]> git.proxmox.com Git - qemu.git/blob - memory.c
memory: prepare AddressSpace for exporting
[qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "memory.h"
17 #include "exec-memory.h"
18 #include "ioport.h"
19 #include "bitops.h"
20 #include "kvm.h"
21 #include <assert.h>
22
23 #include "memory-internal.h"
24
25 unsigned memory_region_transaction_depth = 0;
26 static bool global_dirty_log = false;
27
28 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
29 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
30
31 typedef struct AddrRange AddrRange;
32
33 /*
34 * Note using signed integers limits us to physical addresses at most
35 * 63 bits wide. They are needed for negative offsetting in aliases
36 * (large MemoryRegion::alias_offset).
37 */
38 struct AddrRange {
39 Int128 start;
40 Int128 size;
41 };
42
43 static AddrRange addrrange_make(Int128 start, Int128 size)
44 {
45 return (AddrRange) { start, size };
46 }
47
48 static bool addrrange_equal(AddrRange r1, AddrRange r2)
49 {
50 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
51 }
52
53 static Int128 addrrange_end(AddrRange r)
54 {
55 return int128_add(r.start, r.size);
56 }
57
58 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
59 {
60 int128_addto(&range.start, delta);
61 return range;
62 }
63
64 static bool addrrange_contains(AddrRange range, Int128 addr)
65 {
66 return int128_ge(addr, range.start)
67 && int128_lt(addr, addrrange_end(range));
68 }
69
70 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
71 {
72 return addrrange_contains(r1, r2.start)
73 || addrrange_contains(r2, r1.start);
74 }
75
76 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
77 {
78 Int128 start = int128_max(r1.start, r2.start);
79 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
80 return addrrange_make(start, int128_sub(end, start));
81 }
82
83 enum ListenerDirection { Forward, Reverse };
84
85 static bool memory_listener_match(MemoryListener *listener,
86 MemoryRegionSection *section)
87 {
88 return !listener->address_space_filter
89 || listener->address_space_filter == section->address_space;
90 }
91
92 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
93 do { \
94 MemoryListener *_listener; \
95 \
96 switch (_direction) { \
97 case Forward: \
98 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
99 _listener->_callback(_listener, ##_args); \
100 } \
101 break; \
102 case Reverse: \
103 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
104 memory_listeners, link) { \
105 _listener->_callback(_listener, ##_args); \
106 } \
107 break; \
108 default: \
109 abort(); \
110 } \
111 } while (0)
112
113 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
114 do { \
115 MemoryListener *_listener; \
116 \
117 switch (_direction) { \
118 case Forward: \
119 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
120 if (memory_listener_match(_listener, _section)) { \
121 _listener->_callback(_listener, _section, ##_args); \
122 } \
123 } \
124 break; \
125 case Reverse: \
126 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
127 memory_listeners, link) { \
128 if (memory_listener_match(_listener, _section)) { \
129 _listener->_callback(_listener, _section, ##_args); \
130 } \
131 } \
132 break; \
133 default: \
134 abort(); \
135 } \
136 } while (0)
137
138 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback) \
139 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
140 .mr = (fr)->mr, \
141 .address_space = (as)->root, \
142 .offset_within_region = (fr)->offset_in_region, \
143 .size = int128_get64((fr)->addr.size), \
144 .offset_within_address_space = int128_get64((fr)->addr.start), \
145 .readonly = (fr)->readonly, \
146 }))
147
148 struct CoalescedMemoryRange {
149 AddrRange addr;
150 QTAILQ_ENTRY(CoalescedMemoryRange) link;
151 };
152
153 struct MemoryRegionIoeventfd {
154 AddrRange addr;
155 bool match_data;
156 uint64_t data;
157 EventNotifier *e;
158 };
159
160 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
161 MemoryRegionIoeventfd b)
162 {
163 if (int128_lt(a.addr.start, b.addr.start)) {
164 return true;
165 } else if (int128_gt(a.addr.start, b.addr.start)) {
166 return false;
167 } else if (int128_lt(a.addr.size, b.addr.size)) {
168 return true;
169 } else if (int128_gt(a.addr.size, b.addr.size)) {
170 return false;
171 } else if (a.match_data < b.match_data) {
172 return true;
173 } else if (a.match_data > b.match_data) {
174 return false;
175 } else if (a.match_data) {
176 if (a.data < b.data) {
177 return true;
178 } else if (a.data > b.data) {
179 return false;
180 }
181 }
182 if (a.e < b.e) {
183 return true;
184 } else if (a.e > b.e) {
185 return false;
186 }
187 return false;
188 }
189
190 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
191 MemoryRegionIoeventfd b)
192 {
193 return !memory_region_ioeventfd_before(a, b)
194 && !memory_region_ioeventfd_before(b, a);
195 }
196
197 typedef struct FlatRange FlatRange;
198 typedef struct FlatView FlatView;
199
200 /* Range of memory in the global map. Addresses are absolute. */
201 struct FlatRange {
202 MemoryRegion *mr;
203 target_phys_addr_t offset_in_region;
204 AddrRange addr;
205 uint8_t dirty_log_mask;
206 bool readable;
207 bool readonly;
208 };
209
210 /* Flattened global view of current active memory hierarchy. Kept in sorted
211 * order.
212 */
213 struct FlatView {
214 FlatRange *ranges;
215 unsigned nr;
216 unsigned nr_allocated;
217 };
218
219 typedef struct AddressSpace AddressSpace;
220 typedef struct AddressSpaceOps AddressSpaceOps;
221
222 /* A system address space - I/O, memory, etc. */
223 struct AddressSpace {
224 MemoryRegion *root;
225 FlatView *current_map;
226 int ioeventfd_nb;
227 MemoryRegionIoeventfd *ioeventfds;
228 };
229
230 #define FOR_EACH_FLAT_RANGE(var, view) \
231 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
232
233 static bool flatrange_equal(FlatRange *a, FlatRange *b)
234 {
235 return a->mr == b->mr
236 && addrrange_equal(a->addr, b->addr)
237 && a->offset_in_region == b->offset_in_region
238 && a->readable == b->readable
239 && a->readonly == b->readonly;
240 }
241
242 static void flatview_init(FlatView *view)
243 {
244 view->ranges = NULL;
245 view->nr = 0;
246 view->nr_allocated = 0;
247 }
248
249 /* Insert a range into a given position. Caller is responsible for maintaining
250 * sorting order.
251 */
252 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
253 {
254 if (view->nr == view->nr_allocated) {
255 view->nr_allocated = MAX(2 * view->nr, 10);
256 view->ranges = g_realloc(view->ranges,
257 view->nr_allocated * sizeof(*view->ranges));
258 }
259 memmove(view->ranges + pos + 1, view->ranges + pos,
260 (view->nr - pos) * sizeof(FlatRange));
261 view->ranges[pos] = *range;
262 ++view->nr;
263 }
264
265 static void flatview_destroy(FlatView *view)
266 {
267 g_free(view->ranges);
268 }
269
270 static bool can_merge(FlatRange *r1, FlatRange *r2)
271 {
272 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
273 && r1->mr == r2->mr
274 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
275 r1->addr.size),
276 int128_make64(r2->offset_in_region))
277 && r1->dirty_log_mask == r2->dirty_log_mask
278 && r1->readable == r2->readable
279 && r1->readonly == r2->readonly;
280 }
281
282 /* Attempt to simplify a view by merging ajacent ranges */
283 static void flatview_simplify(FlatView *view)
284 {
285 unsigned i, j;
286
287 i = 0;
288 while (i < view->nr) {
289 j = i + 1;
290 while (j < view->nr
291 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
292 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
293 ++j;
294 }
295 ++i;
296 memmove(&view->ranges[i], &view->ranges[j],
297 (view->nr - j) * sizeof(view->ranges[j]));
298 view->nr -= j - i;
299 }
300 }
301
302 static void memory_region_read_accessor(void *opaque,
303 target_phys_addr_t addr,
304 uint64_t *value,
305 unsigned size,
306 unsigned shift,
307 uint64_t mask)
308 {
309 MemoryRegion *mr = opaque;
310 uint64_t tmp;
311
312 if (mr->flush_coalesced_mmio) {
313 qemu_flush_coalesced_mmio_buffer();
314 }
315 tmp = mr->ops->read(mr->opaque, addr, size);
316 *value |= (tmp & mask) << shift;
317 }
318
319 static void memory_region_write_accessor(void *opaque,
320 target_phys_addr_t addr,
321 uint64_t *value,
322 unsigned size,
323 unsigned shift,
324 uint64_t mask)
325 {
326 MemoryRegion *mr = opaque;
327 uint64_t tmp;
328
329 if (mr->flush_coalesced_mmio) {
330 qemu_flush_coalesced_mmio_buffer();
331 }
332 tmp = (*value >> shift) & mask;
333 mr->ops->write(mr->opaque, addr, tmp, size);
334 }
335
336 static void access_with_adjusted_size(target_phys_addr_t addr,
337 uint64_t *value,
338 unsigned size,
339 unsigned access_size_min,
340 unsigned access_size_max,
341 void (*access)(void *opaque,
342 target_phys_addr_t addr,
343 uint64_t *value,
344 unsigned size,
345 unsigned shift,
346 uint64_t mask),
347 void *opaque)
348 {
349 uint64_t access_mask;
350 unsigned access_size;
351 unsigned i;
352
353 if (!access_size_min) {
354 access_size_min = 1;
355 }
356 if (!access_size_max) {
357 access_size_max = 4;
358 }
359 access_size = MAX(MIN(size, access_size_max), access_size_min);
360 access_mask = -1ULL >> (64 - access_size * 8);
361 for (i = 0; i < size; i += access_size) {
362 /* FIXME: big-endian support */
363 access(opaque, addr + i, value, access_size, i * 8, access_mask);
364 }
365 }
366
367 static AddressSpace address_space_memory;
368
369 static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
370 unsigned width, bool write)
371 {
372 const MemoryRegionPortio *mrp;
373
374 for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
375 if (offset >= mrp->offset && offset < mrp->offset + mrp->len
376 && width == mrp->size
377 && (write ? (bool)mrp->write : (bool)mrp->read)) {
378 return mrp;
379 }
380 }
381 return NULL;
382 }
383
384 static void memory_region_iorange_read(IORange *iorange,
385 uint64_t offset,
386 unsigned width,
387 uint64_t *data)
388 {
389 MemoryRegionIORange *mrio
390 = container_of(iorange, MemoryRegionIORange, iorange);
391 MemoryRegion *mr = mrio->mr;
392
393 offset += mrio->offset;
394 if (mr->ops->old_portio) {
395 const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
396 width, false);
397
398 *data = ((uint64_t)1 << (width * 8)) - 1;
399 if (mrp) {
400 *data = mrp->read(mr->opaque, offset);
401 } else if (width == 2) {
402 mrp = find_portio(mr, offset - mrio->offset, 1, false);
403 assert(mrp);
404 *data = mrp->read(mr->opaque, offset) |
405 (mrp->read(mr->opaque, offset + 1) << 8);
406 }
407 return;
408 }
409 *data = 0;
410 access_with_adjusted_size(offset, data, width,
411 mr->ops->impl.min_access_size,
412 mr->ops->impl.max_access_size,
413 memory_region_read_accessor, mr);
414 }
415
416 static void memory_region_iorange_write(IORange *iorange,
417 uint64_t offset,
418 unsigned width,
419 uint64_t data)
420 {
421 MemoryRegionIORange *mrio
422 = container_of(iorange, MemoryRegionIORange, iorange);
423 MemoryRegion *mr = mrio->mr;
424
425 offset += mrio->offset;
426 if (mr->ops->old_portio) {
427 const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
428 width, true);
429
430 if (mrp) {
431 mrp->write(mr->opaque, offset, data);
432 } else if (width == 2) {
433 mrp = find_portio(mr, offset - mrio->offset, 1, true);
434 assert(mrp);
435 mrp->write(mr->opaque, offset, data & 0xff);
436 mrp->write(mr->opaque, offset + 1, data >> 8);
437 }
438 return;
439 }
440 access_with_adjusted_size(offset, &data, width,
441 mr->ops->impl.min_access_size,
442 mr->ops->impl.max_access_size,
443 memory_region_write_accessor, mr);
444 }
445
446 static void memory_region_iorange_destructor(IORange *iorange)
447 {
448 g_free(container_of(iorange, MemoryRegionIORange, iorange));
449 }
450
451 const IORangeOps memory_region_iorange_ops = {
452 .read = memory_region_iorange_read,
453 .write = memory_region_iorange_write,
454 .destructor = memory_region_iorange_destructor,
455 };
456
457 static AddressSpace address_space_io;
458
459 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
460 {
461 while (mr->parent) {
462 mr = mr->parent;
463 }
464 if (mr == address_space_memory.root) {
465 return &address_space_memory;
466 }
467 if (mr == address_space_io.root) {
468 return &address_space_io;
469 }
470 abort();
471 }
472
473 /* Render a memory region into the global view. Ranges in @view obscure
474 * ranges in @mr.
475 */
476 static void render_memory_region(FlatView *view,
477 MemoryRegion *mr,
478 Int128 base,
479 AddrRange clip,
480 bool readonly)
481 {
482 MemoryRegion *subregion;
483 unsigned i;
484 target_phys_addr_t offset_in_region;
485 Int128 remain;
486 Int128 now;
487 FlatRange fr;
488 AddrRange tmp;
489
490 if (!mr->enabled) {
491 return;
492 }
493
494 int128_addto(&base, int128_make64(mr->addr));
495 readonly |= mr->readonly;
496
497 tmp = addrrange_make(base, mr->size);
498
499 if (!addrrange_intersects(tmp, clip)) {
500 return;
501 }
502
503 clip = addrrange_intersection(tmp, clip);
504
505 if (mr->alias) {
506 int128_subfrom(&base, int128_make64(mr->alias->addr));
507 int128_subfrom(&base, int128_make64(mr->alias_offset));
508 render_memory_region(view, mr->alias, base, clip, readonly);
509 return;
510 }
511
512 /* Render subregions in priority order. */
513 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
514 render_memory_region(view, subregion, base, clip, readonly);
515 }
516
517 if (!mr->terminates) {
518 return;
519 }
520
521 offset_in_region = int128_get64(int128_sub(clip.start, base));
522 base = clip.start;
523 remain = clip.size;
524
525 /* Render the region itself into any gaps left by the current view. */
526 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
527 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
528 continue;
529 }
530 if (int128_lt(base, view->ranges[i].addr.start)) {
531 now = int128_min(remain,
532 int128_sub(view->ranges[i].addr.start, base));
533 fr.mr = mr;
534 fr.offset_in_region = offset_in_region;
535 fr.addr = addrrange_make(base, now);
536 fr.dirty_log_mask = mr->dirty_log_mask;
537 fr.readable = mr->readable;
538 fr.readonly = readonly;
539 flatview_insert(view, i, &fr);
540 ++i;
541 int128_addto(&base, now);
542 offset_in_region += int128_get64(now);
543 int128_subfrom(&remain, now);
544 }
545 if (int128_eq(base, view->ranges[i].addr.start)) {
546 now = int128_min(remain, view->ranges[i].addr.size);
547 int128_addto(&base, now);
548 offset_in_region += int128_get64(now);
549 int128_subfrom(&remain, now);
550 }
551 }
552 if (int128_nz(remain)) {
553 fr.mr = mr;
554 fr.offset_in_region = offset_in_region;
555 fr.addr = addrrange_make(base, remain);
556 fr.dirty_log_mask = mr->dirty_log_mask;
557 fr.readable = mr->readable;
558 fr.readonly = readonly;
559 flatview_insert(view, i, &fr);
560 }
561 }
562
563 /* Render a memory topology into a list of disjoint absolute ranges. */
564 static FlatView generate_memory_topology(MemoryRegion *mr)
565 {
566 FlatView view;
567
568 flatview_init(&view);
569
570 render_memory_region(&view, mr, int128_zero(),
571 addrrange_make(int128_zero(), int128_2_64()), false);
572 flatview_simplify(&view);
573
574 return view;
575 }
576
577 static void address_space_add_del_ioeventfds(AddressSpace *as,
578 MemoryRegionIoeventfd *fds_new,
579 unsigned fds_new_nb,
580 MemoryRegionIoeventfd *fds_old,
581 unsigned fds_old_nb)
582 {
583 unsigned iold, inew;
584 MemoryRegionIoeventfd *fd;
585 MemoryRegionSection section;
586
587 /* Generate a symmetric difference of the old and new fd sets, adding
588 * and deleting as necessary.
589 */
590
591 iold = inew = 0;
592 while (iold < fds_old_nb || inew < fds_new_nb) {
593 if (iold < fds_old_nb
594 && (inew == fds_new_nb
595 || memory_region_ioeventfd_before(fds_old[iold],
596 fds_new[inew]))) {
597 fd = &fds_old[iold];
598 section = (MemoryRegionSection) {
599 .address_space = as->root,
600 .offset_within_address_space = int128_get64(fd->addr.start),
601 .size = int128_get64(fd->addr.size),
602 };
603 MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
604 fd->match_data, fd->data, fd->e);
605 ++iold;
606 } else if (inew < fds_new_nb
607 && (iold == fds_old_nb
608 || memory_region_ioeventfd_before(fds_new[inew],
609 fds_old[iold]))) {
610 fd = &fds_new[inew];
611 section = (MemoryRegionSection) {
612 .address_space = as->root,
613 .offset_within_address_space = int128_get64(fd->addr.start),
614 .size = int128_get64(fd->addr.size),
615 };
616 MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
617 fd->match_data, fd->data, fd->e);
618 ++inew;
619 } else {
620 ++iold;
621 ++inew;
622 }
623 }
624 }
625
626 static void address_space_update_ioeventfds(AddressSpace *as)
627 {
628 FlatRange *fr;
629 unsigned ioeventfd_nb = 0;
630 MemoryRegionIoeventfd *ioeventfds = NULL;
631 AddrRange tmp;
632 unsigned i;
633
634 FOR_EACH_FLAT_RANGE(fr, as->current_map) {
635 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
636 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
637 int128_sub(fr->addr.start,
638 int128_make64(fr->offset_in_region)));
639 if (addrrange_intersects(fr->addr, tmp)) {
640 ++ioeventfd_nb;
641 ioeventfds = g_realloc(ioeventfds,
642 ioeventfd_nb * sizeof(*ioeventfds));
643 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
644 ioeventfds[ioeventfd_nb-1].addr = tmp;
645 }
646 }
647 }
648
649 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
650 as->ioeventfds, as->ioeventfd_nb);
651
652 g_free(as->ioeventfds);
653 as->ioeventfds = ioeventfds;
654 as->ioeventfd_nb = ioeventfd_nb;
655 }
656
657 static void address_space_update_topology_pass(AddressSpace *as,
658 FlatView old_view,
659 FlatView new_view,
660 bool adding)
661 {
662 unsigned iold, inew;
663 FlatRange *frold, *frnew;
664
665 /* Generate a symmetric difference of the old and new memory maps.
666 * Kill ranges in the old map, and instantiate ranges in the new map.
667 */
668 iold = inew = 0;
669 while (iold < old_view.nr || inew < new_view.nr) {
670 if (iold < old_view.nr) {
671 frold = &old_view.ranges[iold];
672 } else {
673 frold = NULL;
674 }
675 if (inew < new_view.nr) {
676 frnew = &new_view.ranges[inew];
677 } else {
678 frnew = NULL;
679 }
680
681 if (frold
682 && (!frnew
683 || int128_lt(frold->addr.start, frnew->addr.start)
684 || (int128_eq(frold->addr.start, frnew->addr.start)
685 && !flatrange_equal(frold, frnew)))) {
686 /* In old, but (not in new, or in new but attributes changed). */
687
688 if (!adding) {
689 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
690 }
691
692 ++iold;
693 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
694 /* In both (logging may have changed) */
695
696 if (adding) {
697 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
698 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
699 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
700 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
701 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
702 }
703 }
704
705 ++iold;
706 ++inew;
707 } else {
708 /* In new */
709
710 if (adding) {
711 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
712 }
713
714 ++inew;
715 }
716 }
717 }
718
719
720 static void address_space_update_topology(AddressSpace *as)
721 {
722 FlatView old_view = *as->current_map;
723 FlatView new_view = generate_memory_topology(as->root);
724
725 address_space_update_topology_pass(as, old_view, new_view, false);
726 address_space_update_topology_pass(as, old_view, new_view, true);
727
728 *as->current_map = new_view;
729 flatview_destroy(&old_view);
730 address_space_update_ioeventfds(as);
731 }
732
733 void memory_region_transaction_begin(void)
734 {
735 qemu_flush_coalesced_mmio_buffer();
736 ++memory_region_transaction_depth;
737 }
738
739 void memory_region_transaction_commit(void)
740 {
741 assert(memory_region_transaction_depth);
742 --memory_region_transaction_depth;
743 if (!memory_region_transaction_depth) {
744 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
745
746 if (address_space_memory.root) {
747 address_space_update_topology(&address_space_memory);
748 }
749 if (address_space_io.root) {
750 address_space_update_topology(&address_space_io);
751 }
752
753 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
754 }
755 }
756
757 static void memory_region_destructor_none(MemoryRegion *mr)
758 {
759 }
760
761 static void memory_region_destructor_ram(MemoryRegion *mr)
762 {
763 qemu_ram_free(mr->ram_addr);
764 }
765
766 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
767 {
768 qemu_ram_free_from_ptr(mr->ram_addr);
769 }
770
771 static void memory_region_destructor_iomem(MemoryRegion *mr)
772 {
773 }
774
775 static void memory_region_destructor_rom_device(MemoryRegion *mr)
776 {
777 qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
778 }
779
780 static bool memory_region_wrong_endianness(MemoryRegion *mr)
781 {
782 #ifdef TARGET_WORDS_BIGENDIAN
783 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
784 #else
785 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
786 #endif
787 }
788
789 void memory_region_init(MemoryRegion *mr,
790 const char *name,
791 uint64_t size)
792 {
793 mr->ops = NULL;
794 mr->parent = NULL;
795 mr->size = int128_make64(size);
796 if (size == UINT64_MAX) {
797 mr->size = int128_2_64();
798 }
799 mr->addr = 0;
800 mr->subpage = false;
801 mr->enabled = true;
802 mr->terminates = false;
803 mr->ram = false;
804 mr->readable = true;
805 mr->readonly = false;
806 mr->rom_device = false;
807 mr->destructor = memory_region_destructor_none;
808 mr->priority = 0;
809 mr->may_overlap = false;
810 mr->alias = NULL;
811 QTAILQ_INIT(&mr->subregions);
812 memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
813 QTAILQ_INIT(&mr->coalesced);
814 mr->name = g_strdup(name);
815 mr->dirty_log_mask = 0;
816 mr->ioeventfd_nb = 0;
817 mr->ioeventfds = NULL;
818 mr->flush_coalesced_mmio = false;
819 }
820
821 static bool memory_region_access_valid(MemoryRegion *mr,
822 target_phys_addr_t addr,
823 unsigned size,
824 bool is_write)
825 {
826 if (mr->ops->valid.accepts
827 && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write)) {
828 return false;
829 }
830
831 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
832 return false;
833 }
834
835 /* Treat zero as compatibility all valid */
836 if (!mr->ops->valid.max_access_size) {
837 return true;
838 }
839
840 if (size > mr->ops->valid.max_access_size
841 || size < mr->ops->valid.min_access_size) {
842 return false;
843 }
844 return true;
845 }
846
847 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
848 target_phys_addr_t addr,
849 unsigned size)
850 {
851 uint64_t data = 0;
852
853 if (!memory_region_access_valid(mr, addr, size, false)) {
854 return -1U; /* FIXME: better signalling */
855 }
856
857 if (!mr->ops->read) {
858 return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr);
859 }
860
861 /* FIXME: support unaligned access */
862 access_with_adjusted_size(addr, &data, size,
863 mr->ops->impl.min_access_size,
864 mr->ops->impl.max_access_size,
865 memory_region_read_accessor, mr);
866
867 return data;
868 }
869
870 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
871 {
872 if (memory_region_wrong_endianness(mr)) {
873 switch (size) {
874 case 1:
875 break;
876 case 2:
877 *data = bswap16(*data);
878 break;
879 case 4:
880 *data = bswap32(*data);
881 break;
882 default:
883 abort();
884 }
885 }
886 }
887
888 static uint64_t memory_region_dispatch_read(MemoryRegion *mr,
889 target_phys_addr_t addr,
890 unsigned size)
891 {
892 uint64_t ret;
893
894 ret = memory_region_dispatch_read1(mr, addr, size);
895 adjust_endianness(mr, &ret, size);
896 return ret;
897 }
898
899 static void memory_region_dispatch_write(MemoryRegion *mr,
900 target_phys_addr_t addr,
901 uint64_t data,
902 unsigned size)
903 {
904 if (!memory_region_access_valid(mr, addr, size, true)) {
905 return; /* FIXME: better signalling */
906 }
907
908 adjust_endianness(mr, &data, size);
909
910 if (!mr->ops->write) {
911 mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
912 return;
913 }
914
915 /* FIXME: support unaligned access */
916 access_with_adjusted_size(addr, &data, size,
917 mr->ops->impl.min_access_size,
918 mr->ops->impl.max_access_size,
919 memory_region_write_accessor, mr);
920 }
921
922 void memory_region_init_io(MemoryRegion *mr,
923 const MemoryRegionOps *ops,
924 void *opaque,
925 const char *name,
926 uint64_t size)
927 {
928 memory_region_init(mr, name, size);
929 mr->ops = ops;
930 mr->opaque = opaque;
931 mr->terminates = true;
932 mr->destructor = memory_region_destructor_iomem;
933 mr->ram_addr = ~(ram_addr_t)0;
934 }
935
936 void memory_region_init_ram(MemoryRegion *mr,
937 const char *name,
938 uint64_t size)
939 {
940 memory_region_init(mr, name, size);
941 mr->ram = true;
942 mr->terminates = true;
943 mr->destructor = memory_region_destructor_ram;
944 mr->ram_addr = qemu_ram_alloc(size, mr);
945 }
946
947 void memory_region_init_ram_ptr(MemoryRegion *mr,
948 const char *name,
949 uint64_t size,
950 void *ptr)
951 {
952 memory_region_init(mr, name, size);
953 mr->ram = true;
954 mr->terminates = true;
955 mr->destructor = memory_region_destructor_ram_from_ptr;
956 mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
957 }
958
959 void memory_region_init_alias(MemoryRegion *mr,
960 const char *name,
961 MemoryRegion *orig,
962 target_phys_addr_t offset,
963 uint64_t size)
964 {
965 memory_region_init(mr, name, size);
966 mr->alias = orig;
967 mr->alias_offset = offset;
968 }
969
970 void memory_region_init_rom_device(MemoryRegion *mr,
971 const MemoryRegionOps *ops,
972 void *opaque,
973 const char *name,
974 uint64_t size)
975 {
976 memory_region_init(mr, name, size);
977 mr->ops = ops;
978 mr->opaque = opaque;
979 mr->terminates = true;
980 mr->rom_device = true;
981 mr->destructor = memory_region_destructor_rom_device;
982 mr->ram_addr = qemu_ram_alloc(size, mr);
983 }
984
985 static uint64_t invalid_read(void *opaque, target_phys_addr_t addr,
986 unsigned size)
987 {
988 MemoryRegion *mr = opaque;
989
990 if (!mr->warning_printed) {
991 fprintf(stderr, "Invalid read from memory region %s\n", mr->name);
992 mr->warning_printed = true;
993 }
994 return -1U;
995 }
996
997 static void invalid_write(void *opaque, target_phys_addr_t addr, uint64_t data,
998 unsigned size)
999 {
1000 MemoryRegion *mr = opaque;
1001
1002 if (!mr->warning_printed) {
1003 fprintf(stderr, "Invalid write to memory region %s\n", mr->name);
1004 mr->warning_printed = true;
1005 }
1006 }
1007
1008 static const MemoryRegionOps reservation_ops = {
1009 .read = invalid_read,
1010 .write = invalid_write,
1011 .endianness = DEVICE_NATIVE_ENDIAN,
1012 };
1013
1014 void memory_region_init_reservation(MemoryRegion *mr,
1015 const char *name,
1016 uint64_t size)
1017 {
1018 memory_region_init_io(mr, &reservation_ops, mr, name, size);
1019 }
1020
1021 void memory_region_destroy(MemoryRegion *mr)
1022 {
1023 assert(QTAILQ_EMPTY(&mr->subregions));
1024 mr->destructor(mr);
1025 memory_region_clear_coalescing(mr);
1026 g_free((char *)mr->name);
1027 g_free(mr->ioeventfds);
1028 }
1029
1030 uint64_t memory_region_size(MemoryRegion *mr)
1031 {
1032 if (int128_eq(mr->size, int128_2_64())) {
1033 return UINT64_MAX;
1034 }
1035 return int128_get64(mr->size);
1036 }
1037
1038 const char *memory_region_name(MemoryRegion *mr)
1039 {
1040 return mr->name;
1041 }
1042
1043 bool memory_region_is_ram(MemoryRegion *mr)
1044 {
1045 return mr->ram;
1046 }
1047
1048 bool memory_region_is_logging(MemoryRegion *mr)
1049 {
1050 return mr->dirty_log_mask;
1051 }
1052
1053 bool memory_region_is_rom(MemoryRegion *mr)
1054 {
1055 return mr->ram && mr->readonly;
1056 }
1057
1058 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1059 {
1060 uint8_t mask = 1 << client;
1061
1062 memory_region_transaction_begin();
1063 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1064 memory_region_transaction_commit();
1065 }
1066
1067 bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1068 target_phys_addr_t size, unsigned client)
1069 {
1070 assert(mr->terminates);
1071 return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1072 1 << client);
1073 }
1074
1075 void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1076 target_phys_addr_t size)
1077 {
1078 assert(mr->terminates);
1079 return cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size, -1);
1080 }
1081
1082 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1083 {
1084 FlatRange *fr;
1085
1086 FOR_EACH_FLAT_RANGE(fr, address_space_memory.current_map) {
1087 if (fr->mr == mr) {
1088 MEMORY_LISTENER_UPDATE_REGION(fr, &address_space_memory,
1089 Forward, log_sync);
1090 }
1091 }
1092 }
1093
1094 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1095 {
1096 if (mr->readonly != readonly) {
1097 memory_region_transaction_begin();
1098 mr->readonly = readonly;
1099 memory_region_transaction_commit();
1100 }
1101 }
1102
1103 void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable)
1104 {
1105 if (mr->readable != readable) {
1106 memory_region_transaction_begin();
1107 mr->readable = readable;
1108 memory_region_transaction_commit();
1109 }
1110 }
1111
1112 void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1113 target_phys_addr_t size, unsigned client)
1114 {
1115 assert(mr->terminates);
1116 cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1117 mr->ram_addr + addr + size,
1118 1 << client);
1119 }
1120
1121 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1122 {
1123 if (mr->alias) {
1124 return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1125 }
1126
1127 assert(mr->terminates);
1128
1129 return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1130 }
1131
1132 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1133 {
1134 FlatRange *fr;
1135 CoalescedMemoryRange *cmr;
1136 AddrRange tmp;
1137
1138 FOR_EACH_FLAT_RANGE(fr, address_space_memory.current_map) {
1139 if (fr->mr == mr) {
1140 qemu_unregister_coalesced_mmio(int128_get64(fr->addr.start),
1141 int128_get64(fr->addr.size));
1142 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1143 tmp = addrrange_shift(cmr->addr,
1144 int128_sub(fr->addr.start,
1145 int128_make64(fr->offset_in_region)));
1146 if (!addrrange_intersects(tmp, fr->addr)) {
1147 continue;
1148 }
1149 tmp = addrrange_intersection(tmp, fr->addr);
1150 qemu_register_coalesced_mmio(int128_get64(tmp.start),
1151 int128_get64(tmp.size));
1152 }
1153 }
1154 }
1155 }
1156
1157 void memory_region_set_coalescing(MemoryRegion *mr)
1158 {
1159 memory_region_clear_coalescing(mr);
1160 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1161 }
1162
1163 void memory_region_add_coalescing(MemoryRegion *mr,
1164 target_phys_addr_t offset,
1165 uint64_t size)
1166 {
1167 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1168
1169 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1170 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1171 memory_region_update_coalesced_range(mr);
1172 memory_region_set_flush_coalesced(mr);
1173 }
1174
1175 void memory_region_clear_coalescing(MemoryRegion *mr)
1176 {
1177 CoalescedMemoryRange *cmr;
1178
1179 qemu_flush_coalesced_mmio_buffer();
1180 mr->flush_coalesced_mmio = false;
1181
1182 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1183 cmr = QTAILQ_FIRST(&mr->coalesced);
1184 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1185 g_free(cmr);
1186 }
1187 memory_region_update_coalesced_range(mr);
1188 }
1189
1190 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1191 {
1192 mr->flush_coalesced_mmio = true;
1193 }
1194
1195 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1196 {
1197 qemu_flush_coalesced_mmio_buffer();
1198 if (QTAILQ_EMPTY(&mr->coalesced)) {
1199 mr->flush_coalesced_mmio = false;
1200 }
1201 }
1202
1203 void memory_region_add_eventfd(MemoryRegion *mr,
1204 target_phys_addr_t addr,
1205 unsigned size,
1206 bool match_data,
1207 uint64_t data,
1208 EventNotifier *e)
1209 {
1210 MemoryRegionIoeventfd mrfd = {
1211 .addr.start = int128_make64(addr),
1212 .addr.size = int128_make64(size),
1213 .match_data = match_data,
1214 .data = data,
1215 .e = e,
1216 };
1217 unsigned i;
1218
1219 memory_region_transaction_begin();
1220 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1221 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1222 break;
1223 }
1224 }
1225 ++mr->ioeventfd_nb;
1226 mr->ioeventfds = g_realloc(mr->ioeventfds,
1227 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1228 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1229 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1230 mr->ioeventfds[i] = mrfd;
1231 memory_region_transaction_commit();
1232 }
1233
1234 void memory_region_del_eventfd(MemoryRegion *mr,
1235 target_phys_addr_t addr,
1236 unsigned size,
1237 bool match_data,
1238 uint64_t data,
1239 EventNotifier *e)
1240 {
1241 MemoryRegionIoeventfd mrfd = {
1242 .addr.start = int128_make64(addr),
1243 .addr.size = int128_make64(size),
1244 .match_data = match_data,
1245 .data = data,
1246 .e = e,
1247 };
1248 unsigned i;
1249
1250 memory_region_transaction_begin();
1251 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1252 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1253 break;
1254 }
1255 }
1256 assert(i != mr->ioeventfd_nb);
1257 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1258 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1259 --mr->ioeventfd_nb;
1260 mr->ioeventfds = g_realloc(mr->ioeventfds,
1261 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1262 memory_region_transaction_commit();
1263 }
1264
1265 static void memory_region_add_subregion_common(MemoryRegion *mr,
1266 target_phys_addr_t offset,
1267 MemoryRegion *subregion)
1268 {
1269 MemoryRegion *other;
1270
1271 memory_region_transaction_begin();
1272
1273 assert(!subregion->parent);
1274 subregion->parent = mr;
1275 subregion->addr = offset;
1276 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1277 if (subregion->may_overlap || other->may_overlap) {
1278 continue;
1279 }
1280 if (int128_gt(int128_make64(offset),
1281 int128_add(int128_make64(other->addr), other->size))
1282 || int128_le(int128_add(int128_make64(offset), subregion->size),
1283 int128_make64(other->addr))) {
1284 continue;
1285 }
1286 #if 0
1287 printf("warning: subregion collision %llx/%llx (%s) "
1288 "vs %llx/%llx (%s)\n",
1289 (unsigned long long)offset,
1290 (unsigned long long)int128_get64(subregion->size),
1291 subregion->name,
1292 (unsigned long long)other->addr,
1293 (unsigned long long)int128_get64(other->size),
1294 other->name);
1295 #endif
1296 }
1297 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1298 if (subregion->priority >= other->priority) {
1299 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1300 goto done;
1301 }
1302 }
1303 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1304 done:
1305 memory_region_transaction_commit();
1306 }
1307
1308
1309 void memory_region_add_subregion(MemoryRegion *mr,
1310 target_phys_addr_t offset,
1311 MemoryRegion *subregion)
1312 {
1313 subregion->may_overlap = false;
1314 subregion->priority = 0;
1315 memory_region_add_subregion_common(mr, offset, subregion);
1316 }
1317
1318 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1319 target_phys_addr_t offset,
1320 MemoryRegion *subregion,
1321 unsigned priority)
1322 {
1323 subregion->may_overlap = true;
1324 subregion->priority = priority;
1325 memory_region_add_subregion_common(mr, offset, subregion);
1326 }
1327
1328 void memory_region_del_subregion(MemoryRegion *mr,
1329 MemoryRegion *subregion)
1330 {
1331 memory_region_transaction_begin();
1332 assert(subregion->parent == mr);
1333 subregion->parent = NULL;
1334 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1335 memory_region_transaction_commit();
1336 }
1337
1338 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1339 {
1340 if (enabled == mr->enabled) {
1341 return;
1342 }
1343 memory_region_transaction_begin();
1344 mr->enabled = enabled;
1345 memory_region_transaction_commit();
1346 }
1347
1348 void memory_region_set_address(MemoryRegion *mr, target_phys_addr_t addr)
1349 {
1350 MemoryRegion *parent = mr->parent;
1351 unsigned priority = mr->priority;
1352 bool may_overlap = mr->may_overlap;
1353
1354 if (addr == mr->addr || !parent) {
1355 mr->addr = addr;
1356 return;
1357 }
1358
1359 memory_region_transaction_begin();
1360 memory_region_del_subregion(parent, mr);
1361 if (may_overlap) {
1362 memory_region_add_subregion_overlap(parent, addr, mr, priority);
1363 } else {
1364 memory_region_add_subregion(parent, addr, mr);
1365 }
1366 memory_region_transaction_commit();
1367 }
1368
1369 void memory_region_set_alias_offset(MemoryRegion *mr, target_phys_addr_t offset)
1370 {
1371 assert(mr->alias);
1372
1373 if (offset == mr->alias_offset) {
1374 return;
1375 }
1376
1377 memory_region_transaction_begin();
1378 mr->alias_offset = offset;
1379 memory_region_transaction_commit();
1380 }
1381
1382 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1383 {
1384 return mr->ram_addr;
1385 }
1386
1387 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1388 {
1389 const AddrRange *addr = addr_;
1390 const FlatRange *fr = fr_;
1391
1392 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1393 return -1;
1394 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1395 return 1;
1396 }
1397 return 0;
1398 }
1399
1400 static FlatRange *address_space_lookup(AddressSpace *as, AddrRange addr)
1401 {
1402 return bsearch(&addr, as->current_map->ranges, as->current_map->nr,
1403 sizeof(FlatRange), cmp_flatrange_addr);
1404 }
1405
1406 MemoryRegionSection memory_region_find(MemoryRegion *address_space,
1407 target_phys_addr_t addr, uint64_t size)
1408 {
1409 AddressSpace *as = memory_region_to_address_space(address_space);
1410 AddrRange range = addrrange_make(int128_make64(addr),
1411 int128_make64(size));
1412 FlatRange *fr = address_space_lookup(as, range);
1413 MemoryRegionSection ret = { .mr = NULL, .size = 0 };
1414
1415 if (!fr) {
1416 return ret;
1417 }
1418
1419 while (fr > as->current_map->ranges
1420 && addrrange_intersects(fr[-1].addr, range)) {
1421 --fr;
1422 }
1423
1424 ret.mr = fr->mr;
1425 range = addrrange_intersection(range, fr->addr);
1426 ret.offset_within_region = fr->offset_in_region;
1427 ret.offset_within_region += int128_get64(int128_sub(range.start,
1428 fr->addr.start));
1429 ret.size = int128_get64(range.size);
1430 ret.offset_within_address_space = int128_get64(range.start);
1431 ret.readonly = fr->readonly;
1432 return ret;
1433 }
1434
1435 void memory_global_sync_dirty_bitmap(MemoryRegion *address_space)
1436 {
1437 AddressSpace *as = memory_region_to_address_space(address_space);
1438 FlatRange *fr;
1439
1440 FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1441 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1442 }
1443 }
1444
1445 void memory_global_dirty_log_start(void)
1446 {
1447 global_dirty_log = true;
1448 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1449 }
1450
1451 void memory_global_dirty_log_stop(void)
1452 {
1453 global_dirty_log = false;
1454 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1455 }
1456
1457 static void listener_add_address_space(MemoryListener *listener,
1458 AddressSpace *as)
1459 {
1460 FlatRange *fr;
1461
1462 if (!as->root) {
1463 return;
1464 }
1465
1466 if (listener->address_space_filter
1467 && listener->address_space_filter != as->root) {
1468 return;
1469 }
1470
1471 if (global_dirty_log) {
1472 listener->log_global_start(listener);
1473 }
1474 FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1475 MemoryRegionSection section = {
1476 .mr = fr->mr,
1477 .address_space = as->root,
1478 .offset_within_region = fr->offset_in_region,
1479 .size = int128_get64(fr->addr.size),
1480 .offset_within_address_space = int128_get64(fr->addr.start),
1481 .readonly = fr->readonly,
1482 };
1483 listener->region_add(listener, &section);
1484 }
1485 }
1486
1487 void memory_listener_register(MemoryListener *listener, MemoryRegion *filter)
1488 {
1489 MemoryListener *other = NULL;
1490
1491 listener->address_space_filter = filter;
1492 if (QTAILQ_EMPTY(&memory_listeners)
1493 || listener->priority >= QTAILQ_LAST(&memory_listeners,
1494 memory_listeners)->priority) {
1495 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1496 } else {
1497 QTAILQ_FOREACH(other, &memory_listeners, link) {
1498 if (listener->priority < other->priority) {
1499 break;
1500 }
1501 }
1502 QTAILQ_INSERT_BEFORE(other, listener, link);
1503 }
1504 listener_add_address_space(listener, &address_space_memory);
1505 listener_add_address_space(listener, &address_space_io);
1506 }
1507
1508 void memory_listener_unregister(MemoryListener *listener)
1509 {
1510 QTAILQ_REMOVE(&memory_listeners, listener, link);
1511 }
1512
1513 static void address_space_init(AddressSpace *as, MemoryRegion *root)
1514 {
1515 memory_region_transaction_begin();
1516 as->root = root;
1517 as->current_map = g_new(FlatView, 1);
1518 flatview_init(as->current_map);
1519 memory_region_transaction_commit();
1520 }
1521
1522 void set_system_memory_map(MemoryRegion *mr)
1523 {
1524 address_space_init(&address_space_memory, mr);
1525 }
1526
1527 void set_system_io_map(MemoryRegion *mr)
1528 {
1529 address_space_init(&address_space_io, mr);
1530 }
1531
1532 uint64_t io_mem_read(MemoryRegion *mr, target_phys_addr_t addr, unsigned size)
1533 {
1534 return memory_region_dispatch_read(mr, addr, size);
1535 }
1536
1537 void io_mem_write(MemoryRegion *mr, target_phys_addr_t addr,
1538 uint64_t val, unsigned size)
1539 {
1540 memory_region_dispatch_write(mr, addr, val, size);
1541 }
1542
1543 typedef struct MemoryRegionList MemoryRegionList;
1544
1545 struct MemoryRegionList {
1546 const MemoryRegion *mr;
1547 bool printed;
1548 QTAILQ_ENTRY(MemoryRegionList) queue;
1549 };
1550
1551 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1552
1553 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1554 const MemoryRegion *mr, unsigned int level,
1555 target_phys_addr_t base,
1556 MemoryRegionListHead *alias_print_queue)
1557 {
1558 MemoryRegionList *new_ml, *ml, *next_ml;
1559 MemoryRegionListHead submr_print_queue;
1560 const MemoryRegion *submr;
1561 unsigned int i;
1562
1563 if (!mr) {
1564 return;
1565 }
1566
1567 for (i = 0; i < level; i++) {
1568 mon_printf(f, " ");
1569 }
1570
1571 if (mr->alias) {
1572 MemoryRegionList *ml;
1573 bool found = false;
1574
1575 /* check if the alias is already in the queue */
1576 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1577 if (ml->mr == mr->alias && !ml->printed) {
1578 found = true;
1579 }
1580 }
1581
1582 if (!found) {
1583 ml = g_new(MemoryRegionList, 1);
1584 ml->mr = mr->alias;
1585 ml->printed = false;
1586 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1587 }
1588 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
1589 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
1590 "-" TARGET_FMT_plx "\n",
1591 base + mr->addr,
1592 base + mr->addr
1593 + (target_phys_addr_t)int128_get64(mr->size) - 1,
1594 mr->priority,
1595 mr->readable ? 'R' : '-',
1596 !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1597 : '-',
1598 mr->name,
1599 mr->alias->name,
1600 mr->alias_offset,
1601 mr->alias_offset
1602 + (target_phys_addr_t)int128_get64(mr->size) - 1);
1603 } else {
1604 mon_printf(f,
1605 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
1606 base + mr->addr,
1607 base + mr->addr
1608 + (target_phys_addr_t)int128_get64(mr->size) - 1,
1609 mr->priority,
1610 mr->readable ? 'R' : '-',
1611 !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1612 : '-',
1613 mr->name);
1614 }
1615
1616 QTAILQ_INIT(&submr_print_queue);
1617
1618 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1619 new_ml = g_new(MemoryRegionList, 1);
1620 new_ml->mr = submr;
1621 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1622 if (new_ml->mr->addr < ml->mr->addr ||
1623 (new_ml->mr->addr == ml->mr->addr &&
1624 new_ml->mr->priority > ml->mr->priority)) {
1625 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1626 new_ml = NULL;
1627 break;
1628 }
1629 }
1630 if (new_ml) {
1631 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1632 }
1633 }
1634
1635 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1636 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1637 alias_print_queue);
1638 }
1639
1640 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1641 g_free(ml);
1642 }
1643 }
1644
1645 void mtree_info(fprintf_function mon_printf, void *f)
1646 {
1647 MemoryRegionListHead ml_head;
1648 MemoryRegionList *ml, *ml2;
1649
1650 QTAILQ_INIT(&ml_head);
1651
1652 mon_printf(f, "memory\n");
1653 mtree_print_mr(mon_printf, f, address_space_memory.root, 0, 0, &ml_head);
1654
1655 if (address_space_io.root &&
1656 !QTAILQ_EMPTY(&address_space_io.root->subregions)) {
1657 mon_printf(f, "I/O\n");
1658 mtree_print_mr(mon_printf, f, address_space_io.root, 0, 0, &ml_head);
1659 }
1660
1661 mon_printf(f, "aliases\n");
1662 /* print aliased regions */
1663 QTAILQ_FOREACH(ml, &ml_head, queue) {
1664 if (!ml->printed) {
1665 mon_printf(f, "%s\n", ml->mr->name);
1666 mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1667 }
1668 }
1669
1670 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1671 g_free(ml);
1672 }
1673 }