr);
632 break;
633 case 2:
634 case 3:
635 segv = put_user_u32(val, addr);
636 break;
637 }
638 if (segv) {
639 env->cp15.c6_data = addr;
640 goto done;
641 }
642 if (size == 3) {
643 val = env->regs[(env->exclusive_info >> 12) & 0xf];
644 segv = put_user_u32(val, addr + 4);
645 if (segv) {
646 env->cp15.c6_data = addr + 4;
647 goto done;
648 }
649 }
650 rc = 0;
651 fail:
652 env->regs[15] += 4;
653 env->regs[(env->exclusive_info >> 4) & 0xf] = rc;
654 done:
655 end_exclusive();
656 return segv;
657 }
658
659 void cpu_loop(CPUARMState *env)
660 {
661 CPUState *cs = CPU(arm_env_get_cpu(env));
662 int trapnr;
663 unsigned int n, insn;
664 target_siginfo_t info;
665 uint32_t addr;
666
667 for(;;) {
668 cpu_exec_start(cs);
669 trapnr = cpu_arm_exec(env);
670 cpu_exec_end(cs);
671 switch(trapnr) {
672 case EXCP_UDEF:
673 {
674 TaskState *ts = env->opaque;
675 uint32_t opcode;
676 int rc;
677
678 /* we handle the FPU emulation here, as Linux */
679 /* we get the opcode */
680 /* FIXME - what to do if get_user() fails? */
681 get_user_code_u32(opcode, env->regs[15], env->bswap_code);
682
683 rc = EmulateAll(opcode, &ts->fpa, env);
684 if (rc == 0) { /* illegal instruction */
685 info.si_signo = SIGILL;
686 info.si_errno = 0;
687 info.si_code = TARGET_ILL_ILLOPN;
688 info._sifields._sigfault._addr = env->regs[15];
689 queue_signal(env, info.si_signo, &info);
690 } else if (rc < 0) { /* FP exception */
691 int arm_fpe=0;
692
693 /* translate softfloat flags to FPSR flags */
694 if (-rc & float_flag_invalid)
695 arm_fpe |= BIT_IOC;
696 if (-rc & float_flag_divbyzero)
697 arm_fpe |= BIT_DZC;
698 if (-rc & float_flag_overflow)
699 arm_fpe |= BIT_OFC;
700 if (-rc & float_flag_underflow)
701 arm_fpe |= BIT_UFC;
702 if (-rc & float_flag_inexact)
703 arm_fpe |= BIT_IXC;
704
705 FPSR fpsr = ts->fpa.fpsr;
706 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
707
708 if (fpsr & (arm_fpe << 16)) { /* exception enabled? */
709 info.si_signo = SIGFPE;
710 info.si_errno = 0;
711
712 /* ordered by priority, least first */
713 if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES;
714 if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND;
715 if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF;
716 if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV;
717 if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV;
718
719 info._sifields._sigfault._addr = env->regs[15];
720 queue_signal(env, info.si_signo, &info);
721 } else {
722 env->regs[15] += 4;
723 }
724
725 /* accumulate unenabled exceptions */
726 if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC))
727 fpsr |= BIT_IXC;
728 if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC))
729 fpsr |= BIT_UFC;
730 if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC))
731 fpsr |= BIT_OFC;
732 if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC))
733 fpsr |= BIT_DZC;
734 if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC))
735 fpsr |= BIT_IOC;
736 ts->fpa.fpsr=fpsr;
737 } else { /* everything OK */
738 /* increment PC */
739 env->regs[15] += 4;
740 }
741 }
742 break;
743 case EXCP_SWI:
744 case EXCP_BKPT:
745 {
746 env->eabi = 1;
747 /* system call */
748 if (trapnr == EXCP_BKPT) {
749 if (env->thumb) {
750 /* FIXME - what to do if get_user() fails? */
751 get_user_code_u16(insn, env->regs[15], env->bswap_code);
752 n = insn & 0xff;
753 env->regs[15] += 2;
754 } else {
755 /* FIXME - what to do if get_user() fails? */
756 get_user_code_u32(insn, env->regs[15], env->bswap_code);
757 n = (insn & 0xf) | ((insn >> 4) & 0xff0);
758 env->regs[15] += 4;
759 }
760 } else {
761 if (env->thumb) {
762 /* FIXME - what to do if get_user() fails? */
763 get_user_code_u16(insn, env->regs[15] - 2,
764 env->bswap_code);
765 n = insn & 0xff;
766 } else {
767 /* FIXME - what to do if get_user() fails? */
768 get_user_code_u32(insn, env->regs[15] - 4,
769 env->bswap_code);
770 n = insn & 0xffffff;
771 }
772 }
773
774 if (n == ARM_NR_cacheflush) {
775 /* nop */
776 } else if (n == ARM_NR_semihosting
777 || n == ARM_NR_thumb_semihosting) {
778 env->regs[0] = do_arm_semihosting (env);
779 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) {
780 /* linux syscall */
781 if (env->thumb || n == 0) {
782 n = env->regs[7];
783 } else {
784 n -= ARM_SYSCALL_BASE;
785 env->eabi = 0;
786 }
787 if ( n > ARM_NR_BASE) {
788 switch (n) {
789 case ARM_NR_cacheflush:
790 /* nop */
791 break;
792 case ARM_NR_set_tls:
793 cpu_set_tls(env, env->regs[0]);
794 env->regs[0] = 0;
795 break;
796 default:
797 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n",
798 n);
799 env->regs[0] = -TARGET_ENOSYS;
800 break;
801 }
802 } else {
803 env->regs[0] = do_syscall(env,
804 n,
805 env->regs[0],
806 env->regs[1],
807 env->regs[2],
808 env->regs[3],
809 env->regs[4],
810 env->regs[5],
811 0, 0);
812 }
813 } else {
814 goto error;
815 }
816 }
817 break;
818 case EXCP_INTERRUPT:
819 /* just indicate that signals should be handled asap */
820 break;
821 case EXCP_PREFETCH_ABORT:
822 addr = env->cp15.c6_insn;
823 goto do_segv;
824 case EXCP_DATA_ABORT:
825 addr = env->cp15.c6_data;
826 do_segv:
827 {
828 info.si_signo = SIGSEGV;
829 info.si_errno = 0;
830 /* XXX: check env->error_code */
831 info.si_code = TARGET_SEGV_MAPERR;
832 info._sifields._sigfault._addr = addr;
833 queue_signal(env, info.si_signo, &info);
834 }
835 break;
836 case EXCP_DEBUG:
837 {
838 int sig;
839
840 sig = gdb_handlesig (env, TARGET_SIGTRAP);
841 if (sig)
842 {
843 info.si_signo = sig;
844 info.si_errno = 0;
845 info.si_code = TARGET_TRAP_BRKPT;
846 queue_signal(env, info.si_signo, &info);
847 }
848 }
849 break;
850 case EXCP_KERNEL_TRAP:
851 if (do_kernel_trap(env))
852 goto error;
853 break;
854 case EXCP_STREX:
855 if (do_strex(env)) {
856 addr = env->cp15.c6_data;
857 goto do_segv;
858 }
859 break;
860 default:
861 error:
862 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
863 trapnr);
864 cpu_dump_state(cs, stderr, fprintf, 0);
865 abort();
866 }
867 process_pending_signals(env);
868 }
869 }
870
871 #endif
872
873 #ifdef TARGET_UNICORE32
874
875 void cpu_loop(CPUUniCore32State *env)
876 {
877 CPUState *cs = CPU(uc32_env_get_cpu(env));
878 int trapnr;
879 unsigned int n, insn;
880 target_siginfo_t info;
881
882 for (;;) {
883 cpu_exec_start(cs);
884 trapnr = uc32_cpu_exec(env);
885 cpu_exec_end(cs);
886 switch (trapnr) {
887 case UC32_EXCP_PRIV:
888 {
889 /* system call */
890 get_user_u32(insn, env->regs[31] - 4);
891 n = insn & 0xffffff;
892
893 if (n >= UC32_SYSCALL_BASE) {
894 /* linux syscall */
895 n -= UC32_SYSCALL_BASE;
896 if (n == UC32_SYSCALL_NR_set_tls) {
897 cpu_set_tls(env, env->regs[0]);
898 env->regs[0] = 0;
899 } else {
900 env->regs[0] = do_syscall(env,
901 n,
902 env->regs[0],
903 env->regs[1],
904 env->regs[2],
905 env->regs[3],
906 env->regs[4],
907 env->regs[5],
908 0, 0);
909 }
910 } else {
911 goto error;
912 }
913 }
914 break;
915 case UC32_EXCP_DTRAP:
916 case UC32_EXCP_ITRAP:
917 info.si_signo = SIGSEGV;
918 info.si_errno = 0;
919 /* XXX: check env->error_code */
920 info.si_code = TARGET_SEGV_MAPERR;
921 info._sifields._sigfault._addr = env->cp0.c4_faultaddr;
922 queue_signal(env, info.si_signo, &info);
923 break;
924 case EXCP_INTERRUPT:
925 /* just indicate that signals should be handled asap */
926 break;
927 case EXCP_DEBUG:
928 {
929 int sig;
930
931 sig = gdb_handlesig(env, TARGET_SIGTRAP);
932 if (sig) {
933 info.si_signo = sig;
934 info.si_errno = 0;
935 info.si_code = TARGET_TRAP_BRKPT;
936 queue_signal(env, info.si_signo, &info);
937 }
938 }
939 break;
940 default:
941 goto error;
942 }
943 process_pending_signals(env);
944 }
945
946 error:
947 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
948 cpu_dump_state(cs, stderr, fprintf, 0);
949 abort();
950 }
951 #endif
952
953 #ifdef TARGET_SPARC
954 #define SPARC64_STACK_BIAS 2047
955
956 //#define DEBUG_WIN
957
958 /* WARNING: dealing with register windows _is_ complicated. More info
959 can be found at http://www.sics.se/~psm/sparcstack.html */
960 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
961 {
962 index = (index + cwp * 16) % (16 * env->nwindows);
963 /* wrap handling : if cwp is on the last window, then we use the
964 registers 'after' the end */
965 if (index < 8 && env->cwp == env->nwindows - 1)
966 index += 16 * env->nwindows;
967 return index;
968 }
969
970 /* save the register window 'cwp1' */
971 static inline void save_window_offset(CPUSPARCState *env, int cwp1)
972 {
973 unsigned int i;
974 abi_ulong sp_ptr;
975
976 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
977 #ifdef TARGET_SPARC64
978 if (sp_ptr & 3)
979 sp_ptr += SPARC64_STACK_BIAS;
980 #endif
981 #if defined(DEBUG_WIN)
982 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
983 sp_ptr, cwp1);
984 #endif
985 for(i = 0; i < 16; i++) {
986 /* FIXME - what to do if put_user() fails? */
987 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
988 sp_ptr += sizeof(abi_ulong);
989 }
990 }
991
992 static void save_window(CPUSPARCState *env)
993 {
994 #ifndef TARGET_SPARC64
995 unsigned int new_wim;
996 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
997 ((1LL << env->nwindows) - 1);
998 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
999 env->wim = new_wim;
1000 #else
1001 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
1002 env->cansave++;
1003 env->canrestore--;
1004 #endif
1005 }
1006
1007 static void restore_window(CPUSPARCState *env)
1008 {
1009 #ifndef TARGET_SPARC64
1010 unsigned int new_wim;
1011 #endif
1012 unsigned int i, cwp1;
1013 abi_ulong sp_ptr;
1014
1015 #ifndef TARGET_SPARC64
1016 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
1017 ((1LL << env->nwindows) - 1);
1018 #endif
1019
1020 /* restore the invalid window */
1021 cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1022 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
1023 #ifdef TARGET_SPARC64
1024 if (sp_ptr & 3)
1025 sp_ptr += SPARC64_STACK_BIAS;
1026 #endif
1027 #if defined(DEBUG_WIN)
1028 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
1029 sp_ptr, cwp1);
1030 #endif
1031 for(i = 0; i < 16; i++) {
1032 /* FIXME - what to do if get_user() fails? */
1033 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
1034 sp_ptr += sizeof(abi_ulong);
1035 }
1036 #ifdef TARGET_SPARC64
1037 env->canrestore++;
1038 if (env->cleanwin < env->nwindows - 1)
1039 env->cleanwin++;
1040 env->cansave--;
1041 #else
1042 env->wim = new_wim;
1043 #endif
1044 }
1045
1046 static void flush_windows(CPUSPARCState *env)
1047 {
1048 int offset, cwp1;
1049
1050 offset = 1;
1051 for(;;) {
1052 /* if restore would invoke restore_window(), then we can stop */
1053 cwp1 = cpu_cwp_inc(env, env->cwp + offset);
1054 #ifndef TARGET_SPARC64
1055 if (env->wim & (1 << cwp1))
1056 break;
1057 #else
1058 if (env->canrestore == 0)
1059 break;
1060 env->cansave++;
1061 env->canrestore--;
1062 #endif
1063 save_window_offset(env, cwp1);
1064 offset++;
1065 }
1066 cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1067 #ifndef TARGET_SPARC64
1068 /* set wim so that restore will reload the registers */
1069 env->wim = 1 << cwp1;
1070 #endif
1071 #if defined(DEBUG_WIN)
1072 printf("flush_windows: nb=%d\n", offset - 1);
1073 #endif
1074 }
1075
1076 void cpu_loop (CPUSPARCState *env)
1077 {
1078 CPUState *cs = CPU(sparc_env_get_cpu(env));
1079 int trapnr;
1080 abi_long ret;
1081 target_siginfo_t info;
1082
1083 while (1) {
1084 trapnr = cpu_sparc_exec (env);
1085
1086 /* Compute PSR before exposing state. */
1087 if (env->cc_op != CC_OP_FLAGS) {
1088 cpu_get_psr(env);
1089 }
1090
1091 switch (trapnr) {
1092 #ifndef TARGET_SPARC64
1093 case 0x88:
1094 case 0x90:
1095 #else
1096 case 0x110:
1097 case 0x16d:
1098 #endif
1099 ret = do_syscall (env, env->gregs[1],
1100 env->regwptr[0], env->regwptr[1],
1101 env->regwptr[2], env->regwptr[3],
1102 env->regwptr[4], env->regwptr[5],
1103 0, 0);
1104 if ((abi_ulong)ret >= (abi_ulong)(-515)) {
1105 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1106 env->xcc |= PSR_CARRY;
1107 #else
1108 env->psr |= PSR_CARRY;
1109 #endif
1110 ret = -ret;
1111 } else {
1112 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1113 env->xcc &= ~PSR_CARRY;
1114 #else
1115 env->psr &= ~PSR_CARRY;
1116 #endif
1117 }
1118 env->regwptr[0] = ret;
1119 /* next instruction */
1120 env->pc = env->npc;
1121 env->npc = env->npc + 4;
1122 break;
1123 case 0x83: /* flush windows */
1124 #ifdef TARGET_ABI32
1125 case 0x103:
1126 #endif
1127 flush_windows(env);
1128 /* next instruction */
1129 env->pc = env->npc;
1130 env->npc = env->npc + 4;
1131 break;
1132 #ifndef TARGET_SPARC64
1133 case TT_WIN_OVF: /* window overflow */
1134 save_window(env);
1135 break;
1136 case TT_WIN_UNF: /* window underflow */
1137 restore_window(env);
1138 break;
1139 case TT_TFAULT:
1140 case TT_DFAULT:
1141 {
1142 info.si_signo = TARGET_SIGSEGV;
1143 info.si_errno = 0;
1144 /* XXX: check env->error_code */
1145 info.si_code = TARGET_SEGV_MAPERR;
1146 info._sifields._sigfault._addr = env->mmuregs[4];
1147 queue_signal(env, info.si_signo, &info);
1148 }
1149 break;
1150 #else
1151 case TT_SPILL: /* window overflow */
1152 save_window(env);
1153 break;
1154 case TT_FILL: /* window underflow */
1155 restore_window(env);
1156 break;
1157 case TT_TFAULT:
1158 case TT_DFAULT:
1159 {
1160 info.si_signo = TARGET_SIGSEGV;
1161 info.si_errno = 0;
1162 /* XXX: check env->error_code */
1163 info.si_code = TARGET_SEGV_MAPERR;
1164 if (trapnr == TT_DFAULT)
1165 info._sifields._sigfault._addr = env->dmmuregs[4];
1166 else
1167 info._sifields._sigfault._addr = cpu_tsptr(env)->tpc;
1168 queue_signal(env, info.si_signo, &info);
1169 }
1170 break;
1171 #ifndef TARGET_ABI32
1172 case 0x16e:
1173 flush_windows(env);
1174 sparc64_get_context(env);
1175 break;
1176 case 0x16f:
1177 flush_windows(env);
1178 sparc64_set_context(env);
1179 break;
1180 #endif
1181 #endif
1182 case EXCP_INTERRUPT:
1183 /* just indicate that signals should be handled asap */
1184 break;
1185 case TT_ILL_INSN:
1186 {
1187 info.si_signo = TARGET_SIGILL;
1188 info.si_errno = 0;
1189 info.si_code = TARGET_ILL_ILLOPC;
1190 info._sifields._sigfault._addr = env->pc;
1191 queue_signal(env, info.si_signo, &info);
1192 }
1193 break;
1194 case EXCP_DEBUG:
1195 {
1196 int sig;
1197
1198 sig = gdb_handlesig (env, TARGET_SIGTRAP);
1199 if (sig)
1200 {
1201 info.si_signo = sig;
1202 info.si_errno = 0;
1203 info.si_code = TARGET_TRAP_BRKPT;
1204 queue_signal(env, info.si_signo, &info);
1205 }
1206 }
1207 break;
1208 default:
1209 printf ("Unhandled trap: 0x%x\n", trapnr);
1210 cpu_dump_state(cs, stderr, fprintf, 0);
1211 exit (1);
1212 }
1213 process_pending_signals (env);
1214 }
1215 }
1216
1217 #endif
1218
1219 #ifdef TARGET_PPC
1220 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env)
1221 {
1222 /* TO FIX */
1223 return 0;
1224 }
1225
1226 uint64_t cpu_ppc_load_tbl(CPUPPCState *env)
1227 {
1228 return cpu_ppc_get_tb(env);
1229 }
1230
1231 uint32_t cpu_ppc_load_tbu(CPUPPCState *env)
1232 {
1233 return cpu_ppc_get_tb(env) >> 32;
1234 }
1235
1236 uint64_t cpu_ppc_load_atbl(CPUPPCState *env)
1237 {
1238 return cpu_ppc_get_tb(env);
1239 }
1240
1241 uint32_t cpu_ppc_load_atbu(CPUPPCState *env)
1242 {
1243 return cpu_ppc_get_tb(env) >> 32;
1244 }
1245
1246 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env)
1247 __attribute__ (( alias ("cpu_ppc_load_tbu") ));
1248
1249 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env)
1250 {
1251 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1252 }
1253
1254 /* XXX: to be fixed */
1255 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1256 {
1257 return -1;
1258 }
1259
1260 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1261 {
1262 return -1;
1263 }
1264
1265 #define EXCP_DUMP(env, fmt, ...) \
1266 do { \
1267 CPUState *cs = ENV_GET_CPU(env); \
1268 fprintf(stderr, fmt , ## __VA_ARGS__); \
1269 cpu_dump_state(cs, stderr, fprintf, 0); \
1270 qemu_log(fmt, ## __VA_ARGS__); \
1271 if (qemu_log_enabled()) { \
1272 log_cpu_state(cs, 0); \
1273 } \
1274 } while (0)
1275
1276 static int do_store_exclusive(CPUPPCState *env)
1277 {
1278 target_ulong addr;
1279 target_ulong page_addr;
1280 target_ulong val;
1281 int flags;
1282 int segv = 0;
1283
1284 addr = env->reserve_ea;
1285 page_addr = addr & TARGET_PAGE_MASK;
1286 start_exclusive();
1287 mmap_lock();
1288 flags = page_get_flags(page_addr);
1289 if ((flags & PAGE_READ) == 0) {
1290 segv = 1;
1291 } else {
1292 int reg = env->reserve_info & 0x1f;
1293 int size = (env->reserve_info >> 5) & 0xf;
1294 int stored = 0;
1295
1296 if (addr == env->reserve_addr) {
1297 switch (size) {
1298 case 1: segv = get_user_u8(val, addr); break;
1299 case 2: segv = get_user_u16(val, addr); break;
1300 case 4: segv = get_user_u32(val, addr); break;
1301 #if defined(TARGET_PPC64)
1302 case 8: segv = get_user_u64(val, addr); break;
1303 #endif
1304 default: abort();
1305 }
1306 if (!segv && val == env->reserve_val) {
1307 val = env->gpr[reg];
1308 switch (size) {
1309 case 1: segv = put_user_u8(val, addr); break;
1310 case 2: segv = put_user_u16(val, addr); break;
1311 case 4: segv = put_user_u32(val, addr); break;
1312 #if defined(TARGET_PPC64)
1313 case 8: segv = put_user_u64(val, addr); break;
1314 #endif
1315 default: abort();
1316 }
1317 if (!segv) {
1318 stored = 1;
1319 }
1320 }
1321 }
1322 env->crf[0] = (stored << 1) | xer_so;
1323 env->reserve_addr = (target_ulong)-1;
1324 }
1325 if (!segv) {
1326 env->nip += 4;
1327 }
1328 mmap_unlock();
1329 end_exclusive();
1330 return segv;
1331 }
1332
1333 void cpu_loop(CPUPPCState *env)
1334 {
1335 CPUState *cs = CPU(ppc_env_get_cpu(env));
1336 target_siginfo_t info;
1337 int trapnr;
1338 target_ulong ret;
1339
1340 for(;;) {
1341 cpu_exec_start(cs);
1342 trapnr = cpu_ppc_exec(env);
1343 cpu_exec_end(cs);
1344 switch(trapnr) {
1345 case POWERPC_EXCP_NONE:
1346 /* Just go on */
1347 break;
1348 case POWERPC_EXCP_CRITICAL: /* Critical input */
1349 cpu_abort(env, "Critical interrupt while in user mode. "
1350 "Aborting\n");
1351 break;
1352 case POWERPC_EXCP_MCHECK: /* Machine check exception */
1353 cpu_abort(env, "Machine check exception while in user mode. "
1354 "Aborting\n");
1355 break;
1356 case POWERPC_EXCP_DSI: /* Data storage exception */
1357 EXCP_DUMP(env, "Invalid data memory access: 0x" TARGET_FMT_lx "\n",
1358 env->spr[SPR_DAR]);
1359 /* XXX: check this. Seems bugged */
1360 switch (env->error_code & 0xFF000000) {
1361 case 0x40000000:
1362 info.si_signo = TARGET_SIGSEGV;
1363 info.si_errno = 0;
1364 info.si_code = TARGET_SEGV_MAPERR;
1365 break;
1366 case 0x04000000:
1367 info.si_signo = TARGET_SIGILL;
1368 info.si_errno = 0;
1369 info.si_code = TARGET_ILL_ILLADR;
1370 break;
1371 case 0x08000000:
1372 info.si_signo = TARGET_SIGSEGV;
1373 info.si_errno = 0;
1374 info.si_code = TARGET_SEGV_ACCERR;
1375 break;
1376 default:
1377 /* Let's send a regular segfault... */
1378 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1379 env->error_code);
1380 info.si_signo = TARGET_SIGSEGV;
1381 info.si_errno = 0;
1382 info.si_code = TARGET_SEGV_MAPERR;
1383 break;
1384 }
1385 info._sifields._sigfault._addr = env->nip;
1386 queue_signal(env, info.si_signo, &info);
1387 break;
1388 case POWERPC_EXCP_ISI: /* Instruction storage exception */
1389 EXCP_DUMP(env, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx
1390 "\n", env->spr[SPR_SRR0]);
1391 /* XXX: check this */
1392 switch (env->error_code & 0xFF000000) {
1393 case 0x40000000:
1394 info.si_signo = TARGET_SIGSEGV;
1395 info.si_errno = 0;
1396 info.si_code = TARGET_SEGV_MAPERR;
1397 break;
1398 case 0x10000000:
1399 case 0x08000000:
1400 info.si_signo = TARGET_SIGSEGV;
1401 info.si_errno = 0;
1402 info.si_code = TARGET_SEGV_ACCERR;
1403 break;
1404 default:
1405 /* Let's send a regular segfault... */
1406 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1407 env->error_code);
1408 info.si_signo = TARGET_SIGSEGV;
1409 info.si_errno = 0;
1410 info.si_code = TARGET_SEGV_MAPERR;
1411 break;
1412 }
1413 info._sifields._sigfault._addr = env->nip - 4;
1414 queue_signal(env, info.si_signo, &info);
1415 break;
1416 case POWERPC_EXCP_EXTERNAL: /* External input */
1417 cpu_abort(env, "External interrupt while in user mode. "
1418 "Aborting\n");
1419 break;
1420 case POWERPC_EXCP_ALIGN: /* Alignment exception */
1421 EXCP_DUMP(env, "Unaligned memory access\n");
1422 /* XXX: check this */
1423 info.si_signo = TARGET_SIGBUS;
1424 info.si_errno = 0;
1425 info.si_code = TARGET_BUS_ADRALN;
1426 info._sifields._sigfault._addr = env->nip - 4;
1427 queue_signal(env, info.si_signo, &info);
1428 break;
1429 case POWERPC_EXCP_PROGRAM: /* Program exception */
1430 /* XXX: check this */
1431 switch (env->error_code & ~0xF) {
1432 case POWERPC_EXCP_FP:
1433 EXCP_DUMP(env, "Floating point program exception\n");
1434 info.si_signo = TARGET_SIGFPE;
1435 info.si_errno = 0;
1436 switch (env->error_code & 0xF) {
1437 case POWERPC_EXCP_FP_OX:
1438 info.si_code = TARGET_FPE_FLTOVF;
1439 break;
1440 case POWERPC_EXCP_FP_UX:
1441 info.si_code = TARGET_FPE_FLTUND;
1442 break;
1443 case POWERPC_EXCP_FP_ZX:
1444 case POWERPC_EXCP_FP_VXZDZ:
1445 info.si_code = TARGET_FPE_FLTDIV;
1446 break;
1447 case POWERPC_EXCP_FP_XX:
1448 info.si_code = TARGET_FPE_FLTRES;
1449 break;
1450 case POWERPC_EXCP_FP_VXSOFT:
1451 info.si_code = TARGET_FPE_FLTINV;
1452 break;
1453 case POWERPC_EXCP_FP_VXSNAN:
1454 case POWERPC_EXCP_FP_VXISI:
1455 case POWERPC_EXCP_FP_VXIDI:
1456 case POWERPC_EXCP_FP_VXIMZ:
1457 case POWERPC_EXCP_FP_VXVC:
1458 case POWERPC_EXCP_FP_VXSQRT:
1459 case POWERPC_EXCP_FP_VXCVI:
1460 info.si_code = TARGET_FPE_FLTSUB;
1461 break;
1462 default:
1463 EXCP_DUMP(env, "Unknown floating point exception (%02x)\n",
1464 env->error_code);
1465 break;
1466 }
1467 break;
1468 case POWERPC_EXCP_INVAL:
1469 EXCP_DUMP(env, "Invalid instruction\n");
1470 info.si_signo = TARGET_SIGILL;
1471 info.si_errno = 0;
1472 switch (env->error_code & 0xF) {
1473 case POWERPC_EXCP_INVAL_INVAL:
1474 info.si_code = TARGET_ILL_ILLOPC;
1475 break;
1476 case POWERPC_EXCP_INVAL_LSWX:
1477 info.si_code = TARGET_ILL_ILLOPN;
1478 break;
1479 case POWERPC_EXCP_INVAL_SPR:
1480 info.si_code = TARGET_ILL_PRVREG;
1481 break;
1482 case POWERPC_EXCP_INVAL_FP:
1483 info.si_code = TARGET_ILL_COPROC;
1484 break;
1485 default:
1486 EXCP_DUMP(env, "Unknown invalid operation (%02x)\n",
1487 env->error_code & 0xF);
1488 info.si_code = TARGET_ILL_ILLADR;
1489 break;
1490 }
1491 break;
1492 case POWERPC_EXCP_PRIV:
1493 EXCP_DUMP(env, "Privilege violation\n");
1494 info.si_signo = TARGET_SIGILL;
1495 info.si_errno = 0;
1496 switch (env->error_code & 0xF) {
1497 case POWERPC_EXCP_PRIV_OPC:
1498 info.si_code = TARGET_ILL_PRVOPC;
1499 break;
1500 case POWERPC_EXCP_PRIV_REG:
1501 info.si_code = TARGET_ILL_PRVREG;
1502 break;
1503 default:
1504 EXCP_DUMP(env, "Unknown privilege violation (%02x)\n",
1505 env->error_code & 0xF);
1506 info.si_code = TARGET_ILL_PRVOPC;
1507 break;
1508 }
1509 break;
1510 case POWERPC_EXCP_TRAP:
1511 cpu_abort(env, "Tried to call a TRAP\n");
1512 break;
1513 default:
1514 /* Should not happen ! */
1515 cpu_abort(env, "Unknown program exception (%02x)\n",
1516 env->error_code);
1517 break;
1518 }
1519 info._sifields._sigfault._addr = env->nip - 4;
1520 queue_signal(env, info.si_signo, &info);
1521 break;
1522 case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */
1523 EXCP_DUMP(env, "No floating point allowed\n");
1524 info.si_signo = TARGET_SIGILL;
1525 info.si_errno = 0;
1526 info.si_code = TARGET_ILL_COPROC;
1527 info._sifields._sigfault._addr = env->nip - 4;
1528 queue_signal(env, info.si_signo, &info);
1529 break;
1530 case POWERPC_EXCP_SYSCALL: /* System call exception */
1531 cpu_abort(env, "Syscall exception while in user mode. "
1532 "Aborting\n");
1533 break;
1534 case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */
1535 EXCP_DUMP(env, "No APU instruction allowed\n");
1536 info.si_signo = TARGET_SIGILL;
1537 info.si_errno = 0;
1538 info.si_code = TARGET_ILL_COPROC;
1539 info._sifields._sigfault._addr = env->nip - 4;
1540 queue_signal(env, info.si_signo, &info);
1541 break;
1542 case POWERPC_EXCP_DECR: /* Decrementer exception */
1543 cpu_abort(env, "Decrementer interrupt while in user mode. "
1544 "Aborting\n");
1545 break;
1546 case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */
1547 cpu_abort(env, "Fix interval timer interrupt while in user mode. "
1548 "Aborting\n");
1549 break;
1550 case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */
1551 cpu_abort(env, "Watchdog timer interrupt while in user mode. "
1552 "Aborting\n");
1553 break;
1554 case POWERPC_EXCP_DTLB: /* Data TLB error */
1555 cpu_abort(env, "Data TLB exception while in user mode. "
1556 "Aborting\n");
1557 break;
1558 case POWERPC_EXCP_ITLB: /* Instruction TLB error */
1559 cpu_abort(env, "Instruction TLB exception while in user mode. "
1560 "Aborting\n");
1561 break;
1562 case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */
1563 EXCP_DUMP(env, "No SPE/floating-point instruction allowed\n");
1564 info.si_signo = TARGET_SIGILL;
1565 info.si_errno = 0;
1566 info.si_code = TARGET_ILL_COPROC;
1567 info._sifields._sigfault._addr = env->nip - 4;
1568 queue_signal(env, info.si_signo, &info);
1569 break;
1570 case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */
1571 cpu_abort(env, "Embedded floating-point data IRQ not handled\n");
1572 break;
1573 case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */
1574 cpu_abort(env, "Embedded floating-point round IRQ not handled\n");
1575 break;
1576 case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */
1577 cpu_abort(env, "Performance monitor exception not handled\n");
1578 break;
1579 case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */
1580 cpu_abort(env, "Doorbell interrupt while in user mode. "
1581 "Aborting\n");
1582 break;
1583 case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */
1584 cpu_abort(env, "Doorbell critical interrupt while in user mode. "
1585 "Aborting\n");
1586 break;
1587 case POWERPC_EXCP_RESET: /* System reset exception */
1588 cpu_abort(env, "Reset interrupt while in user mode. "
1589 "Aborting\n");
1590 break;
1591 case POWERPC_EXCP_DSEG: /* Data segment exception */
1592 cpu_abort(env, "Data segment exception while in user mode. "
1593 "Aborting\n");
1594 break;
1595 case POWERPC_EXCP_ISEG: /* Instruction segment exception */
1596 cpu_abort(env, "Instruction segment exception "
1597 "while in user mode. Aborting\n");
1598 break;
1599 /* PowerPC 64 with hypervisor mode support */
1600 case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */
1601 cpu_abort(env, "Hypervisor decrementer interrupt "
1602 "while in user mode. Aborting\n");
1603 break;
1604 case POWERPC_EXCP_TRACE: /* Trace exception */
1605 /* Nothing to do:
1606 * we use this exception to emulate step-by-step execution mode.
1607 */
1608 break;
1609 /* PowerPC 64 with hypervisor mode support */
1610 case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */
1611 cpu_abort(env, "Hypervisor data storage exception "
1612 "while in user mode. Aborting\n");
1613 break;
1614 case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */
1615 cpu_abort(env, "Hypervisor instruction storage exception "
1616 "while in user mode. Aborting\n");
1617 break;
1618 case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */
1619 cpu_abort(env, "Hypervisor data segment exception "
1620 "while in user mode. Aborting\n");
1621 break;
1622 case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */
1623 cpu_abort(env, "Hypervisor instruction segment exception "
1624 "while in user mode. Aborting\n");
1625 break;
1626 case POWERPC_EXCP_VPU: /* Vector unavailable exception */
1627 EXCP_DUMP(env, "No Altivec instructions allowed\n");
1628 info.si_signo = TARGET_SIGILL;
1629 info.si_errno = 0;
1630 info.si_code = TARGET_ILL_COPROC;
1631 info._sifields._sigfault._addr = env->nip - 4;
1632 queue_signal(env, info.si_signo, &info);
1633 break;
1634 case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */
1635 cpu_abort(env, "Programmable interval timer interrupt "
1636 "while in user mode. Aborting\n");
1637 break;
1638 case POWERPC_EXCP_IO: /* IO error exception */
1639 cpu_abort(env, "IO error exception while in user mode. "
1640 "Aborting\n");
1641 break;
1642 case POWERPC_EXCP_RUNM: /* Run mode exception */
1643 cpu_abort(env, "Run mode exception while in user mode. "
1644 "Aborting\n");
1645 break;
1646 case POWERPC_EXCP_EMUL: /* Emulation trap exception */
1647 cpu_abort(env, "Emulation trap exception not handled\n");
1648 break;
1649 case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */
1650 cpu_abort(env, "Instruction fetch TLB exception "
1651 "while in user-mode. Aborting");
1652 break;
1653 case POWERPC_EXCP_DLTLB: /* Data load TLB miss */
1654 cpu_abort(env, "Data load TLB exception while in user-mode. "
1655 "Aborting");
1656 break;
1657 case POWERPC_EXCP_DSTLB: /* Data store TLB miss */
1658 cpu_abort(env, "Data store TLB exception while in user-mode. "
1659 "Aborting");
1660 break;
1661 case POWERPC_EXCP_FPA: /* Floating-point assist exception */
1662 cpu_abort(env, "Floating-point assist exception not handled\n");
1663 break;
1664 case POWERPC_EXCP_IABR: /* Instruction address breakpoint */
1665 cpu_abort(env, "Instruction address breakpoint exception "
1666 "not handled\n");
1667 break;
1668 case POWERPC_EXCP_SMI: /* System management interrupt */
1669 cpu_abort(env, "System management interrupt while in user mode. "
1670 "Aborting\n");
1671 break;
1672 case POWERPC_EXCP_THERM: /* Thermal interrupt */
1673 cpu_abort(env, "Thermal interrupt interrupt while in user mode. "
1674 "Aborting\n");
1675 break;
1676 case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */
1677 cpu_abort(env, "Performance monitor exception not handled\n");
1678 break;
1679 case POWERPC_EXCP_VPUA: /* Vector assist exception */
1680 cpu_abort(env, "Vector assist exception not handled\n");
1681 break;
1682 case POWERPC_EXCP_SOFTP: /* Soft patch exception */
1683 cpu_abort(env, "Soft patch exception not handled\n");
1684 break;
1685 case POWERPC_EXCP_MAINT: /* Maintenance exception */
1686 cpu_abort(env, "Maintenance exception while in user mode. "
1687 "Aborting\n");
1688 break;
1689 case POWERPC_EXCP_STOP: /* stop translation */
1690 /* We did invalidate the instruction cache. Go on */
1691 break;
1692 case POWERPC_EXCP_BRANCH: /* branch instruction: */
1693 /* We just stopped because of a branch. Go on */
1694 break;
1695 case POWERPC_EXCP_SYSCALL_USER:
1696 /* system call in user-mode emulation */
1697 /* WARNING:
1698 * PPC ABI uses overflow flag in cr0 to signal an error
1699 * in syscalls.
1700 */
1701 env->crf[0] &= ~0x1;
1702 ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4],
1703 env->gpr[5], env->gpr[6], env->gpr[7],
1704 env->gpr[8], 0, 0);
1705 if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) {
1706 /* Returning from a successful sigreturn syscall.
1707 Avoid corrupting register state. */
1708 break;
1709 }
1710 if (ret > (target_ulong)(-515)) {
1711 env->crf[0] |= 0x1;
1712 ret = -ret;
1713 }
1714 env->gpr[3] = ret;
1715 break;
1716 case POWERPC_EXCP_STCX:
1717 if (do_store_exclusive(env)) {
1718 info.si_signo = TARGET_SIGSEGV;
1719 info.si_errno = 0;
1720 info.si_code = TARGET_SEGV_MAPERR;
1721 info._sifields._sigfault._addr = env->nip;
1722 queue_signal(env, info.si_signo, &info);
1723 }
1724 break;
1725 case EXCP_DEBUG:
1726 {
1727 int sig;
1728
1729 sig = gdb_handlesig(env, TARGET_SIGTRAP);
1730 if (sig) {
1731 info.si_signo = sig;
1732 info.si_errno = 0;
1733 info.si_code = TARGET_TRAP_BRKPT;
1734 queue_signal(env, info.si_signo, &info);
1735 }
1736 }
1737 break;
1738 case EXCP_INTERRUPT:
1739 /* just indicate that signals should be handled asap */
1740 break;
1741 default:
1742 cpu_abort(env, "Unknown exception 0x%d. Aborting\n", trapnr);
1743 break;
1744 }
1745 process_pending_signals(env);
1746 }
1747 }
1748 #endif
1749
1750 #ifdef TARGET_MIPS
1751
1752 # ifdef TARGET_ABI_MIPSO32
1753 # define MIPS_SYS(name, args) args,
1754 static const uint8_t mips_syscall_args[] = {
1755 MIPS_SYS(sys_syscall , 8) /* 4000 */
1756 MIPS_SYS(sys_exit , 1)
1757 MIPS_SYS(sys_fork , 0)
1758 MIPS_SYS(sys_read , 3)
1759 MIPS_SYS(sys_write , 3)
1760 MIPS_SYS(sys_open , 3) /* 4005 */
1761 MIPS_SYS(sys_close , 1)
1762 MIPS_SYS(sys_waitpid , 3)
1763 MIPS_SYS(sys_creat , 2)
1764 MIPS_SYS(sys_link , 2)
1765 MIPS_SYS(sys_unlink , 1) /* 4010 */
1766 MIPS_SYS(sys_execve , 0)
1767 MIPS_SYS(sys_chdir , 1)
1768 MIPS_SYS(sys_time , 1)
1769 MIPS_SYS(sys_mknod , 3)
1770 MIPS_SYS(sys_chmod , 2) /* 4015 */
1771 MIPS_SYS(sys_lchown , 3)
1772 MIPS_SYS(sys_ni_syscall , 0)
1773 MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */
1774 MIPS_SYS(sys_lseek , 3)
1775 MIPS_SYS(sys_getpid , 0) /* 4020 */
1776 MIPS_SYS(sys_mount , 5)
1777 MIPS_SYS(sys_oldumount , 1)
1778 MIPS_SYS(sys_setuid , 1)
1779 MIPS_SYS(sys_getuid , 0)
1780 MIPS_SYS(sys_stime , 1) /* 4025 */
1781 MIPS_SYS(sys_ptrace , 4)
1782 MIPS_SYS(sys_alarm , 1)
1783 MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */
1784 MIPS_SYS(sys_pause , 0)
1785 MIPS_SYS(sys_utime , 2) /* 4030 */
1786 MIPS_SYS(sys_ni_syscall , 0)
1787 MIPS_SYS(sys_ni_syscall , 0)
1788 MIPS_SYS(sys_access , 2)
1789 MIPS_SYS(sys_nice , 1)
1790 MIPS_SYS(sys_ni_syscall , 0) /* 4035 */
1791 MIPS_SYS(sys_sync , 0)
1792 MIPS_SYS(sys_kill , 2)
1793 MIPS_SYS(sys_rename , 2)
1794 MIPS_SYS(sys_mkdir , 2)
1795 MIPS_SYS(sys_rmdir , 1) /* 4040 */
1796 MIPS_SYS(sys_dup , 1)
1797 MIPS_SYS(sys_pipe , 0)
1798 MIPS_SYS(sys_times , 1)
1799 MIPS_SYS(sys_ni_syscall , 0)
1800 MIPS_SYS(sys_brk , 1) /* 4045 */
1801 MIPS_SYS(sys_setgid , 1)
1802 MIPS_SYS(sys_getgid , 0)
1803 MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */
1804 MIPS_SYS(sys_geteuid , 0)
1805 MIPS_SYS(sys_getegid , 0) /* 4050 */
1806 MIPS_SYS(sys_acct , 0)
1807 MIPS_SYS(sys_umount , 2)
1808 MIPS_SYS(sys_ni_syscall , 0)
1809 MIPS_SYS(sys_ioctl , 3)
1810 MIPS_SYS(sys_fcntl , 3) /* 4055 */
1811 MIPS_SYS(sys_ni_syscall , 2)
1812 MIPS_SYS(sys_setpgid , 2)
1813 MIPS_SYS(sys_ni_syscall , 0)
1814 MIPS_SYS(sys_olduname , 1)
1815 MIPS_SYS(sys_umask , 1) /* 4060 */
1816 MIPS_SYS(sys_chroot , 1)
1817 MIPS_SYS(sys_ustat , 2)
1818 MIPS_SYS(sys_dup2 , 2)
1819 MIPS_SYS(sys_getppid , 0)
1820 MIPS_SYS(sys_getpgrp , 0) /* 4065 */
1821 MIPS_SYS(sys_setsid , 0)
1822 MIPS_SYS(sys_sigaction , 3)
1823 MIPS_SYS(sys_sgetmask , 0)
1824 MIPS_SYS(sys_ssetmask , 1)
1825 MIPS_SYS(sys_setreuid , 2) /* 4070 */
1826 MIPS_SYS(sys_setregid , 2)
1827 MIPS_SYS(sys_sigsuspend , 0)
1828 MIPS_SYS(sys_sigpending , 1)
1829 MIPS_SYS(sys_sethostname , 2)
1830 MIPS_SYS(sys_setrlimit , 2) /* 4075 */
1831 MIPS_SYS(sys_getrlimit , 2)
1832 MIPS_SYS(sys_getrusage , 2)
1833 MIPS_SYS(sys_gettimeofday, 2)
1834 MIPS_SYS(sys_settimeofday, 2)
1835 MIPS_SYS(sys_getgroups , 2) /* 4080 */
1836 MIPS_SYS(sys_setgroups , 2)
1837 MIPS_SYS(sys_ni_syscall , 0) /* old_select */
1838 MIPS_SYS(sys_symlink , 2)
1839 MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */
1840 MIPS_SYS(sys_readlink , 3) /* 4085 */
1841 MIPS_SYS(sys_uselib , 1)
1842 MIPS_SYS(sys_swapon , 2)
1843 MIPS_SYS(sys_reboot , 3)
1844 MIPS_SYS(old_readdir , 3)
1845 MIPS_SYS(old_mmap , 6) /* 4090 */
1846 MIPS_SYS(sys_munmap , 2)
1847 MIPS_SYS(sys_truncate , 2)
1848 MIPS_SYS(sys_ftruncate , 2)
1849 MIPS_SYS(sys_fchmod , 2)
1850 MIPS_SYS(sys_fchown , 3) /* 4095 */
1851 MIPS_SYS(sys_getpriority , 2)
1852 MIPS_SYS(sys_setpriority , 3)
1853 MIPS_SYS(sys_ni_syscall , 0)
1854 MIPS_SYS(sys_statfs , 2)
1855 MIPS_SYS(sys_fstatfs , 2) /* 4100 */
1856 MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */
1857 MIPS_SYS(sys_socketcall , 2)
1858 MIPS_SYS(sys_syslog , 3)
1859 MIPS_SYS(sys_setitimer , 3)
1860 MIPS_SYS(sys_getitimer , 2) /* 4105 */
1861 MIPS_SYS(sys_newstat , 2)
1862 MIPS_SYS(sys_newlstat , 2)
1863 MIPS_SYS(sys_newfstat , 2)
1864 MIPS_SYS(sys_uname , 1)
1865 MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */
1866 MIPS_SYS(sys_vhangup , 0)
1867 MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */
1868 MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */
1869 MIPS_SYS(sys_wait4 , 4)
1870 MIPS_SYS(sys_swapoff , 1) /* 4115 */
1871 MIPS_SYS(sys_sysinfo , 1)
1872 MIPS_SYS(sys_ipc , 6)
1873 MIPS_SYS(sys_fsync , 1)
1874 MIPS_SYS(sys_sigreturn , 0)
1875 MIPS_SYS(sys_clone , 6) /* 4120 */
1876 MIPS_SYS(sys_setdomainname, 2)
1877 MIPS_SYS(sys_newuname , 1)
1878 MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */
1879 MIPS_SYS(sys_adjtimex , 1)
1880 MIPS_SYS(sys_mprotect , 3) /* 4125 */
1881 MIPS_SYS(sys_sigprocmask , 3)
1882 MIPS_SYS(sys_ni_syscall , 0) /* was create_module */
1883 MIPS_SYS(sys_init_module , 5)
1884 MIPS_SYS(sys_delete_module, 1)
1885 MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */
1886 MIPS_SYS(sys_quotactl , 0)
1887 MIPS_SYS(sys_getpgid , 1)
1888 MIPS_SYS(sys_fchdir , 1)
1889 MIPS_SYS(sys_bdflush , 2)
1890 MIPS_SYS(sys_sysfs , 3) /* 4135 */
1891 MIPS_SYS(sys_personality , 1)
1892 MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */
1893 MIPS_SYS(sys_setfsuid , 1)
1894 MIPS_SYS(sys_setfsgid , 1)
1895 MIPS_SYS(sys_llseek , 5) /* 4140 */
1896 MIPS_SYS(sys_getdents , 3)
1897 MIPS_SYS(sys_select , 5)
1898 MIPS_SYS(sys_flock , 2)
1899 MIPS_SYS(sys_msync , 3)
1900 MIPS_SYS(sys_readv , 3) /* 4145 */
1901 MIPS_SYS(sys_writev , 3)
1902 MIPS_SYS(sys_cacheflush , 3)
1903 MIPS_SYS(sys_cachectl , 3)
1904 MIPS_SYS(sys_sysmips , 4)
1905 MIPS_SYS(sys_ni_syscall , 0) /* 4150 */
1906 MIPS_SYS(sys_getsid , 1)
1907 MIPS_SYS(sys_fdatasync , 0)
1908 MIPS_SYS(sys_sysctl , 1)
1909 MIPS_SYS(sys_mlock , 2)
1910 MIPS_SYS(sys_munlock , 2) /* 4155 */
1911 MIPS_SYS(sys_mlockall , 1)
1912 MIPS_SYS(sys_munlockall , 0)
1913 MIPS_SYS(sys_sched_setparam, 2)
1914 MIPS_SYS(sys_sched_getparam, 2)
1915 MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */
1916 MIPS_SYS(sys_sched_getscheduler, 1)
1917 MIPS_SYS(sys_sched_yield , 0)
1918 MIPS_SYS(sys_sched_get_priority_max, 1)
1919 MIPS_SYS(sys_sched_get_priority_min, 1)
1920 MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */
1921 MIPS_SYS(sys_nanosleep, 2)
1922 MIPS_SYS(sys_mremap , 4)
1923 MIPS_SYS(sys_accept , 3)
1924 MIPS_SYS(sys_bind , 3)
1925 MIPS_SYS(sys_connect , 3) /* 4170 */
1926 MIPS_SYS(sys_getpeername , 3)
1927 MIPS_SYS(sys_getsockname , 3)
1928 MIPS_SYS(sys_getsockopt , 5)
1929 MIPS_SYS(sys_listen , 2)
1930 MIPS_SYS(sys_recv , 4) /* 4175 */
1931 MIPS_SYS(sys_recvfrom , 6)
1932 MIPS_SYS(sys_recvmsg , 3)
1933 MIPS_SYS(sys_send , 4)
1934 MIPS_SYS(sys_sendmsg , 3)
1935 MIPS_SYS(sys_sendto , 6) /* 4180 */
1936 MIPS_SYS(sys_setsockopt , 5)
1937 MIPS_SYS(sys_shutdown , 2)
1938 MIPS_SYS(sys_socket , 3)
1939 MIPS_SYS(sys_socketpair , 4)
1940 MIPS_SYS(sys_setresuid , 3) /* 4185 */
1941 MIPS_SYS(sys_getresuid , 3)
1942 MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */
1943 MIPS_SYS(sys_poll , 3)
1944 MIPS_SYS(sys_nfsservctl , 3)
1945 MIPS_SYS(sys_setresgid , 3) /* 4190 */
1946 MIPS_SYS(sys_getresgid , 3)
1947 MIPS_SYS(sys_prctl , 5)
1948 MIPS_SYS(sys_rt_sigreturn, 0)
1949 MIPS_SYS(sys_rt_sigaction, 4)
1950 MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */
1951 MIPS_SYS(sys_rt_sigpending, 2)
1952 MIPS_SYS(sys_rt_sigtimedwait, 4)
1953 MIPS_SYS(sys_rt_sigqueueinfo, 3)
1954 MIPS_SYS(sys_rt_sigsuspend, 0)
1955 MIPS_SYS(sys_pread64 , 6) /* 4200 */
1956 MIPS_SYS(sys_pwrite64 , 6)
1957 MIPS_SYS(sys_chown , 3)
1958 MIPS_SYS(sys_getcwd , 2)
1959 MIPS_SYS(sys_capget , 2)
1960 MIPS_SYS(sys_capset , 2) /* 4205 */
1961 MIPS_SYS(sys_sigaltstack , 2)
1962 MIPS_SYS(sys_sendfile , 4)
1963 MIPS_SYS(sys_ni_syscall , 0)
1964 MIPS_SYS(sys_ni_syscall , 0)
1965 MIPS_SYS(sys_mmap2 , 6) /* 4210 */
1966 MIPS_SYS(sys_truncate64 , 4)
1967 MIPS_SYS(sys_ftruncate64 , 4)
1968 MIPS_SYS(sys_stat64 , 2)
1969 MIPS_SYS(sys_lstat64 , 2)
1970 MIPS_SYS(sys_fstat64 , 2) /* 4215 */
1971 MIPS_SYS(sys_pivot_root , 2)
1972 MIPS_SYS(sys_mincore , 3)
1973 MIPS_SYS(sys_madvise , 3)
1974 MIPS_SYS(sys_getdents64 , 3)
1975 MIPS_SYS(sys_fcntl64 , 3) /* 4220 */
1976 MIPS_SYS(sys_ni_syscall , 0)
1977 MIPS_SYS(sys_gettid , 0)
1978 MIPS_SYS(sys_readahead , 5)
1979 MIPS_SYS(sys_setxattr , 5)
1980 MIPS_SYS(sys_lsetxattr , 5) /* 4225 */
1981 MIPS_SYS(sys_fsetxattr , 5)
1982 MIPS_SYS(sys_getxattr , 4)
1983 MIPS_SYS(sys_lgetxattr , 4)
1984 MIPS_SYS(sys_fgetxattr , 4)
1985 MIPS_SYS(sys_listxattr , 3) /* 4230 */
1986 MIPS_SYS(sys_llistxattr , 3)
1987 MIPS_SYS(sys_flistxattr , 3)
1988 MIPS_SYS(sys_removexattr , 2)
1989 MIPS_SYS(sys_lremovexattr, 2)
1990 MIPS_SYS(sys_fremovexattr, 2) /* 4235 */
1991 MIPS_SYS(sys_tkill , 2)
1992 MIPS_SYS(sys_sendfile64 , 5)
1993 MIPS_SYS(sys_futex , 6)
1994 MIPS_SYS(sys_sched_setaffinity, 3)
1995 MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */
1996 MIPS_SYS(sys_io_setup , 2)
1997 MIPS_SYS(sys_io_destroy , 1)
1998 MIPS_SYS(sys_io_getevents, 5)
1999 MIPS_SYS(sys_io_submit , 3)
2000 MIPS_SYS(sys_io_cancel , 3) /* 4245 */
2001 MIPS_SYS(sys_exit_group , 1)
2002 MIPS_SYS(sys_lookup_dcookie, 3)
2003 MIPS_SYS(sys_epoll_create, 1)
2004 MIPS_SYS(sys_epoll_ctl , 4)
2005 MIPS_SYS(sys_epoll_wait , 3) /* 4250 */
2006 MIPS_SYS(sys_remap_file_pages, 5)
2007 MIPS_SYS(sys_set_tid_address, 1)
2008 MIPS_SYS(sys_restart_syscall, 0)
2009 MIPS_SYS(sys_fadvise64_64, 7)
2010 MIPS_SYS(sys_statfs64 , 3) /* 4255 */
2011 MIPS_SYS(sys_fstatfs64 , 2)
2012 MIPS_SYS(sys_timer_create, 3)
2013 MIPS_SYS(sys_timer_settime, 4)
2014 MIPS_SYS(sys_timer_gettime, 2)
2015 MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */
2016 MIPS_SYS(sys_timer_delete, 1)
2017 MIPS_SYS(sys_clock_settime, 2)
2018 MIPS_SYS(sys_clock_gettime, 2)
2019 MIPS_SYS(sys_clock_getres, 2)
2020 MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */
2021 MIPS_SYS(sys_tgkill , 3)
2022 MIPS_SYS(sys_utimes , 2)
2023 MIPS_SYS(sys_mbind , 4)
2024 MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */
2025 MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */
2026 MIPS_SYS(sys_mq_open , 4)
2027 MIPS_SYS(sys_mq_unlink , 1)
2028 MIPS_SYS(sys_mq_timedsend, 5)
2029 MIPS_SYS(sys_mq_timedreceive, 5)
2030 MIPS_SYS(sys_mq_notify , 2) /* 4275 */
2031 MIPS_SYS(sys_mq_getsetattr, 3)
2032 MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */
2033 MIPS_SYS(sys_waitid , 4)
2034 MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */
2035 MIPS_SYS(sys_add_key , 5)
2036 MIPS_SYS(sys_request_key, 4)
2037 MIPS_SYS(sys_keyctl , 5)
2038 MIPS_SYS(sys_set_thread_area, 1)
2039 MIPS_SYS(sys_inotify_init, 0)
2040 MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */
2041 MIPS_SYS(sys_inotify_rm_watch, 2)
2042 MIPS_SYS(sys_migrate_pages, 4)
2043 MIPS_SYS(sys_openat, 4)
2044 MIPS_SYS(sys_mkdirat, 3)
2045 MIPS_SYS(sys_mknodat, 4) /* 4290 */
2046 MIPS_SYS(sys_fchownat, 5)
2047 MIPS_SYS(sys_futimesat, 3)
2048 MIPS_SYS(sys_fstatat64, 4)
2049 MIPS_SYS(sys_unlinkat, 3)
2050 MIPS_SYS(sys_renameat, 4) /* 4295 */
2051 MIPS_SYS(sys_linkat, 5)
2052 MIPS_SYS(sys_symlinkat, 3)
2053 MIPS_SYS(sys_readlinkat, 4)
2054 MIPS_SYS(sys_fchmodat, 3)
2055 MIPS_SYS(sys_faccessat, 3) /* 4300 */
2056 MIPS_SYS(sys_pselect6, 6)
2057 MIPS_SYS(sys_ppoll, 5)
2058 MIPS_SYS(sys_unshare, 1)
2059 MIPS_SYS(sys_splice, 4)
2060 MIPS_SYS(sys_sync_file_range, 7) /* 4305 */
2061 MIPS_SYS(sys_tee, 4)
2062 MIPS_SYS(sys_vmsplice, 4)
2063 MIPS_SYS(sys_move_pages, 6)
2064 MIPS_SYS(sys_set_robust_list, 2)
2065 MIPS_SYS(sys_get_robust_list, 3) /* 4310 */
2066 MIPS_SYS(sys_kexec_load, 4)
2067 MIPS_SYS(sys_getcpu, 3)
2068 MIPS_SYS(sys_epoll_pwait, 6)
2069 MIPS_SYS(sys_ioprio_set, 3)
2070 MIPS_SYS(sys_ioprio_get, 2)
2071 MIPS_SYS(sys_utimensat, 4)
2072 MIPS_SYS(sys_signalfd, 3)
2073 MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */
2074 MIPS_SYS(sys_eventfd, 1)
2075 MIPS_SYS(sys_fallocate, 6) /* 4320 */
2076 MIPS_SYS(sys_timerfd_create, 2)
2077 MIPS_SYS(sys_timerfd_gettime, 2)
2078 MIPS_SYS(sys_timerfd_settime, 4)
2079 MIPS_SYS(sys_signalfd4, 4)
2080 MIPS_SYS(sys_eventfd2, 2) /* 4325 */
2081 MIPS_SYS(sys_epoll_create1, 1)
2082 MIPS_SYS(sys_dup3, 3)
2083 MIPS_SYS(sys_pipe2, 2)
2084 MIPS_SYS(sys_inotify_init1, 1)
2085 MIPS_SYS(sys_preadv, 6) /* 4330 */
2086 MIPS_SYS(sys_pwritev, 6)
2087 MIPS_SYS(sys_rt_tgsigqueueinfo, 4)
2088 MIPS_SYS(sys_perf_event_open, 5)
2089 MIPS_SYS(sys_accept4, 4)
2090 MIPS_SYS(sys_recvmmsg, 5) /* 4335 */
2091 MIPS_SYS(sys_fanotify_init, 2)
2092 MIPS_SYS(sys_fanotify_mark, 6)
2093 MIPS_SYS(sys_prlimit64, 4)
2094 MIPS_SYS(sys_name_to_handle_at, 5)
2095 MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */
2096 MIPS_SYS(sys_clock_adjtime, 2)
2097 MIPS_SYS(sys_syncfs, 1)
2098 };
2099 # undef MIPS_SYS
2100 # endif /* O32 */
2101
2102 static int do_store_exclusive(CPUMIPSState *env)
2103 {
2104 target_ulong addr;
2105 target_ulong page_addr;
2106 target_ulong val;
2107 int flags;
2108 int segv = 0;
2109 int reg;
2110 int d;
2111
2112 addr = env->lladdr;
2113 page_addr = addr & TARGET_PAGE_MASK;
2114 start_exclusive();
2115 mmap_lock();
2116 flags = page_get_flags(page_addr);
2117 if ((flags & PAGE_READ) == 0) {
2118 segv = 1;
2119 } else {
2120 reg = env->llreg & 0x1f;
2121 d = (env->llreg & 0x20) != 0;
2122 if (d) {
2123 segv = get_user_s64(val, addr);
2124 } else {
2125 segv = get_user_s32(val, addr);
2126 }
2127 if (!segv) {
2128 if (val != env->llval) {
2129 env->active_tc.gpr[reg] = 0;
2130 } else {
2131 if (d) {
2132 segv = put_user_u64(env->llnewval, addr);
2133 } else {
2134 segv = put_user_u32(env->llnewval, addr);
2135 }
2136 if (!segv) {
2137 env->active_tc.gpr[reg] = 1;
2138 }
2139 }
2140 }
2141 }
2142 env->lladdr = -1;
2143 if (!segv) {
2144 env->active_tc.PC += 4;
2145 }
2146 mmap_unlock();
2147 end_exclusive();
2148 return segv;
2149 }
2150
2151 /* Break codes */
2152 enum {
2153 BRK_OVERFLOW = 6,
2154 BRK_DIVZERO = 7
2155 };
2156
2157 static int do_break(CPUMIPSState *env, target_siginfo_t *info,
2158 unsigned int code)
2159 {
2160 int ret = -1;
2161
2162 switch (code) {
2163 case BRK_OVERFLOW:
2164 case BRK_DIVZERO:
2165 info->si_signo = TARGET_SIGFPE;
2166 info->si_errno = 0;
2167 info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV;
2168 queue_signal(env, info->si_signo, &*info);
2169 ret = 0;
2170 break;
2171 default:
2172 break;
2173 }
2174
2175 return ret;
2176 }
2177
2178 void cpu_loop(CPUMIPSState *env)
2179 {
2180 CPUState *cs = CPU(mips_env_get_cpu(env));
2181 target_siginfo_t info;
2182 int trapnr;
2183 abi_long ret;
2184 # ifdef TARGET_ABI_MIPSO32
2185 unsigned int syscall_num;
2186 # endif
2187
2188 for(;;) {
2189 cpu_exec_start(cs);
2190 trapnr = cpu_mips_exec(env);
2191 cpu_exec_end(cs);
2192 switch(trapnr) {
2193 case EXCP_SYSCALL:
2194 env->active_tc.PC += 4;
2195 # ifdef TARGET_ABI_MIPSO32
2196 syscall_num = env->active_tc.gpr[2] - 4000;
2197 if (syscall_num >= sizeof(mips_syscall_args)) {
2198 ret = -TARGET_ENOSYS;
2199 } else {
2200 int nb_args;
2201 abi_ulong sp_reg;
2202 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0;
2203
2204 nb_args = mips_syscall_args[syscall_num];
2205 sp_reg = env->active_tc.gpr[29];
2206 switch (nb_args) {
2207 /* these arguments are taken from the stack */
2208 case 8:
2209 if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) {
2210 goto done_syscall;
2211 }
2212 case 7:
2213 if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) {
2214 goto done_syscall;
2215 }
2216 case 6:
2217 if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) {
2218 goto done_syscall;
2219 }
2220 case 5:
2221 if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) {
2222 goto done_syscall;
2223 }
2224 default:
2225 break;
2226 }
2227 ret = do_syscall(env, env->active_tc.gpr[2],
2228 env->active_tc.gpr[4],
2229 env->active_tc.gpr[5],
2230 env->active_tc.gpr[6],
2231 env->active_tc.gpr[7],
2232 arg5, arg6, arg7, arg8);
2233 }
2234 done_syscall:
2235 # else
2236 ret = do_syscall(env, env->active_tc.gpr[2],
2237 env->active_tc.gpr[4], env->active_tc.gpr[5],
2238 env->active_tc.gpr[6], env->active_tc.gpr[7],
2239 env->active_tc.gpr[8], env->active_tc.gpr[9],
2240 env->active_tc.gpr[10], env->active_tc.gpr[11]);
2241 # endif /* O32 */
2242 if (ret == -TARGET_QEMU_ESIGRETURN) {
2243 /* Returning from a successful sigreturn syscall.
2244 Avoid clobbering register state. */
2245 break;
2246 }
2247 if ((abi_ulong)ret >= (abi_ulong)-1133) {
2248 env->active_tc.gpr[7] = 1; /* error flag */
2249 ret = -ret;
2250 } else {
2251 env->active_tc.gpr[7] = 0; /* error flag */
2252 }
2253 env->active_tc.gpr[2] = ret;
2254 break;
2255 case EXCP_TLBL:
2256 case EXCP_TLBS:
2257 case EXCP_AdEL:
2258 case EXCP_AdES:
2259 info.si_signo = TARGET_SIGSEGV;
2260 info.si_errno = 0;
2261 /* XXX: check env->error_code */
2262 info.si_code = TARGET_SEGV_MAPERR;
2263 info._sifields._sigfault._addr = env->CP0_BadVAddr;
2264 queue_signal(env, info.si_signo, &info);
2265 break;
2266 case EXCP_CpU:
2267 case EXCP_RI:
2268 info.si_signo = TARGET_SIGILL;
2269 info.si_errno = 0;
2270 info.si_code = 0;
2271 queue_signal(env, info.si_signo, &info);
2272 break;
2273 case EXCP_INTERRUPT:
2274 /* just indicate that signals should be handled asap */
2275 break;
2276 case EXCP_DEBUG:
2277 {
2278 int sig;
2279
2280 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2281 if (sig)
2282 {
2283 info.si_signo = sig;
2284 info.si_errno = 0;
2285 info.si_code = TARGET_TRAP_BRKPT;
2286 queue_signal(env, info.si_signo, &info);
2287 }
2288 }
2289 break;
2290 case EXCP_SC:
2291 if (do_store_exclusive(env)) {
2292 info.si_signo = TARGET_SIGSEGV;
2293 info.si_errno = 0;
2294 info.si_code = TARGET_SEGV_MAPERR;
2295 info._sifields._sigfault._addr = env->active_tc.PC;
2296 queue_signal(env, info.si_signo, &info);
2297 }
2298 break;
2299 case EXCP_DSPDIS:
2300 info.si_signo = TARGET_SIGILL;
2301 info.si_errno = 0;
2302 info.si_code = TARGET_ILL_ILLOPC;
2303 queue_signal(env, info.si_signo, &info);
2304 break;
2305 /* The code below was inspired by the MIPS Linux kernel trap
2306 * handling code in arch/mips/kernel/traps.c.
2307 */
2308 case EXCP_BREAK:
2309 {
2310 abi_ulong trap_instr;
2311 unsigned int code;
2312
2313 ret = get_user_ual(trap_instr, env->active_tc.PC);
2314 if (ret != 0) {
2315 goto error;
2316 }
2317
2318 /* As described in the original Linux kernel code, the
2319 * below checks on 'code' are to work around an old
2320 * assembly bug.
2321 */
2322 code = ((trap_instr >> 6) & ((1 << 20) - 1));
2323 if (code >= (1 << 10)) {
2324 code >>= 10;
2325 }
2326
2327 if (do_break(env, &info, code) != 0) {
2328 goto error;
2329 }
2330 }
2331 break;
2332 case EXCP_TRAP:
2333 {
2334 abi_ulong trap_instr;
2335 unsigned int code = 0;
2336
2337 ret = get_user_ual(trap_instr, env->active_tc.PC);
2338 if (ret != 0) {
2339 goto error;
2340 }
2341
2342 /* The immediate versions don't provide a code. */
2343 if (!(trap_instr & 0xFC000000)) {
2344 code = ((trap_instr >> 6) & ((1 << 10) - 1));
2345 }
2346
2347 if (do_break(env, &info, code) != 0) {
2348 goto error;
2349 }
2350 }
2351 break;
2352 default:
2353 error:
2354 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
2355 trapnr);
2356 cpu_dump_state(cs, stderr, fprintf, 0);
2357 abort();
2358 }
2359 process_pending_signals(env);
2360 }
2361 }
2362 #endif
2363
2364 #ifdef TARGET_OPENRISC
2365
2366 void cpu_loop(CPUOpenRISCState *env)
2367 {
2368 CPUState *cs = CPU(openrisc_env_get_cpu(env));
2369 int trapnr, gdbsig;
2370
2371 for (;;) {
2372 trapnr = cpu_exec(env);
2373 gdbsig = 0;
2374
2375 switch (trapnr) {
2376 case EXCP_RESET:
2377 qemu_log("\nReset request, exit, pc is %#x\n", env->pc);
2378 exit(1);
2379 break;
2380 case EXCP_BUSERR:
2381 qemu_log("\nBus error, exit, pc is %#x\n", env->pc);
2382 gdbsig = SIGBUS;
2383 break;
2384 case EXCP_DPF:
2385 case EXCP_IPF:
2386 cpu_dump_state(cs, stderr, fprintf, 0);
2387 gdbsig = TARGET_SIGSEGV;
2388 break;
2389 case EXCP_TICK:
2390 qemu_log("\nTick time interrupt pc is %#x\n", env->pc);
2391 break;
2392 case EXCP_ALIGN:
2393 qemu_log("\nAlignment pc is %#x\n", env->pc);
2394 gdbsig = SIGBUS;
2395 break;
2396 case EXCP_ILLEGAL:
2397 qemu_log("\nIllegal instructionpc is %#x\n", env->pc);
2398 gdbsig = SIGILL;
2399 break;
2400 case EXCP_INT:
2401 qemu_log("\nExternal interruptpc is %#x\n", env->pc);
2402 break;
2403 case EXCP_DTLBMISS:
2404 case EXCP_ITLBMISS:
2405 qemu_log("\nTLB miss\n");
2406 break;
2407 case EXCP_RANGE:
2408 qemu_log("\nRange\n");
2409 gdbsig = SIGSEGV;
2410 break;
2411 case EXCP_SYSCALL:
2412 env->pc += 4; /* 0xc00; */
2413 env->gpr[11] = do_syscall(env,
2414 env->gpr[11], /* return value */
2415 env->gpr[3], /* r3 - r7 are params */
2416 env->gpr[4],
2417 env->gpr[5],
2418 env->gpr[6],
2419 env->gpr[7],
2420 env->gpr[8], 0, 0);
2421 break;
2422 case EXCP_FPE:
2423 qemu_log("\nFloating point error\n");
2424 break;
2425 case EXCP_TRAP:
2426 qemu_log("\nTrap\n");
2427 gdbsig = SIGTRAP;
2428 break;
2429 case EXCP_NR:
2430 qemu_log("\nNR\n");
2431 break;
2432 default:
2433 qemu_log("\nqemu: unhandled CPU exception %#x - aborting\n",
2434 trapnr);
2435 cpu_dump_state(cs, stderr, fprintf, 0);
2436 gdbsig = TARGET_SIGILL;
2437 break;
2438 }
2439 if (gdbsig) {
2440 gdb_handlesig(env, gdbsig);
2441 if (gdbsig != TARGET_SIGTRAP) {
2442 exit(1);
2443 }
2444 }
2445
2446 process_pending_signals(env);
2447 }
2448 }
2449
2450 #endif /* TARGET_OPENRISC */
2451
2452 #ifdef TARGET_SH4
2453 void cpu_loop(CPUSH4State *env)
2454 {
2455 CPUState *cs = CPU(sh_env_get_cpu(env));
2456 int trapnr, ret;
2457 target_siginfo_t info;
2458
2459 while (1) {
2460 trapnr = cpu_sh4_exec (env);
2461
2462 switch (trapnr) {
2463 case 0x160:
2464 env->pc += 2;
2465 ret = do_syscall(env,
2466 env->gregs[3],
2467 env->gregs[4],
2468 env->gregs[5],
2469 env->gregs[6],
2470 env->gregs[7],
2471 env->gregs[0],
2472 env->gregs[1],
2473 0, 0);
2474 env->gregs[0] = ret;
2475 break;
2476 case EXCP_INTERRUPT:
2477 /* just indicate that signals should be handled asap */
2478 break;
2479 case EXCP_DEBUG:
2480 {
2481 int sig;
2482
2483 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2484 if (sig)
2485 {
2486 info.si_signo = sig;
2487 info.si_errno = 0;
2488 info.si_code = TARGET_TRAP_BRKPT;
2489 queue_signal(env, info.si_signo, &info);
2490 }
2491 }
2492 break;
2493 case 0xa0:
2494 case 0xc0:
2495 info.si_signo = SIGSEGV;
2496 info.si_errno = 0;
2497 info.si_code = TARGET_SEGV_MAPERR;
2498 info._sifields._sigfault._addr = env->tea;
2499 queue_signal(env, info.si_signo, &info);
2500 break;
2501
2502 default:
2503 printf ("Unhandled trap: 0x%x\n", trapnr);
2504 cpu_dump_state(cs, stderr, fprintf, 0);
2505 exit (1);
2506 }
2507 process_pending_signals (env);
2508 }
2509 }
2510 #endif
2511
2512 #ifdef TARGET_CRIS
2513 void cpu_loop(CPUCRISState *env)
2514 {
2515 CPUState *cs = CPU(cris_env_get_cpu(env));
2516 int trapnr, ret;
2517 target_siginfo_t info;
2518
2519 while (1) {
2520 trapnr = cpu_cris_exec (env);
2521 switch (trapnr) {
2522 case 0xaa:
2523 {
2524 info.si_signo = SIGSEGV;
2525 info.si_errno = 0;
2526 /* XXX: check env->error_code */
2527 info.si_code = TARGET_SEGV_MAPERR;
2528 info._sifields._sigfault._addr = env->pregs[PR_EDA];
2529 queue_signal(env, info.si_signo, &info);
2530 }
2531 break;
2532 case EXCP_INTERRUPT:
2533 /* just indicate that signals should be handled asap */
2534 break;
2535 case EXCP_BREAK:
2536 ret = do_syscall(env,
2537 env->regs[9],
2538 env->regs[10],
2539 env->regs[11],
2540 env->regs[12],
2541 env->regs[13],
2542 env->pregs[7],
2543 env->pregs[11],
2544 0, 0);
2545 env->regs[10] = ret;
2546 break;
2547 case EXCP_DEBUG:
2548 {
2549 int sig;
2550
2551 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2552 if (sig)
2553 {
2554 info.si_signo = sig;
2555 info.si_errno = 0;
2556 info.si_code = TARGET_TRAP_BRKPT;
2557 queue_signal(env, info.si_signo, &info);
2558 }
2559 }
2560 break;
2561 default:
2562 printf ("Unhandled trap: 0x%x\n", trapnr);
2563 cpu_dump_state(cs, stderr, fprintf, 0);
2564 exit (1);
2565 }
2566 process_pending_signals (env);
2567 }
2568 }
2569 #endif
2570
2571 #ifdef TARGET_MICROBLAZE
2572 void cpu_loop(CPUMBState *env)
2573 {
2574 CPUState *cs = CPU(mb_env_get_cpu(env));
2575 int trapnr, ret;
2576 target_siginfo_t info;
2577
2578 while (1) {
2579 trapnr = cpu_mb_exec (env);
2580 switch (trapnr) {
2581 case 0xaa:
2582 {
2583 info.si_signo = SIGSEGV;
2584 info.si_errno = 0;
2585 /* XXX: check env->error_code */
2586 info.si_code = TARGET_SEGV_MAPERR;
2587 info._sifields._sigfault._addr = 0;
2588 queue_signal(env, info.si_signo, &info);
2589 }
2590 break;
2591 case EXCP_INTERRUPT:
2592 /* just indicate that signals should be handled asap */
2593 break;
2594 case EXCP_BREAK:
2595 /* Return address is 4 bytes after the call. */
2596 env->regs[14] += 4;
2597 env->sregs[SR_PC] = env->regs[14];
2598 ret = do_syscall(env,
2599 env->regs[12],
2600 env->regs[5],
2601 env->regs[6],
2602 env->regs[7],
2603 env->regs[8],
2604 env->regs[9],
2605 env->regs[10],
2606 0, 0);
2607 env->regs[3] = ret;
2608 break;
2609 case EXCP_HW_EXCP:
2610 env->regs[17] = env->sregs[SR_PC] + 4;
2611 if (env->iflags & D_FLAG) {
2612 env->sregs[SR_ESR] |= 1 << 12;
2613 env->sregs[SR_PC] -= 4;
2614 /* FIXME: if branch was immed, replay the imm as well. */
2615 }
2616
2617 env->iflags &= ~(IMM_FLAG | D_FLAG);
2618
2619 switch (env->sregs[SR_ESR] & 31) {
2620 case ESR_EC_DIVZERO:
2621 info.si_signo = SIGFPE;
2622 info.si_errno = 0;
2623 info.si_code = TARGET_FPE_FLTDIV;
2624 info._sifields._sigfault._addr = 0;
2625 queue_signal(env, info.si_signo, &info);
2626 break;
2627 case ESR_EC_FPU:
2628 info.si_signo = SIGFPE;
2629 info.si_errno = 0;
2630 if (env->sregs[SR_FSR] & FSR_IO) {
2631 info.si_code = TARGET_FPE_FLTINV;
2632 }
2633 if (env->sregs[SR_FSR] & FSR_DZ) {
2634 info.si_code = TARGET_FPE_FLTDIV;
2635 }
2636 info._sifields._sigfault._addr = 0;
2637 queue_signal(env, info.si_signo, &info);
2638 break;
2639 default:
2640 printf ("Unhandled hw-exception: 0x%x\n",
2641 env->sregs[SR_ESR] & ESR_EC_MASK);
2642 cpu_dump_state(cs, stderr, fprintf, 0);
2643 exit (1);
2644 break;
2645 }
2646 break;
2647 case EXCP_DEBUG:
2648 {
2649 int sig;
2650
2651 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2652 if (sig)
2653 {
2654 info.si_signo = sig;
2655 info.si_errno = 0;
2656 info.si_code = TARGET_TRAP_BRKPT;
2657 queue_signal(env, info.si_signo, &info);
2658 }
2659 }
2660 break;
2661 default:
2662 printf ("Unhandled trap: 0x%x\n", trapnr);
2663 cpu_dump_state(cs, stderr, fprintf, 0);
2664 exit (1);
2665 }
2666 process_pending_signals (env);
2667 }
2668 }
2669 #endif
2670
2671 #ifdef TARGET_M68K
2672
2673 void cpu_loop(CPUM68KState *env)
2674 {
2675 CPUState *cs = CPU(m68k_env_get_cpu(env));
2676 int trapnr;
2677 unsigned int n;
2678 target_siginfo_t info;
2679 TaskState *ts = env->opaque;
2680
2681 for(;;) {
2682 trapnr = cpu_m68k_exec(env);
2683 switch(trapnr) {
2684 case EXCP_ILLEGAL:
2685 {
2686 if (ts->sim_syscalls) {
2687 uint16_t nr;
2688 nr = lduw(env->pc + 2);
2689 env->pc += 4;
2690 do_m68k_simcall(env, nr);
2691 } else {
2692 goto do_sigill;
2693 }
2694 }
2695 break;
2696 case EXCP_HALT_INSN:
2697 /* Semihosing syscall. */
2698 env->pc += 4;
2699 do_m68k_semihosting(env, env->dregs[0]);
2700 break;
2701 case EXCP_LINEA:
2702 case EXCP_LINEF:
2703 case EXCP_UNSUPPORTED:
2704 do_sigill:
2705 info.si_signo = SIGILL;
2706 info.si_errno = 0;
2707 info.si_code = TARGET_ILL_ILLOPN;
2708 info._sifields._sigfault._addr = env->pc;
2709 queue_signal(env, info.si_signo, &info);
2710 break;
2711 case EXCP_TRAP0:
2712 {
2713 ts->sim_syscalls = 0;
2714 n = env->dregs[0];
2715 env->pc += 2;
2716 env->dregs[0] = do_syscall(env,
2717 n,
2718 env->dregs[1],
2719 env->dregs[2],
2720 env->dregs[3],
2721 env->dregs[4],
2722 env->dregs[5],
2723 env->aregs[0],
2724 0, 0);
2725 }
2726 break;
2727 case EXCP_INTERRUPT:
2728 /* just indicate that signals should be handled asap */
2729 break;
2730 case EXCP_ACCESS:
2731 {
2732 info.si_signo = SIGSEGV;
2733 info.si_errno = 0;
2734 /* XXX: check env->error_code */
2735 info.si_code = TARGET_SEGV_MAPERR;
2736 info._sifields._sigfault._addr = env->mmu.ar;
2737 queue_signal(env, info.si_signo, &info);
2738 }
2739 break;
2740 case EXCP_DEBUG:
2741 {
2742 int sig;
2743
2744 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2745 if (sig)
2746 {
2747 info.si_signo = sig;
2748 info.si_errno = 0;
2749 info.si_code = TARGET_TRAP_BRKPT;
2750 queue_signal(env, info.si_signo, &info);
2751 }
2752 }
2753 break;
2754 default:
2755 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
2756 trapnr);
2757 cpu_dump_state(cs, stderr, fprintf, 0);
2758 abort();
2759 }
2760 process_pending_signals(env);
2761 }
2762 }
2763 #endif /* TARGET_M68K */
2764
2765 #ifdef TARGET_ALPHA
2766 static void do_store_exclusive(CPUAlphaState *env, int reg, int quad)
2767 {
2768 target_ulong addr, val, tmp;
2769 target_siginfo_t info;
2770 int ret = 0;
2771
2772 addr = env->lock_addr;
2773 tmp = env->lock_st_addr;
2774 env->lock_addr = -1;
2775 env->lock_st_addr = 0;
2776
2777 start_exclusive();
2778 mmap_lock();
2779
2780 if (addr == tmp) {
2781 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
2782 goto do_sigsegv;
2783 }
2784
2785 if (val == env->lock_value) {
2786 tmp = env->ir[reg];
2787 if (quad ? put_user_u64(tmp, addr) : put_user_u32(tmp, addr)) {
2788 goto do_sigsegv;
2789 }
2790 ret = 1;
2791 }
2792 }
2793 env->ir[reg] = ret;
2794 env->pc += 4;
2795
2796 mmap_unlock();
2797 end_exclusive();
2798 return;
2799
2800 do_sigsegv:
2801 mmap_unlock();
2802 end_exclusive();
2803
2804 info.si_signo = TARGET_SIGSEGV;
2805 info.si_errno = 0;
2806 info.si_code = TARGET_SEGV_MAPERR;
2807 info._sifields._sigfault._addr = addr;
2808 queue_signal(env, TARGET_SIGSEGV, &info);
2809 }
2810
2811 void cpu_loop(CPUAlphaState *env)
2812 {
2813 CPUState *cs = CPU(alpha_env_get_cpu(env));
2814 int trapnr;
2815 target_siginfo_t info;
2816 abi_long sysret;
2817
2818 while (1) {
2819 trapnr = cpu_alpha_exec (env);
2820
2821 /* All of the traps imply a transition through PALcode, which
2822 implies an REI instruction has been executed. Which means
2823 that the intr_flag should be cleared. */
2824 env->intr_flag = 0;
2825
2826 switch (trapnr) {
2827 case EXCP_RESET:
2828 fprintf(stderr, "Reset requested. Exit\n");
2829 exit(1);
2830 break;
2831 case EXCP_MCHK:
2832 fprintf(stderr, "Machine check exception. Exit\n");
2833 exit(1);
2834 break;
2835 case EXCP_SMP_INTERRUPT:
2836 case EXCP_CLK_INTERRUPT:
2837 case EXCP_DEV_INTERRUPT:
2838 fprintf(stderr, "External interrupt. Exit\n");
2839 exit(1);
2840 break;
2841 case EXCP_MMFAULT:
2842 env->lock_addr = -1;
2843 info.si_signo = TARGET_SIGSEGV;
2844 info.si_errno = 0;
2845 info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID
2846 ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR);
2847 info._sifields._sigfault._addr = env->trap_arg0;
2848 queue_signal(env, info.si_signo, &info);
2849 break;
2850 case EXCP_UNALIGN:
2851 env->lock_addr = -1;
2852 info.si_signo = TARGET_SIGBUS;
2853 info.si_errno = 0;
2854 info.si_code = TARGET_BUS_ADRALN;
2855 info._sifields._sigfault._addr = env->trap_arg0;
2856 queue_signal(env, info.si_signo, &info);
2857 break;
2858 case EXCP_OPCDEC:
2859 do_sigill:
2860 env->lock_addr = -1;
2861 info.si_signo = TARGET_SIGILL;
2862 info.si_errno = 0;
2863 info.si_code = TARGET_ILL_ILLOPC;
2864 info._sifields._sigfault._addr = env->pc;
2865 queue_signal(env, info.si_signo, &info);
2866 break;
2867 case EXCP_ARITH:
2868 env->lock_addr = -1;
2869 info.si_signo = TARGET_SIGFPE;
2870 info.si_errno = 0;
2871 info.si_code = TARGET_FPE_FLTINV;
2872 info._sifields._sigfault._addr = env->pc;
2873 queue_signal(env, info.si_signo, &info);
2874 break;
2875 case EXCP_FEN:
2876 /* No-op. Linux simply re-enables the FPU. */
2877 break;
2878 case EXCP_CALL_PAL:
2879 env->lock_addr = -1;
2880 switch (env->error_code) {
2881 case 0x80:
2882 /* BPT */
2883 info.si_signo = TARGET_SIGTRAP;
2884 info.si_errno = 0;
2885 info.si_code = TARGET_TRAP_BRKPT;
2886 info._sifields._sigfault._addr = env->pc;
2887 queue_signal(env, info.si_signo, &info);
2888 break;
2889 case 0x81:
2890 /* BUGCHK */
2891 info.si_signo = TARGET_SIGTRAP;
2892 info.si_errno = 0;
2893 info.si_code = 0;
2894 info._sifields._sigfault._addr = env->pc;
2895 queue_signal(env, info.si_signo, &info);
2896 break;
2897 case 0x83:
2898 /* CALLSYS */
2899 trapnr = env->ir[IR_V0];
2900 sysret = do_syscall(env, trapnr,
2901 env->ir[IR_A0], env->ir[IR_A1],
2902 env->ir[IR_A2], env->ir[IR_A3],
2903 env->ir[IR_A4], env->ir[IR_A5],
2904 0, 0);
2905 if (trapnr == TARGET_NR_sigreturn
2906 || trapnr == TARGET_NR_rt_sigreturn) {
2907 break;
2908 }
2909 /* Syscall writes 0 to V0 to bypass error check, similar
2910 to how this is handled internal to Linux kernel.
2911 (Ab)use trapnr temporarily as boolean indicating error. */
2912 trapnr = (env->ir[IR_V0] != 0 && sysret < 0);
2913 env->ir[IR_V0] = (trapnr ? -sysret : sysret);
2914 env->ir[IR_A3] = trapnr;
2915 break;
2916 case 0x86:
2917 /* IMB */
2918 /* ??? We can probably elide the code using page_unprotect
2919 that is checking for self-modifying code. Instead we
2920 could simply call tb_flush here. Until we work out the
2921 changes required to turn off the extra write protection,
2922 this can be a no-op. */
2923 break;
2924 case 0x9E:
2925 /* RDUNIQUE */
2926 /* Handled in the translator for usermode. */
2927 abort();
2928 case 0x9F:
2929 /* WRUNIQUE */
2930 /* Handled in the translator for usermode. */
2931 abort();
2932 case 0xAA:
2933 /* GENTRAP */
2934 info.si_signo = TARGET_SIGFPE;
2935 switch (env->ir[IR_A0]) {
2936 case TARGET_GEN_INTOVF:
2937 info.si_code = TARGET_FPE_INTOVF;
2938 break;
2939 case TARGET_GEN_INTDIV:
2940 info.si_code = TARGET_FPE_INTDIV;
2941 break;
2942 case TARGET_GEN_FLTOVF:
2943 info.si_code = TARGET_FPE_FLTOVF;
2944 break;
2945 case TARGET_GEN_FLTUND:
2946 info.si_code = TARGET_FPE_FLTUND;
2947 break;
2948 case TARGET_GEN_FLTINV:
2949 info.si_code = TARGET_FPE_FLTINV;
2950 break;
2951 case TARGET_GEN_FLTINE:
2952 info.si_code = TARGET_FPE_FLTRES;
2953 break;
2954 case TARGET_GEN_ROPRAND:
2955 info.si_code = 0;
2956 break;
2957 default:
2958 info.si_signo = TARGET_SIGTRAP;
2959 info.si_code = 0;
2960 break;
2961 }
2962 info.si_errno = 0;
2963 info._sifields._sigfault._addr = env->pc;
2964 queue_signal(env, info.si_signo, &info);
2965 break;
2966 default:
2967 goto do_sigill;
2968 }
2969 break;
2970 case EXCP_DEBUG:
2971 info.si_signo = gdb_handlesig (env, TARGET_SIGTRAP);
2972 if (info.si_signo) {
2973 env->lock_addr = -1;
2974 info.si_errno = 0;
2975 info.si_code = TARGET_TRAP_BRKPT;
2976 queue_signal(env, info.si_signo, &info);
2977 }
2978 break;
2979 case EXCP_STL_C:
2980 case EXCP_STQ_C:
2981 do_store_exclusive(env, env->error_code, trapnr - EXCP_STL_C);
2982 break;
2983 case EXCP_INTERRUPT:
2984 /* Just indicate that signals should be handled asap. */
2985 break;
2986 default:
2987 printf ("Unhandled trap: 0x%x\n", trapnr);
2988 cpu_dump_state(cs, stderr, fprintf, 0);
2989 exit (1);
2990 }
2991 process_pending_signals (env);
2992 }
2993 }
2994 #endif /* TARGET_ALPHA */
2995
2996 #ifdef TARGET_S390X
2997 void cpu_loop(CPUS390XState *env)
2998 {
2999 CPUState *cs = CPU(s390_env_get_cpu(env));
3000 int trapnr, n, sig;
3001 target_siginfo_t info;
3002 target_ulong addr;
3003
3004 while (1) {
3005 trapnr = cpu_s390x_exec(env);
3006 switch (trapnr) {
3007 case EXCP_INTERRUPT:
3008 /* Just indicate that signals should be handled asap. */
3009 break;
3010
3011 case EXCP_SVC:
3012 n = env->int_svc_code;
3013 if (!n) {
3014 /* syscalls > 255 */
3015 n = env->regs[1];
3016 }
3017 env->psw.addr += env->int_svc_ilen;
3018 env->regs[2] = do_syscall(env, n, env->regs[2], env->regs[3],
3019 env->regs[4], env->regs[5],
3020 env->regs[6], env->regs[7], 0, 0);
3021 break;
3022
3023 case EXCP_DEBUG:
3024 sig = gdb_handlesig(env, TARGET_SIGTRAP);
3025 if (sig) {
3026 n = TARGET_TRAP_BRKPT;
3027 goto do_signal_pc;
3028 }
3029 break;
3030 case EXCP_PGM:
3031 n = env->int_pgm_code;
3032 switch (n) {
3033 case PGM_OPERATION:
3034 case PGM_PRIVILEGED:
3035 sig = SIGILL;
3036 n = TARGET_ILL_ILLOPC;
3037 goto do_signal_pc;
3038 case PGM_PROTECTION:
3039 case PGM_ADDRESSING:
3040 sig = SIGSEGV;
3041 /* XXX: check env->error_code */
3042 n = TARGET_SEGV_MAPERR;
3043 addr = env->__excp_addr;
3044 goto do_signal;
3045 case PGM_EXECUTE:
3046 case PGM_SPECIFICATION:
3047 case PGM_SPECIAL_OP:
3048 case PGM_OPERAND:
3049 do_sigill_opn:
3050 sig = SIGILL;
3051 n = TARGET_ILL_ILLOPN;
3052 goto do_signal_pc;
3053
3054 case PGM_FIXPT_OVERFLOW:
3055 sig = SIGFPE;
3056 n = TARGET_FPE_INTOVF;
3057 goto do_signal_pc;
3058 case PGM_FIXPT_DIVIDE:
3059 sig = SIGFPE;
3060 n = TARGET_FPE_INTDIV;
3061 goto do_signal_pc;
3062
3063 case PGM_DATA:
3064 n = (env->fpc >> 8) & 0xff;
3065 if (n == 0xff) {
3066 /* compare-and-trap */
3067 goto do_sigill_opn;
3068 } else {
3069 /* An IEEE exception, simulated or otherwise. */
3070 if (n & 0x80) {
3071 n = TARGET_FPE_FLTINV;
3072 } else if (n & 0x40) {
3073 n = TARGET_FPE_FLTDIV;
3074 } else if (n & 0x20) {
3075 n = TARGET_FPE_FLTOVF;
3076 } else if (n & 0x10) {
3077 n = TARGET_FPE_FLTUND;
3078 } else if (n & 0x08) {
3079 n = TARGET_FPE_FLTRES;
3080 } else {
3081 /* ??? Quantum exception; BFP, DFP error. */
3082 goto do_sigill_opn;
3083 }
3084 sig = SIGFPE;
3085 goto do_signal_pc;
3086 }
3087
3088 default:
3089 fprintf(stderr, "Unhandled program exception: %#x\n", n);
3090 cpu_dump_state(cs, stderr, fprintf, 0);
3091 exit(1);
3092 }
3093 break;
3094
3095 do_signal_pc:
3096 addr = env->psw.addr;
3097 do_signal:
3098 info.si_signo = sig;
3099 info.si_errno = 0;
3100 info.si_code = n;
3101 info._sifields._sigfault._addr = addr;
3102 queue_signal(env, info.si_signo, &info);
3103 break;
3104
3105 default:
3106 fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr);
3107 cpu_dump_state(cs, stderr, fprintf, 0);
3108 exit(1);
3109 }
3110 process_pending_signals (env);
3111 }
3112 }
3113
3114 #endif /* TARGET_S390X */
3115
3116 THREAD CPUState *thread_cpu;
3117
3118 void task_settid(TaskState *ts)
3119 {
3120 if (ts->ts_tid == 0) {
3121 ts->ts_tid = (pid_t)syscall(SYS_gettid);
3122 }
3123 }
3124
3125 void stop_all_tasks(void)
3126 {
3127 /*
3128 * We trust that when using NPTL, start_exclusive()
3129 * handles thread stopping correctly.
3130 */
3131 start_exclusive();
3132 }
3133
3134 /* Assumes contents are already zeroed. */
3135 void init_task_state(TaskState *ts)
3136 {
3137 int i;
3138
3139 ts->used = 1;
3140 ts->first_free = ts->sigqueue_table;
3141 for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) {
3142 ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1];
3143 }
3144 ts->sigqueue_table[i].next = NULL;
3145 }
3146
3147 static void handle_arg_help(const char *arg)
3148 {
3149 usage();
3150 }
3151
3152 static void handle_arg_log(const char *arg)
3153 {
3154 int mask;
3155
3156 mask = qemu_str_to_log_mask(arg);
3157 if (!mask) {
3158 qemu_print_log_usage(stdout);
3159 exit(1);
3160 }
3161 qemu_set_log(mask);
3162 }
3163
3164 static void handle_arg_log_filename(const char *arg)
3165 {
3166 qemu_set_log_filename(arg);
3167 }
3168
3169 static void handle_arg_set_env(const char *arg)
3170 {
3171 char *r, *p, *token;
3172 r = p = strdup(arg);
3173 while ((token = strsep(&p, ",")) != NULL) {
3174 if (envlist_setenv(envlist, token) != 0) {
3175 usage();
3176 }
3177 }
3178 free(r);
3179 }
3180
3181 static void handle_arg_unset_env(const char *arg)
3182 {
3183 char *r, *p, *token;
3184 r = p = strdup(arg);
3185 while ((token = strsep(&p, ",")) != NULL) {
3186 if (envlist_unsetenv(envlist, token) != 0) {
3187 usage();
3188 }
3189 }
3190 free(r);
3191 }
3192
3193 static void handle_arg_argv0(const char *arg)
3194 {
3195 argv0 = strdup(arg);
3196 }
3197
3198 static void handle_arg_stack_size(const char *arg)
3199 {
3200 char *p;
3201 guest_stack_size = strtoul(arg, &p, 0);
3202 if (guest_stack_size == 0) {
3203 usage();
3204 }
3205
3206 if (*p == 'M') {
3207 guest_stack_size *= 1024 * 1024;
3208 } else if (*p == 'k' || *p == 'K') {
3209 guest_stack_size *= 1024;
3210 }
3211 }
3212
3213 static void handle_arg_ld_prefix(const char *arg)
3214 {
3215 interp_prefix = strdup(arg);
3216 }
3217
3218 static void handle_arg_pagesize(const char *arg)
3219 {
3220 qemu_host_page_size = atoi(arg);
3221 if (qemu_host_page_size == 0 ||
3222 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
3223 fprintf(stderr, "page size must be a power of two\n");
3224 exit(1);
3225 }
3226 }
3227
3228 static void handle_arg_gdb(const char *arg)
3229 {
3230 gdbstub_port = atoi(arg);
3231 }
3232
3233 static void handle_arg_uname(const char *arg)
3234 {
3235 qemu_uname_release = strdup(arg);
3236 }
3237
3238 static void handle_arg_cpu(const char *arg)
3239 {
3240 cpu_model = strdup(arg);
3241 if (cpu_model == NULL || is_help_option(cpu_model)) {
3242 /* XXX: implement xxx_cpu_list for targets that still miss it */
3243 #if defined(cpu_list)
3244 cpu_list(stdout, &fprintf);
3245 #endif
3246 exit(1);
3247 }
3248 }
3249
3250 #if defined(CONFIG_USE_GUEST_BASE)
3251 static void handle_arg_guest_base(const char *arg)
3252 {
3253 guest_base = strtol(arg, NULL, 0);
3254 have_guest_base = 1;
3255 }
3256
3257 static void handle_arg_reserved_va(const char *arg)
3258 {
3259 char *p;
3260 int shift = 0;
3261 reserved_va = strtoul(arg, &p, 0);
3262 switch (*p) {
3263 case 'k':
3264 case 'K':
3265 shift = 10;
3266 break;
3267 case 'M':
3268 shift = 20;
3269 break;
3270 case 'G':
3271 shift = 30;
3272 break;
3273 }
3274 if (shift) {
3275 unsigned long unshifted = reserved_va;
3276 p++;
3277 reserved_va <<= shift;
3278 if (((reserved_va >> shift) != unshifted)
3279 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS
3280 || (reserved_va > (1ul << TARGET_VIRT_ADDR_SPACE_BITS))
3281 #endif
3282 ) {
3283 fprintf(stderr, "Reserved virtual address too big\n");
3284 exit(1);
3285 }
3286 }
3287 if (*p) {
3288 fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p);
3289 exit(1);
3290 }
3291 }
3292 #endif
3293
3294 static void handle_arg_singlestep(const char *arg)
3295 {
3296 singlestep = 1;
3297 }
3298
3299 static void handle_arg_strace(const char *arg)
3300 {
3301 do_strace = 1;
3302 }
3303
3304 static void handle_arg_version(const char *arg)
3305 {
3306 printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION
3307 ", Copyright (c) 2003-2008 Fabrice Bellard\n");
3308 exit(0);
3309 }
3310
3311 struct qemu_argument {
3312 const char *argv;
3313 const char *env;
3314 bool has_arg;
3315 void (*handle_opt)(const char *arg);
3316 const char *example;
3317 const char *help;
3318 };
3319
3320 static const struct qemu_argument arg_table[] = {
3321 {"h", "", false, handle_arg_help,
3322 "", "print this help"},
3323 {"g", "QEMU_GDB", true, handle_arg_gdb,
3324 "port", "wait gdb connection to 'port'"},
3325 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix,
3326 "path", "set the elf interpreter prefix to 'path'"},
3327 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size,
3328 "size", "set the stack size to 'size' bytes"},
3329 {"cpu", "QEMU_CPU", true, handle_arg_cpu,
3330 "model", "select CPU (-cpu help for list)"},
3331 {"E", "QEMU_SET_ENV", true, handle_arg_set_env,
3332 "var=value", "sets targets environment variable (see below)"},
3333 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env,
3334 "var", "unsets targets environment variable (see below)"},
3335 {"0", "QEMU_ARGV0", true, handle_arg_argv0,
3336 "argv0", "forces target process argv[0] to be 'argv0'"},
3337 {"r", "QEMU_UNAME", true, handle_arg_uname,
3338 "uname", "set qemu uname release string to 'uname'"},
3339 #if defined(CONFIG_USE_GUEST_BASE)
3340 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base,
3341 "address", "set guest_base address to 'address'"},
3342 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va,
3343 "size", "reserve 'size' bytes for guest virtual address space"},
3344 #endif
3345 {"d", "QEMU_LOG", true, handle_arg_log,
3346 "item[,...]", "enable logging of specified items "
3347 "(use '-d help' for a list of items)"},
3348 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename,
3349 "logfile", "write logs to 'logfile' (default stderr)"},
3350 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize,
3351 "pagesize", "set the host page size to 'pagesize'"},
3352 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep,
3353 "", "run in singlestep mode"},
3354 {"strace", "QEMU_STRACE", false, handle_arg_strace,
3355 "", "log system calls"},
3356 {"version", "QEMU_VERSION", false, handle_arg_version,
3357 "", "display version information and exit"},
3358 {NULL, NULL, false, NULL, NULL, NULL}
3359 };
3360
3361 static void usage(void)
3362 {
3363 const struct qemu_argument *arginfo;
3364 int maxarglen;
3365 int maxenvlen;
3366
3367 printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n"
3368 "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n"
3369 "\n"
3370 "Options and associated environment variables:\n"
3371 "\n");
3372
3373 /* Calculate column widths. We must always have at least enough space
3374 * for the column header.
3375 */
3376 maxarglen = strlen("Argument");
3377 maxenvlen = strlen("Env-variable");
3378
3379 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3380 int arglen = strlen(arginfo->argv);
3381 if (arginfo->has_arg) {
3382 arglen += strlen(arginfo->example) + 1;
3383 }
3384 if (strlen(arginfo->env) > maxenvlen) {
3385 maxenvlen = strlen(arginfo->env);
3386 }
3387 if (arglen > maxarglen) {
3388 maxarglen = arglen;
3389 }
3390 }
3391
3392 printf("%-*s %-*s Description\n", maxarglen+1, "Argument",
3393 maxenvlen, "Env-variable");
3394
3395 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3396 if (arginfo->has_arg) {
3397 printf("-%s %-*s %-*s %s\n", arginfo->argv,
3398 (int)(maxarglen - strlen(arginfo->argv) - 1),
3399 arginfo->example, maxenvlen, arginfo->env, arginfo->help);
3400 } else {
3401 printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv,
3402 maxenvlen, arginfo->env,
3403 arginfo->help);
3404 }
3405 }
3406
3407 printf("\n"
3408 "Defaults:\n"
3409 "QEMU_LD_PREFIX = %s\n"
3410 "QEMU_STACK_SIZE = %ld byte\n",
3411 interp_prefix,
3412 guest_stack_size);
3413
3414 printf("\n"
3415 "You can use -E and -U options or the QEMU_SET_ENV and\n"
3416 "QEMU_UNSET_ENV environment variables to set and unset\n"
3417 "environment variables for the target process.\n"
3418 "It is possible to provide several variables by separating them\n"
3419 "by commas in getsubopt(3) style. Additionally it is possible to\n"
3420 "provide the -E and -U options multiple times.\n"
3421 "The following lines are equivalent:\n"
3422 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
3423 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n"
3424 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n"
3425 "Note that if you provide several changes to a single variable\n"
3426 "the last change will stay in effect.\n");
3427
3428 exit(1);
3429 }
3430
3431 static int parse_args(int argc, char **argv)
3432 {
3433 const char *r;
3434 int optind;
3435 const struct qemu_argument *arginfo;
3436
3437 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3438 if (arginfo->env == NULL) {
3439 continue;
3440 }
3441
3442 r = getenv(arginfo->env);
3443 if (r != NULL) {
3444 arginfo->handle_opt(r);
3445 }
3446 }
3447
3448 optind = 1;
3449 for (;;) {
3450 if (optind >= argc) {
3451 break;
3452 }
3453 r = argv[optind];
3454 if (r[0] != '-') {
3455 break;
3456 }
3457 optind++;
3458 r++;
3459 if (!strcmp(r, "-")) {
3460 break;
3461 }
3462
3463 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3464 if (!strcmp(r, arginfo->argv)) {
3465 if (arginfo->has_arg) {
3466 if (optind >= argc) {
3467 usage();
3468 }
3469 arginfo->handle_opt(argv[optind]);
3470 optind++;
3471 } else {
3472 arginfo->handle_opt(NULL);
3473 }
3474 break;
3475 }
3476 }
3477
3478 /* no option matched the current argv */
3479 if (arginfo->handle_opt == NULL) {
3480 usage();
3481 }
3482 }
3483
3484 if (optind >= argc) {
3485 usage();
3486 }
3487
3488 filename = argv[optind];
3489 exec_path = argv[optind];
3490
3491 return optind;
3492 }
3493
3494 int main(int argc, char **argv, char **envp)
3495 {
3496 struct target_pt_regs regs1, *regs = &regs1;
3497 struct image_info info1, *info = &info1;
3498 struct linux_binprm bprm;
3499 TaskState *ts;
3500 CPUArchState *env;
3501 int optind;
3502 char **target_environ, **wrk;
3503 char **target_argv;
3504 int target_argc;
3505 int i;
3506 int ret;
3507
3508 module_call_init(MODULE_INIT_QOM);
3509
3510 qemu_cache_utils_init(envp);
3511
3512 if ((envlist = envlist_create()) == NULL) {
3513 (void) fprintf(stderr, "Unable to allocate envlist\n");
3514 exit(1);
3515 }
3516
3517 /* add current environment into the list */
3518 for (wrk = environ; *wrk != NULL; wrk++) {
3519 (void) envlist_setenv(envlist, *wrk);
3520 }
3521
3522 /* Read the stack limit from the kernel. If it's "unlimited",
3523 then we can do little else besides use the default. */
3524 {
3525 struct rlimit lim;
3526 if (getrlimit(RLIMIT_STACK, &lim) == 0
3527 && lim.rlim_cur != RLIM_INFINITY
3528 && lim.rlim_cur == (target_long)lim.rlim_cur) {
3529 guest_stack_size = lim.rlim_cur;
3530 }
3531 }
3532
3533 cpu_model = NULL;
3534 #if defined(cpudef_setup)
3535 cpudef_setup(); /* parse cpu definitions in target config file (TBD) */
3536 #endif
3537
3538 optind = parse_args(argc, argv);
3539
3540 /* Zero out regs */
3541 memset(regs, 0, sizeof(struct target_pt_regs));
3542
3543 /* Zero out image_info */
3544 memset(info, 0, sizeof(struct image_info));
3545
3546 memset(&bprm, 0, sizeof (bprm));
3547
3548 /* Scan interp_prefix dir for replacement files. */
3549 init_paths(interp_prefix);
3550
3551 if (cpu_model == NULL) {
3552 #if defined(TARGET_I386)
3553 #ifdef TARGET_X86_64
3554 cpu_model = "qemu64";
3555 #else
3556 cpu_model = "qemu32";
3557 #endif
3558 #elif defined(TARGET_ARM)
3559 cpu_model = "any";
3560 #elif defined(TARGET_UNICORE32)
3561 cpu_model = "any";
3562 #elif defined(TARGET_M68K)
3563 cpu_model = "any";
3564 #elif defined(TARGET_SPARC)
3565 #ifdef TARGET_SPARC64
3566 cpu_model = "TI UltraSparc II";
3567 #else
3568 cpu_model = "Fujitsu MB86904";
3569 #endif
3570 #elif defined(TARGET_MIPS)
3571 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64)
3572 cpu_model = "20Kc";
3573 #else
3574 cpu_model = "24Kf";
3575 #endif
3576 #elif defined TARGET_OPENRISC
3577 cpu_model = "or1200";
3578 #elif defined(TARGET_PPC)
3579 #ifdef TARGET_PPC64
3580 cpu_model = "970fx";
3581 #else
3582 cpu_model = "750";
3583 #endif
3584 #else
3585 cpu_model = "any";
3586 #endif
3587 }
3588 tcg_exec_init(0);
3589 cpu_exec_init_all();
3590 /* NOTE: we need to init the CPU at this stage to get
3591 qemu_host_page_size */
3592 env = cpu_init(cpu_model);
3593 if (!env) {
3594 fprintf(stderr, "Unable to find CPU definition\n");
3595 exit(1);
3596 }
3597 cpu_reset(ENV_GET_CPU(env));
3598
3599 thread_cpu = ENV_GET_CPU(env);
3600
3601 if (getenv("QEMU_STRACE")) {
3602 do_strace = 1;
3603 }
3604
3605 target_environ = envlist_to_environ(envlist, NULL);
3606 envlist_free(envlist);
3607
3608 #if defined(CONFIG_USE_GUEST_BASE)
3609 /*
3610 * Now that page sizes are configured in cpu_init() we can do
3611 * proper page alignment for guest_base.
3612 */
3613 guest_base = HOST_PAGE_ALIGN(guest_base);
3614
3615 if (reserved_va || have_guest_base) {
3616 guest_base = init_guest_space(guest_base, reserved_va, 0,
3617 have_guest_base);
3618 if (guest_base == (unsigned long)-1) {
3619 fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address "
3620 "space for use as guest address space (check your virtual "
3621 "memory ulimit setting or reserve less using -R option)\n",
3622 reserved_va);
3623 exit(1);
3624 }
3625
3626 if (reserved_va) {
3627 mmap_next_start = reserved_va;
3628 }
3629 }
3630 #endif /* CONFIG_USE_GUEST_BASE */
3631
3632 /*
3633 * Read in mmap_min_addr kernel parameter. This value is used
3634 * When loading the ELF image to determine whether guest_base
3635 * is needed. It is also used in mmap_find_vma.
3636 */
3637 {
3638 FILE *fp;
3639
3640 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
3641 unsigned long tmp;
3642 if (fscanf(fp, "%lu", &tmp) == 1) {
3643 mmap_min_addr = tmp;
3644 qemu_log("host mmap_min_addr=0x%lx\n", mmap_min_addr);
3645 }
3646 fclose(fp);
3647 }
3648 }
3649
3650 /*
3651 * Prepare copy of argv vector for target.
3652 */
3653 target_argc = argc - optind;
3654 target_argv = calloc(target_argc + 1, sizeof (char *));
3655 if (target_argv == NULL) {
3656 (void) fprintf(stderr, "Unable to allocate memory for target_argv\n");
3657 exit(1);
3658 }
3659
3660 /*
3661 * If argv0 is specified (using '-0' switch) we replace
3662 * argv[0] pointer with the given one.
3663 */
3664 i = 0;
3665 if (argv0 != NULL) {
3666 target_argv[i++] = strdup(argv0);
3667 }
3668 for (; i < target_argc; i++) {
3669 target_argv[i] = strdup(argv[optind + i]);
3670 }
3671 target_argv[target_argc] = NULL;
3672
3673 ts = g_malloc0 (sizeof(TaskState));
3674 init_task_state(ts);
3675 /* build Task State */
3676 ts->info = info;
3677 ts->bprm = &bprm;
3678 env->opaque = ts;
3679 task_settid(ts);
3680
3681 ret = loader_exec(filename, target_argv, target_environ, regs,
3682 info, &bprm);
3683 if (ret != 0) {
3684 printf("Error while loading %s: %s\n", filename, strerror(-ret));
3685 _exit(1);
3686 }
3687
3688 for (wrk = target_environ; *wrk; wrk++) {
3689 free(*wrk);
3690 }
3691
3692 free(target_environ);
3693
3694 if (qemu_log_enabled()) {
3695 #if defined(CONFIG_USE_GUEST_BASE)
3696 qemu_log("guest_base 0x%lx\n", guest_base);
3697 #endif
3698 log_page_dump();
3699
3700 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
3701 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code);
3702 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n",
3703 info->start_code);
3704 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n",
3705 info->start_data);
3706 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data);
3707 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
3708 info->start_stack);
3709 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk);
3710 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry);
3711 }
3712
3713 target_set_brk(info->brk);
3714 syscall_init();
3715 signal_init();
3716
3717 #if defined(CONFIG_USE_GUEST_BASE)
3718 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
3719 generating the prologue until now so that the prologue can take
3720 the real value of GUEST_BASE into account. */
3721 tcg_prologue_init(&tcg_ctx);
3722 #endif
3723
3724 #if defined(TARGET_I386)
3725 cpu_x86_set_cpl(env, 3);
3726
3727 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
3728 env->hflags |= HF_PE_MASK;
3729 if (env->features[FEAT_1_EDX] & CPUID_SSE) {
3730 env->cr[4] |= CR4_OSFXSR_MASK;
3731 env->hflags |= HF_OSFXSR_MASK;
3732 }
3733 #ifndef TARGET_ABI32
3734 /* enable 64 bit mode if possible */
3735 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
3736 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
3737 exit(1);
3738 }
3739 env->cr[4] |= CR4_PAE_MASK;
3740 env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
3741 env->hflags |= HF_LMA_MASK;
3742 #endif
3743
3744 /* flags setup : we activate the IRQs by default as in user mode */
3745 env->eflags |= IF_MASK;
3746
3747 /* linux register setup */
3748 #ifndef TARGET_ABI32
3749 env->regs[R_EAX] = regs->rax;
3750 env->regs[R_EBX] = regs->rbx;
3751 env->regs[R_ECX] = regs->rcx;
3752 env->regs[R_EDX] = regs->rdx;
3753 env->regs[R_ESI] = regs->rsi;
3754 env->regs[R_EDI] = regs->rdi;
3755 env->regs[R_EBP] = regs->rbp;
3756 env->regs[R_ESP] = regs->rsp;
3757 env->eip = regs->rip;
3758 #else
3759 env->regs[R_EAX] = regs->eax;
3760 env->regs[R_EBX] = regs->ebx;
3761 env->regs[R_ECX] = regs->ecx;
3762 env->regs[R_EDX] = regs->edx;
3763 env->regs[R_ESI] = regs->esi;
3764 env->regs[R_EDI] = regs->edi;
3765 env->regs[R_EBP] = regs->ebp;
3766 env->regs[R_ESP] = regs->esp;
3767 env->eip = regs->eip;
3768 #endif
3769
3770 /* linux interrupt setup */
3771 #ifndef TARGET_ABI32
3772 env->idt.limit = 511;
3773 #else
3774 env->idt.limit = 255;
3775 #endif
3776 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
3777 PROT_READ|PROT_WRITE,
3778 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
3779 idt_table = g2h(env->idt.base);
3780 set_idt(0, 0);
3781 set_idt(1, 0);
3782 set_idt(2, 0);
3783 set_idt(3, 3);
3784 set_idt(4, 3);
3785 set_idt(5, 0);
3786 set_idt(6, 0);
3787 set_idt(7, 0);
3788 set_idt(8, 0);
3789 set_idt(9, 0);
3790 set_idt(10, 0);
3791 set_idt(11, 0);
3792 set_idt(12, 0);
3793 set_idt(13, 0);
3794 set_idt(14, 0);
3795 set_idt(15, 0);
3796 set_idt(16, 0);
3797 set_idt(17, 0);
3798 set_idt(18, 0);
3799 set_idt(19, 0);
3800 set_idt(0x80, 3);
3801
3802 /* linux segment setup */
3803 {
3804 uint64_t *gdt_table;
3805 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
3806 PROT_READ|PROT_WRITE,
3807 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
3808 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
3809 gdt_table = g2h(env->gdt.base);
3810 #ifdef TARGET_ABI32
3811 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
3812 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
3813 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
3814 #else
3815 /* 64 bit code segment */
3816 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
3817 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
3818 DESC_L_MASK |
3819 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
3820 #endif
3821 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
3822 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
3823 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
3824 }
3825 cpu_x86_load_seg(env, R_CS, __USER_CS);
3826 cpu_x86_load_seg(env, R_SS, __USER_DS);
3827 #ifdef TARGET_ABI32
3828 cpu_x86_load_seg(env, R_DS, __USER_DS);
3829 cpu_x86_load_seg(env, R_ES, __USER_DS);
3830 cpu_x86_load_seg(env, R_FS, __USER_DS);
3831 cpu_x86_load_seg(env, R_GS, __USER_DS);
3832 /* This hack makes Wine work... */
3833 env->segs[R_FS].selector = 0;
3834 #else
3835 cpu_x86_load_seg(env, R_DS, 0);
3836 cpu_x86_load_seg(env, R_ES, 0);
3837 cpu_x86_load_seg(env, R_FS, 0);
3838 cpu_x86_load_seg(env, R_GS, 0);
3839 #endif
3840 #elif defined(TARGET_ARM)
3841 {
3842 int i;
3843 cpsr_write(env, regs->uregs[16], 0xffffffff);
3844 for(i = 0; i < 16; i++) {
3845 env->regs[i] = regs->uregs[i];
3846 }
3847 /* Enable BE8. */
3848 if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4
3849 && (info->elf_flags & EF_ARM_BE8)) {
3850 env->bswap_code = 1;
3851 }
3852 }
3853 #elif defined(TARGET_UNICORE32)
3854 {
3855 int i;
3856 cpu_asr_write(env, regs->uregs[32], 0xffffffff);
3857 for (i = 0; i < 32; i++) {
3858 env->regs[i] = regs->uregs[i];
3859 }
3860 }
3861 #elif defined(TARGET_SPARC)
3862 {
3863 int i;
3864 env->pc = regs->pc;
3865 env->npc = regs->npc;
3866 env->y = regs->y;
3867 for(i = 0; i < 8; i++)
3868 env->gregs[i] = regs->u_regs[i];
3869 for(i = 0; i < 8; i++)
3870 env->regwptr[i] = regs->u_regs[i + 8];
3871 }
3872 #elif defined(TARGET_PPC)
3873 {
3874 int i;
3875
3876 #if defined(TARGET_PPC64)
3877 #if defined(TARGET_ABI32)
3878 env->msr &= ~((target_ulong)1 << MSR_SF);
3879 #else
3880 env->msr |= (target_ulong)1 << MSR_SF;
3881 #endif
3882 #endif
3883 env->nip = regs->nip;
3884 for(i = 0; i < 32; i++) {
3885 env->gpr[i] = regs->gpr[i];
3886 }
3887 }
3888 #elif defined(TARGET_M68K)
3889 {
3890 env->pc = regs->pc;
3891 env->dregs[0] = regs->d0;
3892 env->dregs[1] = regs->d1;
3893 env->dregs[2] = regs->d2;
3894 env->dregs[3] = regs->d3;
3895 env->dregs[4] = regs->d4;
3896 env->dregs[5] = regs->d5;
3897 env->dregs[6] = regs->d6;
3898 env->dregs[7] = regs->d7;
3899 env->aregs[0] = regs->a0;
3900 env->aregs[1] = regs->a1;
3901 env->aregs[2] = regs->a2;
3902 env->aregs[3] = regs->a3;
3903 env->aregs[4] = regs->a4;
3904 env->aregs[5] = regs->a5;
3905 env->aregs[6] = regs->a6;
3906 env->aregs[7] = regs->usp;
3907 env->sr = regs->sr;
3908 ts->sim_syscalls = 1;
3909 }
3910 #elif defined(TARGET_MICROBLAZE)
3911 {
3912 env->regs[0] = regs->r0;
3913 env->regs[1] = regs->r1;
3914 env->regs[2] = regs->r2;
3915 env->regs[3] = regs->r3;
3916 env->regs[4] = regs->r4;
3917 env->regs[5] = regs->r5;
3918 env->regs[6] = regs->r6;
3919 env->regs[7] = regs->r7;
3920 env->regs[8] = regs->r8;
3921 env->regs[9] = regs->r9;
3922 env->regs[10] = regs->r10;
3923 env->regs[11] = regs->r11;
3924 env->regs[12] = regs->r12;
3925 env->regs[13] = regs->r13;
3926 env->regs[14] = regs->r14;
3927 env->regs[15] = regs->r15;
3928 env->regs[16] = regs->r16;
3929 env->regs[17] = regs->r17;
3930 env->regs[18] = regs->r18;
3931 env->regs[19] = regs->r19;
3932 env->regs[20] = regs->r20;
3933 env->regs[21] = regs->r21;
3934 env->regs[22] = regs->r22;
3935 env->regs[23] = regs->r23;
3936 env->regs[24] = regs->r24;
3937 env->regs[25] = regs->r25;
3938 env->regs[26] = regs->r26;
3939 env->regs[27] = regs->r27;
3940 env->regs[28] = regs->r28;
3941 env->regs[29] = regs->r29;
3942 env->regs[30] = regs->r30;
3943 env->regs[31] = regs->r31;
3944 env->sregs[SR_PC] = regs->pc;
3945 }
3946 #elif defined(TARGET_MIPS)
3947 {
3948 int i;
3949
3950 for(i = 0; i < 32; i++) {
3951 env->active_tc.gpr[i] = regs->regs[i];
3952 }
3953 env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1;
3954 if (regs->cp0_epc & 1) {
3955 env->hflags |= MIPS_HFLAG_M16;
3956 }
3957 }
3958 #elif defined(TARGET_OPENRISC)
3959 {
3960 int i;
3961
3962 for (i = 0; i < 32; i++) {
3963 env->gpr[i] = regs->gpr[i];
3964 }
3965
3966 env->sr = regs->sr;
3967 env->pc = regs->pc;
3968 }
3969 #elif defined(TARGET_SH4)
3970 {
3971 int i;
3972
3973 for(i = 0; i < 16; i++) {
3974 env->gregs[i] = regs->regs[i];
3975 }
3976 env->pc = regs->pc;
3977 }
3978 #elif defined(TARGET_ALPHA)
3979 {
3980 int i;
3981
3982 for(i = 0; i < 28; i++) {
3983 env->ir[i] = ((abi_ulong *)regs)[i];
3984 }
3985 env->ir[IR_SP] = regs->usp;
3986 env->pc = regs->pc;
3987 }
3988 #elif defined(TARGET_CRIS)
3989 {
3990 env->regs[0] = regs->r0;
3991 env->regs[1] = regs->r1;
3992 env->regs[2] = regs->r2;
3993 env->regs[3] = regs->r3;
3994 env->regs[4] = regs->r4;
3995 env->regs[5] = regs->r5;
3996 env->regs[6] = regs->r6;
3997 env->regs[7] = regs->r7;
3998 env->regs[8] = regs->r8;
3999 env->regs[9] = regs->r9;
4000 env->regs[10] = regs->r10;
4001 env->regs[11] = regs->r11;
4002 env->regs[12] = regs->r12;
4003 env->regs[13] = regs->r13;
4004 env->regs[14] = info->start_stack;
4005 env->regs[15] = regs->acr;
4006 env->pc = regs->erp;
4007 }
4008 #elif defined(TARGET_S390X)
4009 {
4010 int i;
4011 for (i = 0; i < 16; i++) {
4012 env->regs[i] = regs->gprs[i];
4013 }
4014 env->psw.mask = regs->psw.mask;
4015 env->psw.addr = regs->psw.addr;
4016 }
4017 #else
4018 #error unsupported target CPU
4019 #endif
4020
4021 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
4022 ts->stack_base = info->start_stack;
4023 ts->heap_base = info->brk;
4024 /* This will be filled in on the first SYS_HEAPINFO call. */
4025 ts->heap_limit = 0;
4026 #endif
4027
4028 if (gdbstub_port) {
4029 if (gdbserver_start(gdbstub_port) < 0) {
4030 fprintf(stderr, "qemu: could not open gdbserver on port %d\n",
4031 gdbstub_port);
4032 exit(1);
4033 }
4034 gdb_handlesig(env, 0);
4035 }
4036 cpu_loop(env);
4037 /* never exits */
4038 return 0;
4039 }