]> git.proxmox.com Git - qemu.git/blob - memory.c
memory: per-AddressSpace dispatch
[qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "memory.h"
17 #include "exec-memory.h"
18 #include "ioport.h"
19 #include "bitops.h"
20 #include "kvm.h"
21 #include <assert.h>
22
23 #include "memory-internal.h"
24
25 unsigned memory_region_transaction_depth = 0;
26 static bool global_dirty_log = false;
27
28 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
29 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
30
31 static QTAILQ_HEAD(, AddressSpace) address_spaces
32 = QTAILQ_HEAD_INITIALIZER(address_spaces);
33
34 typedef struct AddrRange AddrRange;
35
36 /*
37 * Note using signed integers limits us to physical addresses at most
38 * 63 bits wide. They are needed for negative offsetting in aliases
39 * (large MemoryRegion::alias_offset).
40 */
41 struct AddrRange {
42 Int128 start;
43 Int128 size;
44 };
45
46 static AddrRange addrrange_make(Int128 start, Int128 size)
47 {
48 return (AddrRange) { start, size };
49 }
50
51 static bool addrrange_equal(AddrRange r1, AddrRange r2)
52 {
53 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
54 }
55
56 static Int128 addrrange_end(AddrRange r)
57 {
58 return int128_add(r.start, r.size);
59 }
60
61 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
62 {
63 int128_addto(&range.start, delta);
64 return range;
65 }
66
67 static bool addrrange_contains(AddrRange range, Int128 addr)
68 {
69 return int128_ge(addr, range.start)
70 && int128_lt(addr, addrrange_end(range));
71 }
72
73 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
74 {
75 return addrrange_contains(r1, r2.start)
76 || addrrange_contains(r2, r1.start);
77 }
78
79 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
80 {
81 Int128 start = int128_max(r1.start, r2.start);
82 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
83 return addrrange_make(start, int128_sub(end, start));
84 }
85
86 enum ListenerDirection { Forward, Reverse };
87
88 static bool memory_listener_match(MemoryListener *listener,
89 MemoryRegionSection *section)
90 {
91 return !listener->address_space_filter
92 || listener->address_space_filter == section->address_space;
93 }
94
95 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
96 do { \
97 MemoryListener *_listener; \
98 \
99 switch (_direction) { \
100 case Forward: \
101 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
102 if (_listener->_callback) { \
103 _listener->_callback(_listener, ##_args); \
104 } \
105 } \
106 break; \
107 case Reverse: \
108 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
109 memory_listeners, link) { \
110 if (_listener->_callback) { \
111 _listener->_callback(_listener, ##_args); \
112 } \
113 } \
114 break; \
115 default: \
116 abort(); \
117 } \
118 } while (0)
119
120 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
121 do { \
122 MemoryListener *_listener; \
123 \
124 switch (_direction) { \
125 case Forward: \
126 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
127 if (_listener->_callback \
128 && memory_listener_match(_listener, _section)) { \
129 _listener->_callback(_listener, _section, ##_args); \
130 } \
131 } \
132 break; \
133 case Reverse: \
134 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
135 memory_listeners, link) { \
136 if (_listener->_callback \
137 && memory_listener_match(_listener, _section)) { \
138 _listener->_callback(_listener, _section, ##_args); \
139 } \
140 } \
141 break; \
142 default: \
143 abort(); \
144 } \
145 } while (0)
146
147 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback) \
148 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
149 .mr = (fr)->mr, \
150 .address_space = (as), \
151 .offset_within_region = (fr)->offset_in_region, \
152 .size = int128_get64((fr)->addr.size), \
153 .offset_within_address_space = int128_get64((fr)->addr.start), \
154 .readonly = (fr)->readonly, \
155 }))
156
157 struct CoalescedMemoryRange {
158 AddrRange addr;
159 QTAILQ_ENTRY(CoalescedMemoryRange) link;
160 };
161
162 struct MemoryRegionIoeventfd {
163 AddrRange addr;
164 bool match_data;
165 uint64_t data;
166 EventNotifier *e;
167 };
168
169 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
170 MemoryRegionIoeventfd b)
171 {
172 if (int128_lt(a.addr.start, b.addr.start)) {
173 return true;
174 } else if (int128_gt(a.addr.start, b.addr.start)) {
175 return false;
176 } else if (int128_lt(a.addr.size, b.addr.size)) {
177 return true;
178 } else if (int128_gt(a.addr.size, b.addr.size)) {
179 return false;
180 } else if (a.match_data < b.match_data) {
181 return true;
182 } else if (a.match_data > b.match_data) {
183 return false;
184 } else if (a.match_data) {
185 if (a.data < b.data) {
186 return true;
187 } else if (a.data > b.data) {
188 return false;
189 }
190 }
191 if (a.e < b.e) {
192 return true;
193 } else if (a.e > b.e) {
194 return false;
195 }
196 return false;
197 }
198
199 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
200 MemoryRegionIoeventfd b)
201 {
202 return !memory_region_ioeventfd_before(a, b)
203 && !memory_region_ioeventfd_before(b, a);
204 }
205
206 typedef struct FlatRange FlatRange;
207 typedef struct FlatView FlatView;
208
209 /* Range of memory in the global map. Addresses are absolute. */
210 struct FlatRange {
211 MemoryRegion *mr;
212 target_phys_addr_t offset_in_region;
213 AddrRange addr;
214 uint8_t dirty_log_mask;
215 bool readable;
216 bool readonly;
217 };
218
219 /* Flattened global view of current active memory hierarchy. Kept in sorted
220 * order.
221 */
222 struct FlatView {
223 FlatRange *ranges;
224 unsigned nr;
225 unsigned nr_allocated;
226 };
227
228 typedef struct AddressSpaceOps AddressSpaceOps;
229
230 #define FOR_EACH_FLAT_RANGE(var, view) \
231 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
232
233 static bool flatrange_equal(FlatRange *a, FlatRange *b)
234 {
235 return a->mr == b->mr
236 && addrrange_equal(a->addr, b->addr)
237 && a->offset_in_region == b->offset_in_region
238 && a->readable == b->readable
239 && a->readonly == b->readonly;
240 }
241
242 static void flatview_init(FlatView *view)
243 {
244 view->ranges = NULL;
245 view->nr = 0;
246 view->nr_allocated = 0;
247 }
248
249 /* Insert a range into a given position. Caller is responsible for maintaining
250 * sorting order.
251 */
252 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
253 {
254 if (view->nr == view->nr_allocated) {
255 view->nr_allocated = MAX(2 * view->nr, 10);
256 view->ranges = g_realloc(view->ranges,
257 view->nr_allocated * sizeof(*view->ranges));
258 }
259 memmove(view->ranges + pos + 1, view->ranges + pos,
260 (view->nr - pos) * sizeof(FlatRange));
261 view->ranges[pos] = *range;
262 ++view->nr;
263 }
264
265 static void flatview_destroy(FlatView *view)
266 {
267 g_free(view->ranges);
268 }
269
270 static bool can_merge(FlatRange *r1, FlatRange *r2)
271 {
272 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
273 && r1->mr == r2->mr
274 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
275 r1->addr.size),
276 int128_make64(r2->offset_in_region))
277 && r1->dirty_log_mask == r2->dirty_log_mask
278 && r1->readable == r2->readable
279 && r1->readonly == r2->readonly;
280 }
281
282 /* Attempt to simplify a view by merging ajacent ranges */
283 static void flatview_simplify(FlatView *view)
284 {
285 unsigned i, j;
286
287 i = 0;
288 while (i < view->nr) {
289 j = i + 1;
290 while (j < view->nr
291 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
292 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
293 ++j;
294 }
295 ++i;
296 memmove(&view->ranges[i], &view->ranges[j],
297 (view->nr - j) * sizeof(view->ranges[j]));
298 view->nr -= j - i;
299 }
300 }
301
302 static void memory_region_read_accessor(void *opaque,
303 target_phys_addr_t addr,
304 uint64_t *value,
305 unsigned size,
306 unsigned shift,
307 uint64_t mask)
308 {
309 MemoryRegion *mr = opaque;
310 uint64_t tmp;
311
312 if (mr->flush_coalesced_mmio) {
313 qemu_flush_coalesced_mmio_buffer();
314 }
315 tmp = mr->ops->read(mr->opaque, addr, size);
316 *value |= (tmp & mask) << shift;
317 }
318
319 static void memory_region_write_accessor(void *opaque,
320 target_phys_addr_t addr,
321 uint64_t *value,
322 unsigned size,
323 unsigned shift,
324 uint64_t mask)
325 {
326 MemoryRegion *mr = opaque;
327 uint64_t tmp;
328
329 if (mr->flush_coalesced_mmio) {
330 qemu_flush_coalesced_mmio_buffer();
331 }
332 tmp = (*value >> shift) & mask;
333 mr->ops->write(mr->opaque, addr, tmp, size);
334 }
335
336 static void access_with_adjusted_size(target_phys_addr_t addr,
337 uint64_t *value,
338 unsigned size,
339 unsigned access_size_min,
340 unsigned access_size_max,
341 void (*access)(void *opaque,
342 target_phys_addr_t addr,
343 uint64_t *value,
344 unsigned size,
345 unsigned shift,
346 uint64_t mask),
347 void *opaque)
348 {
349 uint64_t access_mask;
350 unsigned access_size;
351 unsigned i;
352
353 if (!access_size_min) {
354 access_size_min = 1;
355 }
356 if (!access_size_max) {
357 access_size_max = 4;
358 }
359 access_size = MAX(MIN(size, access_size_max), access_size_min);
360 access_mask = -1ULL >> (64 - access_size * 8);
361 for (i = 0; i < size; i += access_size) {
362 /* FIXME: big-endian support */
363 access(opaque, addr + i, value, access_size, i * 8, access_mask);
364 }
365 }
366
367 static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
368 unsigned width, bool write)
369 {
370 const MemoryRegionPortio *mrp;
371
372 for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
373 if (offset >= mrp->offset && offset < mrp->offset + mrp->len
374 && width == mrp->size
375 && (write ? (bool)mrp->write : (bool)mrp->read)) {
376 return mrp;
377 }
378 }
379 return NULL;
380 }
381
382 static void memory_region_iorange_read(IORange *iorange,
383 uint64_t offset,
384 unsigned width,
385 uint64_t *data)
386 {
387 MemoryRegionIORange *mrio
388 = container_of(iorange, MemoryRegionIORange, iorange);
389 MemoryRegion *mr = mrio->mr;
390
391 offset += mrio->offset;
392 if (mr->ops->old_portio) {
393 const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
394 width, false);
395
396 *data = ((uint64_t)1 << (width * 8)) - 1;
397 if (mrp) {
398 *data = mrp->read(mr->opaque, offset);
399 } else if (width == 2) {
400 mrp = find_portio(mr, offset - mrio->offset, 1, false);
401 assert(mrp);
402 *data = mrp->read(mr->opaque, offset) |
403 (mrp->read(mr->opaque, offset + 1) << 8);
404 }
405 return;
406 }
407 *data = 0;
408 access_with_adjusted_size(offset, data, width,
409 mr->ops->impl.min_access_size,
410 mr->ops->impl.max_access_size,
411 memory_region_read_accessor, mr);
412 }
413
414 static void memory_region_iorange_write(IORange *iorange,
415 uint64_t offset,
416 unsigned width,
417 uint64_t data)
418 {
419 MemoryRegionIORange *mrio
420 = container_of(iorange, MemoryRegionIORange, iorange);
421 MemoryRegion *mr = mrio->mr;
422
423 offset += mrio->offset;
424 if (mr->ops->old_portio) {
425 const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
426 width, true);
427
428 if (mrp) {
429 mrp->write(mr->opaque, offset, data);
430 } else if (width == 2) {
431 mrp = find_portio(mr, offset - mrio->offset, 1, true);
432 assert(mrp);
433 mrp->write(mr->opaque, offset, data & 0xff);
434 mrp->write(mr->opaque, offset + 1, data >> 8);
435 }
436 return;
437 }
438 access_with_adjusted_size(offset, &data, width,
439 mr->ops->impl.min_access_size,
440 mr->ops->impl.max_access_size,
441 memory_region_write_accessor, mr);
442 }
443
444 static void memory_region_iorange_destructor(IORange *iorange)
445 {
446 g_free(container_of(iorange, MemoryRegionIORange, iorange));
447 }
448
449 const IORangeOps memory_region_iorange_ops = {
450 .read = memory_region_iorange_read,
451 .write = memory_region_iorange_write,
452 .destructor = memory_region_iorange_destructor,
453 };
454
455 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
456 {
457 AddressSpace *as;
458
459 while (mr->parent) {
460 mr = mr->parent;
461 }
462 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
463 if (mr == as->root) {
464 return as;
465 }
466 }
467 abort();
468 }
469
470 /* Render a memory region into the global view. Ranges in @view obscure
471 * ranges in @mr.
472 */
473 static void render_memory_region(FlatView *view,
474 MemoryRegion *mr,
475 Int128 base,
476 AddrRange clip,
477 bool readonly)
478 {
479 MemoryRegion *subregion;
480 unsigned i;
481 target_phys_addr_t offset_in_region;
482 Int128 remain;
483 Int128 now;
484 FlatRange fr;
485 AddrRange tmp;
486
487 if (!mr->enabled) {
488 return;
489 }
490
491 int128_addto(&base, int128_make64(mr->addr));
492 readonly |= mr->readonly;
493
494 tmp = addrrange_make(base, mr->size);
495
496 if (!addrrange_intersects(tmp, clip)) {
497 return;
498 }
499
500 clip = addrrange_intersection(tmp, clip);
501
502 if (mr->alias) {
503 int128_subfrom(&base, int128_make64(mr->alias->addr));
504 int128_subfrom(&base, int128_make64(mr->alias_offset));
505 render_memory_region(view, mr->alias, base, clip, readonly);
506 return;
507 }
508
509 /* Render subregions in priority order. */
510 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
511 render_memory_region(view, subregion, base, clip, readonly);
512 }
513
514 if (!mr->terminates) {
515 return;
516 }
517
518 offset_in_region = int128_get64(int128_sub(clip.start, base));
519 base = clip.start;
520 remain = clip.size;
521
522 /* Render the region itself into any gaps left by the current view. */
523 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
524 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
525 continue;
526 }
527 if (int128_lt(base, view->ranges[i].addr.start)) {
528 now = int128_min(remain,
529 int128_sub(view->ranges[i].addr.start, base));
530 fr.mr = mr;
531 fr.offset_in_region = offset_in_region;
532 fr.addr = addrrange_make(base, now);
533 fr.dirty_log_mask = mr->dirty_log_mask;
534 fr.readable = mr->readable;
535 fr.readonly = readonly;
536 flatview_insert(view, i, &fr);
537 ++i;
538 int128_addto(&base, now);
539 offset_in_region += int128_get64(now);
540 int128_subfrom(&remain, now);
541 }
542 if (int128_eq(base, view->ranges[i].addr.start)) {
543 now = int128_min(remain, view->ranges[i].addr.size);
544 int128_addto(&base, now);
545 offset_in_region += int128_get64(now);
546 int128_subfrom(&remain, now);
547 }
548 }
549 if (int128_nz(remain)) {
550 fr.mr = mr;
551 fr.offset_in_region = offset_in_region;
552 fr.addr = addrrange_make(base, remain);
553 fr.dirty_log_mask = mr->dirty_log_mask;
554 fr.readable = mr->readable;
555 fr.readonly = readonly;
556 flatview_insert(view, i, &fr);
557 }
558 }
559
560 /* Render a memory topology into a list of disjoint absolute ranges. */
561 static FlatView generate_memory_topology(MemoryRegion *mr)
562 {
563 FlatView view;
564
565 flatview_init(&view);
566
567 render_memory_region(&view, mr, int128_zero(),
568 addrrange_make(int128_zero(), int128_2_64()), false);
569 flatview_simplify(&view);
570
571 return view;
572 }
573
574 static void address_space_add_del_ioeventfds(AddressSpace *as,
575 MemoryRegionIoeventfd *fds_new,
576 unsigned fds_new_nb,
577 MemoryRegionIoeventfd *fds_old,
578 unsigned fds_old_nb)
579 {
580 unsigned iold, inew;
581 MemoryRegionIoeventfd *fd;
582 MemoryRegionSection section;
583
584 /* Generate a symmetric difference of the old and new fd sets, adding
585 * and deleting as necessary.
586 */
587
588 iold = inew = 0;
589 while (iold < fds_old_nb || inew < fds_new_nb) {
590 if (iold < fds_old_nb
591 && (inew == fds_new_nb
592 || memory_region_ioeventfd_before(fds_old[iold],
593 fds_new[inew]))) {
594 fd = &fds_old[iold];
595 section = (MemoryRegionSection) {
596 .address_space = as,
597 .offset_within_address_space = int128_get64(fd->addr.start),
598 .size = int128_get64(fd->addr.size),
599 };
600 MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
601 fd->match_data, fd->data, fd->e);
602 ++iold;
603 } else if (inew < fds_new_nb
604 && (iold == fds_old_nb
605 || memory_region_ioeventfd_before(fds_new[inew],
606 fds_old[iold]))) {
607 fd = &fds_new[inew];
608 section = (MemoryRegionSection) {
609 .address_space = as,
610 .offset_within_address_space = int128_get64(fd->addr.start),
611 .size = int128_get64(fd->addr.size),
612 };
613 MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
614 fd->match_data, fd->data, fd->e);
615 ++inew;
616 } else {
617 ++iold;
618 ++inew;
619 }
620 }
621 }
622
623 static void address_space_update_ioeventfds(AddressSpace *as)
624 {
625 FlatRange *fr;
626 unsigned ioeventfd_nb = 0;
627 MemoryRegionIoeventfd *ioeventfds = NULL;
628 AddrRange tmp;
629 unsigned i;
630
631 FOR_EACH_FLAT_RANGE(fr, as->current_map) {
632 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
633 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
634 int128_sub(fr->addr.start,
635 int128_make64(fr->offset_in_region)));
636 if (addrrange_intersects(fr->addr, tmp)) {
637 ++ioeventfd_nb;
638 ioeventfds = g_realloc(ioeventfds,
639 ioeventfd_nb * sizeof(*ioeventfds));
640 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
641 ioeventfds[ioeventfd_nb-1].addr = tmp;
642 }
643 }
644 }
645
646 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
647 as->ioeventfds, as->ioeventfd_nb);
648
649 g_free(as->ioeventfds);
650 as->ioeventfds = ioeventfds;
651 as->ioeventfd_nb = ioeventfd_nb;
652 }
653
654 static void address_space_update_topology_pass(AddressSpace *as,
655 FlatView old_view,
656 FlatView new_view,
657 bool adding)
658 {
659 unsigned iold, inew;
660 FlatRange *frold, *frnew;
661
662 /* Generate a symmetric difference of the old and new memory maps.
663 * Kill ranges in the old map, and instantiate ranges in the new map.
664 */
665 iold = inew = 0;
666 while (iold < old_view.nr || inew < new_view.nr) {
667 if (iold < old_view.nr) {
668 frold = &old_view.ranges[iold];
669 } else {
670 frold = NULL;
671 }
672 if (inew < new_view.nr) {
673 frnew = &new_view.ranges[inew];
674 } else {
675 frnew = NULL;
676 }
677
678 if (frold
679 && (!frnew
680 || int128_lt(frold->addr.start, frnew->addr.start)
681 || (int128_eq(frold->addr.start, frnew->addr.start)
682 && !flatrange_equal(frold, frnew)))) {
683 /* In old, but (not in new, or in new but attributes changed). */
684
685 if (!adding) {
686 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
687 }
688
689 ++iold;
690 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
691 /* In both (logging may have changed) */
692
693 if (adding) {
694 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
695 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
696 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
697 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
698 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
699 }
700 }
701
702 ++iold;
703 ++inew;
704 } else {
705 /* In new */
706
707 if (adding) {
708 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
709 }
710
711 ++inew;
712 }
713 }
714 }
715
716
717 static void address_space_update_topology(AddressSpace *as)
718 {
719 FlatView old_view = *as->current_map;
720 FlatView new_view = generate_memory_topology(as->root);
721
722 address_space_update_topology_pass(as, old_view, new_view, false);
723 address_space_update_topology_pass(as, old_view, new_view, true);
724
725 *as->current_map = new_view;
726 flatview_destroy(&old_view);
727 address_space_update_ioeventfds(as);
728 }
729
730 void memory_region_transaction_begin(void)
731 {
732 qemu_flush_coalesced_mmio_buffer();
733 ++memory_region_transaction_depth;
734 }
735
736 void memory_region_transaction_commit(void)
737 {
738 AddressSpace *as;
739
740 assert(memory_region_transaction_depth);
741 --memory_region_transaction_depth;
742 if (!memory_region_transaction_depth) {
743 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
744
745 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
746 address_space_update_topology(as);
747 }
748
749 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
750 }
751 }
752
753 static void memory_region_destructor_none(MemoryRegion *mr)
754 {
755 }
756
757 static void memory_region_destructor_ram(MemoryRegion *mr)
758 {
759 qemu_ram_free(mr->ram_addr);
760 }
761
762 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
763 {
764 qemu_ram_free_from_ptr(mr->ram_addr);
765 }
766
767 static void memory_region_destructor_iomem(MemoryRegion *mr)
768 {
769 }
770
771 static void memory_region_destructor_rom_device(MemoryRegion *mr)
772 {
773 qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
774 }
775
776 static bool memory_region_wrong_endianness(MemoryRegion *mr)
777 {
778 #ifdef TARGET_WORDS_BIGENDIAN
779 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
780 #else
781 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
782 #endif
783 }
784
785 void memory_region_init(MemoryRegion *mr,
786 const char *name,
787 uint64_t size)
788 {
789 mr->ops = NULL;
790 mr->parent = NULL;
791 mr->size = int128_make64(size);
792 if (size == UINT64_MAX) {
793 mr->size = int128_2_64();
794 }
795 mr->addr = 0;
796 mr->subpage = false;
797 mr->enabled = true;
798 mr->terminates = false;
799 mr->ram = false;
800 mr->readable = true;
801 mr->readonly = false;
802 mr->rom_device = false;
803 mr->destructor = memory_region_destructor_none;
804 mr->priority = 0;
805 mr->may_overlap = false;
806 mr->alias = NULL;
807 QTAILQ_INIT(&mr->subregions);
808 memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
809 QTAILQ_INIT(&mr->coalesced);
810 mr->name = g_strdup(name);
811 mr->dirty_log_mask = 0;
812 mr->ioeventfd_nb = 0;
813 mr->ioeventfds = NULL;
814 mr->flush_coalesced_mmio = false;
815 }
816
817 static bool memory_region_access_valid(MemoryRegion *mr,
818 target_phys_addr_t addr,
819 unsigned size,
820 bool is_write)
821 {
822 if (mr->ops->valid.accepts
823 && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write)) {
824 return false;
825 }
826
827 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
828 return false;
829 }
830
831 /* Treat zero as compatibility all valid */
832 if (!mr->ops->valid.max_access_size) {
833 return true;
834 }
835
836 if (size > mr->ops->valid.max_access_size
837 || size < mr->ops->valid.min_access_size) {
838 return false;
839 }
840 return true;
841 }
842
843 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
844 target_phys_addr_t addr,
845 unsigned size)
846 {
847 uint64_t data = 0;
848
849 if (!memory_region_access_valid(mr, addr, size, false)) {
850 return -1U; /* FIXME: better signalling */
851 }
852
853 if (!mr->ops->read) {
854 return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr);
855 }
856
857 /* FIXME: support unaligned access */
858 access_with_adjusted_size(addr, &data, size,
859 mr->ops->impl.min_access_size,
860 mr->ops->impl.max_access_size,
861 memory_region_read_accessor, mr);
862
863 return data;
864 }
865
866 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
867 {
868 if (memory_region_wrong_endianness(mr)) {
869 switch (size) {
870 case 1:
871 break;
872 case 2:
873 *data = bswap16(*data);
874 break;
875 case 4:
876 *data = bswap32(*data);
877 break;
878 default:
879 abort();
880 }
881 }
882 }
883
884 static uint64_t memory_region_dispatch_read(MemoryRegion *mr,
885 target_phys_addr_t addr,
886 unsigned size)
887 {
888 uint64_t ret;
889
890 ret = memory_region_dispatch_read1(mr, addr, size);
891 adjust_endianness(mr, &ret, size);
892 return ret;
893 }
894
895 static void memory_region_dispatch_write(MemoryRegion *mr,
896 target_phys_addr_t addr,
897 uint64_t data,
898 unsigned size)
899 {
900 if (!memory_region_access_valid(mr, addr, size, true)) {
901 return; /* FIXME: better signalling */
902 }
903
904 adjust_endianness(mr, &data, size);
905
906 if (!mr->ops->write) {
907 mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
908 return;
909 }
910
911 /* FIXME: support unaligned access */
912 access_with_adjusted_size(addr, &data, size,
913 mr->ops->impl.min_access_size,
914 mr->ops->impl.max_access_size,
915 memory_region_write_accessor, mr);
916 }
917
918 void memory_region_init_io(MemoryRegion *mr,
919 const MemoryRegionOps *ops,
920 void *opaque,
921 const char *name,
922 uint64_t size)
923 {
924 memory_region_init(mr, name, size);
925 mr->ops = ops;
926 mr->opaque = opaque;
927 mr->terminates = true;
928 mr->destructor = memory_region_destructor_iomem;
929 mr->ram_addr = ~(ram_addr_t)0;
930 }
931
932 void memory_region_init_ram(MemoryRegion *mr,
933 const char *name,
934 uint64_t size)
935 {
936 memory_region_init(mr, name, size);
937 mr->ram = true;
938 mr->terminates = true;
939 mr->destructor = memory_region_destructor_ram;
940 mr->ram_addr = qemu_ram_alloc(size, mr);
941 }
942
943 void memory_region_init_ram_ptr(MemoryRegion *mr,
944 const char *name,
945 uint64_t size,
946 void *ptr)
947 {
948 memory_region_init(mr, name, size);
949 mr->ram = true;
950 mr->terminates = true;
951 mr->destructor = memory_region_destructor_ram_from_ptr;
952 mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
953 }
954
955 void memory_region_init_alias(MemoryRegion *mr,
956 const char *name,
957 MemoryRegion *orig,
958 target_phys_addr_t offset,
959 uint64_t size)
960 {
961 memory_region_init(mr, name, size);
962 mr->alias = orig;
963 mr->alias_offset = offset;
964 }
965
966 void memory_region_init_rom_device(MemoryRegion *mr,
967 const MemoryRegionOps *ops,
968 void *opaque,
969 const char *name,
970 uint64_t size)
971 {
972 memory_region_init(mr, name, size);
973 mr->ops = ops;
974 mr->opaque = opaque;
975 mr->terminates = true;
976 mr->rom_device = true;
977 mr->destructor = memory_region_destructor_rom_device;
978 mr->ram_addr = qemu_ram_alloc(size, mr);
979 }
980
981 static uint64_t invalid_read(void *opaque, target_phys_addr_t addr,
982 unsigned size)
983 {
984 MemoryRegion *mr = opaque;
985
986 if (!mr->warning_printed) {
987 fprintf(stderr, "Invalid read from memory region %s\n", mr->name);
988 mr->warning_printed = true;
989 }
990 return -1U;
991 }
992
993 static void invalid_write(void *opaque, target_phys_addr_t addr, uint64_t data,
994 unsigned size)
995 {
996 MemoryRegion *mr = opaque;
997
998 if (!mr->warning_printed) {
999 fprintf(stderr, "Invalid write to memory region %s\n", mr->name);
1000 mr->warning_printed = true;
1001 }
1002 }
1003
1004 static const MemoryRegionOps reservation_ops = {
1005 .read = invalid_read,
1006 .write = invalid_write,
1007 .endianness = DEVICE_NATIVE_ENDIAN,
1008 };
1009
1010 void memory_region_init_reservation(MemoryRegion *mr,
1011 const char *name,
1012 uint64_t size)
1013 {
1014 memory_region_init_io(mr, &reservation_ops, mr, name, size);
1015 }
1016
1017 void memory_region_destroy(MemoryRegion *mr)
1018 {
1019 assert(QTAILQ_EMPTY(&mr->subregions));
1020 mr->destructor(mr);
1021 memory_region_clear_coalescing(mr);
1022 g_free((char *)mr->name);
1023 g_free(mr->ioeventfds);
1024 }
1025
1026 uint64_t memory_region_size(MemoryRegion *mr)
1027 {
1028 if (int128_eq(mr->size, int128_2_64())) {
1029 return UINT64_MAX;
1030 }
1031 return int128_get64(mr->size);
1032 }
1033
1034 const char *memory_region_name(MemoryRegion *mr)
1035 {
1036 return mr->name;
1037 }
1038
1039 bool memory_region_is_ram(MemoryRegion *mr)
1040 {
1041 return mr->ram;
1042 }
1043
1044 bool memory_region_is_logging(MemoryRegion *mr)
1045 {
1046 return mr->dirty_log_mask;
1047 }
1048
1049 bool memory_region_is_rom(MemoryRegion *mr)
1050 {
1051 return mr->ram && mr->readonly;
1052 }
1053
1054 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1055 {
1056 uint8_t mask = 1 << client;
1057
1058 memory_region_transaction_begin();
1059 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1060 memory_region_transaction_commit();
1061 }
1062
1063 bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1064 target_phys_addr_t size, unsigned client)
1065 {
1066 assert(mr->terminates);
1067 return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1068 1 << client);
1069 }
1070
1071 void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1072 target_phys_addr_t size)
1073 {
1074 assert(mr->terminates);
1075 return cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size, -1);
1076 }
1077
1078 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1079 {
1080 AddressSpace *as;
1081 FlatRange *fr;
1082
1083 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1084 FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1085 if (fr->mr == mr) {
1086 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1087 }
1088 }
1089 }
1090 }
1091
1092 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1093 {
1094 if (mr->readonly != readonly) {
1095 memory_region_transaction_begin();
1096 mr->readonly = readonly;
1097 memory_region_transaction_commit();
1098 }
1099 }
1100
1101 void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable)
1102 {
1103 if (mr->readable != readable) {
1104 memory_region_transaction_begin();
1105 mr->readable = readable;
1106 memory_region_transaction_commit();
1107 }
1108 }
1109
1110 void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1111 target_phys_addr_t size, unsigned client)
1112 {
1113 assert(mr->terminates);
1114 cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1115 mr->ram_addr + addr + size,
1116 1 << client);
1117 }
1118
1119 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1120 {
1121 if (mr->alias) {
1122 return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1123 }
1124
1125 assert(mr->terminates);
1126
1127 return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1128 }
1129
1130 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1131 {
1132 FlatRange *fr;
1133 CoalescedMemoryRange *cmr;
1134 AddrRange tmp;
1135 MemoryRegionSection section;
1136
1137 FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1138 if (fr->mr == mr) {
1139 section = (MemoryRegionSection) {
1140 .address_space = as,
1141 .offset_within_address_space = int128_get64(fr->addr.start),
1142 .size = int128_get64(fr->addr.size),
1143 };
1144
1145 MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1146 int128_get64(fr->addr.start),
1147 int128_get64(fr->addr.size));
1148 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1149 tmp = addrrange_shift(cmr->addr,
1150 int128_sub(fr->addr.start,
1151 int128_make64(fr->offset_in_region)));
1152 if (!addrrange_intersects(tmp, fr->addr)) {
1153 continue;
1154 }
1155 tmp = addrrange_intersection(tmp, fr->addr);
1156 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1157 int128_get64(tmp.start),
1158 int128_get64(tmp.size));
1159 }
1160 }
1161 }
1162 }
1163
1164 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1165 {
1166 AddressSpace *as;
1167
1168 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1169 memory_region_update_coalesced_range_as(mr, as);
1170 }
1171 }
1172
1173 void memory_region_set_coalescing(MemoryRegion *mr)
1174 {
1175 memory_region_clear_coalescing(mr);
1176 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1177 }
1178
1179 void memory_region_add_coalescing(MemoryRegion *mr,
1180 target_phys_addr_t offset,
1181 uint64_t size)
1182 {
1183 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1184
1185 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1186 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1187 memory_region_update_coalesced_range(mr);
1188 memory_region_set_flush_coalesced(mr);
1189 }
1190
1191 void memory_region_clear_coalescing(MemoryRegion *mr)
1192 {
1193 CoalescedMemoryRange *cmr;
1194
1195 qemu_flush_coalesced_mmio_buffer();
1196 mr->flush_coalesced_mmio = false;
1197
1198 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1199 cmr = QTAILQ_FIRST(&mr->coalesced);
1200 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1201 g_free(cmr);
1202 }
1203 memory_region_update_coalesced_range(mr);
1204 }
1205
1206 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1207 {
1208 mr->flush_coalesced_mmio = true;
1209 }
1210
1211 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1212 {
1213 qemu_flush_coalesced_mmio_buffer();
1214 if (QTAILQ_EMPTY(&mr->coalesced)) {
1215 mr->flush_coalesced_mmio = false;
1216 }
1217 }
1218
1219 void memory_region_add_eventfd(MemoryRegion *mr,
1220 target_phys_addr_t addr,
1221 unsigned size,
1222 bool match_data,
1223 uint64_t data,
1224 EventNotifier *e)
1225 {
1226 MemoryRegionIoeventfd mrfd = {
1227 .addr.start = int128_make64(addr),
1228 .addr.size = int128_make64(size),
1229 .match_data = match_data,
1230 .data = data,
1231 .e = e,
1232 };
1233 unsigned i;
1234
1235 memory_region_transaction_begin();
1236 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1237 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1238 break;
1239 }
1240 }
1241 ++mr->ioeventfd_nb;
1242 mr->ioeventfds = g_realloc(mr->ioeventfds,
1243 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1244 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1245 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1246 mr->ioeventfds[i] = mrfd;
1247 memory_region_transaction_commit();
1248 }
1249
1250 void memory_region_del_eventfd(MemoryRegion *mr,
1251 target_phys_addr_t addr,
1252 unsigned size,
1253 bool match_data,
1254 uint64_t data,
1255 EventNotifier *e)
1256 {
1257 MemoryRegionIoeventfd mrfd = {
1258 .addr.start = int128_make64(addr),
1259 .addr.size = int128_make64(size),
1260 .match_data = match_data,
1261 .data = data,
1262 .e = e,
1263 };
1264 unsigned i;
1265
1266 memory_region_transaction_begin();
1267 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1268 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1269 break;
1270 }
1271 }
1272 assert(i != mr->ioeventfd_nb);
1273 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1274 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1275 --mr->ioeventfd_nb;
1276 mr->ioeventfds = g_realloc(mr->ioeventfds,
1277 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1278 memory_region_transaction_commit();
1279 }
1280
1281 static void memory_region_add_subregion_common(MemoryRegion *mr,
1282 target_phys_addr_t offset,
1283 MemoryRegion *subregion)
1284 {
1285 MemoryRegion *other;
1286
1287 memory_region_transaction_begin();
1288
1289 assert(!subregion->parent);
1290 subregion->parent = mr;
1291 subregion->addr = offset;
1292 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1293 if (subregion->may_overlap || other->may_overlap) {
1294 continue;
1295 }
1296 if (int128_gt(int128_make64(offset),
1297 int128_add(int128_make64(other->addr), other->size))
1298 || int128_le(int128_add(int128_make64(offset), subregion->size),
1299 int128_make64(other->addr))) {
1300 continue;
1301 }
1302 #if 0
1303 printf("warning: subregion collision %llx/%llx (%s) "
1304 "vs %llx/%llx (%s)\n",
1305 (unsigned long long)offset,
1306 (unsigned long long)int128_get64(subregion->size),
1307 subregion->name,
1308 (unsigned long long)other->addr,
1309 (unsigned long long)int128_get64(other->size),
1310 other->name);
1311 #endif
1312 }
1313 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1314 if (subregion->priority >= other->priority) {
1315 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1316 goto done;
1317 }
1318 }
1319 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1320 done:
1321 memory_region_transaction_commit();
1322 }
1323
1324
1325 void memory_region_add_subregion(MemoryRegion *mr,
1326 target_phys_addr_t offset,
1327 MemoryRegion *subregion)
1328 {
1329 subregion->may_overlap = false;
1330 subregion->priority = 0;
1331 memory_region_add_subregion_common(mr, offset, subregion);
1332 }
1333
1334 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1335 target_phys_addr_t offset,
1336 MemoryRegion *subregion,
1337 unsigned priority)
1338 {
1339 subregion->may_overlap = true;
1340 subregion->priority = priority;
1341 memory_region_add_subregion_common(mr, offset, subregion);
1342 }
1343
1344 void memory_region_del_subregion(MemoryRegion *mr,
1345 MemoryRegion *subregion)
1346 {
1347 memory_region_transaction_begin();
1348 assert(subregion->parent == mr);
1349 subregion->parent = NULL;
1350 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1351 memory_region_transaction_commit();
1352 }
1353
1354 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1355 {
1356 if (enabled == mr->enabled) {
1357 return;
1358 }
1359 memory_region_transaction_begin();
1360 mr->enabled = enabled;
1361 memory_region_transaction_commit();
1362 }
1363
1364 void memory_region_set_address(MemoryRegion *mr, target_phys_addr_t addr)
1365 {
1366 MemoryRegion *parent = mr->parent;
1367 unsigned priority = mr->priority;
1368 bool may_overlap = mr->may_overlap;
1369
1370 if (addr == mr->addr || !parent) {
1371 mr->addr = addr;
1372 return;
1373 }
1374
1375 memory_region_transaction_begin();
1376 memory_region_del_subregion(parent, mr);
1377 if (may_overlap) {
1378 memory_region_add_subregion_overlap(parent, addr, mr, priority);
1379 } else {
1380 memory_region_add_subregion(parent, addr, mr);
1381 }
1382 memory_region_transaction_commit();
1383 }
1384
1385 void memory_region_set_alias_offset(MemoryRegion *mr, target_phys_addr_t offset)
1386 {
1387 assert(mr->alias);
1388
1389 if (offset == mr->alias_offset) {
1390 return;
1391 }
1392
1393 memory_region_transaction_begin();
1394 mr->alias_offset = offset;
1395 memory_region_transaction_commit();
1396 }
1397
1398 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1399 {
1400 return mr->ram_addr;
1401 }
1402
1403 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1404 {
1405 const AddrRange *addr = addr_;
1406 const FlatRange *fr = fr_;
1407
1408 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1409 return -1;
1410 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1411 return 1;
1412 }
1413 return 0;
1414 }
1415
1416 static FlatRange *address_space_lookup(AddressSpace *as, AddrRange addr)
1417 {
1418 return bsearch(&addr, as->current_map->ranges, as->current_map->nr,
1419 sizeof(FlatRange), cmp_flatrange_addr);
1420 }
1421
1422 MemoryRegionSection memory_region_find(MemoryRegion *address_space,
1423 target_phys_addr_t addr, uint64_t size)
1424 {
1425 AddressSpace *as = memory_region_to_address_space(address_space);
1426 AddrRange range = addrrange_make(int128_make64(addr),
1427 int128_make64(size));
1428 FlatRange *fr = address_space_lookup(as, range);
1429 MemoryRegionSection ret = { .mr = NULL, .size = 0 };
1430
1431 if (!fr) {
1432 return ret;
1433 }
1434
1435 while (fr > as->current_map->ranges
1436 && addrrange_intersects(fr[-1].addr, range)) {
1437 --fr;
1438 }
1439
1440 ret.mr = fr->mr;
1441 range = addrrange_intersection(range, fr->addr);
1442 ret.offset_within_region = fr->offset_in_region;
1443 ret.offset_within_region += int128_get64(int128_sub(range.start,
1444 fr->addr.start));
1445 ret.size = int128_get64(range.size);
1446 ret.offset_within_address_space = int128_get64(range.start);
1447 ret.readonly = fr->readonly;
1448 return ret;
1449 }
1450
1451 void memory_global_sync_dirty_bitmap(MemoryRegion *address_space)
1452 {
1453 AddressSpace *as = memory_region_to_address_space(address_space);
1454 FlatRange *fr;
1455
1456 FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1457 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1458 }
1459 }
1460
1461 void memory_global_dirty_log_start(void)
1462 {
1463 global_dirty_log = true;
1464 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1465 }
1466
1467 void memory_global_dirty_log_stop(void)
1468 {
1469 global_dirty_log = false;
1470 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1471 }
1472
1473 static void listener_add_address_space(MemoryListener *listener,
1474 AddressSpace *as)
1475 {
1476 FlatRange *fr;
1477
1478 if (listener->address_space_filter
1479 && listener->address_space_filter != as) {
1480 return;
1481 }
1482
1483 if (global_dirty_log) {
1484 if (listener->log_global_start) {
1485 listener->log_global_start(listener);
1486 }
1487 }
1488
1489 FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1490 MemoryRegionSection section = {
1491 .mr = fr->mr,
1492 .address_space = as,
1493 .offset_within_region = fr->offset_in_region,
1494 .size = int128_get64(fr->addr.size),
1495 .offset_within_address_space = int128_get64(fr->addr.start),
1496 .readonly = fr->readonly,
1497 };
1498 if (listener->region_add) {
1499 listener->region_add(listener, &section);
1500 }
1501 }
1502 }
1503
1504 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1505 {
1506 MemoryListener *other = NULL;
1507 AddressSpace *as;
1508
1509 listener->address_space_filter = filter;
1510 if (QTAILQ_EMPTY(&memory_listeners)
1511 || listener->priority >= QTAILQ_LAST(&memory_listeners,
1512 memory_listeners)->priority) {
1513 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1514 } else {
1515 QTAILQ_FOREACH(other, &memory_listeners, link) {
1516 if (listener->priority < other->priority) {
1517 break;
1518 }
1519 }
1520 QTAILQ_INSERT_BEFORE(other, listener, link);
1521 }
1522
1523 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1524 listener_add_address_space(listener, as);
1525 }
1526 }
1527
1528 void memory_listener_unregister(MemoryListener *listener)
1529 {
1530 QTAILQ_REMOVE(&memory_listeners, listener, link);
1531 }
1532
1533 void address_space_init(AddressSpace *as, MemoryRegion *root)
1534 {
1535 memory_region_transaction_begin();
1536 as->root = root;
1537 as->current_map = g_new(FlatView, 1);
1538 flatview_init(as->current_map);
1539 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1540 as->name = NULL;
1541 memory_region_transaction_commit();
1542 address_space_init_dispatch(as);
1543 }
1544
1545 uint64_t io_mem_read(MemoryRegion *mr, target_phys_addr_t addr, unsigned size)
1546 {
1547 return memory_region_dispatch_read(mr, addr, size);
1548 }
1549
1550 void io_mem_write(MemoryRegion *mr, target_phys_addr_t addr,
1551 uint64_t val, unsigned size)
1552 {
1553 memory_region_dispatch_write(mr, addr, val, size);
1554 }
1555
1556 typedef struct MemoryRegionList MemoryRegionList;
1557
1558 struct MemoryRegionList {
1559 const MemoryRegion *mr;
1560 bool printed;
1561 QTAILQ_ENTRY(MemoryRegionList) queue;
1562 };
1563
1564 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1565
1566 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1567 const MemoryRegion *mr, unsigned int level,
1568 target_phys_addr_t base,
1569 MemoryRegionListHead *alias_print_queue)
1570 {
1571 MemoryRegionList *new_ml, *ml, *next_ml;
1572 MemoryRegionListHead submr_print_queue;
1573 const MemoryRegion *submr;
1574 unsigned int i;
1575
1576 if (!mr) {
1577 return;
1578 }
1579
1580 for (i = 0; i < level; i++) {
1581 mon_printf(f, " ");
1582 }
1583
1584 if (mr->alias) {
1585 MemoryRegionList *ml;
1586 bool found = false;
1587
1588 /* check if the alias is already in the queue */
1589 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1590 if (ml->mr == mr->alias && !ml->printed) {
1591 found = true;
1592 }
1593 }
1594
1595 if (!found) {
1596 ml = g_new(MemoryRegionList, 1);
1597 ml->mr = mr->alias;
1598 ml->printed = false;
1599 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1600 }
1601 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
1602 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
1603 "-" TARGET_FMT_plx "\n",
1604 base + mr->addr,
1605 base + mr->addr
1606 + (target_phys_addr_t)int128_get64(mr->size) - 1,
1607 mr->priority,
1608 mr->readable ? 'R' : '-',
1609 !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1610 : '-',
1611 mr->name,
1612 mr->alias->name,
1613 mr->alias_offset,
1614 mr->alias_offset
1615 + (target_phys_addr_t)int128_get64(mr->size) - 1);
1616 } else {
1617 mon_printf(f,
1618 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
1619 base + mr->addr,
1620 base + mr->addr
1621 + (target_phys_addr_t)int128_get64(mr->size) - 1,
1622 mr->priority,
1623 mr->readable ? 'R' : '-',
1624 !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1625 : '-',
1626 mr->name);
1627 }
1628
1629 QTAILQ_INIT(&submr_print_queue);
1630
1631 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1632 new_ml = g_new(MemoryRegionList, 1);
1633 new_ml->mr = submr;
1634 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1635 if (new_ml->mr->addr < ml->mr->addr ||
1636 (new_ml->mr->addr == ml->mr->addr &&
1637 new_ml->mr->priority > ml->mr->priority)) {
1638 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1639 new_ml = NULL;
1640 break;
1641 }
1642 }
1643 if (new_ml) {
1644 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1645 }
1646 }
1647
1648 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1649 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1650 alias_print_queue);
1651 }
1652
1653 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1654 g_free(ml);
1655 }
1656 }
1657
1658 void mtree_info(fprintf_function mon_printf, void *f)
1659 {
1660 MemoryRegionListHead ml_head;
1661 MemoryRegionList *ml, *ml2;
1662 AddressSpace *as;
1663
1664 QTAILQ_INIT(&ml_head);
1665
1666 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1667 if (!as->name) {
1668 continue;
1669 }
1670 mon_printf(f, "%s\n", as->name);
1671 mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
1672 }
1673
1674 mon_printf(f, "aliases\n");
1675 /* print aliased regions */
1676 QTAILQ_FOREACH(ml, &ml_head, queue) {
1677 if (!ml->printed) {
1678 mon_printf(f, "%s\n", ml->mr->name);
1679 mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1680 }
1681 }
1682
1683 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1684 g_free(ml);
1685 }
1686 }