]> git.proxmox.com Git - qemu.git/blob - linux-user/qemu.h
Strace for userland emulation, by Stuart Anderson and Thayne Harbaugh.
[qemu.git] / linux-user / qemu.h
1 #ifndef QEMU_H
2 #define QEMU_H
3
4 #include <signal.h>
5 #include <string.h>
6
7 #include "cpu.h"
8
9 #ifdef TARGET_ABI32
10 typedef uint32_t abi_ulong;
11 typedef int32_t abi_long;
12 #define TARGET_ABI_BITS 32
13 #else
14 typedef target_ulong abi_ulong;
15 typedef target_long abi_long;
16 #define TARGET_ABI_BITS TARGET_LONG_BITS
17 #endif
18
19 #include "thunk.h"
20 #include "syscall_defs.h"
21 #include "syscall.h"
22 #include "target_signal.h"
23 #include "gdbstub.h"
24
25 /* This struct is used to hold certain information about the image.
26 * Basically, it replicates in user space what would be certain
27 * task_struct fields in the kernel
28 */
29 struct image_info {
30 abi_ulong load_addr;
31 abi_ulong start_code;
32 abi_ulong end_code;
33 abi_ulong start_data;
34 abi_ulong end_data;
35 abi_ulong start_brk;
36 abi_ulong brk;
37 abi_ulong start_mmap;
38 abi_ulong mmap;
39 abi_ulong rss;
40 abi_ulong start_stack;
41 abi_ulong entry;
42 abi_ulong code_offset;
43 abi_ulong data_offset;
44 char **host_argv;
45 int personality;
46 };
47
48 #ifdef TARGET_I386
49 /* Information about the current linux thread */
50 struct vm86_saved_state {
51 uint32_t eax; /* return code */
52 uint32_t ebx;
53 uint32_t ecx;
54 uint32_t edx;
55 uint32_t esi;
56 uint32_t edi;
57 uint32_t ebp;
58 uint32_t esp;
59 uint32_t eflags;
60 uint32_t eip;
61 uint16_t cs, ss, ds, es, fs, gs;
62 };
63 #endif
64
65 #ifdef TARGET_ARM
66 /* FPU emulator */
67 #include "nwfpe/fpa11.h"
68 #endif
69
70 /* NOTE: we force a big alignment so that the stack stored after is
71 aligned too */
72 typedef struct TaskState {
73 struct TaskState *next;
74 #ifdef TARGET_ARM
75 /* FPA state */
76 FPA11 fpa;
77 int swi_errno;
78 #endif
79 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
80 abi_ulong target_v86;
81 struct vm86_saved_state vm86_saved_regs;
82 struct target_vm86plus_struct vm86plus;
83 uint32_t v86flags;
84 uint32_t v86mask;
85 #endif
86 #ifdef TARGET_M68K
87 int sim_syscalls;
88 #endif
89 #if defined(TARGET_ARM) || defined(TARGET_M68K)
90 /* Extra fields for semihosted binaries. */
91 uint32_t stack_base;
92 uint32_t heap_base;
93 uint32_t heap_limit;
94 #endif
95 int used; /* non zero if used */
96 struct image_info *info;
97 uint8_t stack[0];
98 } __attribute__((aligned(16))) TaskState;
99
100 extern TaskState *first_task_state;
101 extern const char *qemu_uname_release;
102
103 /* ??? See if we can avoid exposing so much of the loader internals. */
104 /*
105 * MAX_ARG_PAGES defines the number of pages allocated for arguments
106 * and envelope for the new program. 32 should suffice, this gives
107 * a maximum env+arg of 128kB w/4KB pages!
108 */
109 #define MAX_ARG_PAGES 32
110
111 /*
112 * This structure is used to hold the arguments that are
113 * used when loading binaries.
114 */
115 struct linux_binprm {
116 char buf[128];
117 void *page[MAX_ARG_PAGES];
118 abi_ulong p;
119 int fd;
120 int e_uid, e_gid;
121 int argc, envc;
122 char **argv;
123 char **envp;
124 char * filename; /* Name of binary */
125 };
126
127 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
128 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
129 abi_ulong stringp, int push_ptr);
130 int loader_exec(const char * filename, char ** argv, char ** envp,
131 struct target_pt_regs * regs, struct image_info *infop);
132
133 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
134 struct image_info * info);
135 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
136 struct image_info * info);
137 #ifdef TARGET_HAS_ELFLOAD32
138 int load_elf_binary_multi(struct linux_binprm *bprm,
139 struct target_pt_regs *regs,
140 struct image_info *info);
141 #endif
142
143 void memcpy_to_target(abi_ulong dest, const void *src,
144 unsigned long len);
145 void target_set_brk(abi_ulong new_brk);
146 abi_long do_brk(abi_ulong new_brk);
147 void syscall_init(void);
148 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
149 abi_long arg2, abi_long arg3, abi_long arg4,
150 abi_long arg5, abi_long arg6);
151 void gemu_log(const char *fmt, ...) __attribute__((format(printf,1,2)));
152 extern CPUState *global_env;
153 void cpu_loop(CPUState *env);
154 void init_paths(const char *prefix);
155 const char *path(const char *pathname);
156 char *target_strerror(int err);
157
158 extern int loglevel;
159 extern FILE *logfile;
160
161 /* strace.c */
162 void print_syscall(int num,
163 target_long arg1, target_long arg2, target_long arg3,
164 target_long arg4, target_long arg5, target_long arg6);
165 void print_syscall_ret(int num, target_long arg1);
166 extern int do_strace;
167
168 /* signal.c */
169 void process_pending_signals(void *cpu_env);
170 void signal_init(void);
171 int queue_signal(int sig, target_siginfo_t *info);
172 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
173 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
174 long do_sigreturn(CPUState *env);
175 long do_rt_sigreturn(CPUState *env);
176 int do_sigaltstack(const struct target_sigaltstack *uss,
177 struct target_sigaltstack *uoss,
178 abi_ulong sp);
179
180 #ifdef TARGET_I386
181 /* vm86.c */
182 void save_v86_state(CPUX86State *env);
183 void handle_vm86_trap(CPUX86State *env, int trapno);
184 void handle_vm86_fault(CPUX86State *env);
185 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
186 #elif defined(TARGET_SPARC64)
187 void sparc64_set_context(CPUSPARCState *env);
188 void sparc64_get_context(CPUSPARCState *env);
189 #endif
190
191 /* mmap.c */
192 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
193 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
194 int flags, int fd, abi_ulong offset);
195 int target_munmap(abi_ulong start, abi_ulong len);
196 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
197 abi_ulong new_size, unsigned long flags,
198 abi_ulong new_addr);
199 int target_msync(abi_ulong start, abi_ulong len, int flags);
200
201 /* user access */
202
203 #define VERIFY_READ 0
204 #define VERIFY_WRITE 1
205
206 #define access_ok(type,addr,size) (1)
207
208 /* NOTE get_user and put_user use host addresses. */
209 #define __put_user(x,ptr)\
210 ({\
211 int size = sizeof(*ptr);\
212 switch(size) {\
213 case 1:\
214 *(uint8_t *)(ptr) = (typeof(*ptr))(x);\
215 break;\
216 case 2:\
217 *(uint16_t *)(ptr) = tswap16((typeof(*ptr))(x));\
218 break;\
219 case 4:\
220 *(uint32_t *)(ptr) = tswap32((typeof(*ptr))(x));\
221 break;\
222 case 8:\
223 *(uint64_t *)(ptr) = tswap64((typeof(*ptr))(x));\
224 break;\
225 default:\
226 abort();\
227 }\
228 0;\
229 })
230
231 #define __get_user(x, ptr) \
232 ({\
233 int size = sizeof(*ptr);\
234 switch(size) {\
235 case 1:\
236 x = (typeof(*ptr))*(uint8_t *)(ptr);\
237 break;\
238 case 2:\
239 x = (typeof(*ptr))tswap16(*(uint16_t *)(ptr));\
240 break;\
241 case 4:\
242 x = (typeof(*ptr))tswap32(*(uint32_t *)(ptr));\
243 break;\
244 case 8:\
245 x = (typeof(*ptr))tswap64(*(uint64_t *)(ptr));\
246 break;\
247 default:\
248 abort();\
249 }\
250 0;\
251 })
252
253 #define put_user(x,ptr)\
254 ({\
255 int __ret;\
256 if (access_ok(VERIFY_WRITE, ptr, sizeof(*ptr)))\
257 __ret = __put_user(x, ptr);\
258 else\
259 __ret = -EFAULT;\
260 __ret;\
261 })
262
263 #define get_user(x,ptr)\
264 ({\
265 int __ret;\
266 if (access_ok(VERIFY_READ, ptr, sizeof(*ptr)))\
267 __ret = __get_user(x, ptr);\
268 else\
269 __ret = -EFAULT;\
270 __ret;\
271 })
272
273 /* Functions for accessing guest memory. The tget and tput functions
274 read/write single values, byteswapping as neccessary. The lock_user
275 gets a pointer to a contiguous area of guest memory, but does not perform
276 and byteswapping. lock_user may return either a pointer to the guest
277 memory, or a temporary buffer. */
278
279 /* Lock an area of guest memory into the host. If copy is true then the
280 host area will have the same contents as the guest. */
281 static inline void *lock_user(abi_ulong guest_addr, long len, int copy)
282 {
283 #ifdef DEBUG_REMAP
284 void *addr;
285 addr = malloc(len);
286 if (copy)
287 memcpy(addr, g2h(guest_addr), len);
288 else
289 memset(addr, 0, len);
290 return addr;
291 #else
292 return g2h(guest_addr);
293 #endif
294 }
295
296 /* Unlock an area of guest memory. The first LEN bytes must be flushed back
297 to guest memory. */
298 static inline void unlock_user(void *host_addr, abi_ulong guest_addr,
299 long len)
300 {
301 #ifdef DEBUG_REMAP
302 if (host_addr == g2h(guest_addr))
303 return;
304 if (len > 0)
305 memcpy(g2h(guest_addr), host_addr, len);
306 free(host_addr);
307 #endif
308 }
309
310 /* Return the length of a string in target memory. */
311 static inline int target_strlen(abi_ulong ptr)
312 {
313 return strlen(g2h(ptr));
314 }
315
316 /* Like lock_user but for null terminated strings. */
317 static inline void *lock_user_string(abi_ulong guest_addr)
318 {
319 long len;
320 len = target_strlen(guest_addr) + 1;
321 return lock_user(guest_addr, len, 1);
322 }
323
324 /* Helper macros for locking/ulocking a target struct. */
325 #define lock_user_struct(host_ptr, guest_addr, copy) \
326 host_ptr = lock_user(guest_addr, sizeof(*host_ptr), copy)
327 #define unlock_user_struct(host_ptr, guest_addr, copy) \
328 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
329
330 #define tget8(addr) ldub(addr)
331 #define tput8(addr, val) stb(addr, val)
332 #define tget16(addr) lduw(addr)
333 #define tput16(addr, val) stw(addr, val)
334 #define tget32(addr) ldl(addr)
335 #define tput32(addr, val) stl(addr, val)
336 #define tget64(addr) ldq(addr)
337 #define tput64(addr, val) stq(addr, val)
338 #if TARGET_ABI_BITS == 64
339 #define tgetl(addr) ldq(addr)
340 #define tputl(addr, val) stq(addr, val)
341 #else
342 #define tgetl(addr) ldl(addr)
343 #define tputl(addr, val) stl(addr, val)
344 #endif
345
346 #endif /* QEMU_H */