]> git.proxmox.com Git - qemu.git/blob - memory.c
memory: Fold memory_region_update_topology into memory_region_transaction_commit
[qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "memory.h"
17 #include "exec-memory.h"
18 #include "ioport.h"
19 #include "bitops.h"
20 #include "kvm.h"
21 #include <assert.h>
22
23 #define WANT_EXEC_OBSOLETE
24 #include "exec-obsolete.h"
25
26 unsigned memory_region_transaction_depth = 0;
27 static bool global_dirty_log = false;
28
29 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
30 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
31
32 typedef struct AddrRange AddrRange;
33
34 /*
35 * Note using signed integers limits us to physical addresses at most
36 * 63 bits wide. They are needed for negative offsetting in aliases
37 * (large MemoryRegion::alias_offset).
38 */
39 struct AddrRange {
40 Int128 start;
41 Int128 size;
42 };
43
44 static AddrRange addrrange_make(Int128 start, Int128 size)
45 {
46 return (AddrRange) { start, size };
47 }
48
49 static bool addrrange_equal(AddrRange r1, AddrRange r2)
50 {
51 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
52 }
53
54 static Int128 addrrange_end(AddrRange r)
55 {
56 return int128_add(r.start, r.size);
57 }
58
59 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
60 {
61 int128_addto(&range.start, delta);
62 return range;
63 }
64
65 static bool addrrange_contains(AddrRange range, Int128 addr)
66 {
67 return int128_ge(addr, range.start)
68 && int128_lt(addr, addrrange_end(range));
69 }
70
71 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
72 {
73 return addrrange_contains(r1, r2.start)
74 || addrrange_contains(r2, r1.start);
75 }
76
77 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
78 {
79 Int128 start = int128_max(r1.start, r2.start);
80 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
81 return addrrange_make(start, int128_sub(end, start));
82 }
83
84 enum ListenerDirection { Forward, Reverse };
85
86 static bool memory_listener_match(MemoryListener *listener,
87 MemoryRegionSection *section)
88 {
89 return !listener->address_space_filter
90 || listener->address_space_filter == section->address_space;
91 }
92
93 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
94 do { \
95 MemoryListener *_listener; \
96 \
97 switch (_direction) { \
98 case Forward: \
99 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
100 _listener->_callback(_listener, ##_args); \
101 } \
102 break; \
103 case Reverse: \
104 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
105 memory_listeners, link) { \
106 _listener->_callback(_listener, ##_args); \
107 } \
108 break; \
109 default: \
110 abort(); \
111 } \
112 } while (0)
113
114 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
115 do { \
116 MemoryListener *_listener; \
117 \
118 switch (_direction) { \
119 case Forward: \
120 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
121 if (memory_listener_match(_listener, _section)) { \
122 _listener->_callback(_listener, _section, ##_args); \
123 } \
124 } \
125 break; \
126 case Reverse: \
127 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
128 memory_listeners, link) { \
129 if (memory_listener_match(_listener, _section)) { \
130 _listener->_callback(_listener, _section, ##_args); \
131 } \
132 } \
133 break; \
134 default: \
135 abort(); \
136 } \
137 } while (0)
138
139 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback) \
140 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
141 .mr = (fr)->mr, \
142 .address_space = (as)->root, \
143 .offset_within_region = (fr)->offset_in_region, \
144 .size = int128_get64((fr)->addr.size), \
145 .offset_within_address_space = int128_get64((fr)->addr.start), \
146 .readonly = (fr)->readonly, \
147 }))
148
149 struct CoalescedMemoryRange {
150 AddrRange addr;
151 QTAILQ_ENTRY(CoalescedMemoryRange) link;
152 };
153
154 struct MemoryRegionIoeventfd {
155 AddrRange addr;
156 bool match_data;
157 uint64_t data;
158 EventNotifier *e;
159 };
160
161 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
162 MemoryRegionIoeventfd b)
163 {
164 if (int128_lt(a.addr.start, b.addr.start)) {
165 return true;
166 } else if (int128_gt(a.addr.start, b.addr.start)) {
167 return false;
168 } else if (int128_lt(a.addr.size, b.addr.size)) {
169 return true;
170 } else if (int128_gt(a.addr.size, b.addr.size)) {
171 return false;
172 } else if (a.match_data < b.match_data) {
173 return true;
174 } else if (a.match_data > b.match_data) {
175 return false;
176 } else if (a.match_data) {
177 if (a.data < b.data) {
178 return true;
179 } else if (a.data > b.data) {
180 return false;
181 }
182 }
183 if (a.e < b.e) {
184 return true;
185 } else if (a.e > b.e) {
186 return false;
187 }
188 return false;
189 }
190
191 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
192 MemoryRegionIoeventfd b)
193 {
194 return !memory_region_ioeventfd_before(a, b)
195 && !memory_region_ioeventfd_before(b, a);
196 }
197
198 typedef struct FlatRange FlatRange;
199 typedef struct FlatView FlatView;
200
201 /* Range of memory in the global map. Addresses are absolute. */
202 struct FlatRange {
203 MemoryRegion *mr;
204 target_phys_addr_t offset_in_region;
205 AddrRange addr;
206 uint8_t dirty_log_mask;
207 bool readable;
208 bool readonly;
209 };
210
211 /* Flattened global view of current active memory hierarchy. Kept in sorted
212 * order.
213 */
214 struct FlatView {
215 FlatRange *ranges;
216 unsigned nr;
217 unsigned nr_allocated;
218 };
219
220 typedef struct AddressSpace AddressSpace;
221 typedef struct AddressSpaceOps AddressSpaceOps;
222
223 /* A system address space - I/O, memory, etc. */
224 struct AddressSpace {
225 MemoryRegion *root;
226 FlatView current_map;
227 int ioeventfd_nb;
228 MemoryRegionIoeventfd *ioeventfds;
229 };
230
231 #define FOR_EACH_FLAT_RANGE(var, view) \
232 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
233
234 static bool flatrange_equal(FlatRange *a, FlatRange *b)
235 {
236 return a->mr == b->mr
237 && addrrange_equal(a->addr, b->addr)
238 && a->offset_in_region == b->offset_in_region
239 && a->readable == b->readable
240 && a->readonly == b->readonly;
241 }
242
243 static void flatview_init(FlatView *view)
244 {
245 view->ranges = NULL;
246 view->nr = 0;
247 view->nr_allocated = 0;
248 }
249
250 /* Insert a range into a given position. Caller is responsible for maintaining
251 * sorting order.
252 */
253 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
254 {
255 if (view->nr == view->nr_allocated) {
256 view->nr_allocated = MAX(2 * view->nr, 10);
257 view->ranges = g_realloc(view->ranges,
258 view->nr_allocated * sizeof(*view->ranges));
259 }
260 memmove(view->ranges + pos + 1, view->ranges + pos,
261 (view->nr - pos) * sizeof(FlatRange));
262 view->ranges[pos] = *range;
263 ++view->nr;
264 }
265
266 static void flatview_destroy(FlatView *view)
267 {
268 g_free(view->ranges);
269 }
270
271 static bool can_merge(FlatRange *r1, FlatRange *r2)
272 {
273 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
274 && r1->mr == r2->mr
275 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
276 r1->addr.size),
277 int128_make64(r2->offset_in_region))
278 && r1->dirty_log_mask == r2->dirty_log_mask
279 && r1->readable == r2->readable
280 && r1->readonly == r2->readonly;
281 }
282
283 /* Attempt to simplify a view by merging ajacent ranges */
284 static void flatview_simplify(FlatView *view)
285 {
286 unsigned i, j;
287
288 i = 0;
289 while (i < view->nr) {
290 j = i + 1;
291 while (j < view->nr
292 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
293 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
294 ++j;
295 }
296 ++i;
297 memmove(&view->ranges[i], &view->ranges[j],
298 (view->nr - j) * sizeof(view->ranges[j]));
299 view->nr -= j - i;
300 }
301 }
302
303 static void memory_region_read_accessor(void *opaque,
304 target_phys_addr_t addr,
305 uint64_t *value,
306 unsigned size,
307 unsigned shift,
308 uint64_t mask)
309 {
310 MemoryRegion *mr = opaque;
311 uint64_t tmp;
312
313 if (mr->flush_coalesced_mmio) {
314 qemu_flush_coalesced_mmio_buffer();
315 }
316 tmp = mr->ops->read(mr->opaque, addr, size);
317 *value |= (tmp & mask) << shift;
318 }
319
320 static void memory_region_write_accessor(void *opaque,
321 target_phys_addr_t addr,
322 uint64_t *value,
323 unsigned size,
324 unsigned shift,
325 uint64_t mask)
326 {
327 MemoryRegion *mr = opaque;
328 uint64_t tmp;
329
330 if (mr->flush_coalesced_mmio) {
331 qemu_flush_coalesced_mmio_buffer();
332 }
333 tmp = (*value >> shift) & mask;
334 mr->ops->write(mr->opaque, addr, tmp, size);
335 }
336
337 static void access_with_adjusted_size(target_phys_addr_t addr,
338 uint64_t *value,
339 unsigned size,
340 unsigned access_size_min,
341 unsigned access_size_max,
342 void (*access)(void *opaque,
343 target_phys_addr_t addr,
344 uint64_t *value,
345 unsigned size,
346 unsigned shift,
347 uint64_t mask),
348 void *opaque)
349 {
350 uint64_t access_mask;
351 unsigned access_size;
352 unsigned i;
353
354 if (!access_size_min) {
355 access_size_min = 1;
356 }
357 if (!access_size_max) {
358 access_size_max = 4;
359 }
360 access_size = MAX(MIN(size, access_size_max), access_size_min);
361 access_mask = -1ULL >> (64 - access_size * 8);
362 for (i = 0; i < size; i += access_size) {
363 /* FIXME: big-endian support */
364 access(opaque, addr + i, value, access_size, i * 8, access_mask);
365 }
366 }
367
368 static AddressSpace address_space_memory;
369
370 static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
371 unsigned width, bool write)
372 {
373 const MemoryRegionPortio *mrp;
374
375 for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
376 if (offset >= mrp->offset && offset < mrp->offset + mrp->len
377 && width == mrp->size
378 && (write ? (bool)mrp->write : (bool)mrp->read)) {
379 return mrp;
380 }
381 }
382 return NULL;
383 }
384
385 static void memory_region_iorange_read(IORange *iorange,
386 uint64_t offset,
387 unsigned width,
388 uint64_t *data)
389 {
390 MemoryRegionIORange *mrio
391 = container_of(iorange, MemoryRegionIORange, iorange);
392 MemoryRegion *mr = mrio->mr;
393
394 offset += mrio->offset;
395 if (mr->ops->old_portio) {
396 const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
397 width, false);
398
399 *data = ((uint64_t)1 << (width * 8)) - 1;
400 if (mrp) {
401 *data = mrp->read(mr->opaque, offset);
402 } else if (width == 2) {
403 mrp = find_portio(mr, offset - mrio->offset, 1, false);
404 assert(mrp);
405 *data = mrp->read(mr->opaque, offset) |
406 (mrp->read(mr->opaque, offset + 1) << 8);
407 }
408 return;
409 }
410 *data = 0;
411 access_with_adjusted_size(offset, data, width,
412 mr->ops->impl.min_access_size,
413 mr->ops->impl.max_access_size,
414 memory_region_read_accessor, mr);
415 }
416
417 static void memory_region_iorange_write(IORange *iorange,
418 uint64_t offset,
419 unsigned width,
420 uint64_t data)
421 {
422 MemoryRegionIORange *mrio
423 = container_of(iorange, MemoryRegionIORange, iorange);
424 MemoryRegion *mr = mrio->mr;
425
426 offset += mrio->offset;
427 if (mr->ops->old_portio) {
428 const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
429 width, true);
430
431 if (mrp) {
432 mrp->write(mr->opaque, offset, data);
433 } else if (width == 2) {
434 mrp = find_portio(mr, offset - mrio->offset, 1, true);
435 assert(mrp);
436 mrp->write(mr->opaque, offset, data & 0xff);
437 mrp->write(mr->opaque, offset + 1, data >> 8);
438 }
439 return;
440 }
441 access_with_adjusted_size(offset, &data, width,
442 mr->ops->impl.min_access_size,
443 mr->ops->impl.max_access_size,
444 memory_region_write_accessor, mr);
445 }
446
447 static void memory_region_iorange_destructor(IORange *iorange)
448 {
449 g_free(container_of(iorange, MemoryRegionIORange, iorange));
450 }
451
452 const IORangeOps memory_region_iorange_ops = {
453 .read = memory_region_iorange_read,
454 .write = memory_region_iorange_write,
455 .destructor = memory_region_iorange_destructor,
456 };
457
458 static AddressSpace address_space_io;
459
460 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
461 {
462 while (mr->parent) {
463 mr = mr->parent;
464 }
465 if (mr == address_space_memory.root) {
466 return &address_space_memory;
467 }
468 if (mr == address_space_io.root) {
469 return &address_space_io;
470 }
471 abort();
472 }
473
474 /* Render a memory region into the global view. Ranges in @view obscure
475 * ranges in @mr.
476 */
477 static void render_memory_region(FlatView *view,
478 MemoryRegion *mr,
479 Int128 base,
480 AddrRange clip,
481 bool readonly)
482 {
483 MemoryRegion *subregion;
484 unsigned i;
485 target_phys_addr_t offset_in_region;
486 Int128 remain;
487 Int128 now;
488 FlatRange fr;
489 AddrRange tmp;
490
491 if (!mr->enabled) {
492 return;
493 }
494
495 int128_addto(&base, int128_make64(mr->addr));
496 readonly |= mr->readonly;
497
498 tmp = addrrange_make(base, mr->size);
499
500 if (!addrrange_intersects(tmp, clip)) {
501 return;
502 }
503
504 clip = addrrange_intersection(tmp, clip);
505
506 if (mr->alias) {
507 int128_subfrom(&base, int128_make64(mr->alias->addr));
508 int128_subfrom(&base, int128_make64(mr->alias_offset));
509 render_memory_region(view, mr->alias, base, clip, readonly);
510 return;
511 }
512
513 /* Render subregions in priority order. */
514 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
515 render_memory_region(view, subregion, base, clip, readonly);
516 }
517
518 if (!mr->terminates) {
519 return;
520 }
521
522 offset_in_region = int128_get64(int128_sub(clip.start, base));
523 base = clip.start;
524 remain = clip.size;
525
526 /* Render the region itself into any gaps left by the current view. */
527 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
528 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
529 continue;
530 }
531 if (int128_lt(base, view->ranges[i].addr.start)) {
532 now = int128_min(remain,
533 int128_sub(view->ranges[i].addr.start, base));
534 fr.mr = mr;
535 fr.offset_in_region = offset_in_region;
536 fr.addr = addrrange_make(base, now);
537 fr.dirty_log_mask = mr->dirty_log_mask;
538 fr.readable = mr->readable;
539 fr.readonly = readonly;
540 flatview_insert(view, i, &fr);
541 ++i;
542 int128_addto(&base, now);
543 offset_in_region += int128_get64(now);
544 int128_subfrom(&remain, now);
545 }
546 if (int128_eq(base, view->ranges[i].addr.start)) {
547 now = int128_min(remain, view->ranges[i].addr.size);
548 int128_addto(&base, now);
549 offset_in_region += int128_get64(now);
550 int128_subfrom(&remain, now);
551 }
552 }
553 if (int128_nz(remain)) {
554 fr.mr = mr;
555 fr.offset_in_region = offset_in_region;
556 fr.addr = addrrange_make(base, remain);
557 fr.dirty_log_mask = mr->dirty_log_mask;
558 fr.readable = mr->readable;
559 fr.readonly = readonly;
560 flatview_insert(view, i, &fr);
561 }
562 }
563
564 /* Render a memory topology into a list of disjoint absolute ranges. */
565 static FlatView generate_memory_topology(MemoryRegion *mr)
566 {
567 FlatView view;
568
569 flatview_init(&view);
570
571 render_memory_region(&view, mr, int128_zero(),
572 addrrange_make(int128_zero(), int128_2_64()), false);
573 flatview_simplify(&view);
574
575 return view;
576 }
577
578 static void address_space_add_del_ioeventfds(AddressSpace *as,
579 MemoryRegionIoeventfd *fds_new,
580 unsigned fds_new_nb,
581 MemoryRegionIoeventfd *fds_old,
582 unsigned fds_old_nb)
583 {
584 unsigned iold, inew;
585 MemoryRegionIoeventfd *fd;
586 MemoryRegionSection section;
587
588 /* Generate a symmetric difference of the old and new fd sets, adding
589 * and deleting as necessary.
590 */
591
592 iold = inew = 0;
593 while (iold < fds_old_nb || inew < fds_new_nb) {
594 if (iold < fds_old_nb
595 && (inew == fds_new_nb
596 || memory_region_ioeventfd_before(fds_old[iold],
597 fds_new[inew]))) {
598 fd = &fds_old[iold];
599 section = (MemoryRegionSection) {
600 .address_space = as->root,
601 .offset_within_address_space = int128_get64(fd->addr.start),
602 .size = int128_get64(fd->addr.size),
603 };
604 MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
605 fd->match_data, fd->data, fd->e);
606 ++iold;
607 } else if (inew < fds_new_nb
608 && (iold == fds_old_nb
609 || memory_region_ioeventfd_before(fds_new[inew],
610 fds_old[iold]))) {
611 fd = &fds_new[inew];
612 section = (MemoryRegionSection) {
613 .address_space = as->root,
614 .offset_within_address_space = int128_get64(fd->addr.start),
615 .size = int128_get64(fd->addr.size),
616 };
617 MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
618 fd->match_data, fd->data, fd->e);
619 ++inew;
620 } else {
621 ++iold;
622 ++inew;
623 }
624 }
625 }
626
627 static void address_space_update_ioeventfds(AddressSpace *as)
628 {
629 FlatRange *fr;
630 unsigned ioeventfd_nb = 0;
631 MemoryRegionIoeventfd *ioeventfds = NULL;
632 AddrRange tmp;
633 unsigned i;
634
635 FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
636 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
637 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
638 int128_sub(fr->addr.start,
639 int128_make64(fr->offset_in_region)));
640 if (addrrange_intersects(fr->addr, tmp)) {
641 ++ioeventfd_nb;
642 ioeventfds = g_realloc(ioeventfds,
643 ioeventfd_nb * sizeof(*ioeventfds));
644 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
645 ioeventfds[ioeventfd_nb-1].addr = tmp;
646 }
647 }
648 }
649
650 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
651 as->ioeventfds, as->ioeventfd_nb);
652
653 g_free(as->ioeventfds);
654 as->ioeventfds = ioeventfds;
655 as->ioeventfd_nb = ioeventfd_nb;
656 }
657
658 static void address_space_update_topology_pass(AddressSpace *as,
659 FlatView old_view,
660 FlatView new_view,
661 bool adding)
662 {
663 unsigned iold, inew;
664 FlatRange *frold, *frnew;
665
666 /* Generate a symmetric difference of the old and new memory maps.
667 * Kill ranges in the old map, and instantiate ranges in the new map.
668 */
669 iold = inew = 0;
670 while (iold < old_view.nr || inew < new_view.nr) {
671 if (iold < old_view.nr) {
672 frold = &old_view.ranges[iold];
673 } else {
674 frold = NULL;
675 }
676 if (inew < new_view.nr) {
677 frnew = &new_view.ranges[inew];
678 } else {
679 frnew = NULL;
680 }
681
682 if (frold
683 && (!frnew
684 || int128_lt(frold->addr.start, frnew->addr.start)
685 || (int128_eq(frold->addr.start, frnew->addr.start)
686 && !flatrange_equal(frold, frnew)))) {
687 /* In old, but (not in new, or in new but attributes changed). */
688
689 if (!adding) {
690 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
691 }
692
693 ++iold;
694 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
695 /* In both (logging may have changed) */
696
697 if (adding) {
698 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
699 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
700 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
701 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
702 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
703 }
704 }
705
706 ++iold;
707 ++inew;
708 } else {
709 /* In new */
710
711 if (adding) {
712 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
713 }
714
715 ++inew;
716 }
717 }
718 }
719
720
721 static void address_space_update_topology(AddressSpace *as)
722 {
723 FlatView old_view = as->current_map;
724 FlatView new_view = generate_memory_topology(as->root);
725
726 address_space_update_topology_pass(as, old_view, new_view, false);
727 address_space_update_topology_pass(as, old_view, new_view, true);
728
729 as->current_map = new_view;
730 flatview_destroy(&old_view);
731 address_space_update_ioeventfds(as);
732 }
733
734 void memory_region_transaction_begin(void)
735 {
736 ++memory_region_transaction_depth;
737 }
738
739 void memory_region_transaction_commit(void)
740 {
741 assert(memory_region_transaction_depth);
742 --memory_region_transaction_depth;
743 if (!memory_region_transaction_depth) {
744 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
745
746 if (address_space_memory.root) {
747 address_space_update_topology(&address_space_memory);
748 }
749 if (address_space_io.root) {
750 address_space_update_topology(&address_space_io);
751 }
752
753 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
754 }
755 }
756
757 static void memory_region_destructor_none(MemoryRegion *mr)
758 {
759 }
760
761 static void memory_region_destructor_ram(MemoryRegion *mr)
762 {
763 qemu_ram_free(mr->ram_addr);
764 }
765
766 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
767 {
768 qemu_ram_free_from_ptr(mr->ram_addr);
769 }
770
771 static void memory_region_destructor_iomem(MemoryRegion *mr)
772 {
773 }
774
775 static void memory_region_destructor_rom_device(MemoryRegion *mr)
776 {
777 qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
778 }
779
780 static bool memory_region_wrong_endianness(MemoryRegion *mr)
781 {
782 #ifdef TARGET_WORDS_BIGENDIAN
783 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
784 #else
785 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
786 #endif
787 }
788
789 void memory_region_init(MemoryRegion *mr,
790 const char *name,
791 uint64_t size)
792 {
793 mr->ops = NULL;
794 mr->parent = NULL;
795 mr->size = int128_make64(size);
796 if (size == UINT64_MAX) {
797 mr->size = int128_2_64();
798 }
799 mr->addr = 0;
800 mr->subpage = false;
801 mr->enabled = true;
802 mr->terminates = false;
803 mr->ram = false;
804 mr->readable = true;
805 mr->readonly = false;
806 mr->rom_device = false;
807 mr->destructor = memory_region_destructor_none;
808 mr->priority = 0;
809 mr->may_overlap = false;
810 mr->alias = NULL;
811 QTAILQ_INIT(&mr->subregions);
812 memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
813 QTAILQ_INIT(&mr->coalesced);
814 mr->name = g_strdup(name);
815 mr->dirty_log_mask = 0;
816 mr->ioeventfd_nb = 0;
817 mr->ioeventfds = NULL;
818 mr->flush_coalesced_mmio = false;
819 }
820
821 static bool memory_region_access_valid(MemoryRegion *mr,
822 target_phys_addr_t addr,
823 unsigned size,
824 bool is_write)
825 {
826 if (mr->ops->valid.accepts
827 && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write)) {
828 return false;
829 }
830
831 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
832 return false;
833 }
834
835 /* Treat zero as compatibility all valid */
836 if (!mr->ops->valid.max_access_size) {
837 return true;
838 }
839
840 if (size > mr->ops->valid.max_access_size
841 || size < mr->ops->valid.min_access_size) {
842 return false;
843 }
844 return true;
845 }
846
847 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
848 target_phys_addr_t addr,
849 unsigned size)
850 {
851 uint64_t data = 0;
852
853 if (!memory_region_access_valid(mr, addr, size, false)) {
854 return -1U; /* FIXME: better signalling */
855 }
856
857 if (!mr->ops->read) {
858 return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr);
859 }
860
861 /* FIXME: support unaligned access */
862 access_with_adjusted_size(addr, &data, size,
863 mr->ops->impl.min_access_size,
864 mr->ops->impl.max_access_size,
865 memory_region_read_accessor, mr);
866
867 return data;
868 }
869
870 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
871 {
872 if (memory_region_wrong_endianness(mr)) {
873 switch (size) {
874 case 1:
875 break;
876 case 2:
877 *data = bswap16(*data);
878 break;
879 case 4:
880 *data = bswap32(*data);
881 break;
882 default:
883 abort();
884 }
885 }
886 }
887
888 static uint64_t memory_region_dispatch_read(MemoryRegion *mr,
889 target_phys_addr_t addr,
890 unsigned size)
891 {
892 uint64_t ret;
893
894 ret = memory_region_dispatch_read1(mr, addr, size);
895 adjust_endianness(mr, &ret, size);
896 return ret;
897 }
898
899 static void memory_region_dispatch_write(MemoryRegion *mr,
900 target_phys_addr_t addr,
901 uint64_t data,
902 unsigned size)
903 {
904 if (!memory_region_access_valid(mr, addr, size, true)) {
905 return; /* FIXME: better signalling */
906 }
907
908 adjust_endianness(mr, &data, size);
909
910 if (!mr->ops->write) {
911 mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
912 return;
913 }
914
915 /* FIXME: support unaligned access */
916 access_with_adjusted_size(addr, &data, size,
917 mr->ops->impl.min_access_size,
918 mr->ops->impl.max_access_size,
919 memory_region_write_accessor, mr);
920 }
921
922 void memory_region_init_io(MemoryRegion *mr,
923 const MemoryRegionOps *ops,
924 void *opaque,
925 const char *name,
926 uint64_t size)
927 {
928 memory_region_init(mr, name, size);
929 mr->ops = ops;
930 mr->opaque = opaque;
931 mr->terminates = true;
932 mr->destructor = memory_region_destructor_iomem;
933 mr->ram_addr = ~(ram_addr_t)0;
934 }
935
936 void memory_region_init_ram(MemoryRegion *mr,
937 const char *name,
938 uint64_t size)
939 {
940 memory_region_init(mr, name, size);
941 mr->ram = true;
942 mr->terminates = true;
943 mr->destructor = memory_region_destructor_ram;
944 mr->ram_addr = qemu_ram_alloc(size, mr);
945 }
946
947 void memory_region_init_ram_ptr(MemoryRegion *mr,
948 const char *name,
949 uint64_t size,
950 void *ptr)
951 {
952 memory_region_init(mr, name, size);
953 mr->ram = true;
954 mr->terminates = true;
955 mr->destructor = memory_region_destructor_ram_from_ptr;
956 mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
957 }
958
959 void memory_region_init_alias(MemoryRegion *mr,
960 const char *name,
961 MemoryRegion *orig,
962 target_phys_addr_t offset,
963 uint64_t size)
964 {
965 memory_region_init(mr, name, size);
966 mr->alias = orig;
967 mr->alias_offset = offset;
968 }
969
970 void memory_region_init_rom_device(MemoryRegion *mr,
971 const MemoryRegionOps *ops,
972 void *opaque,
973 const char *name,
974 uint64_t size)
975 {
976 memory_region_init(mr, name, size);
977 mr->ops = ops;
978 mr->opaque = opaque;
979 mr->terminates = true;
980 mr->rom_device = true;
981 mr->destructor = memory_region_destructor_rom_device;
982 mr->ram_addr = qemu_ram_alloc(size, mr);
983 }
984
985 static uint64_t invalid_read(void *opaque, target_phys_addr_t addr,
986 unsigned size)
987 {
988 MemoryRegion *mr = opaque;
989
990 if (!mr->warning_printed) {
991 fprintf(stderr, "Invalid read from memory region %s\n", mr->name);
992 mr->warning_printed = true;
993 }
994 return -1U;
995 }
996
997 static void invalid_write(void *opaque, target_phys_addr_t addr, uint64_t data,
998 unsigned size)
999 {
1000 MemoryRegion *mr = opaque;
1001
1002 if (!mr->warning_printed) {
1003 fprintf(stderr, "Invalid write to memory region %s\n", mr->name);
1004 mr->warning_printed = true;
1005 }
1006 }
1007
1008 static const MemoryRegionOps reservation_ops = {
1009 .read = invalid_read,
1010 .write = invalid_write,
1011 .endianness = DEVICE_NATIVE_ENDIAN,
1012 };
1013
1014 void memory_region_init_reservation(MemoryRegion *mr,
1015 const char *name,
1016 uint64_t size)
1017 {
1018 memory_region_init_io(mr, &reservation_ops, mr, name, size);
1019 }
1020
1021 void memory_region_destroy(MemoryRegion *mr)
1022 {
1023 assert(QTAILQ_EMPTY(&mr->subregions));
1024 mr->destructor(mr);
1025 memory_region_clear_coalescing(mr);
1026 g_free((char *)mr->name);
1027 g_free(mr->ioeventfds);
1028 }
1029
1030 uint64_t memory_region_size(MemoryRegion *mr)
1031 {
1032 if (int128_eq(mr->size, int128_2_64())) {
1033 return UINT64_MAX;
1034 }
1035 return int128_get64(mr->size);
1036 }
1037
1038 const char *memory_region_name(MemoryRegion *mr)
1039 {
1040 return mr->name;
1041 }
1042
1043 bool memory_region_is_ram(MemoryRegion *mr)
1044 {
1045 return mr->ram;
1046 }
1047
1048 bool memory_region_is_logging(MemoryRegion *mr)
1049 {
1050 return mr->dirty_log_mask;
1051 }
1052
1053 bool memory_region_is_rom(MemoryRegion *mr)
1054 {
1055 return mr->ram && mr->readonly;
1056 }
1057
1058 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1059 {
1060 uint8_t mask = 1 << client;
1061
1062 memory_region_transaction_begin();
1063 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1064 memory_region_transaction_commit();
1065 }
1066
1067 bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1068 target_phys_addr_t size, unsigned client)
1069 {
1070 assert(mr->terminates);
1071 return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1072 1 << client);
1073 }
1074
1075 void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1076 target_phys_addr_t size)
1077 {
1078 assert(mr->terminates);
1079 return cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size, -1);
1080 }
1081
1082 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1083 {
1084 FlatRange *fr;
1085
1086 FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1087 if (fr->mr == mr) {
1088 MEMORY_LISTENER_UPDATE_REGION(fr, &address_space_memory,
1089 Forward, log_sync);
1090 }
1091 }
1092 }
1093
1094 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1095 {
1096 if (mr->readonly != readonly) {
1097 memory_region_transaction_begin();
1098 mr->readonly = readonly;
1099 memory_region_transaction_commit();
1100 }
1101 }
1102
1103 void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable)
1104 {
1105 if (mr->readable != readable) {
1106 memory_region_transaction_begin();
1107 mr->readable = readable;
1108 memory_region_transaction_commit();
1109 }
1110 }
1111
1112 void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1113 target_phys_addr_t size, unsigned client)
1114 {
1115 assert(mr->terminates);
1116 cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1117 mr->ram_addr + addr + size,
1118 1 << client);
1119 }
1120
1121 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1122 {
1123 if (mr->alias) {
1124 return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1125 }
1126
1127 assert(mr->terminates);
1128
1129 return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1130 }
1131
1132 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1133 {
1134 FlatRange *fr;
1135 CoalescedMemoryRange *cmr;
1136 AddrRange tmp;
1137
1138 FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1139 if (fr->mr == mr) {
1140 qemu_unregister_coalesced_mmio(int128_get64(fr->addr.start),
1141 int128_get64(fr->addr.size));
1142 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1143 tmp = addrrange_shift(cmr->addr,
1144 int128_sub(fr->addr.start,
1145 int128_make64(fr->offset_in_region)));
1146 if (!addrrange_intersects(tmp, fr->addr)) {
1147 continue;
1148 }
1149 tmp = addrrange_intersection(tmp, fr->addr);
1150 qemu_register_coalesced_mmio(int128_get64(tmp.start),
1151 int128_get64(tmp.size));
1152 }
1153 }
1154 }
1155 }
1156
1157 void memory_region_set_coalescing(MemoryRegion *mr)
1158 {
1159 memory_region_clear_coalescing(mr);
1160 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1161 }
1162
1163 void memory_region_add_coalescing(MemoryRegion *mr,
1164 target_phys_addr_t offset,
1165 uint64_t size)
1166 {
1167 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1168
1169 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1170 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1171 memory_region_update_coalesced_range(mr);
1172 memory_region_set_flush_coalesced(mr);
1173 }
1174
1175 void memory_region_clear_coalescing(MemoryRegion *mr)
1176 {
1177 CoalescedMemoryRange *cmr;
1178
1179 qemu_flush_coalesced_mmio_buffer();
1180 mr->flush_coalesced_mmio = false;
1181
1182 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1183 cmr = QTAILQ_FIRST(&mr->coalesced);
1184 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1185 g_free(cmr);
1186 }
1187 memory_region_update_coalesced_range(mr);
1188 }
1189
1190 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1191 {
1192 mr->flush_coalesced_mmio = true;
1193 }
1194
1195 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1196 {
1197 qemu_flush_coalesced_mmio_buffer();
1198 if (QTAILQ_EMPTY(&mr->coalesced)) {
1199 mr->flush_coalesced_mmio = false;
1200 }
1201 }
1202
1203 void memory_region_add_eventfd(MemoryRegion *mr,
1204 target_phys_addr_t addr,
1205 unsigned size,
1206 bool match_data,
1207 uint64_t data,
1208 EventNotifier *e)
1209 {
1210 MemoryRegionIoeventfd mrfd = {
1211 .addr.start = int128_make64(addr),
1212 .addr.size = int128_make64(size),
1213 .match_data = match_data,
1214 .data = data,
1215 .e = e,
1216 };
1217 unsigned i;
1218
1219 memory_region_transaction_begin();
1220 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1221 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1222 break;
1223 }
1224 }
1225 ++mr->ioeventfd_nb;
1226 mr->ioeventfds = g_realloc(mr->ioeventfds,
1227 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1228 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1229 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1230 mr->ioeventfds[i] = mrfd;
1231 memory_region_transaction_commit();
1232 }
1233
1234 void memory_region_del_eventfd(MemoryRegion *mr,
1235 target_phys_addr_t addr,
1236 unsigned size,
1237 bool match_data,
1238 uint64_t data,
1239 EventNotifier *e)
1240 {
1241 MemoryRegionIoeventfd mrfd = {
1242 .addr.start = int128_make64(addr),
1243 .addr.size = int128_make64(size),
1244 .match_data = match_data,
1245 .data = data,
1246 .e = e,
1247 };
1248 unsigned i;
1249
1250 memory_region_transaction_begin();
1251 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1252 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1253 break;
1254 }
1255 }
1256 assert(i != mr->ioeventfd_nb);
1257 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1258 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1259 --mr->ioeventfd_nb;
1260 mr->ioeventfds = g_realloc(mr->ioeventfds,
1261 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1262 memory_region_transaction_commit();
1263 }
1264
1265 static void memory_region_add_subregion_common(MemoryRegion *mr,
1266 target_phys_addr_t offset,
1267 MemoryRegion *subregion)
1268 {
1269 MemoryRegion *other;
1270
1271 memory_region_transaction_begin();
1272
1273 assert(!subregion->parent);
1274 subregion->parent = mr;
1275 subregion->addr = offset;
1276 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1277 if (subregion->may_overlap || other->may_overlap) {
1278 continue;
1279 }
1280 if (int128_gt(int128_make64(offset),
1281 int128_add(int128_make64(other->addr), other->size))
1282 || int128_le(int128_add(int128_make64(offset), subregion->size),
1283 int128_make64(other->addr))) {
1284 continue;
1285 }
1286 #if 0
1287 printf("warning: subregion collision %llx/%llx (%s) "
1288 "vs %llx/%llx (%s)\n",
1289 (unsigned long long)offset,
1290 (unsigned long long)int128_get64(subregion->size),
1291 subregion->name,
1292 (unsigned long long)other->addr,
1293 (unsigned long long)int128_get64(other->size),
1294 other->name);
1295 #endif
1296 }
1297 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1298 if (subregion->priority >= other->priority) {
1299 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1300 goto done;
1301 }
1302 }
1303 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1304 done:
1305 memory_region_transaction_commit();
1306 }
1307
1308
1309 void memory_region_add_subregion(MemoryRegion *mr,
1310 target_phys_addr_t offset,
1311 MemoryRegion *subregion)
1312 {
1313 subregion->may_overlap = false;
1314 subregion->priority = 0;
1315 memory_region_add_subregion_common(mr, offset, subregion);
1316 }
1317
1318 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1319 target_phys_addr_t offset,
1320 MemoryRegion *subregion,
1321 unsigned priority)
1322 {
1323 subregion->may_overlap = true;
1324 subregion->priority = priority;
1325 memory_region_add_subregion_common(mr, offset, subregion);
1326 }
1327
1328 void memory_region_del_subregion(MemoryRegion *mr,
1329 MemoryRegion *subregion)
1330 {
1331 memory_region_transaction_begin();
1332 assert(subregion->parent == mr);
1333 subregion->parent = NULL;
1334 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1335 memory_region_transaction_commit();
1336 }
1337
1338 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1339 {
1340 if (enabled == mr->enabled) {
1341 return;
1342 }
1343 memory_region_transaction_begin();
1344 mr->enabled = enabled;
1345 memory_region_transaction_commit();
1346 }
1347
1348 void memory_region_set_address(MemoryRegion *mr, target_phys_addr_t addr)
1349 {
1350 MemoryRegion *parent = mr->parent;
1351 unsigned priority = mr->priority;
1352 bool may_overlap = mr->may_overlap;
1353
1354 if (addr == mr->addr || !parent) {
1355 mr->addr = addr;
1356 return;
1357 }
1358
1359 memory_region_transaction_begin();
1360 memory_region_del_subregion(parent, mr);
1361 if (may_overlap) {
1362 memory_region_add_subregion_overlap(parent, addr, mr, priority);
1363 } else {
1364 memory_region_add_subregion(parent, addr, mr);
1365 }
1366 memory_region_transaction_commit();
1367 }
1368
1369 void memory_region_set_alias_offset(MemoryRegion *mr, target_phys_addr_t offset)
1370 {
1371 assert(mr->alias);
1372
1373 if (offset == mr->alias_offset) {
1374 return;
1375 }
1376
1377 memory_region_transaction_begin();
1378 mr->alias_offset = offset;
1379 memory_region_transaction_commit();
1380 }
1381
1382 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1383 {
1384 return mr->ram_addr;
1385 }
1386
1387 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1388 {
1389 const AddrRange *addr = addr_;
1390 const FlatRange *fr = fr_;
1391
1392 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1393 return -1;
1394 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1395 return 1;
1396 }
1397 return 0;
1398 }
1399
1400 static FlatRange *address_space_lookup(AddressSpace *as, AddrRange addr)
1401 {
1402 return bsearch(&addr, as->current_map.ranges, as->current_map.nr,
1403 sizeof(FlatRange), cmp_flatrange_addr);
1404 }
1405
1406 MemoryRegionSection memory_region_find(MemoryRegion *address_space,
1407 target_phys_addr_t addr, uint64_t size)
1408 {
1409 AddressSpace *as = memory_region_to_address_space(address_space);
1410 AddrRange range = addrrange_make(int128_make64(addr),
1411 int128_make64(size));
1412 FlatRange *fr = address_space_lookup(as, range);
1413 MemoryRegionSection ret = { .mr = NULL, .size = 0 };
1414
1415 if (!fr) {
1416 return ret;
1417 }
1418
1419 while (fr > as->current_map.ranges
1420 && addrrange_intersects(fr[-1].addr, range)) {
1421 --fr;
1422 }
1423
1424 ret.mr = fr->mr;
1425 range = addrrange_intersection(range, fr->addr);
1426 ret.offset_within_region = fr->offset_in_region;
1427 ret.offset_within_region += int128_get64(int128_sub(range.start,
1428 fr->addr.start));
1429 ret.size = int128_get64(range.size);
1430 ret.offset_within_address_space = int128_get64(range.start);
1431 ret.readonly = fr->readonly;
1432 return ret;
1433 }
1434
1435 void memory_global_sync_dirty_bitmap(MemoryRegion *address_space)
1436 {
1437 AddressSpace *as = memory_region_to_address_space(address_space);
1438 FlatRange *fr;
1439
1440 FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
1441 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1442 }
1443 }
1444
1445 void memory_global_dirty_log_start(void)
1446 {
1447 global_dirty_log = true;
1448 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1449 }
1450
1451 void memory_global_dirty_log_stop(void)
1452 {
1453 global_dirty_log = false;
1454 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1455 }
1456
1457 static void listener_add_address_space(MemoryListener *listener,
1458 AddressSpace *as)
1459 {
1460 FlatRange *fr;
1461
1462 if (listener->address_space_filter
1463 && listener->address_space_filter != as->root) {
1464 return;
1465 }
1466
1467 if (global_dirty_log) {
1468 listener->log_global_start(listener);
1469 }
1470 FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
1471 MemoryRegionSection section = {
1472 .mr = fr->mr,
1473 .address_space = as->root,
1474 .offset_within_region = fr->offset_in_region,
1475 .size = int128_get64(fr->addr.size),
1476 .offset_within_address_space = int128_get64(fr->addr.start),
1477 .readonly = fr->readonly,
1478 };
1479 listener->region_add(listener, &section);
1480 }
1481 }
1482
1483 void memory_listener_register(MemoryListener *listener, MemoryRegion *filter)
1484 {
1485 MemoryListener *other = NULL;
1486
1487 listener->address_space_filter = filter;
1488 if (QTAILQ_EMPTY(&memory_listeners)
1489 || listener->priority >= QTAILQ_LAST(&memory_listeners,
1490 memory_listeners)->priority) {
1491 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1492 } else {
1493 QTAILQ_FOREACH(other, &memory_listeners, link) {
1494 if (listener->priority < other->priority) {
1495 break;
1496 }
1497 }
1498 QTAILQ_INSERT_BEFORE(other, listener, link);
1499 }
1500 listener_add_address_space(listener, &address_space_memory);
1501 listener_add_address_space(listener, &address_space_io);
1502 }
1503
1504 void memory_listener_unregister(MemoryListener *listener)
1505 {
1506 QTAILQ_REMOVE(&memory_listeners, listener, link);
1507 }
1508
1509 void set_system_memory_map(MemoryRegion *mr)
1510 {
1511 memory_region_transaction_begin();
1512 address_space_memory.root = mr;
1513 memory_region_transaction_commit();
1514 }
1515
1516 void set_system_io_map(MemoryRegion *mr)
1517 {
1518 memory_region_transaction_begin();
1519 address_space_io.root = mr;
1520 memory_region_transaction_commit();
1521 }
1522
1523 uint64_t io_mem_read(MemoryRegion *mr, target_phys_addr_t addr, unsigned size)
1524 {
1525 return memory_region_dispatch_read(mr, addr, size);
1526 }
1527
1528 void io_mem_write(MemoryRegion *mr, target_phys_addr_t addr,
1529 uint64_t val, unsigned size)
1530 {
1531 memory_region_dispatch_write(mr, addr, val, size);
1532 }
1533
1534 typedef struct MemoryRegionList MemoryRegionList;
1535
1536 struct MemoryRegionList {
1537 const MemoryRegion *mr;
1538 bool printed;
1539 QTAILQ_ENTRY(MemoryRegionList) queue;
1540 };
1541
1542 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1543
1544 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1545 const MemoryRegion *mr, unsigned int level,
1546 target_phys_addr_t base,
1547 MemoryRegionListHead *alias_print_queue)
1548 {
1549 MemoryRegionList *new_ml, *ml, *next_ml;
1550 MemoryRegionListHead submr_print_queue;
1551 const MemoryRegion *submr;
1552 unsigned int i;
1553
1554 if (!mr) {
1555 return;
1556 }
1557
1558 for (i = 0; i < level; i++) {
1559 mon_printf(f, " ");
1560 }
1561
1562 if (mr->alias) {
1563 MemoryRegionList *ml;
1564 bool found = false;
1565
1566 /* check if the alias is already in the queue */
1567 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1568 if (ml->mr == mr->alias && !ml->printed) {
1569 found = true;
1570 }
1571 }
1572
1573 if (!found) {
1574 ml = g_new(MemoryRegionList, 1);
1575 ml->mr = mr->alias;
1576 ml->printed = false;
1577 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1578 }
1579 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
1580 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
1581 "-" TARGET_FMT_plx "\n",
1582 base + mr->addr,
1583 base + mr->addr
1584 + (target_phys_addr_t)int128_get64(mr->size) - 1,
1585 mr->priority,
1586 mr->readable ? 'R' : '-',
1587 !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1588 : '-',
1589 mr->name,
1590 mr->alias->name,
1591 mr->alias_offset,
1592 mr->alias_offset
1593 + (target_phys_addr_t)int128_get64(mr->size) - 1);
1594 } else {
1595 mon_printf(f,
1596 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
1597 base + mr->addr,
1598 base + mr->addr
1599 + (target_phys_addr_t)int128_get64(mr->size) - 1,
1600 mr->priority,
1601 mr->readable ? 'R' : '-',
1602 !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1603 : '-',
1604 mr->name);
1605 }
1606
1607 QTAILQ_INIT(&submr_print_queue);
1608
1609 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1610 new_ml = g_new(MemoryRegionList, 1);
1611 new_ml->mr = submr;
1612 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1613 if (new_ml->mr->addr < ml->mr->addr ||
1614 (new_ml->mr->addr == ml->mr->addr &&
1615 new_ml->mr->priority > ml->mr->priority)) {
1616 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1617 new_ml = NULL;
1618 break;
1619 }
1620 }
1621 if (new_ml) {
1622 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1623 }
1624 }
1625
1626 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1627 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1628 alias_print_queue);
1629 }
1630
1631 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1632 g_free(ml);
1633 }
1634 }
1635
1636 void mtree_info(fprintf_function mon_printf, void *f)
1637 {
1638 MemoryRegionListHead ml_head;
1639 MemoryRegionList *ml, *ml2;
1640
1641 QTAILQ_INIT(&ml_head);
1642
1643 mon_printf(f, "memory\n");
1644 mtree_print_mr(mon_printf, f, address_space_memory.root, 0, 0, &ml_head);
1645
1646 if (address_space_io.root &&
1647 !QTAILQ_EMPTY(&address_space_io.root->subregions)) {
1648 mon_printf(f, "I/O\n");
1649 mtree_print_mr(mon_printf, f, address_space_io.root, 0, 0, &ml_head);
1650 }
1651
1652 mon_printf(f, "aliases\n");
1653 /* print aliased regions */
1654 QTAILQ_FOREACH(ml, &ml_head, queue) {
1655 if (!ml->printed) {
1656 mon_printf(f, "%s\n", ml->mr->name);
1657 mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1658 }
1659 }
1660
1661 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1662 g_free(ml);
1663 }
1664 }