]> git.proxmox.com Git - qemu.git/blob - linux-user/qemu.h
block/qcow: Don't ignore immediate read/write and other failures
[qemu.git] / linux-user / qemu.h
1 #ifndef QEMU_H
2 #define QEMU_H
3
4 #include <signal.h>
5 #include <string.h>
6
7 #include "cpu.h"
8
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #include <stdlib.h>
12 #endif /* DEBUG_REMAP */
13
14 #include "qemu-types.h"
15
16 #include "thunk.h"
17 #include "syscall_defs.h"
18 #include "syscall.h"
19 #include "target_signal.h"
20 #include "gdbstub.h"
21 #include "qemu-queue.h"
22
23 #if defined(CONFIG_USE_NPTL)
24 #define THREAD __thread
25 #else
26 #define THREAD
27 #endif
28
29 /* This struct is used to hold certain information about the image.
30 * Basically, it replicates in user space what would be certain
31 * task_struct fields in the kernel
32 */
33 struct image_info {
34 abi_ulong load_bias;
35 abi_ulong load_addr;
36 abi_ulong start_code;
37 abi_ulong end_code;
38 abi_ulong start_data;
39 abi_ulong end_data;
40 abi_ulong start_brk;
41 abi_ulong brk;
42 abi_ulong start_mmap;
43 abi_ulong mmap;
44 abi_ulong rss;
45 abi_ulong start_stack;
46 abi_ulong stack_limit;
47 abi_ulong entry;
48 abi_ulong code_offset;
49 abi_ulong data_offset;
50 abi_ulong saved_auxv;
51 abi_ulong arg_start;
52 abi_ulong arg_end;
53 int personality;
54 #ifdef CONFIG_USE_FDPIC
55 abi_ulong loadmap_addr;
56 uint16_t nsegs;
57 void *loadsegs;
58 abi_ulong pt_dynamic_addr;
59 struct image_info *other_info;
60 #endif
61 };
62
63 #ifdef TARGET_I386
64 /* Information about the current linux thread */
65 struct vm86_saved_state {
66 uint32_t eax; /* return code */
67 uint32_t ebx;
68 uint32_t ecx;
69 uint32_t edx;
70 uint32_t esi;
71 uint32_t edi;
72 uint32_t ebp;
73 uint32_t esp;
74 uint32_t eflags;
75 uint32_t eip;
76 uint16_t cs, ss, ds, es, fs, gs;
77 };
78 #endif
79
80 #ifdef TARGET_ARM
81 /* FPU emulator */
82 #include "nwfpe/fpa11.h"
83 #endif
84
85 #define MAX_SIGQUEUE_SIZE 1024
86
87 struct sigqueue {
88 struct sigqueue *next;
89 target_siginfo_t info;
90 };
91
92 struct emulated_sigtable {
93 int pending; /* true if signal is pending */
94 struct sigqueue *first;
95 struct sigqueue info; /* in order to always have memory for the
96 first signal, we put it here */
97 };
98
99 /* NOTE: we force a big alignment so that the stack stored after is
100 aligned too */
101 typedef struct TaskState {
102 pid_t ts_tid; /* tid (or pid) of this task */
103 #ifdef TARGET_ARM
104 /* FPA state */
105 FPA11 fpa;
106 int swi_errno;
107 #endif
108 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
109 abi_ulong target_v86;
110 struct vm86_saved_state vm86_saved_regs;
111 struct target_vm86plus_struct vm86plus;
112 uint32_t v86flags;
113 uint32_t v86mask;
114 #endif
115 #ifdef CONFIG_USE_NPTL
116 abi_ulong child_tidptr;
117 #endif
118 #ifdef TARGET_M68K
119 int sim_syscalls;
120 #endif
121 #if defined(TARGET_ARM) || defined(TARGET_M68K)
122 /* Extra fields for semihosted binaries. */
123 uint32_t stack_base;
124 uint32_t heap_base;
125 uint32_t heap_limit;
126 #endif
127 int used; /* non zero if used */
128 struct image_info *info;
129 struct linux_binprm *bprm;
130
131 struct emulated_sigtable sigtab[TARGET_NSIG];
132 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
133 struct sigqueue *first_free; /* first free siginfo queue entry */
134 int signal_pending; /* non zero if a signal may be pending */
135 } __attribute__((aligned(16))) TaskState;
136
137 extern char *exec_path;
138 void init_task_state(TaskState *ts);
139 void task_settid(TaskState *);
140 void stop_all_tasks(void);
141 extern const char *qemu_uname_release;
142 extern unsigned long mmap_min_addr;
143
144 /* ??? See if we can avoid exposing so much of the loader internals. */
145 /*
146 * MAX_ARG_PAGES defines the number of pages allocated for arguments
147 * and envelope for the new program. 32 should suffice, this gives
148 * a maximum env+arg of 128kB w/4KB pages!
149 */
150 #define MAX_ARG_PAGES 33
151
152 /* Read a good amount of data initially, to hopefully get all the
153 program headers loaded. */
154 #define BPRM_BUF_SIZE 1024
155
156 /*
157 * This structure is used to hold the arguments that are
158 * used when loading binaries.
159 */
160 struct linux_binprm {
161 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
162 void *page[MAX_ARG_PAGES];
163 abi_ulong p;
164 int fd;
165 int e_uid, e_gid;
166 int argc, envc;
167 char **argv;
168 char **envp;
169 char * filename; /* Name of binary */
170 int (*core_dump)(int, const CPUState *); /* coredump routine */
171 };
172
173 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
174 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
175 abi_ulong stringp, int push_ptr);
176 int loader_exec(const char * filename, char ** argv, char ** envp,
177 struct target_pt_regs * regs, struct image_info *infop,
178 struct linux_binprm *);
179
180 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
181 struct image_info * info);
182 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
183 struct image_info * info);
184
185 abi_long memcpy_to_target(abi_ulong dest, const void *src,
186 unsigned long len);
187 void target_set_brk(abi_ulong new_brk);
188 abi_long do_brk(abi_ulong new_brk);
189 void syscall_init(void);
190 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
191 abi_long arg2, abi_long arg3, abi_long arg4,
192 abi_long arg5, abi_long arg6);
193 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
194 extern THREAD CPUState *thread_env;
195 void cpu_loop(CPUState *env);
196 char *target_strerror(int err);
197 int get_osversion(void);
198 void fork_start(void);
199 void fork_end(int child);
200
201 #include "qemu-log.h"
202
203 /* strace.c */
204 void print_syscall(int num,
205 abi_long arg1, abi_long arg2, abi_long arg3,
206 abi_long arg4, abi_long arg5, abi_long arg6);
207 void print_syscall_ret(int num, abi_long arg1);
208 extern int do_strace;
209
210 /* signal.c */
211 void process_pending_signals(CPUState *cpu_env);
212 void signal_init(void);
213 int queue_signal(CPUState *env, int sig, target_siginfo_t *info);
214 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
215 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
216 int target_to_host_signal(int sig);
217 int host_to_target_signal(int sig);
218 long do_sigreturn(CPUState *env);
219 long do_rt_sigreturn(CPUState *env);
220 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
221
222 #ifdef TARGET_I386
223 /* vm86.c */
224 void save_v86_state(CPUX86State *env);
225 void handle_vm86_trap(CPUX86State *env, int trapno);
226 void handle_vm86_fault(CPUX86State *env);
227 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
228 #elif defined(TARGET_SPARC64)
229 void sparc64_set_context(CPUSPARCState *env);
230 void sparc64_get_context(CPUSPARCState *env);
231 #endif
232
233 /* mmap.c */
234 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
235 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
236 int flags, int fd, abi_ulong offset);
237 int target_munmap(abi_ulong start, abi_ulong len);
238 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
239 abi_ulong new_size, unsigned long flags,
240 abi_ulong new_addr);
241 int target_msync(abi_ulong start, abi_ulong len, int flags);
242 extern unsigned long last_brk;
243 void mmap_lock(void);
244 void mmap_unlock(void);
245 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
246 void cpu_list_lock(void);
247 void cpu_list_unlock(void);
248 #if defined(CONFIG_USE_NPTL)
249 void mmap_fork_start(void);
250 void mmap_fork_end(int child);
251 #endif
252
253 /* main.c */
254 extern unsigned long guest_stack_size;
255
256 /* user access */
257
258 #define VERIFY_READ 0
259 #define VERIFY_WRITE 1 /* implies read access */
260
261 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
262 {
263 return page_check_range((target_ulong)addr, size,
264 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
265 }
266
267 /* NOTE __get_user and __put_user use host pointers and don't check access. */
268 /* These are usually used to access struct data members once the
269 * struct has been locked - usually with lock_user_struct().
270 */
271 #define __put_user(x, hptr)\
272 ({\
273 switch(sizeof(*hptr)) {\
274 case 1:\
275 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
276 break;\
277 case 2:\
278 *(uint16_t *)(hptr) = tswap16((uint16_t)(typeof(*hptr))(x));\
279 break;\
280 case 4:\
281 *(uint32_t *)(hptr) = tswap32((uint32_t)(typeof(*hptr))(x));\
282 break;\
283 case 8:\
284 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
285 break;\
286 default:\
287 abort();\
288 }\
289 0;\
290 })
291
292 #define __get_user(x, hptr) \
293 ({\
294 switch(sizeof(*hptr)) {\
295 case 1:\
296 x = (typeof(*hptr))*(uint8_t *)(hptr);\
297 break;\
298 case 2:\
299 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
300 break;\
301 case 4:\
302 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
303 break;\
304 case 8:\
305 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
306 break;\
307 default:\
308 /* avoid warning */\
309 x = 0;\
310 abort();\
311 }\
312 0;\
313 })
314
315 /* put_user()/get_user() take a guest address and check access */
316 /* These are usually used to access an atomic data type, such as an int,
317 * that has been passed by address. These internally perform locking
318 * and unlocking on the data type.
319 */
320 #define put_user(x, gaddr, target_type) \
321 ({ \
322 abi_ulong __gaddr = (gaddr); \
323 target_type *__hptr; \
324 abi_long __ret; \
325 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
326 __ret = __put_user((x), __hptr); \
327 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
328 } else \
329 __ret = -TARGET_EFAULT; \
330 __ret; \
331 })
332
333 #define get_user(x, gaddr, target_type) \
334 ({ \
335 abi_ulong __gaddr = (gaddr); \
336 target_type *__hptr; \
337 abi_long __ret; \
338 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
339 __ret = __get_user((x), __hptr); \
340 unlock_user(__hptr, __gaddr, 0); \
341 } else { \
342 /* avoid warning */ \
343 (x) = 0; \
344 __ret = -TARGET_EFAULT; \
345 } \
346 __ret; \
347 })
348
349 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
350 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
351 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
352 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
353 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
354 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
355 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
356 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
357 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
358 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
359
360 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
361 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
362 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
363 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
364 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
365 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
366 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
367 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
368 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
369 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
370
371 /* copy_from_user() and copy_to_user() are usually used to copy data
372 * buffers between the target and host. These internally perform
373 * locking/unlocking of the memory.
374 */
375 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
376 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
377
378 /* Functions for accessing guest memory. The tget and tput functions
379 read/write single values, byteswapping as neccessary. The lock_user
380 gets a pointer to a contiguous area of guest memory, but does not perform
381 and byteswapping. lock_user may return either a pointer to the guest
382 memory, or a temporary buffer. */
383
384 /* Lock an area of guest memory into the host. If copy is true then the
385 host area will have the same contents as the guest. */
386 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
387 {
388 if (!access_ok(type, guest_addr, len))
389 return NULL;
390 #ifdef DEBUG_REMAP
391 {
392 void *addr;
393 addr = malloc(len);
394 if (copy)
395 memcpy(addr, g2h(guest_addr), len);
396 else
397 memset(addr, 0, len);
398 return addr;
399 }
400 #else
401 return g2h(guest_addr);
402 #endif
403 }
404
405 /* Unlock an area of guest memory. The first LEN bytes must be
406 flushed back to guest memory. host_ptr = NULL is explicitly
407 allowed and does nothing. */
408 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
409 long len)
410 {
411
412 #ifdef DEBUG_REMAP
413 if (!host_ptr)
414 return;
415 if (host_ptr == g2h(guest_addr))
416 return;
417 if (len > 0)
418 memcpy(g2h(guest_addr), host_ptr, len);
419 free(host_ptr);
420 #endif
421 }
422
423 /* Return the length of a string in target memory or -TARGET_EFAULT if
424 access error. */
425 abi_long target_strlen(abi_ulong gaddr);
426
427 /* Like lock_user but for null terminated strings. */
428 static inline void *lock_user_string(abi_ulong guest_addr)
429 {
430 abi_long len;
431 len = target_strlen(guest_addr);
432 if (len < 0)
433 return NULL;
434 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
435 }
436
437 /* Helper macros for locking/ulocking a target struct. */
438 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
439 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
440 #define unlock_user_struct(host_ptr, guest_addr, copy) \
441 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
442
443 #if defined(CONFIG_USE_NPTL)
444 #include <pthread.h>
445 #endif
446
447 #endif /* QEMU_H */