]> git.proxmox.com Git - qemu.git/blob - linux-user/signal.c
Clean out the N32 macros from target-mips, and introduce MIPS ABI specific
[qemu.git] / linux-user / signal.c
1 /*
2 * Emulation of Linux signals
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 #include <stdlib.h>
21 #include <stdio.h>
22 #include <string.h>
23 #include <stdarg.h>
24 #include <unistd.h>
25 #include <signal.h>
26 #include <errno.h>
27 #include <sys/ucontext.h>
28
29 #include "qemu.h"
30 #include "target_signal.h"
31
32 //#define DEBUG_SIGNAL
33
34 #define MAX_SIGQUEUE_SIZE 1024
35
36 struct sigqueue {
37 struct sigqueue *next;
38 target_siginfo_t info;
39 };
40
41 struct emulated_sigaction {
42 struct target_sigaction sa;
43 int pending; /* true if signal is pending */
44 struct sigqueue *first;
45 struct sigqueue info; /* in order to always have memory for the
46 first signal, we put it here */
47 };
48
49 struct target_sigaltstack target_sigaltstack_used = {
50 .ss_sp = 0,
51 .ss_size = 0,
52 .ss_flags = TARGET_SS_DISABLE,
53 };
54
55 static struct emulated_sigaction sigact_table[TARGET_NSIG];
56 static struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
57 static struct sigqueue *first_free; /* first free siginfo queue entry */
58 static int signal_pending; /* non zero if a signal may be pending */
59
60 static void host_signal_handler(int host_signum, siginfo_t *info,
61 void *puc);
62
63 static uint8_t host_to_target_signal_table[65] = {
64 [SIGHUP] = TARGET_SIGHUP,
65 [SIGINT] = TARGET_SIGINT,
66 [SIGQUIT] = TARGET_SIGQUIT,
67 [SIGILL] = TARGET_SIGILL,
68 [SIGTRAP] = TARGET_SIGTRAP,
69 [SIGABRT] = TARGET_SIGABRT,
70 /* [SIGIOT] = TARGET_SIGIOT,*/
71 [SIGBUS] = TARGET_SIGBUS,
72 [SIGFPE] = TARGET_SIGFPE,
73 [SIGKILL] = TARGET_SIGKILL,
74 [SIGUSR1] = TARGET_SIGUSR1,
75 [SIGSEGV] = TARGET_SIGSEGV,
76 [SIGUSR2] = TARGET_SIGUSR2,
77 [SIGPIPE] = TARGET_SIGPIPE,
78 [SIGALRM] = TARGET_SIGALRM,
79 [SIGTERM] = TARGET_SIGTERM,
80 #ifdef SIGSTKFLT
81 [SIGSTKFLT] = TARGET_SIGSTKFLT,
82 #endif
83 [SIGCHLD] = TARGET_SIGCHLD,
84 [SIGCONT] = TARGET_SIGCONT,
85 [SIGSTOP] = TARGET_SIGSTOP,
86 [SIGTSTP] = TARGET_SIGTSTP,
87 [SIGTTIN] = TARGET_SIGTTIN,
88 [SIGTTOU] = TARGET_SIGTTOU,
89 [SIGURG] = TARGET_SIGURG,
90 [SIGXCPU] = TARGET_SIGXCPU,
91 [SIGXFSZ] = TARGET_SIGXFSZ,
92 [SIGVTALRM] = TARGET_SIGVTALRM,
93 [SIGPROF] = TARGET_SIGPROF,
94 [SIGWINCH] = TARGET_SIGWINCH,
95 [SIGIO] = TARGET_SIGIO,
96 [SIGPWR] = TARGET_SIGPWR,
97 [SIGSYS] = TARGET_SIGSYS,
98 /* next signals stay the same */
99 };
100 static uint8_t target_to_host_signal_table[65];
101
102 static inline int on_sig_stack(unsigned long sp)
103 {
104 return (sp - target_sigaltstack_used.ss_sp
105 < target_sigaltstack_used.ss_size);
106 }
107
108 static inline int sas_ss_flags(unsigned long sp)
109 {
110 return (target_sigaltstack_used.ss_size == 0 ? SS_DISABLE
111 : on_sig_stack(sp) ? SS_ONSTACK : 0);
112 }
113
114 static inline int host_to_target_signal(int sig)
115 {
116 return host_to_target_signal_table[sig];
117 }
118
119 static inline int target_to_host_signal(int sig)
120 {
121 return target_to_host_signal_table[sig];
122 }
123
124 static void host_to_target_sigset_internal(target_sigset_t *d,
125 const sigset_t *s)
126 {
127 int i;
128 unsigned long sigmask;
129 uint32_t target_sigmask;
130
131 sigmask = ((unsigned long *)s)[0];
132 target_sigmask = 0;
133 for(i = 0; i < 32; i++) {
134 if (sigmask & (1 << i))
135 target_sigmask |= 1 << (host_to_target_signal(i + 1) - 1);
136 }
137 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 32
138 d->sig[0] = target_sigmask;
139 for(i = 1;i < TARGET_NSIG_WORDS; i++) {
140 d->sig[i] = ((unsigned long *)s)[i];
141 }
142 #elif TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64 && TARGET_NSIG_WORDS == 2
143 d->sig[0] = target_sigmask;
144 d->sig[1] = sigmask >> 32;
145 #else
146 #warning host_to_target_sigset
147 #endif
148 }
149
150 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
151 {
152 target_sigset_t d1;
153 int i;
154
155 host_to_target_sigset_internal(&d1, s);
156 for(i = 0;i < TARGET_NSIG_WORDS; i++)
157 d->sig[i] = tswapl(d1.sig[i]);
158 }
159
160 void target_to_host_sigset_internal(sigset_t *d, const target_sigset_t *s)
161 {
162 int i;
163 unsigned long sigmask;
164 abi_ulong target_sigmask;
165
166 target_sigmask = s->sig[0];
167 sigmask = 0;
168 for(i = 0; i < 32; i++) {
169 if (target_sigmask & (1 << i))
170 sigmask |= 1 << (target_to_host_signal(i + 1) - 1);
171 }
172 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 32
173 ((unsigned long *)d)[0] = sigmask;
174 for(i = 1;i < TARGET_NSIG_WORDS; i++) {
175 ((unsigned long *)d)[i] = s->sig[i];
176 }
177 #elif TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64 && TARGET_NSIG_WORDS == 2
178 ((unsigned long *)d)[0] = sigmask | ((unsigned long)(s->sig[1]) << 32);
179 #else
180 #warning target_to_host_sigset
181 #endif /* TARGET_ABI_BITS */
182 }
183
184 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
185 {
186 target_sigset_t s1;
187 int i;
188
189 for(i = 0;i < TARGET_NSIG_WORDS; i++)
190 s1.sig[i] = tswapl(s->sig[i]);
191 target_to_host_sigset_internal(d, &s1);
192 }
193
194 void host_to_target_old_sigset(abi_ulong *old_sigset,
195 const sigset_t *sigset)
196 {
197 target_sigset_t d;
198 host_to_target_sigset(&d, sigset);
199 *old_sigset = d.sig[0];
200 }
201
202 void target_to_host_old_sigset(sigset_t *sigset,
203 const abi_ulong *old_sigset)
204 {
205 target_sigset_t d;
206 int i;
207
208 d.sig[0] = *old_sigset;
209 for(i = 1;i < TARGET_NSIG_WORDS; i++)
210 d.sig[i] = 0;
211 target_to_host_sigset(sigset, &d);
212 }
213
214 /* siginfo conversion */
215
216 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
217 const siginfo_t *info)
218 {
219 int sig;
220 sig = host_to_target_signal(info->si_signo);
221 tinfo->si_signo = sig;
222 tinfo->si_errno = 0;
223 tinfo->si_code = 0;
224 if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV ||
225 sig == SIGBUS || sig == SIGTRAP) {
226 /* should never come here, but who knows. The information for
227 the target is irrelevant */
228 tinfo->_sifields._sigfault._addr = 0;
229 } else if (sig == SIGIO) {
230 tinfo->_sifields._sigpoll._fd = info->si_fd;
231 } else if (sig >= TARGET_SIGRTMIN) {
232 tinfo->_sifields._rt._pid = info->si_pid;
233 tinfo->_sifields._rt._uid = info->si_uid;
234 /* XXX: potential problem if 64 bit */
235 tinfo->_sifields._rt._sigval.sival_ptr =
236 (abi_ulong)info->si_value.sival_ptr;
237 }
238 }
239
240 static void tswap_siginfo(target_siginfo_t *tinfo,
241 const target_siginfo_t *info)
242 {
243 int sig;
244 sig = info->si_signo;
245 tinfo->si_signo = tswap32(sig);
246 tinfo->si_errno = tswap32(info->si_errno);
247 tinfo->si_code = tswap32(info->si_code);
248 if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV ||
249 sig == SIGBUS || sig == SIGTRAP) {
250 tinfo->_sifields._sigfault._addr =
251 tswapl(info->_sifields._sigfault._addr);
252 } else if (sig == SIGIO) {
253 tinfo->_sifields._sigpoll._fd = tswap32(info->_sifields._sigpoll._fd);
254 } else if (sig >= TARGET_SIGRTMIN) {
255 tinfo->_sifields._rt._pid = tswap32(info->_sifields._rt._pid);
256 tinfo->_sifields._rt._uid = tswap32(info->_sifields._rt._uid);
257 tinfo->_sifields._rt._sigval.sival_ptr =
258 tswapl(info->_sifields._rt._sigval.sival_ptr);
259 }
260 }
261
262
263 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
264 {
265 host_to_target_siginfo_noswap(tinfo, info);
266 tswap_siginfo(tinfo, tinfo);
267 }
268
269 /* XXX: we support only POSIX RT signals are used. */
270 /* XXX: find a solution for 64 bit (additional malloced data is needed) */
271 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
272 {
273 info->si_signo = tswap32(tinfo->si_signo);
274 info->si_errno = tswap32(tinfo->si_errno);
275 info->si_code = tswap32(tinfo->si_code);
276 info->si_pid = tswap32(tinfo->_sifields._rt._pid);
277 info->si_uid = tswap32(tinfo->_sifields._rt._uid);
278 info->si_value.sival_ptr =
279 (void *)tswapl(tinfo->_sifields._rt._sigval.sival_ptr);
280 }
281
282 void signal_init(void)
283 {
284 struct sigaction act;
285 int i, j;
286
287 /* generate signal conversion tables */
288 for(i = 1; i <= 64; i++) {
289 if (host_to_target_signal_table[i] == 0)
290 host_to_target_signal_table[i] = i;
291 }
292 for(i = 1; i <= 64; i++) {
293 j = host_to_target_signal_table[i];
294 target_to_host_signal_table[j] = i;
295 }
296
297 /* set all host signal handlers. ALL signals are blocked during
298 the handlers to serialize them. */
299 sigfillset(&act.sa_mask);
300 act.sa_flags = SA_SIGINFO;
301 act.sa_sigaction = host_signal_handler;
302 for(i = 1; i < NSIG; i++) {
303 sigaction(i, &act, NULL);
304 }
305
306 memset(sigact_table, 0, sizeof(sigact_table));
307
308 first_free = &sigqueue_table[0];
309 for(i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++)
310 sigqueue_table[i].next = &sigqueue_table[i + 1];
311 sigqueue_table[MAX_SIGQUEUE_SIZE - 1].next = NULL;
312 }
313
314 /* signal queue handling */
315
316 static inline struct sigqueue *alloc_sigqueue(void)
317 {
318 struct sigqueue *q = first_free;
319 if (!q)
320 return NULL;
321 first_free = q->next;
322 return q;
323 }
324
325 static inline void free_sigqueue(struct sigqueue *q)
326 {
327 q->next = first_free;
328 first_free = q;
329 }
330
331 /* abort execution with signal */
332 void __attribute((noreturn)) force_sig(int sig)
333 {
334 int host_sig;
335 host_sig = target_to_host_signal(sig);
336 fprintf(stderr, "qemu: uncaught target signal %d (%s) - exiting\n",
337 sig, strsignal(host_sig));
338 #if 1
339 _exit(-host_sig);
340 #else
341 {
342 struct sigaction act;
343 sigemptyset(&act.sa_mask);
344 act.sa_flags = SA_SIGINFO;
345 act.sa_sigaction = SIG_DFL;
346 sigaction(SIGABRT, &act, NULL);
347 abort();
348 }
349 #endif
350 }
351
352 /* queue a signal so that it will be send to the virtual CPU as soon
353 as possible */
354 int queue_signal(int sig, target_siginfo_t *info)
355 {
356 struct emulated_sigaction *k;
357 struct sigqueue *q, **pq;
358 abi_ulong handler;
359
360 #if defined(DEBUG_SIGNAL)
361 fprintf(stderr, "queue_signal: sig=%d\n",
362 sig);
363 #endif
364 k = &sigact_table[sig - 1];
365 handler = k->sa._sa_handler;
366 if (handler == TARGET_SIG_DFL) {
367 /* default handler : ignore some signal. The other are fatal */
368 if (sig != TARGET_SIGCHLD &&
369 sig != TARGET_SIGURG &&
370 sig != TARGET_SIGWINCH) {
371 force_sig(sig);
372 } else {
373 return 0; /* indicate ignored */
374 }
375 } else if (handler == TARGET_SIG_IGN) {
376 /* ignore signal */
377 return 0;
378 } else if (handler == TARGET_SIG_ERR) {
379 force_sig(sig);
380 } else {
381 pq = &k->first;
382 if (sig < TARGET_SIGRTMIN) {
383 /* if non real time signal, we queue exactly one signal */
384 if (!k->pending)
385 q = &k->info;
386 else
387 return 0;
388 } else {
389 if (!k->pending) {
390 /* first signal */
391 q = &k->info;
392 } else {
393 q = alloc_sigqueue();
394 if (!q)
395 return -EAGAIN;
396 while (*pq != NULL)
397 pq = &(*pq)->next;
398 }
399 }
400 *pq = q;
401 q->info = *info;
402 q->next = NULL;
403 k->pending = 1;
404 /* signal that a new signal is pending */
405 signal_pending = 1;
406 return 1; /* indicates that the signal was queued */
407 }
408 }
409
410 static void host_signal_handler(int host_signum, siginfo_t *info,
411 void *puc)
412 {
413 int sig;
414 target_siginfo_t tinfo;
415
416 /* the CPU emulator uses some host signals to detect exceptions,
417 we we forward to it some signals */
418 if (host_signum == SIGSEGV || host_signum == SIGBUS) {
419 if (cpu_signal_handler(host_signum, info, puc))
420 return;
421 }
422
423 /* get target signal number */
424 sig = host_to_target_signal(host_signum);
425 if (sig < 1 || sig > TARGET_NSIG)
426 return;
427 #if defined(DEBUG_SIGNAL)
428 fprintf(stderr, "qemu: got signal %d\n", sig);
429 #endif
430 host_to_target_siginfo_noswap(&tinfo, info);
431 if (queue_signal(sig, &tinfo) == 1) {
432 /* interrupt the virtual CPU as soon as possible */
433 cpu_interrupt(global_env, CPU_INTERRUPT_EXIT);
434 }
435 }
436
437 /* do_sigaltstack() returns target values and errnos. */
438 int do_sigaltstack(const struct target_sigaltstack *uss,
439 struct target_sigaltstack *uoss,
440 abi_ulong sp)
441 {
442 int ret;
443 struct target_sigaltstack oss;
444
445 /* XXX: test errors */
446 if(uoss)
447 {
448 __put_user(target_sigaltstack_used.ss_sp, &oss.ss_sp);
449 __put_user(target_sigaltstack_used.ss_size, &oss.ss_size);
450 __put_user(sas_ss_flags(sp), &oss.ss_flags);
451 }
452
453 if(uss)
454 {
455 struct target_sigaltstack ss;
456
457 ret = -TARGET_EFAULT;
458 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
459 || __get_user(ss.ss_sp, &uss->ss_sp)
460 || __get_user(ss.ss_size, &uss->ss_size)
461 || __get_user(ss.ss_flags, &uss->ss_flags))
462 goto out;
463
464 ret = -TARGET_EPERM;
465 if (on_sig_stack(sp))
466 goto out;
467
468 ret = -TARGET_EINVAL;
469 if (ss.ss_flags != TARGET_SS_DISABLE
470 && ss.ss_flags != TARGET_SS_ONSTACK
471 && ss.ss_flags != 0)
472 goto out;
473
474 if (ss.ss_flags == TARGET_SS_DISABLE) {
475 ss.ss_size = 0;
476 ss.ss_sp = 0;
477 } else {
478 ret = -TARGET_ENOMEM;
479 if (ss.ss_size < MINSIGSTKSZ)
480 goto out;
481 }
482
483 target_sigaltstack_used.ss_sp = ss.ss_sp;
484 target_sigaltstack_used.ss_size = ss.ss_size;
485 }
486
487 if (uoss) {
488 ret = -TARGET_EFAULT;
489 if (!access_ok(VERIFY_WRITE, uoss, sizeof(oss)))
490 goto out;
491 memcpy(uoss, &oss, sizeof(oss));
492 }
493
494 ret = 0;
495 out:
496 return ret;
497 }
498
499 /* do_sigaction() return host values and errnos */
500 int do_sigaction(int sig, const struct target_sigaction *act,
501 struct target_sigaction *oact)
502 {
503 struct emulated_sigaction *k;
504 struct sigaction act1;
505 int host_sig;
506 int ret = 0;
507
508 if (sig < 1 || sig > TARGET_NSIG || sig == SIGKILL || sig == SIGSTOP)
509 return -EINVAL;
510 k = &sigact_table[sig - 1];
511 #if defined(DEBUG_SIGNAL)
512 fprintf(stderr, "sigaction sig=%d act=0x%08x, oact=0x%08x\n",
513 sig, (int)act, (int)oact);
514 #endif
515 if (oact) {
516 oact->_sa_handler = tswapl(k->sa._sa_handler);
517 oact->sa_flags = tswapl(k->sa.sa_flags);
518 #if !defined(TARGET_MIPS)
519 oact->sa_restorer = tswapl(k->sa.sa_restorer);
520 #endif
521 oact->sa_mask = k->sa.sa_mask;
522 }
523 if (act) {
524 k->sa._sa_handler = tswapl(act->_sa_handler);
525 k->sa.sa_flags = tswapl(act->sa_flags);
526 #if !defined(TARGET_MIPS)
527 k->sa.sa_restorer = tswapl(act->sa_restorer);
528 #endif
529 k->sa.sa_mask = act->sa_mask;
530
531 /* we update the host linux signal state */
532 host_sig = target_to_host_signal(sig);
533 if (host_sig != SIGSEGV && host_sig != SIGBUS) {
534 sigfillset(&act1.sa_mask);
535 act1.sa_flags = SA_SIGINFO;
536 if (k->sa.sa_flags & TARGET_SA_RESTART)
537 act1.sa_flags |= SA_RESTART;
538 /* NOTE: it is important to update the host kernel signal
539 ignore state to avoid getting unexpected interrupted
540 syscalls */
541 if (k->sa._sa_handler == TARGET_SIG_IGN) {
542 act1.sa_sigaction = (void *)SIG_IGN;
543 } else if (k->sa._sa_handler == TARGET_SIG_DFL) {
544 act1.sa_sigaction = (void *)SIG_DFL;
545 } else {
546 act1.sa_sigaction = host_signal_handler;
547 }
548 ret = sigaction(host_sig, &act1, NULL);
549 }
550 }
551 return ret;
552 }
553
554 #ifndef offsetof
555 #define offsetof(type, field) ((size_t) &((type *)0)->field)
556 #endif
557
558 static inline int copy_siginfo_to_user(target_siginfo_t *tinfo,
559 const target_siginfo_t *info)
560 {
561 tswap_siginfo(tinfo, info);
562 return 0;
563 }
564
565 #ifdef TARGET_I386
566
567 /* from the Linux kernel */
568
569 struct target_fpreg {
570 uint16_t significand[4];
571 uint16_t exponent;
572 };
573
574 struct target_fpxreg {
575 uint16_t significand[4];
576 uint16_t exponent;
577 uint16_t padding[3];
578 };
579
580 struct target_xmmreg {
581 abi_ulong element[4];
582 };
583
584 struct target_fpstate {
585 /* Regular FPU environment */
586 abi_ulong cw;
587 abi_ulong sw;
588 abi_ulong tag;
589 abi_ulong ipoff;
590 abi_ulong cssel;
591 abi_ulong dataoff;
592 abi_ulong datasel;
593 struct target_fpreg _st[8];
594 uint16_t status;
595 uint16_t magic; /* 0xffff = regular FPU data only */
596
597 /* FXSR FPU environment */
598 abi_ulong _fxsr_env[6]; /* FXSR FPU env is ignored */
599 abi_ulong mxcsr;
600 abi_ulong reserved;
601 struct target_fpxreg _fxsr_st[8]; /* FXSR FPU reg data is ignored */
602 struct target_xmmreg _xmm[8];
603 abi_ulong padding[56];
604 };
605
606 #define X86_FXSR_MAGIC 0x0000
607
608 struct target_sigcontext {
609 uint16_t gs, __gsh;
610 uint16_t fs, __fsh;
611 uint16_t es, __esh;
612 uint16_t ds, __dsh;
613 abi_ulong edi;
614 abi_ulong esi;
615 abi_ulong ebp;
616 abi_ulong esp;
617 abi_ulong ebx;
618 abi_ulong edx;
619 abi_ulong ecx;
620 abi_ulong eax;
621 abi_ulong trapno;
622 abi_ulong err;
623 abi_ulong eip;
624 uint16_t cs, __csh;
625 abi_ulong eflags;
626 abi_ulong esp_at_signal;
627 uint16_t ss, __ssh;
628 abi_ulong fpstate; /* pointer */
629 abi_ulong oldmask;
630 abi_ulong cr2;
631 };
632
633 struct target_ucontext {
634 abi_ulong tuc_flags;
635 abi_ulong tuc_link;
636 target_stack_t tuc_stack;
637 struct target_sigcontext tuc_mcontext;
638 target_sigset_t tuc_sigmask; /* mask last for extensibility */
639 };
640
641 struct sigframe
642 {
643 abi_ulong pretcode;
644 int sig;
645 struct target_sigcontext sc;
646 struct target_fpstate fpstate;
647 abi_ulong extramask[TARGET_NSIG_WORDS-1];
648 char retcode[8];
649 };
650
651 struct rt_sigframe
652 {
653 abi_ulong pretcode;
654 int sig;
655 abi_ulong pinfo;
656 abi_ulong puc;
657 struct target_siginfo info;
658 struct target_ucontext uc;
659 struct target_fpstate fpstate;
660 char retcode[8];
661 };
662
663 /*
664 * Set up a signal frame.
665 */
666
667 /* XXX: save x87 state */
668 static int
669 setup_sigcontext(struct target_sigcontext *sc, struct target_fpstate *fpstate,
670 CPUX86State *env, unsigned long mask)
671 {
672 int err = 0;
673
674 err |= __put_user(env->segs[R_GS].selector, (unsigned int *)&sc->gs);
675 err |= __put_user(env->segs[R_FS].selector, (unsigned int *)&sc->fs);
676 err |= __put_user(env->segs[R_ES].selector, (unsigned int *)&sc->es);
677 err |= __put_user(env->segs[R_DS].selector, (unsigned int *)&sc->ds);
678 err |= __put_user(env->regs[R_EDI], &sc->edi);
679 err |= __put_user(env->regs[R_ESI], &sc->esi);
680 err |= __put_user(env->regs[R_EBP], &sc->ebp);
681 err |= __put_user(env->regs[R_ESP], &sc->esp);
682 err |= __put_user(env->regs[R_EBX], &sc->ebx);
683 err |= __put_user(env->regs[R_EDX], &sc->edx);
684 err |= __put_user(env->regs[R_ECX], &sc->ecx);
685 err |= __put_user(env->regs[R_EAX], &sc->eax);
686 err |= __put_user(env->exception_index, &sc->trapno);
687 err |= __put_user(env->error_code, &sc->err);
688 err |= __put_user(env->eip, &sc->eip);
689 err |= __put_user(env->segs[R_CS].selector, (unsigned int *)&sc->cs);
690 err |= __put_user(env->eflags, &sc->eflags);
691 err |= __put_user(env->regs[R_ESP], &sc->esp_at_signal);
692 err |= __put_user(env->segs[R_SS].selector, (unsigned int *)&sc->ss);
693
694 cpu_x86_fsave(env, (void *)fpstate, 1);
695 fpstate->status = fpstate->sw;
696 err |= __put_user(0xffff, &fpstate->magic);
697 err |= __put_user(fpstate, &sc->fpstate);
698
699 /* non-iBCS2 extensions.. */
700 err |= __put_user(mask, &sc->oldmask);
701 err |= __put_user(env->cr[2], &sc->cr2);
702 return err;
703 }
704
705 /*
706 * Determine which stack to use..
707 */
708
709 static inline void *
710 get_sigframe(struct emulated_sigaction *ka, CPUX86State *env, size_t frame_size)
711 {
712 unsigned long esp;
713
714 /* Default to using normal stack */
715 esp = env->regs[R_ESP];
716 /* This is the X/Open sanctioned signal stack switching. */
717 if (ka->sa.sa_flags & TARGET_SA_ONSTACK) {
718 if (sas_ss_flags(esp) == 0)
719 esp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size;
720 }
721
722 /* This is the legacy signal stack switching. */
723 else
724 if ((env->segs[R_SS].selector & 0xffff) != __USER_DS &&
725 !(ka->sa.sa_flags & TARGET_SA_RESTORER) &&
726 ka->sa.sa_restorer) {
727 esp = (unsigned long) ka->sa.sa_restorer;
728 }
729 return g2h((esp - frame_size) & -8ul);
730 }
731
732 static void setup_frame(int sig, struct emulated_sigaction *ka,
733 target_sigset_t *set, CPUX86State *env)
734 {
735 struct sigframe *frame;
736 int i, err = 0;
737
738 frame = get_sigframe(ka, env, sizeof(*frame));
739
740 if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
741 goto give_sigsegv;
742 err |= __put_user((/*current->exec_domain
743 && current->exec_domain->signal_invmap
744 && sig < 32
745 ? current->exec_domain->signal_invmap[sig]
746 : */ sig),
747 &frame->sig);
748 if (err)
749 goto give_sigsegv;
750
751 setup_sigcontext(&frame->sc, &frame->fpstate, env, set->sig[0]);
752 if (err)
753 goto give_sigsegv;
754
755 for(i = 1; i < TARGET_NSIG_WORDS; i++) {
756 if (__put_user(set->sig[i], &frame->extramask[i - 1]))
757 goto give_sigsegv;
758 }
759
760 /* Set up to return from userspace. If provided, use a stub
761 already in userspace. */
762 if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
763 err |= __put_user(ka->sa.sa_restorer, &frame->pretcode);
764 } else {
765 err |= __put_user(frame->retcode, &frame->pretcode);
766 /* This is popl %eax ; movl $,%eax ; int $0x80 */
767 err |= __put_user(0xb858, (short *)(frame->retcode+0));
768 #if defined(TARGET_X86_64)
769 #warning "Fix this !"
770 #else
771 err |= __put_user(TARGET_NR_sigreturn, (int *)(frame->retcode+2));
772 #endif
773 err |= __put_user(0x80cd, (short *)(frame->retcode+6));
774 }
775
776 if (err)
777 goto give_sigsegv;
778
779 /* Set up registers for signal handler */
780 env->regs[R_ESP] = h2g(frame);
781 env->eip = (unsigned long) ka->sa._sa_handler;
782
783 cpu_x86_load_seg(env, R_DS, __USER_DS);
784 cpu_x86_load_seg(env, R_ES, __USER_DS);
785 cpu_x86_load_seg(env, R_SS, __USER_DS);
786 cpu_x86_load_seg(env, R_CS, __USER_CS);
787 env->eflags &= ~TF_MASK;
788
789 return;
790
791 give_sigsegv:
792 if (sig == TARGET_SIGSEGV)
793 ka->sa._sa_handler = TARGET_SIG_DFL;
794 force_sig(TARGET_SIGSEGV /* , current */);
795 }
796
797 static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
798 target_siginfo_t *info,
799 target_sigset_t *set, CPUX86State *env)
800 {
801 struct rt_sigframe *frame;
802 int i, err = 0;
803
804 frame = get_sigframe(ka, env, sizeof(*frame));
805
806 if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
807 goto give_sigsegv;
808
809 err |= __put_user((/*current->exec_domain
810 && current->exec_domain->signal_invmap
811 && sig < 32
812 ? current->exec_domain->signal_invmap[sig]
813 : */sig),
814 &frame->sig);
815 err |= __put_user((abi_ulong)&frame->info, &frame->pinfo);
816 err |= __put_user((abi_ulong)&frame->uc, &frame->puc);
817 err |= copy_siginfo_to_user(&frame->info, info);
818 if (err)
819 goto give_sigsegv;
820
821 /* Create the ucontext. */
822 err |= __put_user(0, &frame->uc.tuc_flags);
823 err |= __put_user(0, &frame->uc.tuc_link);
824 err |= __put_user(target_sigaltstack_used.ss_sp,
825 &frame->uc.tuc_stack.ss_sp);
826 err |= __put_user(sas_ss_flags(get_sp_from_cpustate(env)),
827 &frame->uc.tuc_stack.ss_flags);
828 err |= __put_user(target_sigaltstack_used.ss_size,
829 &frame->uc.tuc_stack.ss_size);
830 err |= setup_sigcontext(&frame->uc.tuc_mcontext, &frame->fpstate,
831 env, set->sig[0]);
832 for(i = 0; i < TARGET_NSIG_WORDS; i++) {
833 if (__put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]))
834 goto give_sigsegv;
835 }
836
837 /* Set up to return from userspace. If provided, use a stub
838 already in userspace. */
839 if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
840 err |= __put_user(ka->sa.sa_restorer, &frame->pretcode);
841 } else {
842 err |= __put_user(frame->retcode, &frame->pretcode);
843 /* This is movl $,%eax ; int $0x80 */
844 err |= __put_user(0xb8, (char *)(frame->retcode+0));
845 err |= __put_user(TARGET_NR_rt_sigreturn, (int *)(frame->retcode+1));
846 err |= __put_user(0x80cd, (short *)(frame->retcode+5));
847 }
848
849 if (err)
850 goto give_sigsegv;
851
852 /* Set up registers for signal handler */
853 env->regs[R_ESP] = (unsigned long) frame;
854 env->eip = (unsigned long) ka->sa._sa_handler;
855
856 cpu_x86_load_seg(env, R_DS, __USER_DS);
857 cpu_x86_load_seg(env, R_ES, __USER_DS);
858 cpu_x86_load_seg(env, R_SS, __USER_DS);
859 cpu_x86_load_seg(env, R_CS, __USER_CS);
860 env->eflags &= ~TF_MASK;
861
862 return;
863
864 give_sigsegv:
865 if (sig == TARGET_SIGSEGV)
866 ka->sa._sa_handler = TARGET_SIG_DFL;
867 force_sig(TARGET_SIGSEGV /* , current */);
868 }
869
870 static int
871 restore_sigcontext(CPUX86State *env, struct target_sigcontext *sc, int *peax)
872 {
873 unsigned int err = 0;
874
875 cpu_x86_load_seg(env, R_GS, lduw(&sc->gs));
876 cpu_x86_load_seg(env, R_FS, lduw(&sc->fs));
877 cpu_x86_load_seg(env, R_ES, lduw(&sc->es));
878 cpu_x86_load_seg(env, R_DS, lduw(&sc->ds));
879
880 env->regs[R_EDI] = ldl(&sc->edi);
881 env->regs[R_ESI] = ldl(&sc->esi);
882 env->regs[R_EBP] = ldl(&sc->ebp);
883 env->regs[R_ESP] = ldl(&sc->esp);
884 env->regs[R_EBX] = ldl(&sc->ebx);
885 env->regs[R_EDX] = ldl(&sc->edx);
886 env->regs[R_ECX] = ldl(&sc->ecx);
887 env->eip = ldl(&sc->eip);
888
889 cpu_x86_load_seg(env, R_CS, lduw(&sc->cs) | 3);
890 cpu_x86_load_seg(env, R_SS, lduw(&sc->ss) | 3);
891
892 {
893 unsigned int tmpflags;
894 tmpflags = ldl(&sc->eflags);
895 env->eflags = (env->eflags & ~0x40DD5) | (tmpflags & 0x40DD5);
896 // regs->orig_eax = -1; /* disable syscall checks */
897 }
898
899 {
900 struct _fpstate * buf;
901 buf = (void *)ldl(&sc->fpstate);
902 if (buf) {
903 #if 0
904 if (verify_area(VERIFY_READ, buf, sizeof(*buf)))
905 goto badframe;
906 #endif
907 cpu_x86_frstor(env, (void *)buf, 1);
908 }
909 }
910
911 *peax = ldl(&sc->eax);
912 return err;
913 #if 0
914 badframe:
915 return 1;
916 #endif
917 }
918
919 long do_sigreturn(CPUX86State *env)
920 {
921 struct sigframe *frame = (struct sigframe *)g2h(env->regs[R_ESP] - 8);
922 target_sigset_t target_set;
923 sigset_t set;
924 int eax, i;
925
926 #if defined(DEBUG_SIGNAL)
927 fprintf(stderr, "do_sigreturn\n");
928 #endif
929 /* set blocked signals */
930 if (__get_user(target_set.sig[0], &frame->sc.oldmask))
931 goto badframe;
932 for(i = 1; i < TARGET_NSIG_WORDS; i++) {
933 if (__get_user(target_set.sig[i], &frame->extramask[i - 1]))
934 goto badframe;
935 }
936
937 target_to_host_sigset_internal(&set, &target_set);
938 sigprocmask(SIG_SETMASK, &set, NULL);
939
940 /* restore registers */
941 if (restore_sigcontext(env, &frame->sc, &eax))
942 goto badframe;
943 return eax;
944
945 badframe:
946 force_sig(TARGET_SIGSEGV);
947 return 0;
948 }
949
950 long do_rt_sigreturn(CPUX86State *env)
951 {
952 struct rt_sigframe *frame = (struct rt_sigframe *)g2h(env->regs[R_ESP] - 4);
953 sigset_t set;
954 int eax;
955
956 #if 0
957 if (verify_area(VERIFY_READ, frame, sizeof(*frame)))
958 goto badframe;
959 #endif
960 target_to_host_sigset(&set, &frame->uc.tuc_sigmask);
961 sigprocmask(SIG_SETMASK, &set, NULL);
962
963 if (restore_sigcontext(env, &frame->uc.tuc_mcontext, &eax))
964 goto badframe;
965
966 if (do_sigaltstack(&frame->uc.tuc_stack, NULL, get_sp_from_cpustate(env)) == -EFAULT)
967 goto badframe;
968
969 return eax;
970
971 badframe:
972 force_sig(TARGET_SIGSEGV);
973 return 0;
974 }
975
976 #elif defined(TARGET_ARM)
977
978 struct target_sigcontext {
979 abi_ulong trap_no;
980 abi_ulong error_code;
981 abi_ulong oldmask;
982 abi_ulong arm_r0;
983 abi_ulong arm_r1;
984 abi_ulong arm_r2;
985 abi_ulong arm_r3;
986 abi_ulong arm_r4;
987 abi_ulong arm_r5;
988 abi_ulong arm_r6;
989 abi_ulong arm_r7;
990 abi_ulong arm_r8;
991 abi_ulong arm_r9;
992 abi_ulong arm_r10;
993 abi_ulong arm_fp;
994 abi_ulong arm_ip;
995 abi_ulong arm_sp;
996 abi_ulong arm_lr;
997 abi_ulong arm_pc;
998 abi_ulong arm_cpsr;
999 abi_ulong fault_address;
1000 };
1001
1002 struct target_ucontext {
1003 abi_ulong tuc_flags;
1004 abi_ulong tuc_link;
1005 target_stack_t tuc_stack;
1006 struct target_sigcontext tuc_mcontext;
1007 target_sigset_t tuc_sigmask; /* mask last for extensibility */
1008 };
1009
1010 struct sigframe
1011 {
1012 struct target_sigcontext sc;
1013 abi_ulong extramask[TARGET_NSIG_WORDS-1];
1014 abi_ulong retcode;
1015 };
1016
1017 struct rt_sigframe
1018 {
1019 struct target_siginfo *pinfo;
1020 void *puc;
1021 struct target_siginfo info;
1022 struct target_ucontext uc;
1023 abi_ulong retcode;
1024 };
1025
1026 #define TARGET_CONFIG_CPU_32 1
1027
1028 /*
1029 * For ARM syscalls, we encode the syscall number into the instruction.
1030 */
1031 #define SWI_SYS_SIGRETURN (0xef000000|(TARGET_NR_sigreturn + ARM_SYSCALL_BASE))
1032 #define SWI_SYS_RT_SIGRETURN (0xef000000|(TARGET_NR_rt_sigreturn + ARM_SYSCALL_BASE))
1033
1034 /*
1035 * For Thumb syscalls, we pass the syscall number via r7. We therefore
1036 * need two 16-bit instructions.
1037 */
1038 #define SWI_THUMB_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_sigreturn))
1039 #define SWI_THUMB_RT_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_rt_sigreturn))
1040
1041 static const abi_ulong retcodes[4] = {
1042 SWI_SYS_SIGRETURN, SWI_THUMB_SIGRETURN,
1043 SWI_SYS_RT_SIGRETURN, SWI_THUMB_RT_SIGRETURN
1044 };
1045
1046
1047 #define __put_user_error(x,p,e) __put_user(x, p)
1048 #define __get_user_error(x,p,e) __get_user(x, p)
1049
1050 static inline int valid_user_regs(CPUState *regs)
1051 {
1052 return 1;
1053 }
1054
1055 static int
1056 setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/
1057 CPUState *env, unsigned long mask)
1058 {
1059 int err = 0;
1060
1061 __put_user_error(env->regs[0], &sc->arm_r0, err);
1062 __put_user_error(env->regs[1], &sc->arm_r1, err);
1063 __put_user_error(env->regs[2], &sc->arm_r2, err);
1064 __put_user_error(env->regs[3], &sc->arm_r3, err);
1065 __put_user_error(env->regs[4], &sc->arm_r4, err);
1066 __put_user_error(env->regs[5], &sc->arm_r5, err);
1067 __put_user_error(env->regs[6], &sc->arm_r6, err);
1068 __put_user_error(env->regs[7], &sc->arm_r7, err);
1069 __put_user_error(env->regs[8], &sc->arm_r8, err);
1070 __put_user_error(env->regs[9], &sc->arm_r9, err);
1071 __put_user_error(env->regs[10], &sc->arm_r10, err);
1072 __put_user_error(env->regs[11], &sc->arm_fp, err);
1073 __put_user_error(env->regs[12], &sc->arm_ip, err);
1074 __put_user_error(env->regs[13], &sc->arm_sp, err);
1075 __put_user_error(env->regs[14], &sc->arm_lr, err);
1076 __put_user_error(env->regs[15], &sc->arm_pc, err);
1077 #ifdef TARGET_CONFIG_CPU_32
1078 __put_user_error(cpsr_read(env), &sc->arm_cpsr, err);
1079 #endif
1080
1081 __put_user_error(/* current->thread.trap_no */ 0, &sc->trap_no, err);
1082 __put_user_error(/* current->thread.error_code */ 0, &sc->error_code, err);
1083 __put_user_error(/* current->thread.address */ 0, &sc->fault_address, err);
1084 __put_user_error(mask, &sc->oldmask, err);
1085
1086 return err;
1087 }
1088
1089 static inline void *
1090 get_sigframe(struct emulated_sigaction *ka, CPUState *regs, int framesize)
1091 {
1092 unsigned long sp = regs->regs[13];
1093
1094 /*
1095 * This is the X/Open sanctioned signal stack switching.
1096 */
1097 if ((ka->sa.sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp))
1098 sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size;
1099 /*
1100 * ATPCS B01 mandates 8-byte alignment
1101 */
1102 return g2h((sp - framesize) & ~7);
1103 }
1104
1105 static int
1106 setup_return(CPUState *env, struct emulated_sigaction *ka,
1107 abi_ulong *rc, void *frame, int usig)
1108 {
1109 abi_ulong handler = (abi_ulong)ka->sa._sa_handler;
1110 abi_ulong retcode;
1111 int thumb = 0;
1112 #if defined(TARGET_CONFIG_CPU_32)
1113 #if 0
1114 abi_ulong cpsr = env->cpsr;
1115
1116 /*
1117 * Maybe we need to deliver a 32-bit signal to a 26-bit task.
1118 */
1119 if (ka->sa.sa_flags & SA_THIRTYTWO)
1120 cpsr = (cpsr & ~MODE_MASK) | USR_MODE;
1121
1122 #ifdef CONFIG_ARM_THUMB
1123 if (elf_hwcap & HWCAP_THUMB) {
1124 /*
1125 * The LSB of the handler determines if we're going to
1126 * be using THUMB or ARM mode for this signal handler.
1127 */
1128 thumb = handler & 1;
1129
1130 if (thumb)
1131 cpsr |= T_BIT;
1132 else
1133 cpsr &= ~T_BIT;
1134 }
1135 #endif /* CONFIG_ARM_THUMB */
1136 #endif /* 0 */
1137 #endif /* TARGET_CONFIG_CPU_32 */
1138
1139 if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
1140 retcode = (abi_ulong)ka->sa.sa_restorer;
1141 } else {
1142 unsigned int idx = thumb;
1143
1144 if (ka->sa.sa_flags & TARGET_SA_SIGINFO)
1145 idx += 2;
1146
1147 if (__put_user(retcodes[idx], rc))
1148 return 1;
1149 #if 0
1150 flush_icache_range((abi_ulong)rc,
1151 (abi_ulong)(rc + 1));
1152 #endif
1153 retcode = ((abi_ulong)rc) + thumb;
1154 }
1155
1156 env->regs[0] = usig;
1157 env->regs[13] = h2g(frame);
1158 env->regs[14] = retcode;
1159 env->regs[15] = handler & (thumb ? ~1 : ~3);
1160
1161 #if 0
1162 #ifdef TARGET_CONFIG_CPU_32
1163 env->cpsr = cpsr;
1164 #endif
1165 #endif
1166
1167 return 0;
1168 }
1169
1170 static void setup_frame(int usig, struct emulated_sigaction *ka,
1171 target_sigset_t *set, CPUState *regs)
1172 {
1173 struct sigframe *frame = get_sigframe(ka, regs, sizeof(*frame));
1174 int i, err = 0;
1175
1176 err |= setup_sigcontext(&frame->sc, /*&frame->fpstate,*/ regs, set->sig[0]);
1177
1178 for(i = 1; i < TARGET_NSIG_WORDS; i++) {
1179 if (__put_user(set->sig[i], &frame->extramask[i - 1]))
1180 return;
1181 }
1182
1183 if (err == 0)
1184 err = setup_return(regs, ka, &frame->retcode, frame, usig);
1185 // return err;
1186 }
1187
1188 static void setup_rt_frame(int usig, struct emulated_sigaction *ka,
1189 target_siginfo_t *info,
1190 target_sigset_t *set, CPUState *env)
1191 {
1192 struct rt_sigframe *frame = get_sigframe(ka, env, sizeof(*frame));
1193 struct target_sigaltstack stack;
1194 int i, err = 0;
1195
1196 if (!access_ok(VERIFY_WRITE, frame, sizeof (*frame)))
1197 return /* 1 */;
1198
1199 __put_user_error(&frame->info, (abi_ulong *)&frame->pinfo, err);
1200 __put_user_error(&frame->uc, (abi_ulong *)&frame->puc, err);
1201 err |= copy_siginfo_to_user(&frame->info, info);
1202
1203 /* Clear all the bits of the ucontext we don't use. */
1204 memset(&frame->uc, 0, offsetof(struct target_ucontext, tuc_mcontext));
1205
1206 memset(&stack, 0, sizeof(stack));
1207 __put_user(target_sigaltstack_used.ss_sp, &stack.ss_sp);
1208 __put_user(target_sigaltstack_used.ss_size, &stack.ss_size);
1209 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &stack.ss_flags);
1210 if (!access_ok(VERIFY_WRITE, &frame->uc.tuc_stack, sizeof(stack)))
1211 err = 1;
1212 else
1213 memcpy(&frame->uc.tuc_stack, &stack, sizeof(stack));
1214
1215 err |= setup_sigcontext(&frame->uc.tuc_mcontext, /*&frame->fpstate,*/
1216 env, set->sig[0]);
1217 for(i = 0; i < TARGET_NSIG_WORDS; i++) {
1218 if (__put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]))
1219 return;
1220 }
1221
1222 if (err == 0)
1223 err = setup_return(env, ka, &frame->retcode, frame, usig);
1224
1225 if (err == 0) {
1226 /*
1227 * For realtime signals we must also set the second and third
1228 * arguments for the signal handler.
1229 * -- Peter Maydell <pmaydell@chiark.greenend.org.uk> 2000-12-06
1230 */
1231 env->regs[1] = (abi_ulong)frame->pinfo;
1232 env->regs[2] = (abi_ulong)frame->puc;
1233 }
1234
1235 // return err;
1236 }
1237
1238 static int
1239 restore_sigcontext(CPUState *env, struct target_sigcontext *sc)
1240 {
1241 int err = 0;
1242 uint32_t cpsr;
1243
1244 __get_user_error(env->regs[0], &sc->arm_r0, err);
1245 __get_user_error(env->regs[1], &sc->arm_r1, err);
1246 __get_user_error(env->regs[2], &sc->arm_r2, err);
1247 __get_user_error(env->regs[3], &sc->arm_r3, err);
1248 __get_user_error(env->regs[4], &sc->arm_r4, err);
1249 __get_user_error(env->regs[5], &sc->arm_r5, err);
1250 __get_user_error(env->regs[6], &sc->arm_r6, err);
1251 __get_user_error(env->regs[7], &sc->arm_r7, err);
1252 __get_user_error(env->regs[8], &sc->arm_r8, err);
1253 __get_user_error(env->regs[9], &sc->arm_r9, err);
1254 __get_user_error(env->regs[10], &sc->arm_r10, err);
1255 __get_user_error(env->regs[11], &sc->arm_fp, err);
1256 __get_user_error(env->regs[12], &sc->arm_ip, err);
1257 __get_user_error(env->regs[13], &sc->arm_sp, err);
1258 __get_user_error(env->regs[14], &sc->arm_lr, err);
1259 __get_user_error(env->regs[15], &sc->arm_pc, err);
1260 #ifdef TARGET_CONFIG_CPU_32
1261 __get_user_error(cpsr, &sc->arm_cpsr, err);
1262 cpsr_write(env, cpsr, 0xffffffff);
1263 #endif
1264
1265 err |= !valid_user_regs(env);
1266
1267 return err;
1268 }
1269
1270 long do_sigreturn(CPUState *env)
1271 {
1272 struct sigframe *frame;
1273 target_sigset_t set;
1274 sigset_t host_set;
1275 int i;
1276
1277 /*
1278 * Since we stacked the signal on a 64-bit boundary,
1279 * then 'sp' should be word aligned here. If it's
1280 * not, then the user is trying to mess with us.
1281 */
1282 if (env->regs[13] & 7)
1283 goto badframe;
1284
1285 frame = (struct sigframe *)g2h(env->regs[13]);
1286
1287 #if 0
1288 if (verify_area(VERIFY_READ, frame, sizeof (*frame)))
1289 goto badframe;
1290 #endif
1291 if (__get_user(set.sig[0], &frame->sc.oldmask))
1292 goto badframe;
1293 for(i = 1; i < TARGET_NSIG_WORDS; i++) {
1294 if (__get_user(set.sig[i], &frame->extramask[i - 1]))
1295 goto badframe;
1296 }
1297
1298 target_to_host_sigset_internal(&host_set, &set);
1299 sigprocmask(SIG_SETMASK, &host_set, NULL);
1300
1301 if (restore_sigcontext(env, &frame->sc))
1302 goto badframe;
1303
1304 #if 0
1305 /* Send SIGTRAP if we're single-stepping */
1306 if (ptrace_cancel_bpt(current))
1307 send_sig(SIGTRAP, current, 1);
1308 #endif
1309 return env->regs[0];
1310
1311 badframe:
1312 force_sig(SIGSEGV /* , current */);
1313 return 0;
1314 }
1315
1316 long do_rt_sigreturn(CPUState *env)
1317 {
1318 struct rt_sigframe *frame;
1319 sigset_t host_set;
1320
1321 /*
1322 * Since we stacked the signal on a 64-bit boundary,
1323 * then 'sp' should be word aligned here. If it's
1324 * not, then the user is trying to mess with us.
1325 */
1326 if (env->regs[13] & 7)
1327 goto badframe;
1328
1329 frame = (struct rt_sigframe *)env->regs[13];
1330
1331 #if 0
1332 if (verify_area(VERIFY_READ, frame, sizeof (*frame)))
1333 goto badframe;
1334 #endif
1335 target_to_host_sigset(&host_set, &frame->uc.tuc_sigmask);
1336 sigprocmask(SIG_SETMASK, &host_set, NULL);
1337
1338 if (restore_sigcontext(env, &frame->uc.tuc_mcontext))
1339 goto badframe;
1340
1341 if (do_sigaltstack(&frame->uc.tuc_stack, NULL, get_sp_from_cpustate(env)) == -EFAULT)
1342 goto badframe;
1343
1344 #if 0
1345 /* Send SIGTRAP if we're single-stepping */
1346 if (ptrace_cancel_bpt(current))
1347 send_sig(SIGTRAP, current, 1);
1348 #endif
1349 return env->regs[0];
1350
1351 badframe:
1352 force_sig(SIGSEGV /* , current */);
1353 return 0;
1354 }
1355
1356 #elif defined(TARGET_SPARC)
1357
1358 #define __SUNOS_MAXWIN 31
1359
1360 /* This is what SunOS does, so shall I. */
1361 struct target_sigcontext {
1362 abi_ulong sigc_onstack; /* state to restore */
1363
1364 abi_ulong sigc_mask; /* sigmask to restore */
1365 abi_ulong sigc_sp; /* stack pointer */
1366 abi_ulong sigc_pc; /* program counter */
1367 abi_ulong sigc_npc; /* next program counter */
1368 abi_ulong sigc_psr; /* for condition codes etc */
1369 abi_ulong sigc_g1; /* User uses these two registers */
1370 abi_ulong sigc_o0; /* within the trampoline code. */
1371
1372 /* Now comes information regarding the users window set
1373 * at the time of the signal.
1374 */
1375 abi_ulong sigc_oswins; /* outstanding windows */
1376
1377 /* stack ptrs for each regwin buf */
1378 char *sigc_spbuf[__SUNOS_MAXWIN];
1379
1380 /* Windows to restore after signal */
1381 struct {
1382 abi_ulong locals[8];
1383 abi_ulong ins[8];
1384 } sigc_wbuf[__SUNOS_MAXWIN];
1385 };
1386 /* A Sparc stack frame */
1387 struct sparc_stackf {
1388 abi_ulong locals[8];
1389 abi_ulong ins[6];
1390 struct sparc_stackf *fp;
1391 abi_ulong callers_pc;
1392 char *structptr;
1393 abi_ulong xargs[6];
1394 abi_ulong xxargs[1];
1395 };
1396
1397 typedef struct {
1398 struct {
1399 abi_ulong psr;
1400 abi_ulong pc;
1401 abi_ulong npc;
1402 abi_ulong y;
1403 abi_ulong u_regs[16]; /* globals and ins */
1404 } si_regs;
1405 int si_mask;
1406 } __siginfo_t;
1407
1408 typedef struct {
1409 unsigned long si_float_regs [32];
1410 unsigned long si_fsr;
1411 unsigned long si_fpqdepth;
1412 struct {
1413 unsigned long *insn_addr;
1414 unsigned long insn;
1415 } si_fpqueue [16];
1416 } qemu_siginfo_fpu_t;
1417
1418
1419 struct target_signal_frame {
1420 struct sparc_stackf ss;
1421 __siginfo_t info;
1422 qemu_siginfo_fpu_t *fpu_save;
1423 abi_ulong insns[2] __attribute__ ((aligned (8)));
1424 abi_ulong extramask[TARGET_NSIG_WORDS - 1];
1425 abi_ulong extra_size; /* Should be 0 */
1426 qemu_siginfo_fpu_t fpu_state;
1427 };
1428 struct target_rt_signal_frame {
1429 struct sparc_stackf ss;
1430 siginfo_t info;
1431 abi_ulong regs[20];
1432 sigset_t mask;
1433 qemu_siginfo_fpu_t *fpu_save;
1434 unsigned int insns[2];
1435 stack_t stack;
1436 unsigned int extra_size; /* Should be 0 */
1437 qemu_siginfo_fpu_t fpu_state;
1438 };
1439
1440 #define UREG_O0 16
1441 #define UREG_O6 22
1442 #define UREG_I0 0
1443 #define UREG_I1 1
1444 #define UREG_I2 2
1445 #define UREG_I3 3
1446 #define UREG_I4 4
1447 #define UREG_I5 5
1448 #define UREG_I6 6
1449 #define UREG_I7 7
1450 #define UREG_L0 8
1451 #define UREG_FP UREG_I6
1452 #define UREG_SP UREG_O6
1453
1454 static inline void *get_sigframe(struct emulated_sigaction *sa, CPUState *env, unsigned long framesize)
1455 {
1456 unsigned long sp;
1457
1458 sp = env->regwptr[UREG_FP];
1459
1460 /* This is the X/Open sanctioned signal stack switching. */
1461 if (sa->sa.sa_flags & TARGET_SA_ONSTACK) {
1462 if (!on_sig_stack(sp)
1463 && !((target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size) & 7))
1464 sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size;
1465 }
1466 return g2h(sp - framesize);
1467 }
1468
1469 static int
1470 setup___siginfo(__siginfo_t *si, CPUState *env, abi_ulong mask)
1471 {
1472 int err = 0, i;
1473
1474 err |= __put_user(env->psr, &si->si_regs.psr);
1475 err |= __put_user(env->pc, &si->si_regs.pc);
1476 err |= __put_user(env->npc, &si->si_regs.npc);
1477 err |= __put_user(env->y, &si->si_regs.y);
1478 for (i=0; i < 8; i++) {
1479 err |= __put_user(env->gregs[i], &si->si_regs.u_regs[i]);
1480 }
1481 for (i=0; i < 8; i++) {
1482 err |= __put_user(env->regwptr[UREG_I0 + i], &si->si_regs.u_regs[i+8]);
1483 }
1484 err |= __put_user(mask, &si->si_mask);
1485 return err;
1486 }
1487
1488 #if 0
1489 static int
1490 setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/
1491 CPUState *env, unsigned long mask)
1492 {
1493 int err = 0;
1494
1495 err |= __put_user(mask, &sc->sigc_mask);
1496 err |= __put_user(env->regwptr[UREG_SP], &sc->sigc_sp);
1497 err |= __put_user(env->pc, &sc->sigc_pc);
1498 err |= __put_user(env->npc, &sc->sigc_npc);
1499 err |= __put_user(env->psr, &sc->sigc_psr);
1500 err |= __put_user(env->gregs[1], &sc->sigc_g1);
1501 err |= __put_user(env->regwptr[UREG_O0], &sc->sigc_o0);
1502
1503 return err;
1504 }
1505 #endif
1506 #define NF_ALIGNEDSZ (((sizeof(struct target_signal_frame) + 7) & (~7)))
1507
1508 static void setup_frame(int sig, struct emulated_sigaction *ka,
1509 target_sigset_t *set, CPUState *env)
1510 {
1511 struct target_signal_frame *sf;
1512 int sigframe_size, err, i;
1513
1514 /* 1. Make sure everything is clean */
1515 //synchronize_user_stack();
1516
1517 sigframe_size = NF_ALIGNEDSZ;
1518
1519 sf = (struct target_signal_frame *)
1520 get_sigframe(ka, env, sigframe_size);
1521
1522 //fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]);
1523 #if 0
1524 if (invalid_frame_pointer(sf, sigframe_size))
1525 goto sigill_and_return;
1526 #endif
1527 /* 2. Save the current process state */
1528 err = setup___siginfo(&sf->info, env, set->sig[0]);
1529 err |= __put_user(0, &sf->extra_size);
1530
1531 //err |= save_fpu_state(regs, &sf->fpu_state);
1532 //err |= __put_user(&sf->fpu_state, &sf->fpu_save);
1533
1534 err |= __put_user(set->sig[0], &sf->info.si_mask);
1535 for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
1536 err |= __put_user(set->sig[i + 1], &sf->extramask[i]);
1537 }
1538
1539 for (i = 0; i < 8; i++) {
1540 err |= __put_user(env->regwptr[i + UREG_L0], &sf->ss.locals[i]);
1541 }
1542 for (i = 0; i < 8; i++) {
1543 err |= __put_user(env->regwptr[i + UREG_I0], &sf->ss.ins[i]);
1544 }
1545 if (err)
1546 goto sigsegv;
1547
1548 /* 3. signal handler back-trampoline and parameters */
1549 env->regwptr[UREG_FP] = h2g(sf);
1550 env->regwptr[UREG_I0] = sig;
1551 env->regwptr[UREG_I1] = h2g(&sf->info);
1552 env->regwptr[UREG_I2] = h2g(&sf->info);
1553
1554 /* 4. signal handler */
1555 env->pc = (unsigned long) ka->sa._sa_handler;
1556 env->npc = (env->pc + 4);
1557 /* 5. return to kernel instructions */
1558 if (ka->sa.sa_restorer)
1559 env->regwptr[UREG_I7] = (unsigned long)ka->sa.sa_restorer;
1560 else {
1561 env->regwptr[UREG_I7] = h2g(&(sf->insns[0]) - 2);
1562
1563 /* mov __NR_sigreturn, %g1 */
1564 err |= __put_user(0x821020d8, &sf->insns[0]);
1565
1566 /* t 0x10 */
1567 err |= __put_user(0x91d02010, &sf->insns[1]);
1568 if (err)
1569 goto sigsegv;
1570
1571 /* Flush instruction space. */
1572 //flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0]));
1573 // tb_flush(env);
1574 }
1575 return;
1576
1577 //sigill_and_return:
1578 force_sig(TARGET_SIGILL);
1579 sigsegv:
1580 //fprintf(stderr, "force_sig\n");
1581 force_sig(TARGET_SIGSEGV);
1582 }
1583 static inline int
1584 restore_fpu_state(CPUState *env, qemu_siginfo_fpu_t *fpu)
1585 {
1586 int err;
1587 #if 0
1588 #ifdef CONFIG_SMP
1589 if (current->flags & PF_USEDFPU)
1590 regs->psr &= ~PSR_EF;
1591 #else
1592 if (current == last_task_used_math) {
1593 last_task_used_math = 0;
1594 regs->psr &= ~PSR_EF;
1595 }
1596 #endif
1597 current->used_math = 1;
1598 current->flags &= ~PF_USEDFPU;
1599 #endif
1600 #if 0
1601 if (verify_area (VERIFY_READ, fpu, sizeof(*fpu)))
1602 return -EFAULT;
1603 #endif
1604
1605 #if 0
1606 /* XXX: incorrect */
1607 err = __copy_from_user(&env->fpr[0], &fpu->si_float_regs[0],
1608 (sizeof(unsigned long) * 32));
1609 #endif
1610 err |= __get_user(env->fsr, &fpu->si_fsr);
1611 #if 0
1612 err |= __get_user(current->thread.fpqdepth, &fpu->si_fpqdepth);
1613 if (current->thread.fpqdepth != 0)
1614 err |= __copy_from_user(&current->thread.fpqueue[0],
1615 &fpu->si_fpqueue[0],
1616 ((sizeof(unsigned long) +
1617 (sizeof(unsigned long *)))*16));
1618 #endif
1619 return err;
1620 }
1621
1622
1623 static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
1624 target_siginfo_t *info,
1625 target_sigset_t *set, CPUState *env)
1626 {
1627 fprintf(stderr, "setup_rt_frame: not implemented\n");
1628 }
1629
1630 long do_sigreturn(CPUState *env)
1631 {
1632 struct target_signal_frame *sf;
1633 uint32_t up_psr, pc, npc;
1634 target_sigset_t set;
1635 sigset_t host_set;
1636 abi_ulong fpu_save;
1637 int err, i;
1638
1639 sf = (struct target_signal_frame *)g2h(env->regwptr[UREG_FP]);
1640 #if 0
1641 fprintf(stderr, "sigreturn\n");
1642 fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]);
1643 #endif
1644 //cpu_dump_state(env, stderr, fprintf, 0);
1645
1646 /* 1. Make sure we are not getting garbage from the user */
1647 #if 0
1648 if (verify_area (VERIFY_READ, sf, sizeof (*sf)))
1649 goto segv_and_exit;
1650 #endif
1651
1652 if (((uint) sf) & 3)
1653 goto segv_and_exit;
1654
1655 err = __get_user(pc, &sf->info.si_regs.pc);
1656 err |= __get_user(npc, &sf->info.si_regs.npc);
1657
1658 if ((pc | npc) & 3)
1659 goto segv_and_exit;
1660
1661 /* 2. Restore the state */
1662 err |= __get_user(up_psr, &sf->info.si_regs.psr);
1663
1664 /* User can only change condition codes and FPU enabling in %psr. */
1665 env->psr = (up_psr & (PSR_ICC /* | PSR_EF */))
1666 | (env->psr & ~(PSR_ICC /* | PSR_EF */));
1667
1668 env->pc = pc;
1669 env->npc = npc;
1670 err |= __get_user(env->y, &sf->info.si_regs.y);
1671 for (i=0; i < 8; i++) {
1672 err |= __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]);
1673 }
1674 for (i=0; i < 8; i++) {
1675 err |= __get_user(env->regwptr[i + UREG_I0], &sf->info.si_regs.u_regs[i+8]);
1676 }
1677
1678 err |= __get_user(fpu_save, (abi_ulong *)&sf->fpu_save);
1679
1680 //if (fpu_save)
1681 // err |= restore_fpu_state(env, fpu_save);
1682
1683 /* This is pretty much atomic, no amount locking would prevent
1684 * the races which exist anyways.
1685 */
1686 err |= __get_user(set.sig[0], &sf->info.si_mask);
1687 for(i = 1; i < TARGET_NSIG_WORDS; i++) {
1688 err |= (__get_user(set.sig[i], &sf->extramask[i - 1]));
1689 }
1690
1691 target_to_host_sigset_internal(&host_set, &set);
1692 sigprocmask(SIG_SETMASK, &host_set, NULL);
1693
1694 if (err)
1695 goto segv_and_exit;
1696
1697 return env->regwptr[0];
1698
1699 segv_and_exit:
1700 force_sig(TARGET_SIGSEGV);
1701 }
1702
1703 long do_rt_sigreturn(CPUState *env)
1704 {
1705 fprintf(stderr, "do_rt_sigreturn: not implemented\n");
1706 return -ENOSYS;
1707 }
1708
1709 #ifdef TARGET_SPARC64
1710 #define MC_TSTATE 0
1711 #define MC_PC 1
1712 #define MC_NPC 2
1713 #define MC_Y 3
1714 #define MC_G1 4
1715 #define MC_G2 5
1716 #define MC_G3 6
1717 #define MC_G4 7
1718 #define MC_G5 8
1719 #define MC_G6 9
1720 #define MC_G7 10
1721 #define MC_O0 11
1722 #define MC_O1 12
1723 #define MC_O2 13
1724 #define MC_O3 14
1725 #define MC_O4 15
1726 #define MC_O5 16
1727 #define MC_O6 17
1728 #define MC_O7 18
1729 #define MC_NGREG 19
1730
1731 typedef abi_ulong target_mc_greg_t;
1732 typedef target_mc_greg_t target_mc_gregset_t[MC_NGREG];
1733
1734 struct target_mc_fq {
1735 abi_ulong *mcfq_addr;
1736 uint32_t mcfq_insn;
1737 };
1738
1739 struct target_mc_fpu {
1740 union {
1741 uint32_t sregs[32];
1742 uint64_t dregs[32];
1743 //uint128_t qregs[16];
1744 } mcfpu_fregs;
1745 abi_ulong mcfpu_fsr;
1746 abi_ulong mcfpu_fprs;
1747 abi_ulong mcfpu_gsr;
1748 struct target_mc_fq *mcfpu_fq;
1749 unsigned char mcfpu_qcnt;
1750 unsigned char mcfpu_qentsz;
1751 unsigned char mcfpu_enab;
1752 };
1753 typedef struct target_mc_fpu target_mc_fpu_t;
1754
1755 typedef struct {
1756 target_mc_gregset_t mc_gregs;
1757 target_mc_greg_t mc_fp;
1758 target_mc_greg_t mc_i7;
1759 target_mc_fpu_t mc_fpregs;
1760 } target_mcontext_t;
1761
1762 struct target_ucontext {
1763 struct target_ucontext *uc_link;
1764 abi_ulong uc_flags;
1765 target_sigset_t uc_sigmask;
1766 target_mcontext_t uc_mcontext;
1767 };
1768
1769 /* A V9 register window */
1770 struct target_reg_window {
1771 abi_ulong locals[8];
1772 abi_ulong ins[8];
1773 };
1774
1775 #define TARGET_STACK_BIAS 2047
1776
1777 /* {set, get}context() needed for 64-bit SparcLinux userland. */
1778 void sparc64_set_context(CPUSPARCState *env)
1779 {
1780 struct target_ucontext *ucp = (struct target_ucontext *)
1781 env->regwptr[UREG_I0];
1782 target_mc_gregset_t *grp;
1783 abi_ulong pc, npc, tstate;
1784 abi_ulong fp, i7;
1785 unsigned char fenab;
1786 int err;
1787 unsigned int i;
1788 abi_ulong *src, *dst;
1789
1790 grp = &ucp->uc_mcontext.mc_gregs;
1791 err = get_user(pc, &((*grp)[MC_PC]));
1792 err |= get_user(npc, &((*grp)[MC_NPC]));
1793 if (err || ((pc | npc) & 3))
1794 goto do_sigsegv;
1795 if (env->regwptr[UREG_I1]) {
1796 target_sigset_t target_set;
1797 sigset_t set;
1798
1799 if (TARGET_NSIG_WORDS == 1) {
1800 if (get_user(target_set.sig[0], &ucp->uc_sigmask.sig[0]))
1801 goto do_sigsegv;
1802 } else {
1803 src = &ucp->uc_sigmask;
1804 dst = &target_set;
1805 for (i = 0; i < sizeof(target_sigset_t) / sizeof(abi_ulong);
1806 i++, dst++, src++)
1807 err |= get_user(dst, src);
1808 if (err)
1809 goto do_sigsegv;
1810 }
1811 target_to_host_sigset_internal(&set, &target_set);
1812 sigprocmask(SIG_SETMASK, &set, NULL);
1813 }
1814 env->pc = pc;
1815 env->npc = npc;
1816 err |= get_user(env->y, &((*grp)[MC_Y]));
1817 err |= get_user(tstate, &((*grp)[MC_TSTATE]));
1818 env->asi = (tstate >> 24) & 0xff;
1819 PUT_CCR(env, tstate >> 32);
1820 PUT_CWP64(env, tstate & 0x1f);
1821 err |= get_user(env->gregs[1], (&(*grp)[MC_G1]));
1822 err |= get_user(env->gregs[2], (&(*grp)[MC_G2]));
1823 err |= get_user(env->gregs[3], (&(*grp)[MC_G3]));
1824 err |= get_user(env->gregs[4], (&(*grp)[MC_G4]));
1825 err |= get_user(env->gregs[5], (&(*grp)[MC_G5]));
1826 err |= get_user(env->gregs[6], (&(*grp)[MC_G6]));
1827 err |= get_user(env->gregs[7], (&(*grp)[MC_G7]));
1828 err |= get_user(env->regwptr[UREG_I0], (&(*grp)[MC_O0]));
1829 err |= get_user(env->regwptr[UREG_I1], (&(*grp)[MC_O1]));
1830 err |= get_user(env->regwptr[UREG_I2], (&(*grp)[MC_O2]));
1831 err |= get_user(env->regwptr[UREG_I3], (&(*grp)[MC_O3]));
1832 err |= get_user(env->regwptr[UREG_I4], (&(*grp)[MC_O4]));
1833 err |= get_user(env->regwptr[UREG_I5], (&(*grp)[MC_O5]));
1834 err |= get_user(env->regwptr[UREG_I6], (&(*grp)[MC_O6]));
1835 err |= get_user(env->regwptr[UREG_I7], (&(*grp)[MC_O7]));
1836
1837 err |= get_user(fp, &(ucp->uc_mcontext.mc_fp));
1838 err |= get_user(i7, &(ucp->uc_mcontext.mc_i7));
1839 err |= put_user(fp,
1840 (&(((struct target_reg_window *)(TARGET_STACK_BIAS+env->regwptr[UREG_I6]))->ins[6])));
1841 err |= put_user(i7,
1842 (&(((struct target_reg_window *)(TARGET_STACK_BIAS+env->regwptr[UREG_I6]))->ins[7])));
1843
1844 err |= get_user(fenab, &(ucp->uc_mcontext.mc_fpregs.mcfpu_enab));
1845 err |= get_user(env->fprs, &(ucp->uc_mcontext.mc_fpregs.mcfpu_fprs));
1846 src = &(ucp->uc_mcontext.mc_fpregs.mcfpu_fregs);
1847 dst = &env->fpr;
1848 for (i = 0; i < 64; i++, dst++, src++)
1849 err |= get_user(dst, src);
1850 err |= get_user(env->fsr,
1851 &(ucp->uc_mcontext.mc_fpregs.mcfpu_fsr));
1852 err |= get_user(env->gsr,
1853 &(ucp->uc_mcontext.mc_fpregs.mcfpu_gsr));
1854 if (err)
1855 goto do_sigsegv;
1856
1857 return;
1858 do_sigsegv:
1859 force_sig(SIGSEGV);
1860 }
1861
1862 void sparc64_get_context(CPUSPARCState *env)
1863 {
1864 struct target_ucontext *ucp = (struct target_ucontext *)
1865 env->regwptr[UREG_I0];
1866 target_mc_gregset_t *grp;
1867 target_mcontext_t *mcp;
1868 abi_ulong fp, i7;
1869 int err;
1870 unsigned int i;
1871 abi_ulong *src, *dst;
1872 target_sigset_t target_set;
1873 sigset_t set;
1874
1875 mcp = &ucp->uc_mcontext;
1876 grp = &mcp->mc_gregs;
1877
1878 /* Skip over the trap instruction, first. */
1879 env->pc = env->npc;
1880 env->npc += 4;
1881
1882 err = 0;
1883
1884 sigprocmask(0, NULL, &set);
1885 host_to_target_sigset_internal(&target_set, &set);
1886 if (TARGET_NSIG_WORDS == 1)
1887 err |= put_user(target_set.sig[0],
1888 (abi_ulong *)&ucp->uc_sigmask);
1889 else {
1890 src = &target_set;
1891 dst = &ucp->uc_sigmask;
1892 for (i = 0; i < sizeof(target_sigset_t) / sizeof(abi_ulong);
1893 i++, dst++, src++)
1894 err |= put_user(src, dst);
1895 if (err)
1896 goto do_sigsegv;
1897 }
1898
1899 err |= put_user(env->tstate, &((*grp)[MC_TSTATE]));
1900 err |= put_user(env->pc, &((*grp)[MC_PC]));
1901 err |= put_user(env->npc, &((*grp)[MC_NPC]));
1902 err |= put_user(env->y, &((*grp)[MC_Y]));
1903 err |= put_user(env->gregs[1], &((*grp)[MC_G1]));
1904 err |= put_user(env->gregs[2], &((*grp)[MC_G2]));
1905 err |= put_user(env->gregs[3], &((*grp)[MC_G3]));
1906 err |= put_user(env->gregs[4], &((*grp)[MC_G4]));
1907 err |= put_user(env->gregs[5], &((*grp)[MC_G5]));
1908 err |= put_user(env->gregs[6], &((*grp)[MC_G6]));
1909 err |= put_user(env->gregs[7], &((*grp)[MC_G7]));
1910 err |= put_user(env->regwptr[UREG_I0], &((*grp)[MC_O0]));
1911 err |= put_user(env->regwptr[UREG_I1], &((*grp)[MC_O1]));
1912 err |= put_user(env->regwptr[UREG_I2], &((*grp)[MC_O2]));
1913 err |= put_user(env->regwptr[UREG_I3], &((*grp)[MC_O3]));
1914 err |= put_user(env->regwptr[UREG_I4], &((*grp)[MC_O4]));
1915 err |= put_user(env->regwptr[UREG_I5], &((*grp)[MC_O5]));
1916 err |= put_user(env->regwptr[UREG_I6], &((*grp)[MC_O6]));
1917 err |= put_user(env->regwptr[UREG_I7], &((*grp)[MC_O7]));
1918
1919 err |= get_user(fp,
1920 (&(((struct target_reg_window *)(TARGET_STACK_BIAS+env->regwptr[UREG_I6]))->ins[6])));
1921 err |= get_user(i7,
1922 (&(((struct target_reg_window *)(TARGET_STACK_BIAS+env->regwptr[UREG_I6]))->ins[7])));
1923 err |= put_user(fp, &(mcp->mc_fp));
1924 err |= put_user(i7, &(mcp->mc_i7));
1925
1926 src = &env->fpr;
1927 dst = &(ucp->uc_mcontext.mc_fpregs.mcfpu_fregs);
1928 for (i = 0; i < 64; i++, dst++, src++)
1929 err |= put_user(src, dst);
1930 err |= put_user(env->fsr, &(mcp->mc_fpregs.mcfpu_fsr));
1931 err |= put_user(env->gsr, &(mcp->mc_fpregs.mcfpu_gsr));
1932 err |= put_user(env->fprs, &(mcp->mc_fpregs.mcfpu_fprs));
1933
1934 if (err)
1935 goto do_sigsegv;
1936
1937 return;
1938 do_sigsegv:
1939 force_sig(SIGSEGV);
1940 }
1941 #endif
1942 #elif defined(TARGET_ABI_MIPSN64)
1943
1944 # warning signal handling not implemented
1945
1946 static void setup_frame(int sig, struct emulated_sigaction *ka,
1947 target_sigset_t *set, CPUState *env)
1948 {
1949 fprintf(stderr, "setup_frame: not implemented\n");
1950 }
1951
1952 static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
1953 target_siginfo_t *info,
1954 target_sigset_t *set, CPUState *env)
1955 {
1956 fprintf(stderr, "setup_rt_frame: not implemented\n");
1957 }
1958
1959 long do_sigreturn(CPUState *env)
1960 {
1961 fprintf(stderr, "do_sigreturn: not implemented\n");
1962 return -ENOSYS;
1963 }
1964
1965 long do_rt_sigreturn(CPUState *env)
1966 {
1967 fprintf(stderr, "do_rt_sigreturn: not implemented\n");
1968 return -ENOSYS;
1969 }
1970
1971 #elif defined(TARGET_ABI_MIPSN32)
1972
1973 # warning signal handling not implemented
1974
1975 static void setup_frame(int sig, struct emulated_sigaction *ka,
1976 target_sigset_t *set, CPUState *env)
1977 {
1978 fprintf(stderr, "setup_frame: not implemented\n");
1979 }
1980
1981 static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
1982 target_siginfo_t *info,
1983 target_sigset_t *set, CPUState *env)
1984 {
1985 fprintf(stderr, "setup_rt_frame: not implemented\n");
1986 }
1987
1988 long do_sigreturn(CPUState *env)
1989 {
1990 fprintf(stderr, "do_sigreturn: not implemented\n");
1991 return -ENOSYS;
1992 }
1993
1994 long do_rt_sigreturn(CPUState *env)
1995 {
1996 fprintf(stderr, "do_rt_sigreturn: not implemented\n");
1997 return -ENOSYS;
1998 }
1999
2000 #elif defined(TARGET_ABI_MIPSO32)
2001
2002 struct target_sigcontext {
2003 uint32_t sc_regmask; /* Unused */
2004 uint32_t sc_status;
2005 uint64_t sc_pc;
2006 uint64_t sc_regs[32];
2007 uint64_t sc_fpregs[32];
2008 uint32_t sc_ownedfp; /* Unused */
2009 uint32_t sc_fpc_csr;
2010 uint32_t sc_fpc_eir; /* Unused */
2011 uint32_t sc_used_math;
2012 uint32_t sc_dsp; /* dsp status, was sc_ssflags */
2013 uint64_t sc_mdhi;
2014 uint64_t sc_mdlo;
2015 target_ulong sc_hi1; /* Was sc_cause */
2016 target_ulong sc_lo1; /* Was sc_badvaddr */
2017 target_ulong sc_hi2; /* Was sc_sigset[4] */
2018 target_ulong sc_lo2;
2019 target_ulong sc_hi3;
2020 target_ulong sc_lo3;
2021 };
2022
2023 struct sigframe {
2024 uint32_t sf_ass[4]; /* argument save space for o32 */
2025 uint32_t sf_code[2]; /* signal trampoline */
2026 struct target_sigcontext sf_sc;
2027 target_sigset_t sf_mask;
2028 };
2029
2030 /* Install trampoline to jump back from signal handler */
2031 static inline int install_sigtramp(unsigned int *tramp, unsigned int syscall)
2032 {
2033 int err;
2034
2035 /*
2036 * Set up the return code ...
2037 *
2038 * li v0, __NR__foo_sigreturn
2039 * syscall
2040 */
2041
2042 err = __put_user(0x24020000 + syscall, tramp + 0);
2043 err |= __put_user(0x0000000c , tramp + 1);
2044 /* flush_cache_sigtramp((unsigned long) tramp); */
2045 return err;
2046 }
2047
2048 static inline int
2049 setup_sigcontext(CPUState *regs, struct target_sigcontext *sc)
2050 {
2051 int err = 0;
2052
2053 err |= __put_user(regs->PC[regs->current_tc], &sc->sc_pc);
2054
2055 #define save_gp_reg(i) do { \
2056 err |= __put_user(regs->gpr[i][regs->current_tc], &sc->sc_regs[i]); \
2057 } while(0)
2058 __put_user(0, &sc->sc_regs[0]); save_gp_reg(1); save_gp_reg(2);
2059 save_gp_reg(3); save_gp_reg(4); save_gp_reg(5); save_gp_reg(6);
2060 save_gp_reg(7); save_gp_reg(8); save_gp_reg(9); save_gp_reg(10);
2061 save_gp_reg(11); save_gp_reg(12); save_gp_reg(13); save_gp_reg(14);
2062 save_gp_reg(15); save_gp_reg(16); save_gp_reg(17); save_gp_reg(18);
2063 save_gp_reg(19); save_gp_reg(20); save_gp_reg(21); save_gp_reg(22);
2064 save_gp_reg(23); save_gp_reg(24); save_gp_reg(25); save_gp_reg(26);
2065 save_gp_reg(27); save_gp_reg(28); save_gp_reg(29); save_gp_reg(30);
2066 save_gp_reg(31);
2067 #undef save_gp_reg
2068
2069 err |= __put_user(regs->HI[0][regs->current_tc], &sc->sc_mdhi);
2070 err |= __put_user(regs->LO[0][regs->current_tc], &sc->sc_mdlo);
2071
2072 /* Not used yet, but might be useful if we ever have DSP suppport */
2073 #if 0
2074 if (cpu_has_dsp) {
2075 err |= __put_user(mfhi1(), &sc->sc_hi1);
2076 err |= __put_user(mflo1(), &sc->sc_lo1);
2077 err |= __put_user(mfhi2(), &sc->sc_hi2);
2078 err |= __put_user(mflo2(), &sc->sc_lo2);
2079 err |= __put_user(mfhi3(), &sc->sc_hi3);
2080 err |= __put_user(mflo3(), &sc->sc_lo3);
2081 err |= __put_user(rddsp(DSP_MASK), &sc->sc_dsp);
2082 }
2083 /* same with 64 bit */
2084 #ifdef CONFIG_64BIT
2085 err |= __put_user(regs->hi, &sc->sc_hi[0]);
2086 err |= __put_user(regs->lo, &sc->sc_lo[0]);
2087 if (cpu_has_dsp) {
2088 err |= __put_user(mfhi1(), &sc->sc_hi[1]);
2089 err |= __put_user(mflo1(), &sc->sc_lo[1]);
2090 err |= __put_user(mfhi2(), &sc->sc_hi[2]);
2091 err |= __put_user(mflo2(), &sc->sc_lo[2]);
2092 err |= __put_user(mfhi3(), &sc->sc_hi[3]);
2093 err |= __put_user(mflo3(), &sc->sc_lo[3]);
2094 err |= __put_user(rddsp(DSP_MASK), &sc->sc_dsp);
2095 }
2096 #endif
2097 #endif
2098
2099 #if 0
2100 err |= __put_user(!!used_math(), &sc->sc_used_math);
2101
2102 if (!used_math())
2103 goto out;
2104
2105 /*
2106 * Save FPU state to signal context. Signal handler will "inherit"
2107 * current FPU state.
2108 */
2109 preempt_disable();
2110
2111 if (!is_fpu_owner()) {
2112 own_fpu();
2113 restore_fp(current);
2114 }
2115 err |= save_fp_context(sc);
2116
2117 preempt_enable();
2118 out:
2119 #endif
2120 return err;
2121 }
2122
2123 static inline int
2124 restore_sigcontext(CPUState *regs, struct target_sigcontext *sc)
2125 {
2126 int err = 0;
2127
2128 err |= __get_user(regs->CP0_EPC, &sc->sc_pc);
2129
2130 err |= __get_user(regs->HI[0][regs->current_tc], &sc->sc_mdhi);
2131 err |= __get_user(regs->LO[0][regs->current_tc], &sc->sc_mdlo);
2132
2133 #define restore_gp_reg(i) do { \
2134 err |= __get_user(regs->gpr[i][regs->current_tc], &sc->sc_regs[i]); \
2135 } while(0)
2136 restore_gp_reg( 1); restore_gp_reg( 2); restore_gp_reg( 3);
2137 restore_gp_reg( 4); restore_gp_reg( 5); restore_gp_reg( 6);
2138 restore_gp_reg( 7); restore_gp_reg( 8); restore_gp_reg( 9);
2139 restore_gp_reg(10); restore_gp_reg(11); restore_gp_reg(12);
2140 restore_gp_reg(13); restore_gp_reg(14); restore_gp_reg(15);
2141 restore_gp_reg(16); restore_gp_reg(17); restore_gp_reg(18);
2142 restore_gp_reg(19); restore_gp_reg(20); restore_gp_reg(21);
2143 restore_gp_reg(22); restore_gp_reg(23); restore_gp_reg(24);
2144 restore_gp_reg(25); restore_gp_reg(26); restore_gp_reg(27);
2145 restore_gp_reg(28); restore_gp_reg(29); restore_gp_reg(30);
2146 restore_gp_reg(31);
2147 #undef restore_gp_reg
2148
2149 #if 0
2150 if (cpu_has_dsp) {
2151 err |= __get_user(treg, &sc->sc_hi1); mthi1(treg);
2152 err |= __get_user(treg, &sc->sc_lo1); mtlo1(treg);
2153 err |= __get_user(treg, &sc->sc_hi2); mthi2(treg);
2154 err |= __get_user(treg, &sc->sc_lo2); mtlo2(treg);
2155 err |= __get_user(treg, &sc->sc_hi3); mthi3(treg);
2156 err |= __get_user(treg, &sc->sc_lo3); mtlo3(treg);
2157 err |= __get_user(treg, &sc->sc_dsp); wrdsp(treg, DSP_MASK);
2158 }
2159 #ifdef CONFIG_64BIT
2160 err |= __get_user(regs->hi, &sc->sc_hi[0]);
2161 err |= __get_user(regs->lo, &sc->sc_lo[0]);
2162 if (cpu_has_dsp) {
2163 err |= __get_user(treg, &sc->sc_hi[1]); mthi1(treg);
2164 err |= __get_user(treg, &sc->sc_lo[1]); mthi1(treg);
2165 err |= __get_user(treg, &sc->sc_hi[2]); mthi2(treg);
2166 err |= __get_user(treg, &sc->sc_lo[2]); mthi2(treg);
2167 err |= __get_user(treg, &sc->sc_hi[3]); mthi3(treg);
2168 err |= __get_user(treg, &sc->sc_lo[3]); mthi3(treg);
2169 err |= __get_user(treg, &sc->sc_dsp); wrdsp(treg, DSP_MASK);
2170 }
2171 #endif
2172
2173 err |= __get_user(used_math, &sc->sc_used_math);
2174 conditional_used_math(used_math);
2175
2176 preempt_disable();
2177
2178 if (used_math()) {
2179 /* restore fpu context if we have used it before */
2180 own_fpu();
2181 err |= restore_fp_context(sc);
2182 } else {
2183 /* signal handler may have used FPU. Give it up. */
2184 lose_fpu();
2185 }
2186
2187 preempt_enable();
2188 #endif
2189 return err;
2190 }
2191 /*
2192 * Determine which stack to use..
2193 */
2194 static inline void *
2195 get_sigframe(struct emulated_sigaction *ka, CPUState *regs, size_t frame_size)
2196 {
2197 unsigned long sp;
2198
2199 /* Default to using normal stack */
2200 sp = regs->gpr[29][regs->current_tc];
2201
2202 /*
2203 * FPU emulator may have it's own trampoline active just
2204 * above the user stack, 16-bytes before the next lowest
2205 * 16 byte boundary. Try to avoid trashing it.
2206 */
2207 sp -= 32;
2208
2209 /* This is the X/Open sanctioned signal stack switching. */
2210 if ((ka->sa.sa_flags & TARGET_SA_ONSTACK) && (sas_ss_flags (sp) == 0)) {
2211 sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size;
2212 }
2213
2214 return g2h((sp - frame_size) & ~7);
2215 }
2216
2217 static void setup_frame(int sig, struct emulated_sigaction * ka,
2218 target_sigset_t *set, CPUState *regs)
2219 {
2220 struct sigframe *frame;
2221 int i;
2222
2223 frame = get_sigframe(ka, regs, sizeof(*frame));
2224 if (!access_ok(VERIFY_WRITE, frame, sizeof (*frame)))
2225 goto give_sigsegv;
2226
2227 install_sigtramp(frame->sf_code, TARGET_NR_sigreturn);
2228
2229 if(setup_sigcontext(regs, &frame->sf_sc))
2230 goto give_sigsegv;
2231
2232 for(i = 0; i < TARGET_NSIG_WORDS; i++) {
2233 if(__put_user(set->sig[i], &frame->sf_mask.sig[i]))
2234 goto give_sigsegv;
2235 }
2236
2237 /*
2238 * Arguments to signal handler:
2239 *
2240 * a0 = signal number
2241 * a1 = 0 (should be cause)
2242 * a2 = pointer to struct sigcontext
2243 *
2244 * $25 and PC point to the signal handler, $29 points to the
2245 * struct sigframe.
2246 */
2247 regs->gpr[ 4][regs->current_tc] = sig;
2248 regs->gpr[ 5][regs->current_tc] = 0;
2249 regs->gpr[ 6][regs->current_tc] = h2g(&frame->sf_sc);
2250 regs->gpr[29][regs->current_tc] = h2g(frame);
2251 regs->gpr[31][regs->current_tc] = h2g(frame->sf_code);
2252 /* The original kernel code sets CP0_EPC to the handler
2253 * since it returns to userland using eret
2254 * we cannot do this here, and we must set PC directly */
2255 regs->PC[regs->current_tc] = regs->gpr[25][regs->current_tc] = ka->sa._sa_handler;
2256 return;
2257
2258 give_sigsegv:
2259 force_sig(TARGET_SIGSEGV/*, current*/);
2260 return;
2261 }
2262
2263 long do_sigreturn(CPUState *regs)
2264 {
2265 struct sigframe *frame;
2266 sigset_t blocked;
2267 target_sigset_t target_set;
2268 int i;
2269
2270 #if defined(DEBUG_SIGNAL)
2271 fprintf(stderr, "do_sigreturn\n");
2272 #endif
2273 frame = (struct sigframe *) regs->gpr[29][regs->current_tc];
2274 if (!access_ok(VERIFY_READ, frame, sizeof(*frame)))
2275 goto badframe;
2276
2277 for(i = 0; i < TARGET_NSIG_WORDS; i++) {
2278 if(__get_user(target_set.sig[i], &frame->sf_mask.sig[i]))
2279 goto badframe;
2280 }
2281
2282 target_to_host_sigset_internal(&blocked, &target_set);
2283 sigprocmask(SIG_SETMASK, &blocked, NULL);
2284
2285 if (restore_sigcontext(regs, &frame->sf_sc))
2286 goto badframe;
2287
2288 #if 0
2289 /*
2290 * Don't let your children do this ...
2291 */
2292 __asm__ __volatile__(
2293 "move\t$29, %0\n\t"
2294 "j\tsyscall_exit"
2295 :/* no outputs */
2296 :"r" (&regs));
2297 /* Unreached */
2298 #endif
2299
2300 regs->PC[regs->current_tc] = regs->CP0_EPC;
2301 /* I am not sure this is right, but it seems to work
2302 * maybe a problem with nested signals ? */
2303 regs->CP0_EPC = 0;
2304 return 0;
2305
2306 badframe:
2307 force_sig(TARGET_SIGSEGV/*, current*/);
2308 return 0;
2309 }
2310
2311 static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
2312 target_siginfo_t *info,
2313 target_sigset_t *set, CPUState *env)
2314 {
2315 fprintf(stderr, "setup_rt_frame: not implemented\n");
2316 }
2317
2318 long do_rt_sigreturn(CPUState *env)
2319 {
2320 fprintf(stderr, "do_rt_sigreturn: not implemented\n");
2321 return -ENOSYS;
2322 }
2323
2324 #else
2325
2326 static void setup_frame(int sig, struct emulated_sigaction *ka,
2327 target_sigset_t *set, CPUState *env)
2328 {
2329 fprintf(stderr, "setup_frame: not implemented\n");
2330 }
2331
2332 static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
2333 target_siginfo_t *info,
2334 target_sigset_t *set, CPUState *env)
2335 {
2336 fprintf(stderr, "setup_rt_frame: not implemented\n");
2337 }
2338
2339 long do_sigreturn(CPUState *env)
2340 {
2341 fprintf(stderr, "do_sigreturn: not implemented\n");
2342 return -ENOSYS;
2343 }
2344
2345 long do_rt_sigreturn(CPUState *env)
2346 {
2347 fprintf(stderr, "do_rt_sigreturn: not implemented\n");
2348 return -ENOSYS;
2349 }
2350
2351 #endif
2352
2353 void process_pending_signals(void *cpu_env)
2354 {
2355 int sig;
2356 abi_ulong handler;
2357 sigset_t set, old_set;
2358 target_sigset_t target_old_set;
2359 struct emulated_sigaction *k;
2360 struct sigqueue *q;
2361
2362 if (!signal_pending)
2363 return;
2364
2365 k = sigact_table;
2366 for(sig = 1; sig <= TARGET_NSIG; sig++) {
2367 if (k->pending)
2368 goto handle_signal;
2369 k++;
2370 }
2371 /* if no signal is pending, just return */
2372 signal_pending = 0;
2373 return;
2374
2375 handle_signal:
2376 #ifdef DEBUG_SIGNAL
2377 fprintf(stderr, "qemu: process signal %d\n", sig);
2378 #endif
2379 /* dequeue signal */
2380 q = k->first;
2381 k->first = q->next;
2382 if (!k->first)
2383 k->pending = 0;
2384
2385 sig = gdb_handlesig (cpu_env, sig);
2386 if (!sig) {
2387 fprintf (stderr, "Lost signal\n");
2388 abort();
2389 }
2390
2391 handler = k->sa._sa_handler;
2392 if (handler == TARGET_SIG_DFL) {
2393 /* default handler : ignore some signal. The other are fatal */
2394 if (sig != TARGET_SIGCHLD &&
2395 sig != TARGET_SIGURG &&
2396 sig != TARGET_SIGWINCH) {
2397 force_sig(sig);
2398 }
2399 } else if (handler == TARGET_SIG_IGN) {
2400 /* ignore sig */
2401 } else if (handler == TARGET_SIG_ERR) {
2402 force_sig(sig);
2403 } else {
2404 /* compute the blocked signals during the handler execution */
2405 target_to_host_sigset(&set, &k->sa.sa_mask);
2406 /* SA_NODEFER indicates that the current signal should not be
2407 blocked during the handler */
2408 if (!(k->sa.sa_flags & TARGET_SA_NODEFER))
2409 sigaddset(&set, target_to_host_signal(sig));
2410
2411 /* block signals in the handler using Linux */
2412 sigprocmask(SIG_BLOCK, &set, &old_set);
2413 /* save the previous blocked signal state to restore it at the
2414 end of the signal execution (see do_sigreturn) */
2415 host_to_target_sigset_internal(&target_old_set, &old_set);
2416
2417 /* if the CPU is in VM86 mode, we restore the 32 bit values */
2418 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
2419 {
2420 CPUX86State *env = cpu_env;
2421 if (env->eflags & VM_MASK)
2422 save_v86_state(env);
2423 }
2424 #endif
2425 /* prepare the stack frame of the virtual CPU */
2426 if (k->sa.sa_flags & TARGET_SA_SIGINFO)
2427 setup_rt_frame(sig, k, &q->info, &target_old_set, cpu_env);
2428 else
2429 setup_frame(sig, k, &target_old_set, cpu_env);
2430 if (k->sa.sa_flags & TARGET_SA_RESETHAND)
2431 k->sa._sa_handler = TARGET_SIG_DFL;
2432 }
2433 if (q != &k->info)
2434 free_sigqueue(q);
2435 }