]> git.proxmox.com Git - qemu.git/blob - linux-user/qemu.h
Merge remote-tracking branch 'riku/linux-user-for-upstream' into staging
[qemu.git] / linux-user / qemu.h
1 #ifndef QEMU_H
2 #define QEMU_H
3
4 #include <signal.h>
5 #include <string.h>
6
7 #include "cpu.h"
8
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #include <stdlib.h>
12 #endif /* DEBUG_REMAP */
13
14 #include "exec/user/abitypes.h"
15
16 #include "exec/user/thunk.h"
17 #include "syscall_defs.h"
18 #include "syscall.h"
19 #include "exec/gdbstub.h"
20 #include "qemu/queue.h"
21
22 #define THREAD __thread
23
24 /* This struct is used to hold certain information about the image.
25 * Basically, it replicates in user space what would be certain
26 * task_struct fields in the kernel
27 */
28 struct image_info {
29 abi_ulong load_bias;
30 abi_ulong load_addr;
31 abi_ulong start_code;
32 abi_ulong end_code;
33 abi_ulong start_data;
34 abi_ulong end_data;
35 abi_ulong start_brk;
36 abi_ulong brk;
37 abi_ulong start_mmap;
38 abi_ulong mmap;
39 abi_ulong rss;
40 abi_ulong start_stack;
41 abi_ulong stack_limit;
42 abi_ulong entry;
43 abi_ulong code_offset;
44 abi_ulong data_offset;
45 abi_ulong saved_auxv;
46 abi_ulong auxv_len;
47 abi_ulong arg_start;
48 abi_ulong arg_end;
49 uint32_t elf_flags;
50 int personality;
51 #ifdef CONFIG_USE_FDPIC
52 abi_ulong loadmap_addr;
53 uint16_t nsegs;
54 void *loadsegs;
55 abi_ulong pt_dynamic_addr;
56 struct image_info *other_info;
57 #endif
58 };
59
60 #ifdef TARGET_I386
61 /* Information about the current linux thread */
62 struct vm86_saved_state {
63 uint32_t eax; /* return code */
64 uint32_t ebx;
65 uint32_t ecx;
66 uint32_t edx;
67 uint32_t esi;
68 uint32_t edi;
69 uint32_t ebp;
70 uint32_t esp;
71 uint32_t eflags;
72 uint32_t eip;
73 uint16_t cs, ss, ds, es, fs, gs;
74 };
75 #endif
76
77 #ifdef TARGET_ARM
78 /* FPU emulator */
79 #include "nwfpe/fpa11.h"
80 #endif
81
82 #define MAX_SIGQUEUE_SIZE 1024
83
84 struct sigqueue {
85 struct sigqueue *next;
86 target_siginfo_t info;
87 };
88
89 struct emulated_sigtable {
90 int pending; /* true if signal is pending */
91 struct sigqueue *first;
92 struct sigqueue info; /* in order to always have memory for the
93 first signal, we put it here */
94 };
95
96 /* NOTE: we force a big alignment so that the stack stored after is
97 aligned too */
98 typedef struct TaskState {
99 pid_t ts_tid; /* tid (or pid) of this task */
100 #ifdef TARGET_ARM
101 /* FPA state */
102 FPA11 fpa;
103 int swi_errno;
104 #endif
105 #ifdef TARGET_UNICORE32
106 int swi_errno;
107 #endif
108 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
109 abi_ulong target_v86;
110 struct vm86_saved_state vm86_saved_regs;
111 struct target_vm86plus_struct vm86plus;
112 uint32_t v86flags;
113 uint32_t v86mask;
114 #endif
115 abi_ulong child_tidptr;
116 #ifdef TARGET_M68K
117 int sim_syscalls;
118 abi_ulong tp_value;
119 #endif
120 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
121 /* Extra fields for semihosted binaries. */
122 uint32_t heap_base;
123 uint32_t heap_limit;
124 #endif
125 uint32_t stack_base;
126 int used; /* non zero if used */
127 struct image_info *info;
128 struct linux_binprm *bprm;
129
130 struct emulated_sigtable sigtab[TARGET_NSIG];
131 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
132 struct sigqueue *first_free; /* first free siginfo queue entry */
133 int signal_pending; /* non zero if a signal may be pending */
134 } __attribute__((aligned(16))) TaskState;
135
136 extern char *exec_path;
137 void init_task_state(TaskState *ts);
138 void task_settid(TaskState *);
139 void stop_all_tasks(void);
140 extern const char *qemu_uname_release;
141 extern unsigned long mmap_min_addr;
142
143 /* ??? See if we can avoid exposing so much of the loader internals. */
144 /*
145 * MAX_ARG_PAGES defines the number of pages allocated for arguments
146 * and envelope for the new program. 32 should suffice, this gives
147 * a maximum env+arg of 128kB w/4KB pages!
148 */
149 #define MAX_ARG_PAGES 33
150
151 /* Read a good amount of data initially, to hopefully get all the
152 program headers loaded. */
153 #define BPRM_BUF_SIZE 1024
154
155 /*
156 * This structure is used to hold the arguments that are
157 * used when loading binaries.
158 */
159 struct linux_binprm {
160 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
161 void *page[MAX_ARG_PAGES];
162 abi_ulong p;
163 int fd;
164 int e_uid, e_gid;
165 int argc, envc;
166 char **argv;
167 char **envp;
168 char * filename; /* Name of binary */
169 int (*core_dump)(int, const CPUArchState *); /* coredump routine */
170 };
171
172 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
173 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
174 abi_ulong stringp, int push_ptr);
175 int loader_exec(const char * filename, char ** argv, char ** envp,
176 struct target_pt_regs * regs, struct image_info *infop,
177 struct linux_binprm *);
178
179 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
180 struct image_info * info);
181 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
182 struct image_info * info);
183
184 abi_long memcpy_to_target(abi_ulong dest, const void *src,
185 unsigned long len);
186 void target_set_brk(abi_ulong new_brk);
187 abi_long do_brk(abi_ulong new_brk);
188 void syscall_init(void);
189 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
190 abi_long arg2, abi_long arg3, abi_long arg4,
191 abi_long arg5, abi_long arg6, abi_long arg7,
192 abi_long arg8);
193 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
194 extern THREAD CPUState *thread_cpu;
195 void cpu_loop(CPUArchState *env);
196 char *target_strerror(int err);
197 int get_osversion(void);
198 void fork_start(void);
199 void fork_end(int child);
200
201 /* Creates the initial guest address space in the host memory space using
202 * the given host start address hint and size. The guest_start parameter
203 * specifies the start address of the guest space. guest_base will be the
204 * difference between the host start address computed by this function and
205 * guest_start. If fixed is specified, then the mapped address space must
206 * start at host_start. The real start address of the mapped memory space is
207 * returned or -1 if there was an error.
208 */
209 unsigned long init_guest_space(unsigned long host_start,
210 unsigned long host_size,
211 unsigned long guest_start,
212 bool fixed);
213
214 #include "qemu/log.h"
215
216 /* syscall.c */
217 int host_to_target_waitstatus(int status);
218
219 /* strace.c */
220 void print_syscall(int num,
221 abi_long arg1, abi_long arg2, abi_long arg3,
222 abi_long arg4, abi_long arg5, abi_long arg6);
223 void print_syscall_ret(int num, abi_long arg1);
224 extern int do_strace;
225
226 /* signal.c */
227 void process_pending_signals(CPUArchState *cpu_env);
228 void signal_init(void);
229 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
230 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
231 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
232 int target_to_host_signal(int sig);
233 int host_to_target_signal(int sig);
234 long do_sigreturn(CPUArchState *env);
235 long do_rt_sigreturn(CPUArchState *env);
236 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
237
238 #ifdef TARGET_I386
239 /* vm86.c */
240 void save_v86_state(CPUX86State *env);
241 void handle_vm86_trap(CPUX86State *env, int trapno);
242 void handle_vm86_fault(CPUX86State *env);
243 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
244 #elif defined(TARGET_SPARC64)
245 void sparc64_set_context(CPUSPARCState *env);
246 void sparc64_get_context(CPUSPARCState *env);
247 #endif
248
249 /* mmap.c */
250 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
251 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
252 int flags, int fd, abi_ulong offset);
253 int target_munmap(abi_ulong start, abi_ulong len);
254 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
255 abi_ulong new_size, unsigned long flags,
256 abi_ulong new_addr);
257 int target_msync(abi_ulong start, abi_ulong len, int flags);
258 extern unsigned long last_brk;
259 extern abi_ulong mmap_next_start;
260 void mmap_lock(void);
261 void mmap_unlock(void);
262 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
263 void cpu_list_lock(void);
264 void cpu_list_unlock(void);
265 void mmap_fork_start(void);
266 void mmap_fork_end(int child);
267
268 /* main.c */
269 extern unsigned long guest_stack_size;
270
271 /* user access */
272
273 #define VERIFY_READ 0
274 #define VERIFY_WRITE 1 /* implies read access */
275
276 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
277 {
278 return page_check_range((target_ulong)addr, size,
279 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
280 }
281
282 /* NOTE __get_user and __put_user use host pointers and don't check access.
283 These are usually used to access struct data members once the struct has
284 been locked - usually with lock_user_struct. */
285
286 /* Tricky points:
287 - Use __builtin_choose_expr to avoid type promotion from ?:,
288 - Invalid sizes result in a compile time error stemming from
289 the fact that abort has no parameters.
290 - It's easier to use the endian-specific unaligned load/store
291 functions than host-endian unaligned load/store plus tswapN. */
292
293 #define __put_user_e(x, hptr, e) \
294 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
295 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
296 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
297 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
298 ((hptr), (x)), 0)
299
300 #define __get_user_e(x, hptr, e) \
301 ((x) = (typeof(*hptr))( \
302 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
303 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
304 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
305 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
306 (hptr)), 0)
307
308 #ifdef TARGET_WORDS_BIGENDIAN
309 # define __put_user(x, hptr) __put_user_e(x, hptr, be)
310 # define __get_user(x, hptr) __get_user_e(x, hptr, be)
311 #else
312 # define __put_user(x, hptr) __put_user_e(x, hptr, le)
313 # define __get_user(x, hptr) __get_user_e(x, hptr, le)
314 #endif
315
316 /* put_user()/get_user() take a guest address and check access */
317 /* These are usually used to access an atomic data type, such as an int,
318 * that has been passed by address. These internally perform locking
319 * and unlocking on the data type.
320 */
321 #define put_user(x, gaddr, target_type) \
322 ({ \
323 abi_ulong __gaddr = (gaddr); \
324 target_type *__hptr; \
325 abi_long __ret; \
326 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
327 __ret = __put_user((x), __hptr); \
328 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
329 } else \
330 __ret = -TARGET_EFAULT; \
331 __ret; \
332 })
333
334 #define get_user(x, gaddr, target_type) \
335 ({ \
336 abi_ulong __gaddr = (gaddr); \
337 target_type *__hptr; \
338 abi_long __ret; \
339 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
340 __ret = __get_user((x), __hptr); \
341 unlock_user(__hptr, __gaddr, 0); \
342 } else { \
343 /* avoid warning */ \
344 (x) = 0; \
345 __ret = -TARGET_EFAULT; \
346 } \
347 __ret; \
348 })
349
350 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
351 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
352 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
353 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
354 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
355 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
356 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
357 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
358 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
359 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
360
361 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
362 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
363 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
364 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
365 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
366 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
367 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
368 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
369 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
370 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
371
372 /* copy_from_user() and copy_to_user() are usually used to copy data
373 * buffers between the target and host. These internally perform
374 * locking/unlocking of the memory.
375 */
376 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
377 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
378
379 /* Functions for accessing guest memory. The tget and tput functions
380 read/write single values, byteswapping as necessary. The lock_user
381 gets a pointer to a contiguous area of guest memory, but does not perform
382 and byteswapping. lock_user may return either a pointer to the guest
383 memory, or a temporary buffer. */
384
385 /* Lock an area of guest memory into the host. If copy is true then the
386 host area will have the same contents as the guest. */
387 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
388 {
389 if (!access_ok(type, guest_addr, len))
390 return NULL;
391 #ifdef DEBUG_REMAP
392 {
393 void *addr;
394 addr = malloc(len);
395 if (copy)
396 memcpy(addr, g2h(guest_addr), len);
397 else
398 memset(addr, 0, len);
399 return addr;
400 }
401 #else
402 return g2h(guest_addr);
403 #endif
404 }
405
406 /* Unlock an area of guest memory. The first LEN bytes must be
407 flushed back to guest memory. host_ptr = NULL is explicitly
408 allowed and does nothing. */
409 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
410 long len)
411 {
412
413 #ifdef DEBUG_REMAP
414 if (!host_ptr)
415 return;
416 if (host_ptr == g2h(guest_addr))
417 return;
418 if (len > 0)
419 memcpy(g2h(guest_addr), host_ptr, len);
420 free(host_ptr);
421 #endif
422 }
423
424 /* Return the length of a string in target memory or -TARGET_EFAULT if
425 access error. */
426 abi_long target_strlen(abi_ulong gaddr);
427
428 /* Like lock_user but for null terminated strings. */
429 static inline void *lock_user_string(abi_ulong guest_addr)
430 {
431 abi_long len;
432 len = target_strlen(guest_addr);
433 if (len < 0)
434 return NULL;
435 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
436 }
437
438 /* Helper macros for locking/ulocking a target struct. */
439 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
440 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
441 #define unlock_user_struct(host_ptr, guest_addr, copy) \
442 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
443
444 #include <pthread.h>
445
446 /* Include target-specific struct and function definitions;
447 * they may need access to the target-independent structures
448 * above, so include them last.
449 */
450 #include "target_cpu.h"
451 #include "target_signal.h"
452
453 #endif /* QEMU_H */