]> git.proxmox.com Git - qemu.git/blob - linux-user/qemu.h
Linux user memory access API change (initial patch by Thayne Harbaugh)
[qemu.git] / linux-user / qemu.h
1 #ifndef QEMU_H
2 #define QEMU_H
3
4 #include <signal.h>
5 #include <string.h>
6
7 #include "cpu.h"
8
9 #ifdef TARGET_ABI32
10 typedef uint32_t abi_ulong;
11 typedef int32_t abi_long;
12 #define TARGET_ABI_FMT_lx "%08x"
13 #define TARGET_ABI_FMT_ld "%d"
14 #define TARGET_ABI_FMT_lu "%u"
15 #define TARGET_ABI_BITS 32
16 #else
17 typedef target_ulong abi_ulong;
18 typedef target_long abi_long;
19 #define TARGET_ABI_FMT_lx TARGET_FMT_lx
20 #define TARGET_ABI_FMT_ld TARGET_FMT_ld
21 #define TARGET_ABI_FMT_lu TARGET_FMT_lu
22 #define TARGET_ABI_BITS TARGET_LONG_BITS
23 #endif
24
25 #include "thunk.h"
26 #include "syscall_defs.h"
27 #include "syscall.h"
28 #include "target_signal.h"
29 #include "gdbstub.h"
30
31 /* This struct is used to hold certain information about the image.
32 * Basically, it replicates in user space what would be certain
33 * task_struct fields in the kernel
34 */
35 struct image_info {
36 abi_ulong load_addr;
37 abi_ulong start_code;
38 abi_ulong end_code;
39 abi_ulong start_data;
40 abi_ulong end_data;
41 abi_ulong start_brk;
42 abi_ulong brk;
43 abi_ulong start_mmap;
44 abi_ulong mmap;
45 abi_ulong rss;
46 abi_ulong start_stack;
47 abi_ulong entry;
48 abi_ulong code_offset;
49 abi_ulong data_offset;
50 char **host_argv;
51 int personality;
52 };
53
54 #ifdef TARGET_I386
55 /* Information about the current linux thread */
56 struct vm86_saved_state {
57 uint32_t eax; /* return code */
58 uint32_t ebx;
59 uint32_t ecx;
60 uint32_t edx;
61 uint32_t esi;
62 uint32_t edi;
63 uint32_t ebp;
64 uint32_t esp;
65 uint32_t eflags;
66 uint32_t eip;
67 uint16_t cs, ss, ds, es, fs, gs;
68 };
69 #endif
70
71 #ifdef TARGET_ARM
72 /* FPU emulator */
73 #include "nwfpe/fpa11.h"
74 #endif
75
76 /* NOTE: we force a big alignment so that the stack stored after is
77 aligned too */
78 typedef struct TaskState {
79 struct TaskState *next;
80 #ifdef TARGET_ARM
81 /* FPA state */
82 FPA11 fpa;
83 int swi_errno;
84 #endif
85 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
86 abi_ulong target_v86;
87 struct vm86_saved_state vm86_saved_regs;
88 struct target_vm86plus_struct vm86plus;
89 uint32_t v86flags;
90 uint32_t v86mask;
91 #endif
92 #ifdef TARGET_M68K
93 int sim_syscalls;
94 #endif
95 #if defined(TARGET_ARM) || defined(TARGET_M68K)
96 /* Extra fields for semihosted binaries. */
97 uint32_t stack_base;
98 uint32_t heap_base;
99 uint32_t heap_limit;
100 #endif
101 int used; /* non zero if used */
102 struct image_info *info;
103 uint8_t stack[0];
104 } __attribute__((aligned(16))) TaskState;
105
106 extern TaskState *first_task_state;
107 extern const char *qemu_uname_release;
108
109 /* ??? See if we can avoid exposing so much of the loader internals. */
110 /*
111 * MAX_ARG_PAGES defines the number of pages allocated for arguments
112 * and envelope for the new program. 32 should suffice, this gives
113 * a maximum env+arg of 128kB w/4KB pages!
114 */
115 #define MAX_ARG_PAGES 32
116
117 /*
118 * This structure is used to hold the arguments that are
119 * used when loading binaries.
120 */
121 struct linux_binprm {
122 char buf[128];
123 void *page[MAX_ARG_PAGES];
124 abi_ulong p;
125 int fd;
126 int e_uid, e_gid;
127 int argc, envc;
128 char **argv;
129 char **envp;
130 char * filename; /* Name of binary */
131 };
132
133 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
134 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
135 abi_ulong stringp, int push_ptr);
136 int loader_exec(const char * filename, char ** argv, char ** envp,
137 struct target_pt_regs * regs, struct image_info *infop);
138
139 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
140 struct image_info * info);
141 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
142 struct image_info * info);
143 #ifdef TARGET_HAS_ELFLOAD32
144 int load_elf_binary_multi(struct linux_binprm *bprm,
145 struct target_pt_regs *regs,
146 struct image_info *info);
147 #endif
148
149 abi_long memcpy_to_target(abi_ulong dest, const void *src,
150 unsigned long len);
151 void target_set_brk(abi_ulong new_brk);
152 abi_long do_brk(abi_ulong new_brk);
153 void syscall_init(void);
154 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
155 abi_long arg2, abi_long arg3, abi_long arg4,
156 abi_long arg5, abi_long arg6);
157 void gemu_log(const char *fmt, ...) __attribute__((format(printf,1,2)));
158 extern CPUState *global_env;
159 void cpu_loop(CPUState *env);
160 void init_paths(const char *prefix);
161 const char *path(const char *pathname);
162 char *target_strerror(int err);
163
164 extern int loglevel;
165 extern FILE *logfile;
166
167 /* strace.c */
168 void print_syscall(int num,
169 target_long arg1, target_long arg2, target_long arg3,
170 target_long arg4, target_long arg5, target_long arg6);
171 void print_syscall_ret(int num, target_long arg1);
172 extern int do_strace;
173
174 /* signal.c */
175 void process_pending_signals(void *cpu_env);
176 void signal_init(void);
177 int queue_signal(int sig, target_siginfo_t *info);
178 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
179 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
180 long do_sigreturn(CPUState *env);
181 long do_rt_sigreturn(CPUState *env);
182 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
183
184 #ifdef TARGET_I386
185 /* vm86.c */
186 void save_v86_state(CPUX86State *env);
187 void handle_vm86_trap(CPUX86State *env, int trapno);
188 void handle_vm86_fault(CPUX86State *env);
189 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
190 #elif defined(TARGET_SPARC64)
191 void sparc64_set_context(CPUSPARCState *env);
192 void sparc64_get_context(CPUSPARCState *env);
193 #endif
194
195 /* mmap.c */
196 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
197 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
198 int flags, int fd, abi_ulong offset);
199 int target_munmap(abi_ulong start, abi_ulong len);
200 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
201 abi_ulong new_size, unsigned long flags,
202 abi_ulong new_addr);
203 int target_msync(abi_ulong start, abi_ulong len, int flags);
204
205 /* user access */
206
207 #define VERIFY_READ 0
208 #define VERIFY_WRITE 1 /* implies read access */
209
210 #define access_ok(type,addr,size) \
211 (page_check_range((target_ulong)addr,size,(type==VERIFY_READ)?PAGE_READ:PAGE_WRITE)==0)
212
213 /* NOTE __get_user and __put_user use host pointers and don't check access. */
214 /* These are usually used to access struct data members once the
215 * struct has been locked - usually with lock_user_struct().
216 */
217 #define __put_user(x, hptr)\
218 ({\
219 int size = sizeof(*hptr);\
220 switch(size) {\
221 case 1:\
222 *(uint8_t *)(hptr) = (typeof(*hptr))(x);\
223 break;\
224 case 2:\
225 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\
226 break;\
227 case 4:\
228 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\
229 break;\
230 case 8:\
231 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
232 break;\
233 default:\
234 abort();\
235 }\
236 0;\
237 })
238
239 #define __get_user(x, hptr) \
240 ({\
241 int size = sizeof(*hptr);\
242 switch(size) {\
243 case 1:\
244 x = (typeof(*hptr))*(uint8_t *)(hptr);\
245 break;\
246 case 2:\
247 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
248 break;\
249 case 4:\
250 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
251 break;\
252 case 8:\
253 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
254 break;\
255 default:\
256 abort();\
257 }\
258 0;\
259 })
260
261 /* put_user()/get_user() take a guest address and check access */
262 /* These are usually used to access an atomic data type, such as an int,
263 * that has been passed by address. These internally perform locking
264 * and unlocking on the data type.
265 */
266 #define put_user(x, gaddr, target_type) \
267 ({ \
268 abi_ulong __gaddr = (gaddr); \
269 target_type *__hptr; \
270 abi_long __ret; \
271 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
272 __ret = __put_user((x), __hptr); \
273 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
274 } else \
275 __ret = -TARGET_EFAULT; \
276 __ret; \
277 })
278
279 #define get_user(x, gaddr, target_type) \
280 ({ \
281 abi_ulong __gaddr = (gaddr); \
282 target_type *__hptr; \
283 abi_long __ret; \
284 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
285 __ret = __get_user((x), __hptr); \
286 unlock_user(__hptr, __gaddr, 0); \
287 } else \
288 __ret = -TARGET_EFAULT; \
289 __ret; \
290 })
291
292 /* copy_from_user() and copy_to_user() are usually used to copy data
293 * buffers between the target and host. These internally perform
294 * locking/unlocking of the memory.
295 */
296 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
297 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
298
299 /* Functions for accessing guest memory. The tget and tput functions
300 read/write single values, byteswapping as neccessary. The lock_user
301 gets a pointer to a contiguous area of guest memory, but does not perform
302 and byteswapping. lock_user may return either a pointer to the guest
303 memory, or a temporary buffer. */
304
305 /* Lock an area of guest memory into the host. If copy is true then the
306 host area will have the same contents as the guest. */
307 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
308 {
309 if (!access_ok(type, guest_addr, len))
310 return NULL;
311 #ifdef DEBUG_REMAP
312 {
313 void *addr;
314 addr = malloc(len);
315 if (copy)
316 memcpy(addr, g2h(guest_addr), len);
317 else
318 memset(addr, 0, len);
319 return addr;
320 }
321 #else
322 return g2h(guest_addr);
323 #endif
324 }
325
326 /* Unlock an area of guest memory. The first LEN bytes must be
327 flushed back to guest memory. host_ptr = NULL is explicitely
328 allowed and does nothing. */
329 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
330 long len)
331 {
332
333 #ifdef DEBUG_REMAP
334 if (!host_ptr)
335 return;
336 if (host_ptr == g2h(guest_addr))
337 return;
338 if (len > 0)
339 memcpy(g2h(guest_ptr), host_ptr, len);
340 free(host_ptr);
341 #endif
342 }
343
344 /* Return the length of a string in target memory or -TARGET_EFAULT if
345 access error. */
346 abi_long target_strlen(abi_ulong gaddr);
347
348 /* Like lock_user but for null terminated strings. */
349 static inline void *lock_user_string(abi_ulong guest_addr)
350 {
351 abi_long len;
352 len = target_strlen(guest_addr);
353 if (len < 0)
354 return NULL;
355 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
356 }
357
358 /* Helper macros for locking/ulocking a target struct. */
359 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
360 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
361 #define unlock_user_struct(host_ptr, guest_addr, copy) \
362 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
363
364 #define tget8(addr) ldub(addr)
365 #define tput8(addr, val) stb(addr, val)
366 #define tget16(addr) lduw(addr)
367 #define tput16(addr, val) stw(addr, val)
368 #define tget32(addr) ldl(addr)
369 #define tput32(addr, val) stl(addr, val)
370 #define tget64(addr) ldq(addr)
371 #define tput64(addr, val) stq(addr, val)
372 #if TARGET_ABI_BITS == 64
373 #define tgetl(addr) ldq(addr)
374 #define tputl(addr, val) stq(addr, val)
375 #else
376 #define tgetl(addr) ldl(addr)
377 #define tputl(addr, val) stl(addr, val)
378 #endif
379
380 #endif /* QEMU_H */