]> git.proxmox.com Git - qemu.git/blob - memory.c
memory: introduce memory_region_set_address()
[qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #include "memory.h"
15 #include "exec-memory.h"
16 #include "ioport.h"
17 #include "bitops.h"
18 #include "kvm.h"
19 #include <assert.h>
20
21 unsigned memory_region_transaction_depth = 0;
22
23 typedef struct AddrRange AddrRange;
24
25 /*
26 * Note using signed integers limits us to physical addresses at most
27 * 63 bits wide. They are needed for negative offsetting in aliases
28 * (large MemoryRegion::alias_offset).
29 */
30 struct AddrRange {
31 Int128 start;
32 Int128 size;
33 };
34
35 static AddrRange addrrange_make(Int128 start, Int128 size)
36 {
37 return (AddrRange) { start, size };
38 }
39
40 static bool addrrange_equal(AddrRange r1, AddrRange r2)
41 {
42 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
43 }
44
45 static Int128 addrrange_end(AddrRange r)
46 {
47 return int128_add(r.start, r.size);
48 }
49
50 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
51 {
52 int128_addto(&range.start, delta);
53 return range;
54 }
55
56 static bool addrrange_contains(AddrRange range, Int128 addr)
57 {
58 return int128_ge(addr, range.start)
59 && int128_lt(addr, addrrange_end(range));
60 }
61
62 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
63 {
64 return addrrange_contains(r1, r2.start)
65 || addrrange_contains(r2, r1.start);
66 }
67
68 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
69 {
70 Int128 start = int128_max(r1.start, r2.start);
71 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
72 return addrrange_make(start, int128_sub(end, start));
73 }
74
75 struct CoalescedMemoryRange {
76 AddrRange addr;
77 QTAILQ_ENTRY(CoalescedMemoryRange) link;
78 };
79
80 struct MemoryRegionIoeventfd {
81 AddrRange addr;
82 bool match_data;
83 uint64_t data;
84 int fd;
85 };
86
87 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
88 MemoryRegionIoeventfd b)
89 {
90 if (int128_lt(a.addr.start, b.addr.start)) {
91 return true;
92 } else if (int128_gt(a.addr.start, b.addr.start)) {
93 return false;
94 } else if (int128_lt(a.addr.size, b.addr.size)) {
95 return true;
96 } else if (int128_gt(a.addr.size, b.addr.size)) {
97 return false;
98 } else if (a.match_data < b.match_data) {
99 return true;
100 } else if (a.match_data > b.match_data) {
101 return false;
102 } else if (a.match_data) {
103 if (a.data < b.data) {
104 return true;
105 } else if (a.data > b.data) {
106 return false;
107 }
108 }
109 if (a.fd < b.fd) {
110 return true;
111 } else if (a.fd > b.fd) {
112 return false;
113 }
114 return false;
115 }
116
117 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
118 MemoryRegionIoeventfd b)
119 {
120 return !memory_region_ioeventfd_before(a, b)
121 && !memory_region_ioeventfd_before(b, a);
122 }
123
124 typedef struct FlatRange FlatRange;
125 typedef struct FlatView FlatView;
126
127 /* Range of memory in the global map. Addresses are absolute. */
128 struct FlatRange {
129 MemoryRegion *mr;
130 target_phys_addr_t offset_in_region;
131 AddrRange addr;
132 uint8_t dirty_log_mask;
133 bool readable;
134 bool readonly;
135 };
136
137 /* Flattened global view of current active memory hierarchy. Kept in sorted
138 * order.
139 */
140 struct FlatView {
141 FlatRange *ranges;
142 unsigned nr;
143 unsigned nr_allocated;
144 };
145
146 typedef struct AddressSpace AddressSpace;
147 typedef struct AddressSpaceOps AddressSpaceOps;
148
149 /* A system address space - I/O, memory, etc. */
150 struct AddressSpace {
151 const AddressSpaceOps *ops;
152 MemoryRegion *root;
153 FlatView current_map;
154 int ioeventfd_nb;
155 MemoryRegionIoeventfd *ioeventfds;
156 };
157
158 struct AddressSpaceOps {
159 void (*range_add)(AddressSpace *as, FlatRange *fr);
160 void (*range_del)(AddressSpace *as, FlatRange *fr);
161 void (*log_start)(AddressSpace *as, FlatRange *fr);
162 void (*log_stop)(AddressSpace *as, FlatRange *fr);
163 void (*ioeventfd_add)(AddressSpace *as, MemoryRegionIoeventfd *fd);
164 void (*ioeventfd_del)(AddressSpace *as, MemoryRegionIoeventfd *fd);
165 };
166
167 #define FOR_EACH_FLAT_RANGE(var, view) \
168 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
169
170 static bool flatrange_equal(FlatRange *a, FlatRange *b)
171 {
172 return a->mr == b->mr
173 && addrrange_equal(a->addr, b->addr)
174 && a->offset_in_region == b->offset_in_region
175 && a->readable == b->readable
176 && a->readonly == b->readonly;
177 }
178
179 static void flatview_init(FlatView *view)
180 {
181 view->ranges = NULL;
182 view->nr = 0;
183 view->nr_allocated = 0;
184 }
185
186 /* Insert a range into a given position. Caller is responsible for maintaining
187 * sorting order.
188 */
189 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
190 {
191 if (view->nr == view->nr_allocated) {
192 view->nr_allocated = MAX(2 * view->nr, 10);
193 view->ranges = g_realloc(view->ranges,
194 view->nr_allocated * sizeof(*view->ranges));
195 }
196 memmove(view->ranges + pos + 1, view->ranges + pos,
197 (view->nr - pos) * sizeof(FlatRange));
198 view->ranges[pos] = *range;
199 ++view->nr;
200 }
201
202 static void flatview_destroy(FlatView *view)
203 {
204 g_free(view->ranges);
205 }
206
207 static bool can_merge(FlatRange *r1, FlatRange *r2)
208 {
209 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
210 && r1->mr == r2->mr
211 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
212 r1->addr.size),
213 int128_make64(r2->offset_in_region))
214 && r1->dirty_log_mask == r2->dirty_log_mask
215 && r1->readable == r2->readable
216 && r1->readonly == r2->readonly;
217 }
218
219 /* Attempt to simplify a view by merging ajacent ranges */
220 static void flatview_simplify(FlatView *view)
221 {
222 unsigned i, j;
223
224 i = 0;
225 while (i < view->nr) {
226 j = i + 1;
227 while (j < view->nr
228 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
229 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
230 ++j;
231 }
232 ++i;
233 memmove(&view->ranges[i], &view->ranges[j],
234 (view->nr - j) * sizeof(view->ranges[j]));
235 view->nr -= j - i;
236 }
237 }
238
239 static void memory_region_read_accessor(void *opaque,
240 target_phys_addr_t addr,
241 uint64_t *value,
242 unsigned size,
243 unsigned shift,
244 uint64_t mask)
245 {
246 MemoryRegion *mr = opaque;
247 uint64_t tmp;
248
249 tmp = mr->ops->read(mr->opaque, addr, size);
250 *value |= (tmp & mask) << shift;
251 }
252
253 static void memory_region_write_accessor(void *opaque,
254 target_phys_addr_t addr,
255 uint64_t *value,
256 unsigned size,
257 unsigned shift,
258 uint64_t mask)
259 {
260 MemoryRegion *mr = opaque;
261 uint64_t tmp;
262
263 tmp = (*value >> shift) & mask;
264 mr->ops->write(mr->opaque, addr, tmp, size);
265 }
266
267 static void access_with_adjusted_size(target_phys_addr_t addr,
268 uint64_t *value,
269 unsigned size,
270 unsigned access_size_min,
271 unsigned access_size_max,
272 void (*access)(void *opaque,
273 target_phys_addr_t addr,
274 uint64_t *value,
275 unsigned size,
276 unsigned shift,
277 uint64_t mask),
278 void *opaque)
279 {
280 uint64_t access_mask;
281 unsigned access_size;
282 unsigned i;
283
284 if (!access_size_min) {
285 access_size_min = 1;
286 }
287 if (!access_size_max) {
288 access_size_max = 4;
289 }
290 access_size = MAX(MIN(size, access_size_max), access_size_min);
291 access_mask = -1ULL >> (64 - access_size * 8);
292 for (i = 0; i < size; i += access_size) {
293 /* FIXME: big-endian support */
294 access(opaque, addr + i, value, access_size, i * 8, access_mask);
295 }
296 }
297
298 static void memory_region_prepare_ram_addr(MemoryRegion *mr);
299
300 static void as_memory_range_add(AddressSpace *as, FlatRange *fr)
301 {
302 ram_addr_t phys_offset, region_offset;
303
304 memory_region_prepare_ram_addr(fr->mr);
305
306 phys_offset = fr->mr->ram_addr;
307 region_offset = fr->offset_in_region;
308 /* cpu_register_physical_memory_log() wants region_offset for
309 * mmio, but prefers offseting phys_offset for RAM. Humour it.
310 */
311 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
312 phys_offset += region_offset;
313 region_offset = 0;
314 }
315
316 if (!fr->readable) {
317 phys_offset &= ~TARGET_PAGE_MASK & ~IO_MEM_ROMD;
318 }
319
320 if (fr->readonly) {
321 phys_offset |= IO_MEM_ROM;
322 }
323
324 cpu_register_physical_memory_log(int128_get64(fr->addr.start),
325 int128_get64(fr->addr.size),
326 phys_offset,
327 region_offset,
328 fr->dirty_log_mask);
329 }
330
331 static void as_memory_range_del(AddressSpace *as, FlatRange *fr)
332 {
333 if (fr->dirty_log_mask) {
334 Int128 end = addrrange_end(fr->addr);
335 cpu_physical_sync_dirty_bitmap(int128_get64(fr->addr.start),
336 int128_get64(end));
337 }
338 cpu_register_physical_memory(int128_get64(fr->addr.start),
339 int128_get64(fr->addr.size),
340 IO_MEM_UNASSIGNED);
341 }
342
343 static void as_memory_log_start(AddressSpace *as, FlatRange *fr)
344 {
345 cpu_physical_log_start(int128_get64(fr->addr.start),
346 int128_get64(fr->addr.size));
347 }
348
349 static void as_memory_log_stop(AddressSpace *as, FlatRange *fr)
350 {
351 cpu_physical_log_stop(int128_get64(fr->addr.start),
352 int128_get64(fr->addr.size));
353 }
354
355 static void as_memory_ioeventfd_add(AddressSpace *as, MemoryRegionIoeventfd *fd)
356 {
357 int r;
358
359 assert(fd->match_data && int128_get64(fd->addr.size) == 4);
360
361 r = kvm_set_ioeventfd_mmio_long(fd->fd, int128_get64(fd->addr.start),
362 fd->data, true);
363 if (r < 0) {
364 abort();
365 }
366 }
367
368 static void as_memory_ioeventfd_del(AddressSpace *as, MemoryRegionIoeventfd *fd)
369 {
370 int r;
371
372 r = kvm_set_ioeventfd_mmio_long(fd->fd, int128_get64(fd->addr.start),
373 fd->data, false);
374 if (r < 0) {
375 abort();
376 }
377 }
378
379 static const AddressSpaceOps address_space_ops_memory = {
380 .range_add = as_memory_range_add,
381 .range_del = as_memory_range_del,
382 .log_start = as_memory_log_start,
383 .log_stop = as_memory_log_stop,
384 .ioeventfd_add = as_memory_ioeventfd_add,
385 .ioeventfd_del = as_memory_ioeventfd_del,
386 };
387
388 static AddressSpace address_space_memory = {
389 .ops = &address_space_ops_memory,
390 };
391
392 static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
393 unsigned width, bool write)
394 {
395 const MemoryRegionPortio *mrp;
396
397 for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
398 if (offset >= mrp->offset && offset < mrp->offset + mrp->len
399 && width == mrp->size
400 && (write ? (bool)mrp->write : (bool)mrp->read)) {
401 return mrp;
402 }
403 }
404 return NULL;
405 }
406
407 static void memory_region_iorange_read(IORange *iorange,
408 uint64_t offset,
409 unsigned width,
410 uint64_t *data)
411 {
412 MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange);
413
414 if (mr->ops->old_portio) {
415 const MemoryRegionPortio *mrp = find_portio(mr, offset, width, false);
416
417 *data = ((uint64_t)1 << (width * 8)) - 1;
418 if (mrp) {
419 *data = mrp->read(mr->opaque, offset + mr->offset);
420 } else if (width == 2) {
421 mrp = find_portio(mr, offset, 1, false);
422 assert(mrp);
423 *data = mrp->read(mr->opaque, offset + mr->offset) |
424 (mrp->read(mr->opaque, offset + mr->offset + 1) << 8);
425 }
426 return;
427 }
428 *data = 0;
429 access_with_adjusted_size(offset + mr->offset, data, width,
430 mr->ops->impl.min_access_size,
431 mr->ops->impl.max_access_size,
432 memory_region_read_accessor, mr);
433 }
434
435 static void memory_region_iorange_write(IORange *iorange,
436 uint64_t offset,
437 unsigned width,
438 uint64_t data)
439 {
440 MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange);
441
442 if (mr->ops->old_portio) {
443 const MemoryRegionPortio *mrp = find_portio(mr, offset, width, true);
444
445 if (mrp) {
446 mrp->write(mr->opaque, offset + mr->offset, data);
447 } else if (width == 2) {
448 mrp = find_portio(mr, offset, 1, false);
449 assert(mrp);
450 mrp->write(mr->opaque, offset + mr->offset, data & 0xff);
451 mrp->write(mr->opaque, offset + mr->offset + 1, data >> 8);
452 }
453 return;
454 }
455 access_with_adjusted_size(offset + mr->offset, &data, width,
456 mr->ops->impl.min_access_size,
457 mr->ops->impl.max_access_size,
458 memory_region_write_accessor, mr);
459 }
460
461 static const IORangeOps memory_region_iorange_ops = {
462 .read = memory_region_iorange_read,
463 .write = memory_region_iorange_write,
464 };
465
466 static void as_io_range_add(AddressSpace *as, FlatRange *fr)
467 {
468 iorange_init(&fr->mr->iorange, &memory_region_iorange_ops,
469 int128_get64(fr->addr.start), int128_get64(fr->addr.size));
470 ioport_register(&fr->mr->iorange);
471 }
472
473 static void as_io_range_del(AddressSpace *as, FlatRange *fr)
474 {
475 isa_unassign_ioport(int128_get64(fr->addr.start),
476 int128_get64(fr->addr.size));
477 }
478
479 static void as_io_ioeventfd_add(AddressSpace *as, MemoryRegionIoeventfd *fd)
480 {
481 int r;
482
483 assert(fd->match_data && int128_get64(fd->addr.size) == 2);
484
485 r = kvm_set_ioeventfd_pio_word(fd->fd, int128_get64(fd->addr.start),
486 fd->data, true);
487 if (r < 0) {
488 abort();
489 }
490 }
491
492 static void as_io_ioeventfd_del(AddressSpace *as, MemoryRegionIoeventfd *fd)
493 {
494 int r;
495
496 r = kvm_set_ioeventfd_pio_word(fd->fd, int128_get64(fd->addr.start),
497 fd->data, false);
498 if (r < 0) {
499 abort();
500 }
501 }
502
503 static const AddressSpaceOps address_space_ops_io = {
504 .range_add = as_io_range_add,
505 .range_del = as_io_range_del,
506 .ioeventfd_add = as_io_ioeventfd_add,
507 .ioeventfd_del = as_io_ioeventfd_del,
508 };
509
510 static AddressSpace address_space_io = {
511 .ops = &address_space_ops_io,
512 };
513
514 /* Render a memory region into the global view. Ranges in @view obscure
515 * ranges in @mr.
516 */
517 static void render_memory_region(FlatView *view,
518 MemoryRegion *mr,
519 Int128 base,
520 AddrRange clip,
521 bool readonly)
522 {
523 MemoryRegion *subregion;
524 unsigned i;
525 target_phys_addr_t offset_in_region;
526 Int128 remain;
527 Int128 now;
528 FlatRange fr;
529 AddrRange tmp;
530
531 if (!mr->enabled) {
532 return;
533 }
534
535 int128_addto(&base, int128_make64(mr->addr));
536 readonly |= mr->readonly;
537
538 tmp = addrrange_make(base, mr->size);
539
540 if (!addrrange_intersects(tmp, clip)) {
541 return;
542 }
543
544 clip = addrrange_intersection(tmp, clip);
545
546 if (mr->alias) {
547 int128_subfrom(&base, int128_make64(mr->alias->addr));
548 int128_subfrom(&base, int128_make64(mr->alias_offset));
549 render_memory_region(view, mr->alias, base, clip, readonly);
550 return;
551 }
552
553 /* Render subregions in priority order. */
554 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
555 render_memory_region(view, subregion, base, clip, readonly);
556 }
557
558 if (!mr->terminates) {
559 return;
560 }
561
562 offset_in_region = int128_get64(int128_sub(clip.start, base));
563 base = clip.start;
564 remain = clip.size;
565
566 /* Render the region itself into any gaps left by the current view. */
567 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
568 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
569 continue;
570 }
571 if (int128_lt(base, view->ranges[i].addr.start)) {
572 now = int128_min(remain,
573 int128_sub(view->ranges[i].addr.start, base));
574 fr.mr = mr;
575 fr.offset_in_region = offset_in_region;
576 fr.addr = addrrange_make(base, now);
577 fr.dirty_log_mask = mr->dirty_log_mask;
578 fr.readable = mr->readable;
579 fr.readonly = readonly;
580 flatview_insert(view, i, &fr);
581 ++i;
582 int128_addto(&base, now);
583 offset_in_region += int128_get64(now);
584 int128_subfrom(&remain, now);
585 }
586 if (int128_eq(base, view->ranges[i].addr.start)) {
587 now = int128_min(remain, view->ranges[i].addr.size);
588 int128_addto(&base, now);
589 offset_in_region += int128_get64(now);
590 int128_subfrom(&remain, now);
591 }
592 }
593 if (int128_nz(remain)) {
594 fr.mr = mr;
595 fr.offset_in_region = offset_in_region;
596 fr.addr = addrrange_make(base, remain);
597 fr.dirty_log_mask = mr->dirty_log_mask;
598 fr.readable = mr->readable;
599 fr.readonly = readonly;
600 flatview_insert(view, i, &fr);
601 }
602 }
603
604 /* Render a memory topology into a list of disjoint absolute ranges. */
605 static FlatView generate_memory_topology(MemoryRegion *mr)
606 {
607 FlatView view;
608
609 flatview_init(&view);
610
611 render_memory_region(&view, mr, int128_zero(),
612 addrrange_make(int128_zero(), int128_2_64()), false);
613 flatview_simplify(&view);
614
615 return view;
616 }
617
618 static void address_space_add_del_ioeventfds(AddressSpace *as,
619 MemoryRegionIoeventfd *fds_new,
620 unsigned fds_new_nb,
621 MemoryRegionIoeventfd *fds_old,
622 unsigned fds_old_nb)
623 {
624 unsigned iold, inew;
625
626 /* Generate a symmetric difference of the old and new fd sets, adding
627 * and deleting as necessary.
628 */
629
630 iold = inew = 0;
631 while (iold < fds_old_nb || inew < fds_new_nb) {
632 if (iold < fds_old_nb
633 && (inew == fds_new_nb
634 || memory_region_ioeventfd_before(fds_old[iold],
635 fds_new[inew]))) {
636 as->ops->ioeventfd_del(as, &fds_old[iold]);
637 ++iold;
638 } else if (inew < fds_new_nb
639 && (iold == fds_old_nb
640 || memory_region_ioeventfd_before(fds_new[inew],
641 fds_old[iold]))) {
642 as->ops->ioeventfd_add(as, &fds_new[inew]);
643 ++inew;
644 } else {
645 ++iold;
646 ++inew;
647 }
648 }
649 }
650
651 static void address_space_update_ioeventfds(AddressSpace *as)
652 {
653 FlatRange *fr;
654 unsigned ioeventfd_nb = 0;
655 MemoryRegionIoeventfd *ioeventfds = NULL;
656 AddrRange tmp;
657 unsigned i;
658
659 FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
660 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
661 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
662 int128_sub(fr->addr.start,
663 int128_make64(fr->offset_in_region)));
664 if (addrrange_intersects(fr->addr, tmp)) {
665 ++ioeventfd_nb;
666 ioeventfds = g_realloc(ioeventfds,
667 ioeventfd_nb * sizeof(*ioeventfds));
668 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
669 ioeventfds[ioeventfd_nb-1].addr = tmp;
670 }
671 }
672 }
673
674 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
675 as->ioeventfds, as->ioeventfd_nb);
676
677 g_free(as->ioeventfds);
678 as->ioeventfds = ioeventfds;
679 as->ioeventfd_nb = ioeventfd_nb;
680 }
681
682 static void address_space_update_topology_pass(AddressSpace *as,
683 FlatView old_view,
684 FlatView new_view,
685 bool adding)
686 {
687 unsigned iold, inew;
688 FlatRange *frold, *frnew;
689
690 /* Generate a symmetric difference of the old and new memory maps.
691 * Kill ranges in the old map, and instantiate ranges in the new map.
692 */
693 iold = inew = 0;
694 while (iold < old_view.nr || inew < new_view.nr) {
695 if (iold < old_view.nr) {
696 frold = &old_view.ranges[iold];
697 } else {
698 frold = NULL;
699 }
700 if (inew < new_view.nr) {
701 frnew = &new_view.ranges[inew];
702 } else {
703 frnew = NULL;
704 }
705
706 if (frold
707 && (!frnew
708 || int128_lt(frold->addr.start, frnew->addr.start)
709 || (int128_eq(frold->addr.start, frnew->addr.start)
710 && !flatrange_equal(frold, frnew)))) {
711 /* In old, but (not in new, or in new but attributes changed). */
712
713 if (!adding) {
714 as->ops->range_del(as, frold);
715 }
716
717 ++iold;
718 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
719 /* In both (logging may have changed) */
720
721 if (adding) {
722 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
723 as->ops->log_stop(as, frnew);
724 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
725 as->ops->log_start(as, frnew);
726 }
727 }
728
729 ++iold;
730 ++inew;
731 } else {
732 /* In new */
733
734 if (adding) {
735 as->ops->range_add(as, frnew);
736 }
737
738 ++inew;
739 }
740 }
741 }
742
743
744 static void address_space_update_topology(AddressSpace *as)
745 {
746 FlatView old_view = as->current_map;
747 FlatView new_view = generate_memory_topology(as->root);
748
749 address_space_update_topology_pass(as, old_view, new_view, false);
750 address_space_update_topology_pass(as, old_view, new_view, true);
751
752 as->current_map = new_view;
753 flatview_destroy(&old_view);
754 address_space_update_ioeventfds(as);
755 }
756
757 static void memory_region_update_topology(MemoryRegion *mr)
758 {
759 if (memory_region_transaction_depth) {
760 return;
761 }
762
763 if (mr && !mr->enabled) {
764 return;
765 }
766
767 if (address_space_memory.root) {
768 address_space_update_topology(&address_space_memory);
769 }
770 if (address_space_io.root) {
771 address_space_update_topology(&address_space_io);
772 }
773 }
774
775 void memory_region_transaction_begin(void)
776 {
777 ++memory_region_transaction_depth;
778 }
779
780 void memory_region_transaction_commit(void)
781 {
782 assert(memory_region_transaction_depth);
783 --memory_region_transaction_depth;
784 memory_region_update_topology(NULL);
785 }
786
787 static void memory_region_destructor_none(MemoryRegion *mr)
788 {
789 }
790
791 static void memory_region_destructor_ram(MemoryRegion *mr)
792 {
793 qemu_ram_free(mr->ram_addr);
794 }
795
796 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
797 {
798 qemu_ram_free_from_ptr(mr->ram_addr);
799 }
800
801 static void memory_region_destructor_iomem(MemoryRegion *mr)
802 {
803 cpu_unregister_io_memory(mr->ram_addr);
804 }
805
806 static void memory_region_destructor_rom_device(MemoryRegion *mr)
807 {
808 qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
809 cpu_unregister_io_memory(mr->ram_addr & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
810 }
811
812 void memory_region_init(MemoryRegion *mr,
813 const char *name,
814 uint64_t size)
815 {
816 mr->ops = NULL;
817 mr->parent = NULL;
818 mr->size = int128_make64(size);
819 if (size == UINT64_MAX) {
820 mr->size = int128_2_64();
821 }
822 mr->addr = 0;
823 mr->offset = 0;
824 mr->enabled = true;
825 mr->terminates = false;
826 mr->readable = true;
827 mr->readonly = false;
828 mr->destructor = memory_region_destructor_none;
829 mr->priority = 0;
830 mr->may_overlap = false;
831 mr->alias = NULL;
832 QTAILQ_INIT(&mr->subregions);
833 memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
834 QTAILQ_INIT(&mr->coalesced);
835 mr->name = g_strdup(name);
836 mr->dirty_log_mask = 0;
837 mr->ioeventfd_nb = 0;
838 mr->ioeventfds = NULL;
839 }
840
841 static bool memory_region_access_valid(MemoryRegion *mr,
842 target_phys_addr_t addr,
843 unsigned size,
844 bool is_write)
845 {
846 if (mr->ops->valid.accepts
847 && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write)) {
848 return false;
849 }
850
851 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
852 return false;
853 }
854
855 /* Treat zero as compatibility all valid */
856 if (!mr->ops->valid.max_access_size) {
857 return true;
858 }
859
860 if (size > mr->ops->valid.max_access_size
861 || size < mr->ops->valid.min_access_size) {
862 return false;
863 }
864 return true;
865 }
866
867 static uint32_t memory_region_read_thunk_n(void *_mr,
868 target_phys_addr_t addr,
869 unsigned size)
870 {
871 MemoryRegion *mr = _mr;
872 uint64_t data = 0;
873
874 if (!memory_region_access_valid(mr, addr, size, false)) {
875 return -1U; /* FIXME: better signalling */
876 }
877
878 if (!mr->ops->read) {
879 return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr);
880 }
881
882 /* FIXME: support unaligned access */
883 access_with_adjusted_size(addr + mr->offset, &data, size,
884 mr->ops->impl.min_access_size,
885 mr->ops->impl.max_access_size,
886 memory_region_read_accessor, mr);
887
888 return data;
889 }
890
891 static void memory_region_write_thunk_n(void *_mr,
892 target_phys_addr_t addr,
893 unsigned size,
894 uint64_t data)
895 {
896 MemoryRegion *mr = _mr;
897
898 if (!memory_region_access_valid(mr, addr, size, true)) {
899 return; /* FIXME: better signalling */
900 }
901
902 if (!mr->ops->write) {
903 mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
904 return;
905 }
906
907 /* FIXME: support unaligned access */
908 access_with_adjusted_size(addr + mr->offset, &data, size,
909 mr->ops->impl.min_access_size,
910 mr->ops->impl.max_access_size,
911 memory_region_write_accessor, mr);
912 }
913
914 static uint32_t memory_region_read_thunk_b(void *mr, target_phys_addr_t addr)
915 {
916 return memory_region_read_thunk_n(mr, addr, 1);
917 }
918
919 static uint32_t memory_region_read_thunk_w(void *mr, target_phys_addr_t addr)
920 {
921 return memory_region_read_thunk_n(mr, addr, 2);
922 }
923
924 static uint32_t memory_region_read_thunk_l(void *mr, target_phys_addr_t addr)
925 {
926 return memory_region_read_thunk_n(mr, addr, 4);
927 }
928
929 static void memory_region_write_thunk_b(void *mr, target_phys_addr_t addr,
930 uint32_t data)
931 {
932 memory_region_write_thunk_n(mr, addr, 1, data);
933 }
934
935 static void memory_region_write_thunk_w(void *mr, target_phys_addr_t addr,
936 uint32_t data)
937 {
938 memory_region_write_thunk_n(mr, addr, 2, data);
939 }
940
941 static void memory_region_write_thunk_l(void *mr, target_phys_addr_t addr,
942 uint32_t data)
943 {
944 memory_region_write_thunk_n(mr, addr, 4, data);
945 }
946
947 static CPUReadMemoryFunc * const memory_region_read_thunk[] = {
948 memory_region_read_thunk_b,
949 memory_region_read_thunk_w,
950 memory_region_read_thunk_l,
951 };
952
953 static CPUWriteMemoryFunc * const memory_region_write_thunk[] = {
954 memory_region_write_thunk_b,
955 memory_region_write_thunk_w,
956 memory_region_write_thunk_l,
957 };
958
959 static void memory_region_prepare_ram_addr(MemoryRegion *mr)
960 {
961 if (mr->backend_registered) {
962 return;
963 }
964
965 mr->destructor = memory_region_destructor_iomem;
966 mr->ram_addr = cpu_register_io_memory(memory_region_read_thunk,
967 memory_region_write_thunk,
968 mr,
969 mr->ops->endianness);
970 mr->backend_registered = true;
971 }
972
973 void memory_region_init_io(MemoryRegion *mr,
974 const MemoryRegionOps *ops,
975 void *opaque,
976 const char *name,
977 uint64_t size)
978 {
979 memory_region_init(mr, name, size);
980 mr->ops = ops;
981 mr->opaque = opaque;
982 mr->terminates = true;
983 mr->backend_registered = false;
984 }
985
986 void memory_region_init_ram(MemoryRegion *mr,
987 DeviceState *dev,
988 const char *name,
989 uint64_t size)
990 {
991 memory_region_init(mr, name, size);
992 mr->terminates = true;
993 mr->destructor = memory_region_destructor_ram;
994 mr->ram_addr = qemu_ram_alloc(dev, name, size);
995 mr->backend_registered = true;
996 }
997
998 void memory_region_init_ram_ptr(MemoryRegion *mr,
999 DeviceState *dev,
1000 const char *name,
1001 uint64_t size,
1002 void *ptr)
1003 {
1004 memory_region_init(mr, name, size);
1005 mr->terminates = true;
1006 mr->destructor = memory_region_destructor_ram_from_ptr;
1007 mr->ram_addr = qemu_ram_alloc_from_ptr(dev, name, size, ptr);
1008 mr->backend_registered = true;
1009 }
1010
1011 void memory_region_init_alias(MemoryRegion *mr,
1012 const char *name,
1013 MemoryRegion *orig,
1014 target_phys_addr_t offset,
1015 uint64_t size)
1016 {
1017 memory_region_init(mr, name, size);
1018 mr->alias = orig;
1019 mr->alias_offset = offset;
1020 }
1021
1022 void memory_region_init_rom_device(MemoryRegion *mr,
1023 const MemoryRegionOps *ops,
1024 void *opaque,
1025 DeviceState *dev,
1026 const char *name,
1027 uint64_t size)
1028 {
1029 memory_region_init(mr, name, size);
1030 mr->ops = ops;
1031 mr->opaque = opaque;
1032 mr->terminates = true;
1033 mr->destructor = memory_region_destructor_rom_device;
1034 mr->ram_addr = qemu_ram_alloc(dev, name, size);
1035 mr->ram_addr |= cpu_register_io_memory(memory_region_read_thunk,
1036 memory_region_write_thunk,
1037 mr,
1038 mr->ops->endianness);
1039 mr->ram_addr |= IO_MEM_ROMD;
1040 mr->backend_registered = true;
1041 }
1042
1043 void memory_region_destroy(MemoryRegion *mr)
1044 {
1045 assert(QTAILQ_EMPTY(&mr->subregions));
1046 mr->destructor(mr);
1047 memory_region_clear_coalescing(mr);
1048 g_free((char *)mr->name);
1049 g_free(mr->ioeventfds);
1050 }
1051
1052 uint64_t memory_region_size(MemoryRegion *mr)
1053 {
1054 if (int128_eq(mr->size, int128_2_64())) {
1055 return UINT64_MAX;
1056 }
1057 return int128_get64(mr->size);
1058 }
1059
1060 void memory_region_set_offset(MemoryRegion *mr, target_phys_addr_t offset)
1061 {
1062 mr->offset = offset;
1063 }
1064
1065 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1066 {
1067 uint8_t mask = 1 << client;
1068
1069 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1070 memory_region_update_topology(mr);
1071 }
1072
1073 bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1074 unsigned client)
1075 {
1076 assert(mr->terminates);
1077 return cpu_physical_memory_get_dirty(mr->ram_addr + addr, 1 << client);
1078 }
1079
1080 void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr)
1081 {
1082 assert(mr->terminates);
1083 return cpu_physical_memory_set_dirty(mr->ram_addr + addr);
1084 }
1085
1086 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1087 {
1088 FlatRange *fr;
1089
1090 FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1091 if (fr->mr == mr) {
1092 cpu_physical_sync_dirty_bitmap(int128_get64(fr->addr.start),
1093 int128_get64(addrrange_end(fr->addr)));
1094 }
1095 }
1096 }
1097
1098 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1099 {
1100 if (mr->readonly != readonly) {
1101 mr->readonly = readonly;
1102 memory_region_update_topology(mr);
1103 }
1104 }
1105
1106 void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable)
1107 {
1108 if (mr->readable != readable) {
1109 mr->readable = readable;
1110 memory_region_update_topology(mr);
1111 }
1112 }
1113
1114 void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1115 target_phys_addr_t size, unsigned client)
1116 {
1117 assert(mr->terminates);
1118 cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1119 mr->ram_addr + addr + size,
1120 1 << client);
1121 }
1122
1123 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1124 {
1125 if (mr->alias) {
1126 return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1127 }
1128
1129 assert(mr->terminates);
1130
1131 return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1132 }
1133
1134 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1135 {
1136 FlatRange *fr;
1137 CoalescedMemoryRange *cmr;
1138 AddrRange tmp;
1139
1140 FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1141 if (fr->mr == mr) {
1142 qemu_unregister_coalesced_mmio(int128_get64(fr->addr.start),
1143 int128_get64(fr->addr.size));
1144 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1145 tmp = addrrange_shift(cmr->addr,
1146 int128_sub(fr->addr.start,
1147 int128_make64(fr->offset_in_region)));
1148 if (!addrrange_intersects(tmp, fr->addr)) {
1149 continue;
1150 }
1151 tmp = addrrange_intersection(tmp, fr->addr);
1152 qemu_register_coalesced_mmio(int128_get64(tmp.start),
1153 int128_get64(tmp.size));
1154 }
1155 }
1156 }
1157 }
1158
1159 void memory_region_set_coalescing(MemoryRegion *mr)
1160 {
1161 memory_region_clear_coalescing(mr);
1162 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1163 }
1164
1165 void memory_region_add_coalescing(MemoryRegion *mr,
1166 target_phys_addr_t offset,
1167 uint64_t size)
1168 {
1169 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1170
1171 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1172 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1173 memory_region_update_coalesced_range(mr);
1174 }
1175
1176 void memory_region_clear_coalescing(MemoryRegion *mr)
1177 {
1178 CoalescedMemoryRange *cmr;
1179
1180 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1181 cmr = QTAILQ_FIRST(&mr->coalesced);
1182 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1183 g_free(cmr);
1184 }
1185 memory_region_update_coalesced_range(mr);
1186 }
1187
1188 void memory_region_add_eventfd(MemoryRegion *mr,
1189 target_phys_addr_t addr,
1190 unsigned size,
1191 bool match_data,
1192 uint64_t data,
1193 int fd)
1194 {
1195 MemoryRegionIoeventfd mrfd = {
1196 .addr.start = int128_make64(addr),
1197 .addr.size = int128_make64(size),
1198 .match_data = match_data,
1199 .data = data,
1200 .fd = fd,
1201 };
1202 unsigned i;
1203
1204 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1205 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1206 break;
1207 }
1208 }
1209 ++mr->ioeventfd_nb;
1210 mr->ioeventfds = g_realloc(mr->ioeventfds,
1211 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1212 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1213 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1214 mr->ioeventfds[i] = mrfd;
1215 memory_region_update_topology(mr);
1216 }
1217
1218 void memory_region_del_eventfd(MemoryRegion *mr,
1219 target_phys_addr_t addr,
1220 unsigned size,
1221 bool match_data,
1222 uint64_t data,
1223 int fd)
1224 {
1225 MemoryRegionIoeventfd mrfd = {
1226 .addr.start = int128_make64(addr),
1227 .addr.size = int128_make64(size),
1228 .match_data = match_data,
1229 .data = data,
1230 .fd = fd,
1231 };
1232 unsigned i;
1233
1234 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1235 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1236 break;
1237 }
1238 }
1239 assert(i != mr->ioeventfd_nb);
1240 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1241 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1242 --mr->ioeventfd_nb;
1243 mr->ioeventfds = g_realloc(mr->ioeventfds,
1244 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1245 memory_region_update_topology(mr);
1246 }
1247
1248 static void memory_region_add_subregion_common(MemoryRegion *mr,
1249 target_phys_addr_t offset,
1250 MemoryRegion *subregion)
1251 {
1252 MemoryRegion *other;
1253
1254 assert(!subregion->parent);
1255 subregion->parent = mr;
1256 subregion->addr = offset;
1257 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1258 if (subregion->may_overlap || other->may_overlap) {
1259 continue;
1260 }
1261 if (int128_gt(int128_make64(offset),
1262 int128_add(int128_make64(other->addr), other->size))
1263 || int128_le(int128_add(int128_make64(offset), subregion->size),
1264 int128_make64(other->addr))) {
1265 continue;
1266 }
1267 #if 0
1268 printf("warning: subregion collision %llx/%llx (%s) "
1269 "vs %llx/%llx (%s)\n",
1270 (unsigned long long)offset,
1271 (unsigned long long)int128_get64(subregion->size),
1272 subregion->name,
1273 (unsigned long long)other->addr,
1274 (unsigned long long)int128_get64(other->size),
1275 other->name);
1276 #endif
1277 }
1278 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1279 if (subregion->priority >= other->priority) {
1280 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1281 goto done;
1282 }
1283 }
1284 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1285 done:
1286 memory_region_update_topology(mr);
1287 }
1288
1289
1290 void memory_region_add_subregion(MemoryRegion *mr,
1291 target_phys_addr_t offset,
1292 MemoryRegion *subregion)
1293 {
1294 subregion->may_overlap = false;
1295 subregion->priority = 0;
1296 memory_region_add_subregion_common(mr, offset, subregion);
1297 }
1298
1299 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1300 target_phys_addr_t offset,
1301 MemoryRegion *subregion,
1302 unsigned priority)
1303 {
1304 subregion->may_overlap = true;
1305 subregion->priority = priority;
1306 memory_region_add_subregion_common(mr, offset, subregion);
1307 }
1308
1309 void memory_region_del_subregion(MemoryRegion *mr,
1310 MemoryRegion *subregion)
1311 {
1312 assert(subregion->parent == mr);
1313 subregion->parent = NULL;
1314 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1315 memory_region_update_topology(mr);
1316 }
1317
1318 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1319 {
1320 if (enabled == mr->enabled) {
1321 return;
1322 }
1323 mr->enabled = enabled;
1324 memory_region_update_topology(NULL);
1325 }
1326
1327 void memory_region_set_address(MemoryRegion *mr, target_phys_addr_t addr)
1328 {
1329 MemoryRegion *parent = mr->parent;
1330 unsigned priority = mr->priority;
1331 bool may_overlap = mr->may_overlap;
1332
1333 if (addr == mr->addr || !parent) {
1334 mr->addr = addr;
1335 return;
1336 }
1337
1338 memory_region_transaction_begin();
1339 memory_region_del_subregion(parent, mr);
1340 if (may_overlap) {
1341 memory_region_add_subregion_overlap(parent, addr, mr, priority);
1342 } else {
1343 memory_region_add_subregion(parent, addr, mr);
1344 }
1345 memory_region_transaction_commit();
1346 }
1347
1348 void set_system_memory_map(MemoryRegion *mr)
1349 {
1350 address_space_memory.root = mr;
1351 memory_region_update_topology(NULL);
1352 }
1353
1354 void set_system_io_map(MemoryRegion *mr)
1355 {
1356 address_space_io.root = mr;
1357 memory_region_update_topology(NULL);
1358 }
1359
1360 typedef struct MemoryRegionList MemoryRegionList;
1361
1362 struct MemoryRegionList {
1363 const MemoryRegion *mr;
1364 bool printed;
1365 QTAILQ_ENTRY(MemoryRegionList) queue;
1366 };
1367
1368 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1369
1370 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1371 const MemoryRegion *mr, unsigned int level,
1372 target_phys_addr_t base,
1373 MemoryRegionListHead *alias_print_queue)
1374 {
1375 MemoryRegionList *new_ml, *ml, *next_ml;
1376 MemoryRegionListHead submr_print_queue;
1377 const MemoryRegion *submr;
1378 unsigned int i;
1379
1380 if (!mr) {
1381 return;
1382 }
1383
1384 for (i = 0; i < level; i++) {
1385 mon_printf(f, " ");
1386 }
1387
1388 if (mr->alias) {
1389 MemoryRegionList *ml;
1390 bool found = false;
1391
1392 /* check if the alias is already in the queue */
1393 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1394 if (ml->mr == mr->alias && !ml->printed) {
1395 found = true;
1396 }
1397 }
1398
1399 if (!found) {
1400 ml = g_new(MemoryRegionList, 1);
1401 ml->mr = mr->alias;
1402 ml->printed = false;
1403 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1404 }
1405 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d): alias %s @%s "
1406 TARGET_FMT_plx "-" TARGET_FMT_plx "\n",
1407 base + mr->addr,
1408 base + mr->addr
1409 + (target_phys_addr_t)int128_get64(mr->size) - 1,
1410 mr->priority,
1411 mr->name,
1412 mr->alias->name,
1413 mr->alias_offset,
1414 mr->alias_offset
1415 + (target_phys_addr_t)int128_get64(mr->size) - 1);
1416 } else {
1417 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d): %s\n",
1418 base + mr->addr,
1419 base + mr->addr
1420 + (target_phys_addr_t)int128_get64(mr->size) - 1,
1421 mr->priority,
1422 mr->name);
1423 }
1424
1425 QTAILQ_INIT(&submr_print_queue);
1426
1427 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1428 new_ml = g_new(MemoryRegionList, 1);
1429 new_ml->mr = submr;
1430 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1431 if (new_ml->mr->addr < ml->mr->addr ||
1432 (new_ml->mr->addr == ml->mr->addr &&
1433 new_ml->mr->priority > ml->mr->priority)) {
1434 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1435 new_ml = NULL;
1436 break;
1437 }
1438 }
1439 if (new_ml) {
1440 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1441 }
1442 }
1443
1444 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1445 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1446 alias_print_queue);
1447 }
1448
1449 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1450 g_free(ml);
1451 }
1452 }
1453
1454 void mtree_info(fprintf_function mon_printf, void *f)
1455 {
1456 MemoryRegionListHead ml_head;
1457 MemoryRegionList *ml, *ml2;
1458
1459 QTAILQ_INIT(&ml_head);
1460
1461 mon_printf(f, "memory\n");
1462 mtree_print_mr(mon_printf, f, address_space_memory.root, 0, 0, &ml_head);
1463
1464 /* print aliased regions */
1465 QTAILQ_FOREACH(ml, &ml_head, queue) {
1466 if (!ml->printed) {
1467 mon_printf(f, "%s\n", ml->mr->name);
1468 mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1469 }
1470 }
1471
1472 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1473 g_free(ml);
1474 }
1475
1476 if (address_space_io.root &&
1477 !QTAILQ_EMPTY(&address_space_io.root->subregions)) {
1478 QTAILQ_INIT(&ml_head);
1479 mon_printf(f, "I/O\n");
1480 mtree_print_mr(mon_printf, f, address_space_io.root, 0, 0, &ml_head);
1481 }
1482 }