]> git.proxmox.com Git - qemu.git/blob - memory.c
memory: add a readonly attribute to MemoryRegionSection
[qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "memory.h"
17 #include "exec-memory.h"
18 #include "ioport.h"
19 #include "bitops.h"
20 #include "kvm.h"
21 #include <assert.h>
22
23 #define WANT_EXEC_OBSOLETE
24 #include "exec-obsolete.h"
25
26 unsigned memory_region_transaction_depth = 0;
27 static bool memory_region_update_pending = false;
28 static bool global_dirty_log = false;
29
30 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
31 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
32
33 typedef struct AddrRange AddrRange;
34
35 /*
36 * Note using signed integers limits us to physical addresses at most
37 * 63 bits wide. They are needed for negative offsetting in aliases
38 * (large MemoryRegion::alias_offset).
39 */
40 struct AddrRange {
41 Int128 start;
42 Int128 size;
43 };
44
45 static AddrRange addrrange_make(Int128 start, Int128 size)
46 {
47 return (AddrRange) { start, size };
48 }
49
50 static bool addrrange_equal(AddrRange r1, AddrRange r2)
51 {
52 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
53 }
54
55 static Int128 addrrange_end(AddrRange r)
56 {
57 return int128_add(r.start, r.size);
58 }
59
60 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
61 {
62 int128_addto(&range.start, delta);
63 return range;
64 }
65
66 static bool addrrange_contains(AddrRange range, Int128 addr)
67 {
68 return int128_ge(addr, range.start)
69 && int128_lt(addr, addrrange_end(range));
70 }
71
72 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
73 {
74 return addrrange_contains(r1, r2.start)
75 || addrrange_contains(r2, r1.start);
76 }
77
78 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
79 {
80 Int128 start = int128_max(r1.start, r2.start);
81 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
82 return addrrange_make(start, int128_sub(end, start));
83 }
84
85 enum ListenerDirection { Forward, Reverse };
86
87 #define MEMORY_LISTENER_CALL(_callback, _direction, _args...) \
88 do { \
89 MemoryListener *_listener; \
90 \
91 switch (_direction) { \
92 case Forward: \
93 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
94 _listener->_callback(_listener, ##_args); \
95 } \
96 break; \
97 case Reverse: \
98 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
99 memory_listeners, link) { \
100 _listener->_callback(_listener, ##_args); \
101 } \
102 break; \
103 default: \
104 abort(); \
105 } \
106 } while (0)
107
108 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback) \
109 MEMORY_LISTENER_CALL(callback, dir, &(MemoryRegionSection) { \
110 .mr = (fr)->mr, \
111 .address_space = (as)->root, \
112 .offset_within_region = (fr)->offset_in_region, \
113 .size = int128_get64((fr)->addr.size), \
114 .offset_within_address_space = int128_get64((fr)->addr.start), \
115 .readonly = (fr)->readonly, \
116 })
117
118 struct CoalescedMemoryRange {
119 AddrRange addr;
120 QTAILQ_ENTRY(CoalescedMemoryRange) link;
121 };
122
123 struct MemoryRegionIoeventfd {
124 AddrRange addr;
125 bool match_data;
126 uint64_t data;
127 int fd;
128 };
129
130 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
131 MemoryRegionIoeventfd b)
132 {
133 if (int128_lt(a.addr.start, b.addr.start)) {
134 return true;
135 } else if (int128_gt(a.addr.start, b.addr.start)) {
136 return false;
137 } else if (int128_lt(a.addr.size, b.addr.size)) {
138 return true;
139 } else if (int128_gt(a.addr.size, b.addr.size)) {
140 return false;
141 } else if (a.match_data < b.match_data) {
142 return true;
143 } else if (a.match_data > b.match_data) {
144 return false;
145 } else if (a.match_data) {
146 if (a.data < b.data) {
147 return true;
148 } else if (a.data > b.data) {
149 return false;
150 }
151 }
152 if (a.fd < b.fd) {
153 return true;
154 } else if (a.fd > b.fd) {
155 return false;
156 }
157 return false;
158 }
159
160 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
161 MemoryRegionIoeventfd b)
162 {
163 return !memory_region_ioeventfd_before(a, b)
164 && !memory_region_ioeventfd_before(b, a);
165 }
166
167 typedef struct FlatRange FlatRange;
168 typedef struct FlatView FlatView;
169
170 /* Range of memory in the global map. Addresses are absolute. */
171 struct FlatRange {
172 MemoryRegion *mr;
173 target_phys_addr_t offset_in_region;
174 AddrRange addr;
175 uint8_t dirty_log_mask;
176 bool readable;
177 bool readonly;
178 };
179
180 /* Flattened global view of current active memory hierarchy. Kept in sorted
181 * order.
182 */
183 struct FlatView {
184 FlatRange *ranges;
185 unsigned nr;
186 unsigned nr_allocated;
187 };
188
189 typedef struct AddressSpace AddressSpace;
190 typedef struct AddressSpaceOps AddressSpaceOps;
191
192 /* A system address space - I/O, memory, etc. */
193 struct AddressSpace {
194 const AddressSpaceOps *ops;
195 MemoryRegion *root;
196 FlatView current_map;
197 int ioeventfd_nb;
198 MemoryRegionIoeventfd *ioeventfds;
199 };
200
201 struct AddressSpaceOps {
202 void (*range_add)(AddressSpace *as, FlatRange *fr);
203 void (*range_del)(AddressSpace *as, FlatRange *fr);
204 void (*log_start)(AddressSpace *as, FlatRange *fr);
205 void (*log_stop)(AddressSpace *as, FlatRange *fr);
206 };
207
208 #define FOR_EACH_FLAT_RANGE(var, view) \
209 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
210
211 static bool flatrange_equal(FlatRange *a, FlatRange *b)
212 {
213 return a->mr == b->mr
214 && addrrange_equal(a->addr, b->addr)
215 && a->offset_in_region == b->offset_in_region
216 && a->readable == b->readable
217 && a->readonly == b->readonly;
218 }
219
220 static void flatview_init(FlatView *view)
221 {
222 view->ranges = NULL;
223 view->nr = 0;
224 view->nr_allocated = 0;
225 }
226
227 /* Insert a range into a given position. Caller is responsible for maintaining
228 * sorting order.
229 */
230 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
231 {
232 if (view->nr == view->nr_allocated) {
233 view->nr_allocated = MAX(2 * view->nr, 10);
234 view->ranges = g_realloc(view->ranges,
235 view->nr_allocated * sizeof(*view->ranges));
236 }
237 memmove(view->ranges + pos + 1, view->ranges + pos,
238 (view->nr - pos) * sizeof(FlatRange));
239 view->ranges[pos] = *range;
240 ++view->nr;
241 }
242
243 static void flatview_destroy(FlatView *view)
244 {
245 g_free(view->ranges);
246 }
247
248 static bool can_merge(FlatRange *r1, FlatRange *r2)
249 {
250 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
251 && r1->mr == r2->mr
252 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
253 r1->addr.size),
254 int128_make64(r2->offset_in_region))
255 && r1->dirty_log_mask == r2->dirty_log_mask
256 && r1->readable == r2->readable
257 && r1->readonly == r2->readonly;
258 }
259
260 /* Attempt to simplify a view by merging ajacent ranges */
261 static void flatview_simplify(FlatView *view)
262 {
263 unsigned i, j;
264
265 i = 0;
266 while (i < view->nr) {
267 j = i + 1;
268 while (j < view->nr
269 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
270 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
271 ++j;
272 }
273 ++i;
274 memmove(&view->ranges[i], &view->ranges[j],
275 (view->nr - j) * sizeof(view->ranges[j]));
276 view->nr -= j - i;
277 }
278 }
279
280 static void memory_region_read_accessor(void *opaque,
281 target_phys_addr_t addr,
282 uint64_t *value,
283 unsigned size,
284 unsigned shift,
285 uint64_t mask)
286 {
287 MemoryRegion *mr = opaque;
288 uint64_t tmp;
289
290 tmp = mr->ops->read(mr->opaque, addr, size);
291 *value |= (tmp & mask) << shift;
292 }
293
294 static void memory_region_write_accessor(void *opaque,
295 target_phys_addr_t addr,
296 uint64_t *value,
297 unsigned size,
298 unsigned shift,
299 uint64_t mask)
300 {
301 MemoryRegion *mr = opaque;
302 uint64_t tmp;
303
304 tmp = (*value >> shift) & mask;
305 mr->ops->write(mr->opaque, addr, tmp, size);
306 }
307
308 static void access_with_adjusted_size(target_phys_addr_t addr,
309 uint64_t *value,
310 unsigned size,
311 unsigned access_size_min,
312 unsigned access_size_max,
313 void (*access)(void *opaque,
314 target_phys_addr_t addr,
315 uint64_t *value,
316 unsigned size,
317 unsigned shift,
318 uint64_t mask),
319 void *opaque)
320 {
321 uint64_t access_mask;
322 unsigned access_size;
323 unsigned i;
324
325 if (!access_size_min) {
326 access_size_min = 1;
327 }
328 if (!access_size_max) {
329 access_size_max = 4;
330 }
331 access_size = MAX(MIN(size, access_size_max), access_size_min);
332 access_mask = -1ULL >> (64 - access_size * 8);
333 for (i = 0; i < size; i += access_size) {
334 /* FIXME: big-endian support */
335 access(opaque, addr + i, value, access_size, i * 8, access_mask);
336 }
337 }
338
339 static void as_memory_range_add(AddressSpace *as, FlatRange *fr)
340 {
341 MemoryRegionSection section = {
342 .mr = fr->mr,
343 .offset_within_address_space = int128_get64(fr->addr.start),
344 .offset_within_region = fr->offset_in_region,
345 .size = int128_get64(fr->addr.size),
346 .readonly = fr->readonly,
347 };
348
349 cpu_register_physical_memory_log(&section, fr->readable, fr->readonly);
350 }
351
352 static void as_memory_range_del(AddressSpace *as, FlatRange *fr)
353 {
354 MemoryRegionSection section = {
355 .mr = &io_mem_unassigned,
356 .offset_within_address_space = int128_get64(fr->addr.start),
357 .offset_within_region = int128_get64(fr->addr.start),
358 .size = int128_get64(fr->addr.size),
359 .readonly = fr->readonly,
360 };
361
362 cpu_register_physical_memory_log(&section, true, false);
363 }
364
365 static void as_memory_log_start(AddressSpace *as, FlatRange *fr)
366 {
367 }
368
369 static void as_memory_log_stop(AddressSpace *as, FlatRange *fr)
370 {
371 }
372
373 static const AddressSpaceOps address_space_ops_memory = {
374 .range_add = as_memory_range_add,
375 .range_del = as_memory_range_del,
376 .log_start = as_memory_log_start,
377 .log_stop = as_memory_log_stop,
378 };
379
380 static AddressSpace address_space_memory = {
381 .ops = &address_space_ops_memory,
382 };
383
384 static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
385 unsigned width, bool write)
386 {
387 const MemoryRegionPortio *mrp;
388
389 for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
390 if (offset >= mrp->offset && offset < mrp->offset + mrp->len
391 && width == mrp->size
392 && (write ? (bool)mrp->write : (bool)mrp->read)) {
393 return mrp;
394 }
395 }
396 return NULL;
397 }
398
399 static void memory_region_iorange_read(IORange *iorange,
400 uint64_t offset,
401 unsigned width,
402 uint64_t *data)
403 {
404 MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange);
405
406 if (mr->ops->old_portio) {
407 const MemoryRegionPortio *mrp = find_portio(mr, offset, width, false);
408
409 *data = ((uint64_t)1 << (width * 8)) - 1;
410 if (mrp) {
411 *data = mrp->read(mr->opaque, offset);
412 } else if (width == 2) {
413 mrp = find_portio(mr, offset, 1, false);
414 assert(mrp);
415 *data = mrp->read(mr->opaque, offset) |
416 (mrp->read(mr->opaque, offset + 1) << 8);
417 }
418 return;
419 }
420 *data = 0;
421 access_with_adjusted_size(offset, data, width,
422 mr->ops->impl.min_access_size,
423 mr->ops->impl.max_access_size,
424 memory_region_read_accessor, mr);
425 }
426
427 static void memory_region_iorange_write(IORange *iorange,
428 uint64_t offset,
429 unsigned width,
430 uint64_t data)
431 {
432 MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange);
433
434 if (mr->ops->old_portio) {
435 const MemoryRegionPortio *mrp = find_portio(mr, offset, width, true);
436
437 if (mrp) {
438 mrp->write(mr->opaque, offset, data);
439 } else if (width == 2) {
440 mrp = find_portio(mr, offset, 1, false);
441 assert(mrp);
442 mrp->write(mr->opaque, offset, data & 0xff);
443 mrp->write(mr->opaque, offset + 1, data >> 8);
444 }
445 return;
446 }
447 access_with_adjusted_size(offset, &data, width,
448 mr->ops->impl.min_access_size,
449 mr->ops->impl.max_access_size,
450 memory_region_write_accessor, mr);
451 }
452
453 static const IORangeOps memory_region_iorange_ops = {
454 .read = memory_region_iorange_read,
455 .write = memory_region_iorange_write,
456 };
457
458 static void as_io_range_add(AddressSpace *as, FlatRange *fr)
459 {
460 iorange_init(&fr->mr->iorange, &memory_region_iorange_ops,
461 int128_get64(fr->addr.start), int128_get64(fr->addr.size));
462 ioport_register(&fr->mr->iorange);
463 }
464
465 static void as_io_range_del(AddressSpace *as, FlatRange *fr)
466 {
467 isa_unassign_ioport(int128_get64(fr->addr.start),
468 int128_get64(fr->addr.size));
469 }
470
471 static const AddressSpaceOps address_space_ops_io = {
472 .range_add = as_io_range_add,
473 .range_del = as_io_range_del,
474 };
475
476 static AddressSpace address_space_io = {
477 .ops = &address_space_ops_io,
478 };
479
480 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
481 {
482 while (mr->parent) {
483 mr = mr->parent;
484 }
485 if (mr == address_space_memory.root) {
486 return &address_space_memory;
487 }
488 if (mr == address_space_io.root) {
489 return &address_space_io;
490 }
491 abort();
492 }
493
494 /* Render a memory region into the global view. Ranges in @view obscure
495 * ranges in @mr.
496 */
497 static void render_memory_region(FlatView *view,
498 MemoryRegion *mr,
499 Int128 base,
500 AddrRange clip,
501 bool readonly)
502 {
503 MemoryRegion *subregion;
504 unsigned i;
505 target_phys_addr_t offset_in_region;
506 Int128 remain;
507 Int128 now;
508 FlatRange fr;
509 AddrRange tmp;
510
511 if (!mr->enabled) {
512 return;
513 }
514
515 int128_addto(&base, int128_make64(mr->addr));
516 readonly |= mr->readonly;
517
518 tmp = addrrange_make(base, mr->size);
519
520 if (!addrrange_intersects(tmp, clip)) {
521 return;
522 }
523
524 clip = addrrange_intersection(tmp, clip);
525
526 if (mr->alias) {
527 int128_subfrom(&base, int128_make64(mr->alias->addr));
528 int128_subfrom(&base, int128_make64(mr->alias_offset));
529 render_memory_region(view, mr->alias, base, clip, readonly);
530 return;
531 }
532
533 /* Render subregions in priority order. */
534 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
535 render_memory_region(view, subregion, base, clip, readonly);
536 }
537
538 if (!mr->terminates) {
539 return;
540 }
541
542 offset_in_region = int128_get64(int128_sub(clip.start, base));
543 base = clip.start;
544 remain = clip.size;
545
546 /* Render the region itself into any gaps left by the current view. */
547 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
548 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
549 continue;
550 }
551 if (int128_lt(base, view->ranges[i].addr.start)) {
552 now = int128_min(remain,
553 int128_sub(view->ranges[i].addr.start, base));
554 fr.mr = mr;
555 fr.offset_in_region = offset_in_region;
556 fr.addr = addrrange_make(base, now);
557 fr.dirty_log_mask = mr->dirty_log_mask;
558 fr.readable = mr->readable;
559 fr.readonly = readonly;
560 flatview_insert(view, i, &fr);
561 ++i;
562 int128_addto(&base, now);
563 offset_in_region += int128_get64(now);
564 int128_subfrom(&remain, now);
565 }
566 if (int128_eq(base, view->ranges[i].addr.start)) {
567 now = int128_min(remain, view->ranges[i].addr.size);
568 int128_addto(&base, now);
569 offset_in_region += int128_get64(now);
570 int128_subfrom(&remain, now);
571 }
572 }
573 if (int128_nz(remain)) {
574 fr.mr = mr;
575 fr.offset_in_region = offset_in_region;
576 fr.addr = addrrange_make(base, remain);
577 fr.dirty_log_mask = mr->dirty_log_mask;
578 fr.readable = mr->readable;
579 fr.readonly = readonly;
580 flatview_insert(view, i, &fr);
581 }
582 }
583
584 /* Render a memory topology into a list of disjoint absolute ranges. */
585 static FlatView generate_memory_topology(MemoryRegion *mr)
586 {
587 FlatView view;
588
589 flatview_init(&view);
590
591 render_memory_region(&view, mr, int128_zero(),
592 addrrange_make(int128_zero(), int128_2_64()), false);
593 flatview_simplify(&view);
594
595 return view;
596 }
597
598 static void address_space_add_del_ioeventfds(AddressSpace *as,
599 MemoryRegionIoeventfd *fds_new,
600 unsigned fds_new_nb,
601 MemoryRegionIoeventfd *fds_old,
602 unsigned fds_old_nb)
603 {
604 unsigned iold, inew;
605 MemoryRegionIoeventfd *fd;
606 MemoryRegionSection section;
607
608 /* Generate a symmetric difference of the old and new fd sets, adding
609 * and deleting as necessary.
610 */
611
612 iold = inew = 0;
613 while (iold < fds_old_nb || inew < fds_new_nb) {
614 if (iold < fds_old_nb
615 && (inew == fds_new_nb
616 || memory_region_ioeventfd_before(fds_old[iold],
617 fds_new[inew]))) {
618 fd = &fds_old[iold];
619 section = (MemoryRegionSection) {
620 .address_space = as->root,
621 .offset_within_address_space = int128_get64(fd->addr.start),
622 .size = int128_get64(fd->addr.size),
623 };
624 MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
625 fd->match_data, fd->data, fd->fd);
626 ++iold;
627 } else if (inew < fds_new_nb
628 && (iold == fds_old_nb
629 || memory_region_ioeventfd_before(fds_new[inew],
630 fds_old[iold]))) {
631 fd = &fds_new[inew];
632 section = (MemoryRegionSection) {
633 .address_space = as->root,
634 .offset_within_address_space = int128_get64(fd->addr.start),
635 .size = int128_get64(fd->addr.size),
636 };
637 MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
638 fd->match_data, fd->data, fd->fd);
639 ++inew;
640 } else {
641 ++iold;
642 ++inew;
643 }
644 }
645 }
646
647 static void address_space_update_ioeventfds(AddressSpace *as)
648 {
649 FlatRange *fr;
650 unsigned ioeventfd_nb = 0;
651 MemoryRegionIoeventfd *ioeventfds = NULL;
652 AddrRange tmp;
653 unsigned i;
654
655 FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
656 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
657 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
658 int128_sub(fr->addr.start,
659 int128_make64(fr->offset_in_region)));
660 if (addrrange_intersects(fr->addr, tmp)) {
661 ++ioeventfd_nb;
662 ioeventfds = g_realloc(ioeventfds,
663 ioeventfd_nb * sizeof(*ioeventfds));
664 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
665 ioeventfds[ioeventfd_nb-1].addr = tmp;
666 }
667 }
668 }
669
670 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
671 as->ioeventfds, as->ioeventfd_nb);
672
673 g_free(as->ioeventfds);
674 as->ioeventfds = ioeventfds;
675 as->ioeventfd_nb = ioeventfd_nb;
676 }
677
678 static void address_space_update_topology_pass(AddressSpace *as,
679 FlatView old_view,
680 FlatView new_view,
681 bool adding)
682 {
683 unsigned iold, inew;
684 FlatRange *frold, *frnew;
685
686 /* Generate a symmetric difference of the old and new memory maps.
687 * Kill ranges in the old map, and instantiate ranges in the new map.
688 */
689 iold = inew = 0;
690 while (iold < old_view.nr || inew < new_view.nr) {
691 if (iold < old_view.nr) {
692 frold = &old_view.ranges[iold];
693 } else {
694 frold = NULL;
695 }
696 if (inew < new_view.nr) {
697 frnew = &new_view.ranges[inew];
698 } else {
699 frnew = NULL;
700 }
701
702 if (frold
703 && (!frnew
704 || int128_lt(frold->addr.start, frnew->addr.start)
705 || (int128_eq(frold->addr.start, frnew->addr.start)
706 && !flatrange_equal(frold, frnew)))) {
707 /* In old, but (not in new, or in new but attributes changed). */
708
709 if (!adding) {
710 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
711 as->ops->range_del(as, frold);
712 }
713
714 ++iold;
715 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
716 /* In both (logging may have changed) */
717
718 if (adding) {
719 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
720 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
721 as->ops->log_stop(as, frnew);
722 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
723 as->ops->log_start(as, frnew);
724 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
725 }
726 }
727
728 ++iold;
729 ++inew;
730 } else {
731 /* In new */
732
733 if (adding) {
734 as->ops->range_add(as, frnew);
735 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
736 }
737
738 ++inew;
739 }
740 }
741 }
742
743
744 static void address_space_update_topology(AddressSpace *as)
745 {
746 FlatView old_view = as->current_map;
747 FlatView new_view = generate_memory_topology(as->root);
748
749 address_space_update_topology_pass(as, old_view, new_view, false);
750 address_space_update_topology_pass(as, old_view, new_view, true);
751
752 as->current_map = new_view;
753 flatview_destroy(&old_view);
754 address_space_update_ioeventfds(as);
755 }
756
757 static void memory_region_update_topology(MemoryRegion *mr)
758 {
759 if (memory_region_transaction_depth) {
760 memory_region_update_pending |= !mr || mr->enabled;
761 return;
762 }
763
764 if (mr && !mr->enabled) {
765 return;
766 }
767
768 if (address_space_memory.root) {
769 address_space_update_topology(&address_space_memory);
770 }
771 if (address_space_io.root) {
772 address_space_update_topology(&address_space_io);
773 }
774
775 memory_region_update_pending = false;
776 }
777
778 void memory_region_transaction_begin(void)
779 {
780 ++memory_region_transaction_depth;
781 }
782
783 void memory_region_transaction_commit(void)
784 {
785 assert(memory_region_transaction_depth);
786 --memory_region_transaction_depth;
787 if (!memory_region_transaction_depth && memory_region_update_pending) {
788 memory_region_update_topology(NULL);
789 }
790 }
791
792 static void memory_region_destructor_none(MemoryRegion *mr)
793 {
794 }
795
796 static void memory_region_destructor_ram(MemoryRegion *mr)
797 {
798 qemu_ram_free(mr->ram_addr);
799 }
800
801 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
802 {
803 qemu_ram_free_from_ptr(mr->ram_addr);
804 }
805
806 static void memory_region_destructor_iomem(MemoryRegion *mr)
807 {
808 cpu_unregister_io_memory(mr->ram_addr);
809 }
810
811 static void memory_region_destructor_rom_device(MemoryRegion *mr)
812 {
813 qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
814 cpu_unregister_io_memory(mr->ram_addr & ~TARGET_PAGE_MASK);
815 }
816
817 static bool memory_region_wrong_endianness(MemoryRegion *mr)
818 {
819 #ifdef TARGET_WORDS_BIGENDIAN
820 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
821 #else
822 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
823 #endif
824 }
825
826 void memory_region_init(MemoryRegion *mr,
827 const char *name,
828 uint64_t size)
829 {
830 mr->ops = NULL;
831 mr->parent = NULL;
832 mr->size = int128_make64(size);
833 if (size == UINT64_MAX) {
834 mr->size = int128_2_64();
835 }
836 mr->addr = 0;
837 mr->subpage = false;
838 mr->enabled = true;
839 mr->terminates = false;
840 mr->ram = false;
841 mr->readable = true;
842 mr->readonly = false;
843 mr->rom_device = false;
844 mr->destructor = memory_region_destructor_none;
845 mr->priority = 0;
846 mr->may_overlap = false;
847 mr->alias = NULL;
848 QTAILQ_INIT(&mr->subregions);
849 memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
850 QTAILQ_INIT(&mr->coalesced);
851 mr->name = g_strdup(name);
852 mr->dirty_log_mask = 0;
853 mr->ioeventfd_nb = 0;
854 mr->ioeventfds = NULL;
855 }
856
857 static bool memory_region_access_valid(MemoryRegion *mr,
858 target_phys_addr_t addr,
859 unsigned size,
860 bool is_write)
861 {
862 if (mr->ops->valid.accepts
863 && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write)) {
864 return false;
865 }
866
867 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
868 return false;
869 }
870
871 /* Treat zero as compatibility all valid */
872 if (!mr->ops->valid.max_access_size) {
873 return true;
874 }
875
876 if (size > mr->ops->valid.max_access_size
877 || size < mr->ops->valid.min_access_size) {
878 return false;
879 }
880 return true;
881 }
882
883 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
884 target_phys_addr_t addr,
885 unsigned size)
886 {
887 uint64_t data = 0;
888
889 if (!memory_region_access_valid(mr, addr, size, false)) {
890 return -1U; /* FIXME: better signalling */
891 }
892
893 if (!mr->ops->read) {
894 return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr);
895 }
896
897 /* FIXME: support unaligned access */
898 access_with_adjusted_size(addr, &data, size,
899 mr->ops->impl.min_access_size,
900 mr->ops->impl.max_access_size,
901 memory_region_read_accessor, mr);
902
903 return data;
904 }
905
906 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
907 {
908 if (memory_region_wrong_endianness(mr)) {
909 switch (size) {
910 case 1:
911 break;
912 case 2:
913 *data = bswap16(*data);
914 break;
915 case 4:
916 *data = bswap32(*data);
917 break;
918 default:
919 abort();
920 }
921 }
922 }
923
924 static uint64_t memory_region_dispatch_read(MemoryRegion *mr,
925 target_phys_addr_t addr,
926 unsigned size)
927 {
928 uint64_t ret;
929
930 ret = memory_region_dispatch_read1(mr, addr, size);
931 adjust_endianness(mr, &ret, size);
932 return ret;
933 }
934
935 static void memory_region_dispatch_write(MemoryRegion *mr,
936 target_phys_addr_t addr,
937 uint64_t data,
938 unsigned size)
939 {
940 if (!memory_region_access_valid(mr, addr, size, true)) {
941 return; /* FIXME: better signalling */
942 }
943
944 adjust_endianness(mr, &data, size);
945
946 if (!mr->ops->write) {
947 mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
948 return;
949 }
950
951 /* FIXME: support unaligned access */
952 access_with_adjusted_size(addr, &data, size,
953 mr->ops->impl.min_access_size,
954 mr->ops->impl.max_access_size,
955 memory_region_write_accessor, mr);
956 }
957
958 void memory_region_init_io(MemoryRegion *mr,
959 const MemoryRegionOps *ops,
960 void *opaque,
961 const char *name,
962 uint64_t size)
963 {
964 memory_region_init(mr, name, size);
965 mr->ops = ops;
966 mr->opaque = opaque;
967 mr->terminates = true;
968 mr->destructor = memory_region_destructor_iomem;
969 mr->ram_addr = cpu_register_io_memory(mr);
970 }
971
972 void memory_region_init_ram(MemoryRegion *mr,
973 const char *name,
974 uint64_t size)
975 {
976 memory_region_init(mr, name, size);
977 mr->ram = true;
978 mr->terminates = true;
979 mr->destructor = memory_region_destructor_ram;
980 mr->ram_addr = qemu_ram_alloc(size, mr);
981 }
982
983 void memory_region_init_ram_ptr(MemoryRegion *mr,
984 const char *name,
985 uint64_t size,
986 void *ptr)
987 {
988 memory_region_init(mr, name, size);
989 mr->ram = true;
990 mr->terminates = true;
991 mr->destructor = memory_region_destructor_ram_from_ptr;
992 mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
993 }
994
995 void memory_region_init_alias(MemoryRegion *mr,
996 const char *name,
997 MemoryRegion *orig,
998 target_phys_addr_t offset,
999 uint64_t size)
1000 {
1001 memory_region_init(mr, name, size);
1002 mr->alias = orig;
1003 mr->alias_offset = offset;
1004 }
1005
1006 void memory_region_init_rom_device(MemoryRegion *mr,
1007 const MemoryRegionOps *ops,
1008 void *opaque,
1009 const char *name,
1010 uint64_t size)
1011 {
1012 memory_region_init(mr, name, size);
1013 mr->ops = ops;
1014 mr->opaque = opaque;
1015 mr->terminates = true;
1016 mr->rom_device = true;
1017 mr->destructor = memory_region_destructor_rom_device;
1018 mr->ram_addr = qemu_ram_alloc(size, mr);
1019 mr->ram_addr |= cpu_register_io_memory(mr);
1020 }
1021
1022 static uint64_t invalid_read(void *opaque, target_phys_addr_t addr,
1023 unsigned size)
1024 {
1025 MemoryRegion *mr = opaque;
1026
1027 if (!mr->warning_printed) {
1028 fprintf(stderr, "Invalid read from memory region %s\n", mr->name);
1029 mr->warning_printed = true;
1030 }
1031 return -1U;
1032 }
1033
1034 static void invalid_write(void *opaque, target_phys_addr_t addr, uint64_t data,
1035 unsigned size)
1036 {
1037 MemoryRegion *mr = opaque;
1038
1039 if (!mr->warning_printed) {
1040 fprintf(stderr, "Invalid write to memory region %s\n", mr->name);
1041 mr->warning_printed = true;
1042 }
1043 }
1044
1045 static const MemoryRegionOps reservation_ops = {
1046 .read = invalid_read,
1047 .write = invalid_write,
1048 .endianness = DEVICE_NATIVE_ENDIAN,
1049 };
1050
1051 void memory_region_init_reservation(MemoryRegion *mr,
1052 const char *name,
1053 uint64_t size)
1054 {
1055 memory_region_init_io(mr, &reservation_ops, mr, name, size);
1056 }
1057
1058 void memory_region_destroy(MemoryRegion *mr)
1059 {
1060 assert(QTAILQ_EMPTY(&mr->subregions));
1061 mr->destructor(mr);
1062 memory_region_clear_coalescing(mr);
1063 g_free((char *)mr->name);
1064 g_free(mr->ioeventfds);
1065 }
1066
1067 uint64_t memory_region_size(MemoryRegion *mr)
1068 {
1069 if (int128_eq(mr->size, int128_2_64())) {
1070 return UINT64_MAX;
1071 }
1072 return int128_get64(mr->size);
1073 }
1074
1075 const char *memory_region_name(MemoryRegion *mr)
1076 {
1077 return mr->name;
1078 }
1079
1080 bool memory_region_is_ram(MemoryRegion *mr)
1081 {
1082 return mr->ram;
1083 }
1084
1085 bool memory_region_is_logging(MemoryRegion *mr)
1086 {
1087 return mr->dirty_log_mask;
1088 }
1089
1090 bool memory_region_is_rom(MemoryRegion *mr)
1091 {
1092 return mr->ram && mr->readonly;
1093 }
1094
1095 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1096 {
1097 uint8_t mask = 1 << client;
1098
1099 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1100 memory_region_update_topology(mr);
1101 }
1102
1103 bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1104 target_phys_addr_t size, unsigned client)
1105 {
1106 assert(mr->terminates);
1107 return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1108 1 << client);
1109 }
1110
1111 void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1112 target_phys_addr_t size)
1113 {
1114 assert(mr->terminates);
1115 return cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size, -1);
1116 }
1117
1118 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1119 {
1120 FlatRange *fr;
1121
1122 FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1123 if (fr->mr == mr) {
1124 MEMORY_LISTENER_UPDATE_REGION(fr, &address_space_memory,
1125 Forward, log_sync);
1126 }
1127 }
1128 }
1129
1130 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1131 {
1132 if (mr->readonly != readonly) {
1133 mr->readonly = readonly;
1134 memory_region_update_topology(mr);
1135 }
1136 }
1137
1138 void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable)
1139 {
1140 if (mr->readable != readable) {
1141 mr->readable = readable;
1142 memory_region_update_topology(mr);
1143 }
1144 }
1145
1146 void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1147 target_phys_addr_t size, unsigned client)
1148 {
1149 assert(mr->terminates);
1150 cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1151 mr->ram_addr + addr + size,
1152 1 << client);
1153 }
1154
1155 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1156 {
1157 if (mr->alias) {
1158 return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1159 }
1160
1161 assert(mr->terminates);
1162
1163 return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1164 }
1165
1166 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1167 {
1168 FlatRange *fr;
1169 CoalescedMemoryRange *cmr;
1170 AddrRange tmp;
1171
1172 FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1173 if (fr->mr == mr) {
1174 qemu_unregister_coalesced_mmio(int128_get64(fr->addr.start),
1175 int128_get64(fr->addr.size));
1176 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1177 tmp = addrrange_shift(cmr->addr,
1178 int128_sub(fr->addr.start,
1179 int128_make64(fr->offset_in_region)));
1180 if (!addrrange_intersects(tmp, fr->addr)) {
1181 continue;
1182 }
1183 tmp = addrrange_intersection(tmp, fr->addr);
1184 qemu_register_coalesced_mmio(int128_get64(tmp.start),
1185 int128_get64(tmp.size));
1186 }
1187 }
1188 }
1189 }
1190
1191 void memory_region_set_coalescing(MemoryRegion *mr)
1192 {
1193 memory_region_clear_coalescing(mr);
1194 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1195 }
1196
1197 void memory_region_add_coalescing(MemoryRegion *mr,
1198 target_phys_addr_t offset,
1199 uint64_t size)
1200 {
1201 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1202
1203 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1204 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1205 memory_region_update_coalesced_range(mr);
1206 }
1207
1208 void memory_region_clear_coalescing(MemoryRegion *mr)
1209 {
1210 CoalescedMemoryRange *cmr;
1211
1212 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1213 cmr = QTAILQ_FIRST(&mr->coalesced);
1214 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1215 g_free(cmr);
1216 }
1217 memory_region_update_coalesced_range(mr);
1218 }
1219
1220 void memory_region_add_eventfd(MemoryRegion *mr,
1221 target_phys_addr_t addr,
1222 unsigned size,
1223 bool match_data,
1224 uint64_t data,
1225 int fd)
1226 {
1227 MemoryRegionIoeventfd mrfd = {
1228 .addr.start = int128_make64(addr),
1229 .addr.size = int128_make64(size),
1230 .match_data = match_data,
1231 .data = data,
1232 .fd = fd,
1233 };
1234 unsigned i;
1235
1236 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1237 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1238 break;
1239 }
1240 }
1241 ++mr->ioeventfd_nb;
1242 mr->ioeventfds = g_realloc(mr->ioeventfds,
1243 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1244 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1245 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1246 mr->ioeventfds[i] = mrfd;
1247 memory_region_update_topology(mr);
1248 }
1249
1250 void memory_region_del_eventfd(MemoryRegion *mr,
1251 target_phys_addr_t addr,
1252 unsigned size,
1253 bool match_data,
1254 uint64_t data,
1255 int fd)
1256 {
1257 MemoryRegionIoeventfd mrfd = {
1258 .addr.start = int128_make64(addr),
1259 .addr.size = int128_make64(size),
1260 .match_data = match_data,
1261 .data = data,
1262 .fd = fd,
1263 };
1264 unsigned i;
1265
1266 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1267 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1268 break;
1269 }
1270 }
1271 assert(i != mr->ioeventfd_nb);
1272 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1273 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1274 --mr->ioeventfd_nb;
1275 mr->ioeventfds = g_realloc(mr->ioeventfds,
1276 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1277 memory_region_update_topology(mr);
1278 }
1279
1280 static void memory_region_add_subregion_common(MemoryRegion *mr,
1281 target_phys_addr_t offset,
1282 MemoryRegion *subregion)
1283 {
1284 MemoryRegion *other;
1285
1286 assert(!subregion->parent);
1287 subregion->parent = mr;
1288 subregion->addr = offset;
1289 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1290 if (subregion->may_overlap || other->may_overlap) {
1291 continue;
1292 }
1293 if (int128_gt(int128_make64(offset),
1294 int128_add(int128_make64(other->addr), other->size))
1295 || int128_le(int128_add(int128_make64(offset), subregion->size),
1296 int128_make64(other->addr))) {
1297 continue;
1298 }
1299 #if 0
1300 printf("warning: subregion collision %llx/%llx (%s) "
1301 "vs %llx/%llx (%s)\n",
1302 (unsigned long long)offset,
1303 (unsigned long long)int128_get64(subregion->size),
1304 subregion->name,
1305 (unsigned long long)other->addr,
1306 (unsigned long long)int128_get64(other->size),
1307 other->name);
1308 #endif
1309 }
1310 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1311 if (subregion->priority >= other->priority) {
1312 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1313 goto done;
1314 }
1315 }
1316 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1317 done:
1318 memory_region_update_topology(mr);
1319 }
1320
1321
1322 void memory_region_add_subregion(MemoryRegion *mr,
1323 target_phys_addr_t offset,
1324 MemoryRegion *subregion)
1325 {
1326 subregion->may_overlap = false;
1327 subregion->priority = 0;
1328 memory_region_add_subregion_common(mr, offset, subregion);
1329 }
1330
1331 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1332 target_phys_addr_t offset,
1333 MemoryRegion *subregion,
1334 unsigned priority)
1335 {
1336 subregion->may_overlap = true;
1337 subregion->priority = priority;
1338 memory_region_add_subregion_common(mr, offset, subregion);
1339 }
1340
1341 void memory_region_del_subregion(MemoryRegion *mr,
1342 MemoryRegion *subregion)
1343 {
1344 assert(subregion->parent == mr);
1345 subregion->parent = NULL;
1346 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1347 memory_region_update_topology(mr);
1348 }
1349
1350 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1351 {
1352 if (enabled == mr->enabled) {
1353 return;
1354 }
1355 mr->enabled = enabled;
1356 memory_region_update_topology(NULL);
1357 }
1358
1359 void memory_region_set_address(MemoryRegion *mr, target_phys_addr_t addr)
1360 {
1361 MemoryRegion *parent = mr->parent;
1362 unsigned priority = mr->priority;
1363 bool may_overlap = mr->may_overlap;
1364
1365 if (addr == mr->addr || !parent) {
1366 mr->addr = addr;
1367 return;
1368 }
1369
1370 memory_region_transaction_begin();
1371 memory_region_del_subregion(parent, mr);
1372 if (may_overlap) {
1373 memory_region_add_subregion_overlap(parent, addr, mr, priority);
1374 } else {
1375 memory_region_add_subregion(parent, addr, mr);
1376 }
1377 memory_region_transaction_commit();
1378 }
1379
1380 void memory_region_set_alias_offset(MemoryRegion *mr, target_phys_addr_t offset)
1381 {
1382 target_phys_addr_t old_offset = mr->alias_offset;
1383
1384 assert(mr->alias);
1385 mr->alias_offset = offset;
1386
1387 if (offset == old_offset || !mr->parent) {
1388 return;
1389 }
1390
1391 memory_region_update_topology(mr);
1392 }
1393
1394 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1395 {
1396 return mr->ram_addr;
1397 }
1398
1399 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1400 {
1401 const AddrRange *addr = addr_;
1402 const FlatRange *fr = fr_;
1403
1404 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1405 return -1;
1406 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1407 return 1;
1408 }
1409 return 0;
1410 }
1411
1412 static FlatRange *address_space_lookup(AddressSpace *as, AddrRange addr)
1413 {
1414 return bsearch(&addr, as->current_map.ranges, as->current_map.nr,
1415 sizeof(FlatRange), cmp_flatrange_addr);
1416 }
1417
1418 MemoryRegionSection memory_region_find(MemoryRegion *address_space,
1419 target_phys_addr_t addr, uint64_t size)
1420 {
1421 AddressSpace *as = memory_region_to_address_space(address_space);
1422 AddrRange range = addrrange_make(int128_make64(addr),
1423 int128_make64(size));
1424 FlatRange *fr = address_space_lookup(as, range);
1425 MemoryRegionSection ret = { .mr = NULL, .size = 0 };
1426
1427 if (!fr) {
1428 return ret;
1429 }
1430
1431 while (fr > as->current_map.ranges
1432 && addrrange_intersects(fr[-1].addr, range)) {
1433 --fr;
1434 }
1435
1436 ret.mr = fr->mr;
1437 range = addrrange_intersection(range, fr->addr);
1438 ret.offset_within_region = fr->offset_in_region;
1439 ret.offset_within_region += int128_get64(int128_sub(range.start,
1440 fr->addr.start));
1441 ret.size = int128_get64(range.size);
1442 ret.offset_within_address_space = int128_get64(range.start);
1443 ret.readonly = fr->readonly;
1444 return ret;
1445 }
1446
1447 void memory_global_sync_dirty_bitmap(MemoryRegion *address_space)
1448 {
1449 AddressSpace *as = memory_region_to_address_space(address_space);
1450 FlatRange *fr;
1451
1452 FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
1453 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1454 }
1455 }
1456
1457 void memory_global_dirty_log_start(void)
1458 {
1459 cpu_physical_memory_set_dirty_tracking(1);
1460 global_dirty_log = true;
1461 MEMORY_LISTENER_CALL(log_global_start, Forward);
1462 }
1463
1464 void memory_global_dirty_log_stop(void)
1465 {
1466 global_dirty_log = false;
1467 MEMORY_LISTENER_CALL(log_global_stop, Reverse);
1468 cpu_physical_memory_set_dirty_tracking(0);
1469 }
1470
1471 static void listener_add_address_space(MemoryListener *listener,
1472 AddressSpace *as)
1473 {
1474 FlatRange *fr;
1475
1476 if (global_dirty_log) {
1477 listener->log_global_start(listener);
1478 }
1479 FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
1480 MemoryRegionSection section = {
1481 .mr = fr->mr,
1482 .address_space = as->root,
1483 .offset_within_region = fr->offset_in_region,
1484 .size = int128_get64(fr->addr.size),
1485 .offset_within_address_space = int128_get64(fr->addr.start),
1486 .readonly = fr->readonly,
1487 };
1488 listener->region_add(listener, &section);
1489 }
1490 }
1491
1492 void memory_listener_register(MemoryListener *listener)
1493 {
1494 MemoryListener *other = NULL;
1495
1496 if (QTAILQ_EMPTY(&memory_listeners)
1497 || listener->priority >= QTAILQ_LAST(&memory_listeners,
1498 memory_listeners)->priority) {
1499 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1500 } else {
1501 QTAILQ_FOREACH(other, &memory_listeners, link) {
1502 if (listener->priority < other->priority) {
1503 break;
1504 }
1505 }
1506 QTAILQ_INSERT_BEFORE(other, listener, link);
1507 }
1508 listener_add_address_space(listener, &address_space_memory);
1509 listener_add_address_space(listener, &address_space_io);
1510 }
1511
1512 void memory_listener_unregister(MemoryListener *listener)
1513 {
1514 QTAILQ_REMOVE(&memory_listeners, listener, link);
1515 }
1516
1517 void set_system_memory_map(MemoryRegion *mr)
1518 {
1519 address_space_memory.root = mr;
1520 memory_region_update_topology(NULL);
1521 }
1522
1523 void set_system_io_map(MemoryRegion *mr)
1524 {
1525 address_space_io.root = mr;
1526 memory_region_update_topology(NULL);
1527 }
1528
1529 uint64_t io_mem_read(int io_index, target_phys_addr_t addr, unsigned size)
1530 {
1531 return memory_region_dispatch_read(io_mem_region[io_index], addr, size);
1532 }
1533
1534 void io_mem_write(int io_index, target_phys_addr_t addr,
1535 uint64_t val, unsigned size)
1536 {
1537 memory_region_dispatch_write(io_mem_region[io_index], addr, val, size);
1538 }
1539
1540 typedef struct MemoryRegionList MemoryRegionList;
1541
1542 struct MemoryRegionList {
1543 const MemoryRegion *mr;
1544 bool printed;
1545 QTAILQ_ENTRY(MemoryRegionList) queue;
1546 };
1547
1548 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1549
1550 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1551 const MemoryRegion *mr, unsigned int level,
1552 target_phys_addr_t base,
1553 MemoryRegionListHead *alias_print_queue)
1554 {
1555 MemoryRegionList *new_ml, *ml, *next_ml;
1556 MemoryRegionListHead submr_print_queue;
1557 const MemoryRegion *submr;
1558 unsigned int i;
1559
1560 if (!mr) {
1561 return;
1562 }
1563
1564 for (i = 0; i < level; i++) {
1565 mon_printf(f, " ");
1566 }
1567
1568 if (mr->alias) {
1569 MemoryRegionList *ml;
1570 bool found = false;
1571
1572 /* check if the alias is already in the queue */
1573 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1574 if (ml->mr == mr->alias && !ml->printed) {
1575 found = true;
1576 }
1577 }
1578
1579 if (!found) {
1580 ml = g_new(MemoryRegionList, 1);
1581 ml->mr = mr->alias;
1582 ml->printed = false;
1583 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1584 }
1585 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
1586 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
1587 "-" TARGET_FMT_plx "\n",
1588 base + mr->addr,
1589 base + mr->addr
1590 + (target_phys_addr_t)int128_get64(mr->size) - 1,
1591 mr->priority,
1592 mr->readable ? 'R' : '-',
1593 !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1594 : '-',
1595 mr->name,
1596 mr->alias->name,
1597 mr->alias_offset,
1598 mr->alias_offset
1599 + (target_phys_addr_t)int128_get64(mr->size) - 1);
1600 } else {
1601 mon_printf(f,
1602 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
1603 base + mr->addr,
1604 base + mr->addr
1605 + (target_phys_addr_t)int128_get64(mr->size) - 1,
1606 mr->priority,
1607 mr->readable ? 'R' : '-',
1608 !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1609 : '-',
1610 mr->name);
1611 }
1612
1613 QTAILQ_INIT(&submr_print_queue);
1614
1615 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1616 new_ml = g_new(MemoryRegionList, 1);
1617 new_ml->mr = submr;
1618 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1619 if (new_ml->mr->addr < ml->mr->addr ||
1620 (new_ml->mr->addr == ml->mr->addr &&
1621 new_ml->mr->priority > ml->mr->priority)) {
1622 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1623 new_ml = NULL;
1624 break;
1625 }
1626 }
1627 if (new_ml) {
1628 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1629 }
1630 }
1631
1632 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1633 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1634 alias_print_queue);
1635 }
1636
1637 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1638 g_free(ml);
1639 }
1640 }
1641
1642 void mtree_info(fprintf_function mon_printf, void *f)
1643 {
1644 MemoryRegionListHead ml_head;
1645 MemoryRegionList *ml, *ml2;
1646
1647 QTAILQ_INIT(&ml_head);
1648
1649 mon_printf(f, "memory\n");
1650 mtree_print_mr(mon_printf, f, address_space_memory.root, 0, 0, &ml_head);
1651
1652 /* print aliased regions */
1653 QTAILQ_FOREACH(ml, &ml_head, queue) {
1654 if (!ml->printed) {
1655 mon_printf(f, "%s\n", ml->mr->name);
1656 mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1657 }
1658 }
1659
1660 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1661 g_free(ml);
1662 }
1663
1664 if (address_space_io.root &&
1665 !QTAILQ_EMPTY(&address_space_io.root->subregions)) {
1666 QTAILQ_INIT(&ml_head);
1667 mon_printf(f, "I/O\n");
1668 mtree_print_mr(mon_printf, f, address_space_io.root, 0, 0, &ml_head);
1669 }
1670 }