]> git.proxmox.com Git - qemu.git/blob - memory.c
Merge branch 'master' of git://git.qemu.org/qemu
[qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #include "memory.h"
15 #include "exec-memory.h"
16 #include "ioport.h"
17 #include "bitops.h"
18 #include "kvm.h"
19 #include <assert.h>
20
21 unsigned memory_region_transaction_depth = 0;
22
23 typedef struct AddrRange AddrRange;
24
25 /*
26 * Note using signed integers limits us to physical addresses at most
27 * 63 bits wide. They are needed for negative offsetting in aliases
28 * (large MemoryRegion::alias_offset).
29 */
30 struct AddrRange {
31 int64_t start;
32 int64_t size;
33 };
34
35 static AddrRange addrrange_make(int64_t start, int64_t size)
36 {
37 return (AddrRange) { start, size };
38 }
39
40 static bool addrrange_equal(AddrRange r1, AddrRange r2)
41 {
42 return r1.start == r2.start && r1.size == r2.size;
43 }
44
45 static int64_t addrrange_end(AddrRange r)
46 {
47 return r.start + r.size;
48 }
49
50 static AddrRange addrrange_shift(AddrRange range, int64_t delta)
51 {
52 range.start += delta;
53 return range;
54 }
55
56 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
57 {
58 return (r1.start >= r2.start && r1.start < r2.start + r2.size)
59 || (r2.start >= r1.start && r2.start < r1.start + r1.size);
60 }
61
62 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
63 {
64 int64_t start = MAX(r1.start, r2.start);
65 /* off-by-one arithmetic to prevent overflow */
66 int64_t end = MIN(addrrange_end(r1) - 1, addrrange_end(r2) - 1);
67 return addrrange_make(start, end - start + 1);
68 }
69
70 struct CoalescedMemoryRange {
71 AddrRange addr;
72 QTAILQ_ENTRY(CoalescedMemoryRange) link;
73 };
74
75 struct MemoryRegionIoeventfd {
76 AddrRange addr;
77 bool match_data;
78 uint64_t data;
79 int fd;
80 };
81
82 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
83 MemoryRegionIoeventfd b)
84 {
85 if (a.addr.start < b.addr.start) {
86 return true;
87 } else if (a.addr.start > b.addr.start) {
88 return false;
89 } else if (a.addr.size < b.addr.size) {
90 return true;
91 } else if (a.addr.size > b.addr.size) {
92 return false;
93 } else if (a.match_data < b.match_data) {
94 return true;
95 } else if (a.match_data > b.match_data) {
96 return false;
97 } else if (a.match_data) {
98 if (a.data < b.data) {
99 return true;
100 } else if (a.data > b.data) {
101 return false;
102 }
103 }
104 if (a.fd < b.fd) {
105 return true;
106 } else if (a.fd > b.fd) {
107 return false;
108 }
109 return false;
110 }
111
112 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
113 MemoryRegionIoeventfd b)
114 {
115 return !memory_region_ioeventfd_before(a, b)
116 && !memory_region_ioeventfd_before(b, a);
117 }
118
119 typedef struct FlatRange FlatRange;
120 typedef struct FlatView FlatView;
121
122 /* Range of memory in the global map. Addresses are absolute. */
123 struct FlatRange {
124 MemoryRegion *mr;
125 target_phys_addr_t offset_in_region;
126 AddrRange addr;
127 uint8_t dirty_log_mask;
128 bool readable;
129 };
130
131 /* Flattened global view of current active memory hierarchy. Kept in sorted
132 * order.
133 */
134 struct FlatView {
135 FlatRange *ranges;
136 unsigned nr;
137 unsigned nr_allocated;
138 };
139
140 typedef struct AddressSpace AddressSpace;
141 typedef struct AddressSpaceOps AddressSpaceOps;
142
143 /* A system address space - I/O, memory, etc. */
144 struct AddressSpace {
145 const AddressSpaceOps *ops;
146 MemoryRegion *root;
147 FlatView current_map;
148 int ioeventfd_nb;
149 MemoryRegionIoeventfd *ioeventfds;
150 };
151
152 struct AddressSpaceOps {
153 void (*range_add)(AddressSpace *as, FlatRange *fr);
154 void (*range_del)(AddressSpace *as, FlatRange *fr);
155 void (*log_start)(AddressSpace *as, FlatRange *fr);
156 void (*log_stop)(AddressSpace *as, FlatRange *fr);
157 void (*ioeventfd_add)(AddressSpace *as, MemoryRegionIoeventfd *fd);
158 void (*ioeventfd_del)(AddressSpace *as, MemoryRegionIoeventfd *fd);
159 };
160
161 #define FOR_EACH_FLAT_RANGE(var, view) \
162 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
163
164 static bool flatrange_equal(FlatRange *a, FlatRange *b)
165 {
166 return a->mr == b->mr
167 && addrrange_equal(a->addr, b->addr)
168 && a->offset_in_region == b->offset_in_region
169 && a->readable == b->readable;
170 }
171
172 static void flatview_init(FlatView *view)
173 {
174 view->ranges = NULL;
175 view->nr = 0;
176 view->nr_allocated = 0;
177 }
178
179 /* Insert a range into a given position. Caller is responsible for maintaining
180 * sorting order.
181 */
182 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
183 {
184 if (view->nr == view->nr_allocated) {
185 view->nr_allocated = MAX(2 * view->nr, 10);
186 view->ranges = g_realloc(view->ranges,
187 view->nr_allocated * sizeof(*view->ranges));
188 }
189 memmove(view->ranges + pos + 1, view->ranges + pos,
190 (view->nr - pos) * sizeof(FlatRange));
191 view->ranges[pos] = *range;
192 ++view->nr;
193 }
194
195 static void flatview_destroy(FlatView *view)
196 {
197 g_free(view->ranges);
198 }
199
200 static bool can_merge(FlatRange *r1, FlatRange *r2)
201 {
202 return addrrange_end(r1->addr) == r2->addr.start
203 && r1->mr == r2->mr
204 && r1->offset_in_region + r1->addr.size == r2->offset_in_region
205 && r1->dirty_log_mask == r2->dirty_log_mask
206 && r1->readable == r2->readable;
207 }
208
209 /* Attempt to simplify a view by merging ajacent ranges */
210 static void flatview_simplify(FlatView *view)
211 {
212 unsigned i, j;
213
214 i = 0;
215 while (i < view->nr) {
216 j = i + 1;
217 while (j < view->nr
218 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
219 view->ranges[i].addr.size += view->ranges[j].addr.size;
220 ++j;
221 }
222 ++i;
223 memmove(&view->ranges[i], &view->ranges[j],
224 (view->nr - j) * sizeof(view->ranges[j]));
225 view->nr -= j - i;
226 }
227 }
228
229 static void memory_region_read_accessor(void *opaque,
230 target_phys_addr_t addr,
231 uint64_t *value,
232 unsigned size,
233 unsigned shift,
234 uint64_t mask)
235 {
236 MemoryRegion *mr = opaque;
237 uint64_t tmp;
238
239 tmp = mr->ops->read(mr->opaque, addr, size);
240 *value |= (tmp & mask) << shift;
241 }
242
243 static void memory_region_write_accessor(void *opaque,
244 target_phys_addr_t addr,
245 uint64_t *value,
246 unsigned size,
247 unsigned shift,
248 uint64_t mask)
249 {
250 MemoryRegion *mr = opaque;
251 uint64_t tmp;
252
253 tmp = (*value >> shift) & mask;
254 mr->ops->write(mr->opaque, addr, tmp, size);
255 }
256
257 static void access_with_adjusted_size(target_phys_addr_t addr,
258 uint64_t *value,
259 unsigned size,
260 unsigned access_size_min,
261 unsigned access_size_max,
262 void (*access)(void *opaque,
263 target_phys_addr_t addr,
264 uint64_t *value,
265 unsigned size,
266 unsigned shift,
267 uint64_t mask),
268 void *opaque)
269 {
270 uint64_t access_mask;
271 unsigned access_size;
272 unsigned i;
273
274 if (!access_size_min) {
275 access_size_min = 1;
276 }
277 if (!access_size_max) {
278 access_size_max = 4;
279 }
280 access_size = MAX(MIN(size, access_size_max), access_size_min);
281 access_mask = -1ULL >> (64 - access_size * 8);
282 for (i = 0; i < size; i += access_size) {
283 /* FIXME: big-endian support */
284 access(opaque, addr + i, value, access_size, i * 8, access_mask);
285 }
286 }
287
288 static void memory_region_prepare_ram_addr(MemoryRegion *mr);
289
290 static void as_memory_range_add(AddressSpace *as, FlatRange *fr)
291 {
292 ram_addr_t phys_offset, region_offset;
293
294 memory_region_prepare_ram_addr(fr->mr);
295
296 phys_offset = fr->mr->ram_addr;
297 region_offset = fr->offset_in_region;
298 /* cpu_register_physical_memory_log() wants region_offset for
299 * mmio, but prefers offseting phys_offset for RAM. Humour it.
300 */
301 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
302 phys_offset += region_offset;
303 region_offset = 0;
304 }
305
306 if (!fr->readable) {
307 phys_offset &= TARGET_PAGE_MASK;
308 }
309
310 cpu_register_physical_memory_log(fr->addr.start,
311 fr->addr.size,
312 phys_offset,
313 region_offset,
314 fr->dirty_log_mask);
315 }
316
317 static void as_memory_range_del(AddressSpace *as, FlatRange *fr)
318 {
319 if (fr->dirty_log_mask) {
320 cpu_physical_sync_dirty_bitmap(fr->addr.start,
321 fr->addr.start + fr->addr.size);
322 }
323 cpu_register_physical_memory(fr->addr.start, fr->addr.size,
324 IO_MEM_UNASSIGNED);
325 }
326
327 static void as_memory_log_start(AddressSpace *as, FlatRange *fr)
328 {
329 cpu_physical_log_start(fr->addr.start, fr->addr.size);
330 }
331
332 static void as_memory_log_stop(AddressSpace *as, FlatRange *fr)
333 {
334 cpu_physical_log_stop(fr->addr.start, fr->addr.size);
335 }
336
337 static void as_memory_ioeventfd_add(AddressSpace *as, MemoryRegionIoeventfd *fd)
338 {
339 int r;
340
341 assert(fd->match_data && fd->addr.size == 4);
342
343 r = kvm_set_ioeventfd_mmio_long(fd->fd, fd->addr.start, fd->data, true);
344 if (r < 0) {
345 abort();
346 }
347 }
348
349 static void as_memory_ioeventfd_del(AddressSpace *as, MemoryRegionIoeventfd *fd)
350 {
351 int r;
352
353 r = kvm_set_ioeventfd_mmio_long(fd->fd, fd->addr.start, fd->data, false);
354 if (r < 0) {
355 abort();
356 }
357 }
358
359 static const AddressSpaceOps address_space_ops_memory = {
360 .range_add = as_memory_range_add,
361 .range_del = as_memory_range_del,
362 .log_start = as_memory_log_start,
363 .log_stop = as_memory_log_stop,
364 .ioeventfd_add = as_memory_ioeventfd_add,
365 .ioeventfd_del = as_memory_ioeventfd_del,
366 };
367
368 static AddressSpace address_space_memory = {
369 .ops = &address_space_ops_memory,
370 };
371
372 static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
373 unsigned width, bool write)
374 {
375 const MemoryRegionPortio *mrp;
376
377 for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
378 if (offset >= mrp->offset && offset < mrp->offset + mrp->len
379 && width == mrp->size
380 && (write ? (bool)mrp->write : (bool)mrp->read)) {
381 return mrp;
382 }
383 }
384 return NULL;
385 }
386
387 static void memory_region_iorange_read(IORange *iorange,
388 uint64_t offset,
389 unsigned width,
390 uint64_t *data)
391 {
392 MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange);
393
394 if (mr->ops->old_portio) {
395 const MemoryRegionPortio *mrp = find_portio(mr, offset, width, false);
396
397 *data = ((uint64_t)1 << (width * 8)) - 1;
398 if (mrp) {
399 *data = mrp->read(mr->opaque, offset - mrp->offset);
400 }
401 return;
402 }
403 *data = 0;
404 access_with_adjusted_size(offset, data, width,
405 mr->ops->impl.min_access_size,
406 mr->ops->impl.max_access_size,
407 memory_region_read_accessor, mr);
408 }
409
410 static void memory_region_iorange_write(IORange *iorange,
411 uint64_t offset,
412 unsigned width,
413 uint64_t data)
414 {
415 MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange);
416
417 if (mr->ops->old_portio) {
418 const MemoryRegionPortio *mrp = find_portio(mr, offset, width, true);
419
420 if (mrp) {
421 mrp->write(mr->opaque, offset - mrp->offset, data);
422 }
423 return;
424 }
425 access_with_adjusted_size(offset, &data, width,
426 mr->ops->impl.min_access_size,
427 mr->ops->impl.max_access_size,
428 memory_region_write_accessor, mr);
429 }
430
431 static const IORangeOps memory_region_iorange_ops = {
432 .read = memory_region_iorange_read,
433 .write = memory_region_iorange_write,
434 };
435
436 static void as_io_range_add(AddressSpace *as, FlatRange *fr)
437 {
438 iorange_init(&fr->mr->iorange, &memory_region_iorange_ops,
439 fr->addr.start,fr->addr.size);
440 ioport_register(&fr->mr->iorange);
441 }
442
443 static void as_io_range_del(AddressSpace *as, FlatRange *fr)
444 {
445 isa_unassign_ioport(fr->addr.start, fr->addr.size);
446 }
447
448 static void as_io_ioeventfd_add(AddressSpace *as, MemoryRegionIoeventfd *fd)
449 {
450 int r;
451
452 assert(fd->match_data && fd->addr.size == 2);
453
454 r = kvm_set_ioeventfd_pio_word(fd->fd, fd->addr.start, fd->data, true);
455 if (r < 0) {
456 abort();
457 }
458 }
459
460 static void as_io_ioeventfd_del(AddressSpace *as, MemoryRegionIoeventfd *fd)
461 {
462 int r;
463
464 r = kvm_set_ioeventfd_pio_word(fd->fd, fd->addr.start, fd->data, false);
465 if (r < 0) {
466 abort();
467 }
468 }
469
470 static const AddressSpaceOps address_space_ops_io = {
471 .range_add = as_io_range_add,
472 .range_del = as_io_range_del,
473 .ioeventfd_add = as_io_ioeventfd_add,
474 .ioeventfd_del = as_io_ioeventfd_del,
475 };
476
477 static AddressSpace address_space_io = {
478 .ops = &address_space_ops_io,
479 };
480
481 /* Render a memory region into the global view. Ranges in @view obscure
482 * ranges in @mr.
483 */
484 static void render_memory_region(FlatView *view,
485 MemoryRegion *mr,
486 target_phys_addr_t base,
487 AddrRange clip)
488 {
489 MemoryRegion *subregion;
490 unsigned i;
491 target_phys_addr_t offset_in_region;
492 int64_t remain;
493 int64_t now;
494 FlatRange fr;
495 AddrRange tmp;
496
497 base += mr->addr;
498
499 tmp = addrrange_make(base, mr->size);
500
501 if (!addrrange_intersects(tmp, clip)) {
502 return;
503 }
504
505 clip = addrrange_intersection(tmp, clip);
506
507 if (mr->alias) {
508 base -= mr->alias->addr;
509 base -= mr->alias_offset;
510 render_memory_region(view, mr->alias, base, clip);
511 return;
512 }
513
514 /* Render subregions in priority order. */
515 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
516 render_memory_region(view, subregion, base, clip);
517 }
518
519 if (!mr->terminates) {
520 return;
521 }
522
523 offset_in_region = clip.start - base;
524 base = clip.start;
525 remain = clip.size;
526
527 /* Render the region itself into any gaps left by the current view. */
528 for (i = 0; i < view->nr && remain; ++i) {
529 if (base >= addrrange_end(view->ranges[i].addr)) {
530 continue;
531 }
532 if (base < view->ranges[i].addr.start) {
533 now = MIN(remain, view->ranges[i].addr.start - base);
534 fr.mr = mr;
535 fr.offset_in_region = offset_in_region;
536 fr.addr = addrrange_make(base, now);
537 fr.dirty_log_mask = mr->dirty_log_mask;
538 fr.readable = mr->readable;
539 flatview_insert(view, i, &fr);
540 ++i;
541 base += now;
542 offset_in_region += now;
543 remain -= now;
544 }
545 if (base == view->ranges[i].addr.start) {
546 now = MIN(remain, view->ranges[i].addr.size);
547 base += now;
548 offset_in_region += now;
549 remain -= now;
550 }
551 }
552 if (remain) {
553 fr.mr = mr;
554 fr.offset_in_region = offset_in_region;
555 fr.addr = addrrange_make(base, remain);
556 fr.dirty_log_mask = mr->dirty_log_mask;
557 fr.readable = mr->readable;
558 flatview_insert(view, i, &fr);
559 }
560 }
561
562 /* Render a memory topology into a list of disjoint absolute ranges. */
563 static FlatView generate_memory_topology(MemoryRegion *mr)
564 {
565 FlatView view;
566
567 flatview_init(&view);
568
569 render_memory_region(&view, mr, 0, addrrange_make(0, INT64_MAX));
570 flatview_simplify(&view);
571
572 return view;
573 }
574
575 static void address_space_add_del_ioeventfds(AddressSpace *as,
576 MemoryRegionIoeventfd *fds_new,
577 unsigned fds_new_nb,
578 MemoryRegionIoeventfd *fds_old,
579 unsigned fds_old_nb)
580 {
581 unsigned iold, inew;
582
583 /* Generate a symmetric difference of the old and new fd sets, adding
584 * and deleting as necessary.
585 */
586
587 iold = inew = 0;
588 while (iold < fds_old_nb || inew < fds_new_nb) {
589 if (iold < fds_old_nb
590 && (inew == fds_new_nb
591 || memory_region_ioeventfd_before(fds_old[iold],
592 fds_new[inew]))) {
593 as->ops->ioeventfd_del(as, &fds_old[iold]);
594 ++iold;
595 } else if (inew < fds_new_nb
596 && (iold == fds_old_nb
597 || memory_region_ioeventfd_before(fds_new[inew],
598 fds_old[iold]))) {
599 as->ops->ioeventfd_add(as, &fds_new[inew]);
600 ++inew;
601 } else {
602 ++iold;
603 ++inew;
604 }
605 }
606 }
607
608 static void address_space_update_ioeventfds(AddressSpace *as)
609 {
610 FlatRange *fr;
611 unsigned ioeventfd_nb = 0;
612 MemoryRegionIoeventfd *ioeventfds = NULL;
613 AddrRange tmp;
614 unsigned i;
615
616 FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
617 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
618 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
619 fr->addr.start - fr->offset_in_region);
620 if (addrrange_intersects(fr->addr, tmp)) {
621 ++ioeventfd_nb;
622 ioeventfds = g_realloc(ioeventfds,
623 ioeventfd_nb * sizeof(*ioeventfds));
624 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
625 ioeventfds[ioeventfd_nb-1].addr = tmp;
626 }
627 }
628 }
629
630 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
631 as->ioeventfds, as->ioeventfd_nb);
632
633 g_free(as->ioeventfds);
634 as->ioeventfds = ioeventfds;
635 as->ioeventfd_nb = ioeventfd_nb;
636 }
637
638 static void address_space_update_topology_pass(AddressSpace *as,
639 FlatView old_view,
640 FlatView new_view,
641 bool adding)
642 {
643 unsigned iold, inew;
644 FlatRange *frold, *frnew;
645
646 /* Generate a symmetric difference of the old and new memory maps.
647 * Kill ranges in the old map, and instantiate ranges in the new map.
648 */
649 iold = inew = 0;
650 while (iold < old_view.nr || inew < new_view.nr) {
651 if (iold < old_view.nr) {
652 frold = &old_view.ranges[iold];
653 } else {
654 frold = NULL;
655 }
656 if (inew < new_view.nr) {
657 frnew = &new_view.ranges[inew];
658 } else {
659 frnew = NULL;
660 }
661
662 if (frold
663 && (!frnew
664 || frold->addr.start < frnew->addr.start
665 || (frold->addr.start == frnew->addr.start
666 && !flatrange_equal(frold, frnew)))) {
667 /* In old, but (not in new, or in new but attributes changed). */
668
669 if (!adding) {
670 as->ops->range_del(as, frold);
671 }
672
673 ++iold;
674 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
675 /* In both (logging may have changed) */
676
677 if (adding) {
678 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
679 as->ops->log_stop(as, frnew);
680 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
681 as->ops->log_start(as, frnew);
682 }
683 }
684
685 ++iold;
686 ++inew;
687 } else {
688 /* In new */
689
690 if (adding) {
691 as->ops->range_add(as, frnew);
692 }
693
694 ++inew;
695 }
696 }
697 }
698
699
700 static void address_space_update_topology(AddressSpace *as)
701 {
702 FlatView old_view = as->current_map;
703 FlatView new_view = generate_memory_topology(as->root);
704
705 address_space_update_topology_pass(as, old_view, new_view, false);
706 address_space_update_topology_pass(as, old_view, new_view, true);
707
708 as->current_map = new_view;
709 flatview_destroy(&old_view);
710 address_space_update_ioeventfds(as);
711 }
712
713 static void memory_region_update_topology(void)
714 {
715 if (memory_region_transaction_depth) {
716 return;
717 }
718
719 if (address_space_memory.root) {
720 address_space_update_topology(&address_space_memory);
721 }
722 if (address_space_io.root) {
723 address_space_update_topology(&address_space_io);
724 }
725 }
726
727 void memory_region_transaction_begin(void)
728 {
729 ++memory_region_transaction_depth;
730 }
731
732 void memory_region_transaction_commit(void)
733 {
734 assert(memory_region_transaction_depth);
735 --memory_region_transaction_depth;
736 memory_region_update_topology();
737 }
738
739 static void memory_region_destructor_none(MemoryRegion *mr)
740 {
741 }
742
743 static void memory_region_destructor_ram(MemoryRegion *mr)
744 {
745 qemu_ram_free(mr->ram_addr);
746 }
747
748 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
749 {
750 qemu_ram_free_from_ptr(mr->ram_addr);
751 }
752
753 static void memory_region_destructor_iomem(MemoryRegion *mr)
754 {
755 cpu_unregister_io_memory(mr->ram_addr);
756 }
757
758 static void memory_region_destructor_rom_device(MemoryRegion *mr)
759 {
760 qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
761 cpu_unregister_io_memory(mr->ram_addr & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
762 }
763
764 void memory_region_init(MemoryRegion *mr,
765 const char *name,
766 uint64_t size)
767 {
768 mr->ops = NULL;
769 mr->parent = NULL;
770 mr->size = size;
771 mr->addr = 0;
772 mr->offset = 0;
773 mr->terminates = false;
774 mr->readable = true;
775 mr->destructor = memory_region_destructor_none;
776 mr->priority = 0;
777 mr->may_overlap = false;
778 mr->alias = NULL;
779 QTAILQ_INIT(&mr->subregions);
780 memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
781 QTAILQ_INIT(&mr->coalesced);
782 mr->name = g_strdup(name);
783 mr->dirty_log_mask = 0;
784 mr->ioeventfd_nb = 0;
785 mr->ioeventfds = NULL;
786 }
787
788 static bool memory_region_access_valid(MemoryRegion *mr,
789 target_phys_addr_t addr,
790 unsigned size)
791 {
792 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
793 return false;
794 }
795
796 /* Treat zero as compatibility all valid */
797 if (!mr->ops->valid.max_access_size) {
798 return true;
799 }
800
801 if (size > mr->ops->valid.max_access_size
802 || size < mr->ops->valid.min_access_size) {
803 return false;
804 }
805 return true;
806 }
807
808 static uint32_t memory_region_read_thunk_n(void *_mr,
809 target_phys_addr_t addr,
810 unsigned size)
811 {
812 MemoryRegion *mr = _mr;
813 uint64_t data = 0;
814
815 if (!memory_region_access_valid(mr, addr, size)) {
816 return -1U; /* FIXME: better signalling */
817 }
818
819 if (!mr->ops->read) {
820 return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr);
821 }
822
823 /* FIXME: support unaligned access */
824 access_with_adjusted_size(addr + mr->offset, &data, size,
825 mr->ops->impl.min_access_size,
826 mr->ops->impl.max_access_size,
827 memory_region_read_accessor, mr);
828
829 return data;
830 }
831
832 static void memory_region_write_thunk_n(void *_mr,
833 target_phys_addr_t addr,
834 unsigned size,
835 uint64_t data)
836 {
837 MemoryRegion *mr = _mr;
838
839 if (!memory_region_access_valid(mr, addr, size)) {
840 return; /* FIXME: better signalling */
841 }
842
843 if (!mr->ops->write) {
844 mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
845 return;
846 }
847
848 /* FIXME: support unaligned access */
849 access_with_adjusted_size(addr + mr->offset, &data, size,
850 mr->ops->impl.min_access_size,
851 mr->ops->impl.max_access_size,
852 memory_region_write_accessor, mr);
853 }
854
855 static uint32_t memory_region_read_thunk_b(void *mr, target_phys_addr_t addr)
856 {
857 return memory_region_read_thunk_n(mr, addr, 1);
858 }
859
860 static uint32_t memory_region_read_thunk_w(void *mr, target_phys_addr_t addr)
861 {
862 return memory_region_read_thunk_n(mr, addr, 2);
863 }
864
865 static uint32_t memory_region_read_thunk_l(void *mr, target_phys_addr_t addr)
866 {
867 return memory_region_read_thunk_n(mr, addr, 4);
868 }
869
870 static void memory_region_write_thunk_b(void *mr, target_phys_addr_t addr,
871 uint32_t data)
872 {
873 memory_region_write_thunk_n(mr, addr, 1, data);
874 }
875
876 static void memory_region_write_thunk_w(void *mr, target_phys_addr_t addr,
877 uint32_t data)
878 {
879 memory_region_write_thunk_n(mr, addr, 2, data);
880 }
881
882 static void memory_region_write_thunk_l(void *mr, target_phys_addr_t addr,
883 uint32_t data)
884 {
885 memory_region_write_thunk_n(mr, addr, 4, data);
886 }
887
888 static CPUReadMemoryFunc * const memory_region_read_thunk[] = {
889 memory_region_read_thunk_b,
890 memory_region_read_thunk_w,
891 memory_region_read_thunk_l,
892 };
893
894 static CPUWriteMemoryFunc * const memory_region_write_thunk[] = {
895 memory_region_write_thunk_b,
896 memory_region_write_thunk_w,
897 memory_region_write_thunk_l,
898 };
899
900 static void memory_region_prepare_ram_addr(MemoryRegion *mr)
901 {
902 if (mr->backend_registered) {
903 return;
904 }
905
906 mr->destructor = memory_region_destructor_iomem;
907 mr->ram_addr = cpu_register_io_memory(memory_region_read_thunk,
908 memory_region_write_thunk,
909 mr,
910 mr->ops->endianness);
911 mr->backend_registered = true;
912 }
913
914 void memory_region_init_io(MemoryRegion *mr,
915 const MemoryRegionOps *ops,
916 void *opaque,
917 const char *name,
918 uint64_t size)
919 {
920 memory_region_init(mr, name, size);
921 mr->ops = ops;
922 mr->opaque = opaque;
923 mr->terminates = true;
924 mr->backend_registered = false;
925 }
926
927 void memory_region_init_ram(MemoryRegion *mr,
928 DeviceState *dev,
929 const char *name,
930 uint64_t size)
931 {
932 memory_region_init(mr, name, size);
933 mr->terminates = true;
934 mr->destructor = memory_region_destructor_ram;
935 mr->ram_addr = qemu_ram_alloc(dev, name, size);
936 mr->backend_registered = true;
937 }
938
939 void memory_region_init_ram_ptr(MemoryRegion *mr,
940 DeviceState *dev,
941 const char *name,
942 uint64_t size,
943 void *ptr)
944 {
945 memory_region_init(mr, name, size);
946 mr->terminates = true;
947 mr->destructor = memory_region_destructor_ram_from_ptr;
948 mr->ram_addr = qemu_ram_alloc_from_ptr(dev, name, size, ptr);
949 mr->backend_registered = true;
950 }
951
952 void memory_region_init_alias(MemoryRegion *mr,
953 const char *name,
954 MemoryRegion *orig,
955 target_phys_addr_t offset,
956 uint64_t size)
957 {
958 memory_region_init(mr, name, size);
959 mr->alias = orig;
960 mr->alias_offset = offset;
961 }
962
963 void memory_region_init_rom_device(MemoryRegion *mr,
964 const MemoryRegionOps *ops,
965 DeviceState *dev,
966 const char *name,
967 uint64_t size)
968 {
969 memory_region_init(mr, name, size);
970 mr->terminates = true;
971 mr->destructor = memory_region_destructor_rom_device;
972 mr->ram_addr = qemu_ram_alloc(dev, name, size);
973 mr->ram_addr |= cpu_register_io_memory(memory_region_read_thunk,
974 memory_region_write_thunk,
975 mr,
976 mr->ops->endianness);
977 mr->ram_addr |= IO_MEM_ROMD;
978 mr->backend_registered = true;
979 }
980
981 void memory_region_destroy(MemoryRegion *mr)
982 {
983 assert(QTAILQ_EMPTY(&mr->subregions));
984 mr->destructor(mr);
985 memory_region_clear_coalescing(mr);
986 g_free((char *)mr->name);
987 g_free(mr->ioeventfds);
988 }
989
990 uint64_t memory_region_size(MemoryRegion *mr)
991 {
992 return mr->size;
993 }
994
995 void memory_region_set_offset(MemoryRegion *mr, target_phys_addr_t offset)
996 {
997 mr->offset = offset;
998 }
999
1000 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1001 {
1002 uint8_t mask = 1 << client;
1003
1004 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1005 memory_region_update_topology();
1006 }
1007
1008 bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1009 unsigned client)
1010 {
1011 assert(mr->terminates);
1012 return cpu_physical_memory_get_dirty(mr->ram_addr + addr, 1 << client);
1013 }
1014
1015 void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr)
1016 {
1017 assert(mr->terminates);
1018 return cpu_physical_memory_set_dirty(mr->ram_addr + addr);
1019 }
1020
1021 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1022 {
1023 FlatRange *fr;
1024
1025 FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1026 if (fr->mr == mr) {
1027 cpu_physical_sync_dirty_bitmap(fr->addr.start,
1028 fr->addr.start + fr->addr.size);
1029 }
1030 }
1031 }
1032
1033 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1034 {
1035 /* FIXME */
1036 }
1037
1038 void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable)
1039 {
1040 if (mr->readable != readable) {
1041 mr->readable = readable;
1042 memory_region_update_topology();
1043 }
1044 }
1045
1046 void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1047 target_phys_addr_t size, unsigned client)
1048 {
1049 assert(mr->terminates);
1050 cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1051 mr->ram_addr + addr + size,
1052 1 << client);
1053 }
1054
1055 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1056 {
1057 if (mr->alias) {
1058 return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1059 }
1060
1061 assert(mr->terminates);
1062
1063 return qemu_get_ram_ptr(mr->ram_addr);
1064 }
1065
1066 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1067 {
1068 FlatRange *fr;
1069 CoalescedMemoryRange *cmr;
1070 AddrRange tmp;
1071
1072 FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1073 if (fr->mr == mr) {
1074 qemu_unregister_coalesced_mmio(fr->addr.start, fr->addr.size);
1075 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1076 tmp = addrrange_shift(cmr->addr,
1077 fr->addr.start - fr->offset_in_region);
1078 if (!addrrange_intersects(tmp, fr->addr)) {
1079 continue;
1080 }
1081 tmp = addrrange_intersection(tmp, fr->addr);
1082 qemu_register_coalesced_mmio(tmp.start, tmp.size);
1083 }
1084 }
1085 }
1086 }
1087
1088 void memory_region_set_coalescing(MemoryRegion *mr)
1089 {
1090 memory_region_clear_coalescing(mr);
1091 memory_region_add_coalescing(mr, 0, mr->size);
1092 }
1093
1094 void memory_region_add_coalescing(MemoryRegion *mr,
1095 target_phys_addr_t offset,
1096 uint64_t size)
1097 {
1098 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1099
1100 cmr->addr = addrrange_make(offset, size);
1101 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1102 memory_region_update_coalesced_range(mr);
1103 }
1104
1105 void memory_region_clear_coalescing(MemoryRegion *mr)
1106 {
1107 CoalescedMemoryRange *cmr;
1108
1109 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1110 cmr = QTAILQ_FIRST(&mr->coalesced);
1111 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1112 g_free(cmr);
1113 }
1114 memory_region_update_coalesced_range(mr);
1115 }
1116
1117 void memory_region_add_eventfd(MemoryRegion *mr,
1118 target_phys_addr_t addr,
1119 unsigned size,
1120 bool match_data,
1121 uint64_t data,
1122 int fd)
1123 {
1124 MemoryRegionIoeventfd mrfd = {
1125 .addr.start = addr,
1126 .addr.size = size,
1127 .match_data = match_data,
1128 .data = data,
1129 .fd = fd,
1130 };
1131 unsigned i;
1132
1133 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1134 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1135 break;
1136 }
1137 }
1138 ++mr->ioeventfd_nb;
1139 mr->ioeventfds = g_realloc(mr->ioeventfds,
1140 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1141 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1142 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1143 mr->ioeventfds[i] = mrfd;
1144 memory_region_update_topology();
1145 }
1146
1147 void memory_region_del_eventfd(MemoryRegion *mr,
1148 target_phys_addr_t addr,
1149 unsigned size,
1150 bool match_data,
1151 uint64_t data,
1152 int fd)
1153 {
1154 MemoryRegionIoeventfd mrfd = {
1155 .addr.start = addr,
1156 .addr.size = size,
1157 .match_data = match_data,
1158 .data = data,
1159 .fd = fd,
1160 };
1161 unsigned i;
1162
1163 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1164 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1165 break;
1166 }
1167 }
1168 assert(i != mr->ioeventfd_nb);
1169 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1170 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1171 --mr->ioeventfd_nb;
1172 mr->ioeventfds = g_realloc(mr->ioeventfds,
1173 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1174 memory_region_update_topology();
1175 }
1176
1177 static void memory_region_add_subregion_common(MemoryRegion *mr,
1178 target_phys_addr_t offset,
1179 MemoryRegion *subregion)
1180 {
1181 MemoryRegion *other;
1182
1183 assert(!subregion->parent);
1184 subregion->parent = mr;
1185 subregion->addr = offset;
1186 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1187 if (subregion->may_overlap || other->may_overlap) {
1188 continue;
1189 }
1190 if (offset >= other->offset + other->size
1191 || offset + subregion->size <= other->offset) {
1192 continue;
1193 }
1194 printf("warning: subregion collision %llx/%llx vs %llx/%llx\n",
1195 (unsigned long long)offset,
1196 (unsigned long long)subregion->size,
1197 (unsigned long long)other->offset,
1198 (unsigned long long)other->size);
1199 }
1200 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1201 if (subregion->priority >= other->priority) {
1202 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1203 goto done;
1204 }
1205 }
1206 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1207 done:
1208 memory_region_update_topology();
1209 }
1210
1211
1212 void memory_region_add_subregion(MemoryRegion *mr,
1213 target_phys_addr_t offset,
1214 MemoryRegion *subregion)
1215 {
1216 subregion->may_overlap = false;
1217 subregion->priority = 0;
1218 memory_region_add_subregion_common(mr, offset, subregion);
1219 }
1220
1221 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1222 target_phys_addr_t offset,
1223 MemoryRegion *subregion,
1224 unsigned priority)
1225 {
1226 subregion->may_overlap = true;
1227 subregion->priority = priority;
1228 memory_region_add_subregion_common(mr, offset, subregion);
1229 }
1230
1231 void memory_region_del_subregion(MemoryRegion *mr,
1232 MemoryRegion *subregion)
1233 {
1234 assert(subregion->parent == mr);
1235 subregion->parent = NULL;
1236 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1237 memory_region_update_topology();
1238 }
1239
1240 void set_system_memory_map(MemoryRegion *mr)
1241 {
1242 address_space_memory.root = mr;
1243 memory_region_update_topology();
1244 }
1245
1246 void set_system_io_map(MemoryRegion *mr)
1247 {
1248 address_space_io.root = mr;
1249 memory_region_update_topology();
1250 }