]> git.proxmox.com Git - qemu.git/blob - memory.c
Merge remote-tracking branch 'mst/tags/for_anthony' into staging
[qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qemu/bitops.h"
20 #include "qom/object.h"
21 #include "sysemu/kvm.h"
22 #include <assert.h>
23
24 #include "exec/memory-internal.h"
25
26 //#define DEBUG_UNASSIGNED
27
28 static unsigned memory_region_transaction_depth;
29 static bool memory_region_update_pending;
30 static bool global_dirty_log = false;
31
32 /* flat_view_mutex is taken around reading as->current_map; the critical
33 * section is extremely short, so I'm using a single mutex for every AS.
34 * We could also RCU for the read-side.
35 *
36 * The BQL is taken around transaction commits, hence both locks are taken
37 * while writing to as->current_map (with the BQL taken outside).
38 */
39 static QemuMutex flat_view_mutex;
40
41 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
42 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
43
44 static QTAILQ_HEAD(, AddressSpace) address_spaces
45 = QTAILQ_HEAD_INITIALIZER(address_spaces);
46
47 static void memory_init(void)
48 {
49 qemu_mutex_init(&flat_view_mutex);
50 }
51
52 typedef struct AddrRange AddrRange;
53
54 /*
55 * Note using signed integers limits us to physical addresses at most
56 * 63 bits wide. They are needed for negative offsetting in aliases
57 * (large MemoryRegion::alias_offset).
58 */
59 struct AddrRange {
60 Int128 start;
61 Int128 size;
62 };
63
64 static AddrRange addrrange_make(Int128 start, Int128 size)
65 {
66 return (AddrRange) { start, size };
67 }
68
69 static bool addrrange_equal(AddrRange r1, AddrRange r2)
70 {
71 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
72 }
73
74 static Int128 addrrange_end(AddrRange r)
75 {
76 return int128_add(r.start, r.size);
77 }
78
79 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
80 {
81 int128_addto(&range.start, delta);
82 return range;
83 }
84
85 static bool addrrange_contains(AddrRange range, Int128 addr)
86 {
87 return int128_ge(addr, range.start)
88 && int128_lt(addr, addrrange_end(range));
89 }
90
91 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
92 {
93 return addrrange_contains(r1, r2.start)
94 || addrrange_contains(r2, r1.start);
95 }
96
97 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
98 {
99 Int128 start = int128_max(r1.start, r2.start);
100 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
101 return addrrange_make(start, int128_sub(end, start));
102 }
103
104 enum ListenerDirection { Forward, Reverse };
105
106 static bool memory_listener_match(MemoryListener *listener,
107 MemoryRegionSection *section)
108 {
109 return !listener->address_space_filter
110 || listener->address_space_filter == section->address_space;
111 }
112
113 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
114 do { \
115 MemoryListener *_listener; \
116 \
117 switch (_direction) { \
118 case Forward: \
119 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
120 if (_listener->_callback) { \
121 _listener->_callback(_listener, ##_args); \
122 } \
123 } \
124 break; \
125 case Reverse: \
126 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
127 memory_listeners, link) { \
128 if (_listener->_callback) { \
129 _listener->_callback(_listener, ##_args); \
130 } \
131 } \
132 break; \
133 default: \
134 abort(); \
135 } \
136 } while (0)
137
138 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
139 do { \
140 MemoryListener *_listener; \
141 \
142 switch (_direction) { \
143 case Forward: \
144 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
145 if (_listener->_callback \
146 && memory_listener_match(_listener, _section)) { \
147 _listener->_callback(_listener, _section, ##_args); \
148 } \
149 } \
150 break; \
151 case Reverse: \
152 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
153 memory_listeners, link) { \
154 if (_listener->_callback \
155 && memory_listener_match(_listener, _section)) { \
156 _listener->_callback(_listener, _section, ##_args); \
157 } \
158 } \
159 break; \
160 default: \
161 abort(); \
162 } \
163 } while (0)
164
165 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
166 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback) \
167 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
168 .mr = (fr)->mr, \
169 .address_space = (as), \
170 .offset_within_region = (fr)->offset_in_region, \
171 .size = (fr)->addr.size, \
172 .offset_within_address_space = int128_get64((fr)->addr.start), \
173 .readonly = (fr)->readonly, \
174 }))
175
176 struct CoalescedMemoryRange {
177 AddrRange addr;
178 QTAILQ_ENTRY(CoalescedMemoryRange) link;
179 };
180
181 struct MemoryRegionIoeventfd {
182 AddrRange addr;
183 bool match_data;
184 uint64_t data;
185 EventNotifier *e;
186 };
187
188 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
189 MemoryRegionIoeventfd b)
190 {
191 if (int128_lt(a.addr.start, b.addr.start)) {
192 return true;
193 } else if (int128_gt(a.addr.start, b.addr.start)) {
194 return false;
195 } else if (int128_lt(a.addr.size, b.addr.size)) {
196 return true;
197 } else if (int128_gt(a.addr.size, b.addr.size)) {
198 return false;
199 } else if (a.match_data < b.match_data) {
200 return true;
201 } else if (a.match_data > b.match_data) {
202 return false;
203 } else if (a.match_data) {
204 if (a.data < b.data) {
205 return true;
206 } else if (a.data > b.data) {
207 return false;
208 }
209 }
210 if (a.e < b.e) {
211 return true;
212 } else if (a.e > b.e) {
213 return false;
214 }
215 return false;
216 }
217
218 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
219 MemoryRegionIoeventfd b)
220 {
221 return !memory_region_ioeventfd_before(a, b)
222 && !memory_region_ioeventfd_before(b, a);
223 }
224
225 typedef struct FlatRange FlatRange;
226 typedef struct FlatView FlatView;
227
228 /* Range of memory in the global map. Addresses are absolute. */
229 struct FlatRange {
230 MemoryRegion *mr;
231 hwaddr offset_in_region;
232 AddrRange addr;
233 uint8_t dirty_log_mask;
234 bool romd_mode;
235 bool readonly;
236 };
237
238 /* Flattened global view of current active memory hierarchy. Kept in sorted
239 * order.
240 */
241 struct FlatView {
242 unsigned ref;
243 FlatRange *ranges;
244 unsigned nr;
245 unsigned nr_allocated;
246 };
247
248 typedef struct AddressSpaceOps AddressSpaceOps;
249
250 #define FOR_EACH_FLAT_RANGE(var, view) \
251 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
252
253 static bool flatrange_equal(FlatRange *a, FlatRange *b)
254 {
255 return a->mr == b->mr
256 && addrrange_equal(a->addr, b->addr)
257 && a->offset_in_region == b->offset_in_region
258 && a->romd_mode == b->romd_mode
259 && a->readonly == b->readonly;
260 }
261
262 static void flatview_init(FlatView *view)
263 {
264 view->ref = 1;
265 view->ranges = NULL;
266 view->nr = 0;
267 view->nr_allocated = 0;
268 }
269
270 /* Insert a range into a given position. Caller is responsible for maintaining
271 * sorting order.
272 */
273 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
274 {
275 if (view->nr == view->nr_allocated) {
276 view->nr_allocated = MAX(2 * view->nr, 10);
277 view->ranges = g_realloc(view->ranges,
278 view->nr_allocated * sizeof(*view->ranges));
279 }
280 memmove(view->ranges + pos + 1, view->ranges + pos,
281 (view->nr - pos) * sizeof(FlatRange));
282 view->ranges[pos] = *range;
283 memory_region_ref(range->mr);
284 ++view->nr;
285 }
286
287 static void flatview_destroy(FlatView *view)
288 {
289 int i;
290
291 for (i = 0; i < view->nr; i++) {
292 memory_region_unref(view->ranges[i].mr);
293 }
294 g_free(view->ranges);
295 g_free(view);
296 }
297
298 static void flatview_ref(FlatView *view)
299 {
300 atomic_inc(&view->ref);
301 }
302
303 static void flatview_unref(FlatView *view)
304 {
305 if (atomic_fetch_dec(&view->ref) == 1) {
306 flatview_destroy(view);
307 }
308 }
309
310 static bool can_merge(FlatRange *r1, FlatRange *r2)
311 {
312 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
313 && r1->mr == r2->mr
314 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
315 r1->addr.size),
316 int128_make64(r2->offset_in_region))
317 && r1->dirty_log_mask == r2->dirty_log_mask
318 && r1->romd_mode == r2->romd_mode
319 && r1->readonly == r2->readonly;
320 }
321
322 /* Attempt to simplify a view by merging adjacent ranges */
323 static void flatview_simplify(FlatView *view)
324 {
325 unsigned i, j;
326
327 i = 0;
328 while (i < view->nr) {
329 j = i + 1;
330 while (j < view->nr
331 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
332 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
333 ++j;
334 }
335 ++i;
336 memmove(&view->ranges[i], &view->ranges[j],
337 (view->nr - j) * sizeof(view->ranges[j]));
338 view->nr -= j - i;
339 }
340 }
341
342 static void memory_region_oldmmio_read_accessor(void *opaque,
343 hwaddr addr,
344 uint64_t *value,
345 unsigned size,
346 unsigned shift,
347 uint64_t mask)
348 {
349 MemoryRegion *mr = opaque;
350 uint64_t tmp;
351
352 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
353 *value |= (tmp & mask) << shift;
354 }
355
356 static void memory_region_read_accessor(void *opaque,
357 hwaddr addr,
358 uint64_t *value,
359 unsigned size,
360 unsigned shift,
361 uint64_t mask)
362 {
363 MemoryRegion *mr = opaque;
364 uint64_t tmp;
365
366 if (mr->flush_coalesced_mmio) {
367 qemu_flush_coalesced_mmio_buffer();
368 }
369 tmp = mr->ops->read(mr->opaque, addr, size);
370 *value |= (tmp & mask) << shift;
371 }
372
373 static void memory_region_oldmmio_write_accessor(void *opaque,
374 hwaddr addr,
375 uint64_t *value,
376 unsigned size,
377 unsigned shift,
378 uint64_t mask)
379 {
380 MemoryRegion *mr = opaque;
381 uint64_t tmp;
382
383 tmp = (*value >> shift) & mask;
384 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
385 }
386
387 static void memory_region_write_accessor(void *opaque,
388 hwaddr addr,
389 uint64_t *value,
390 unsigned size,
391 unsigned shift,
392 uint64_t mask)
393 {
394 MemoryRegion *mr = opaque;
395 uint64_t tmp;
396
397 if (mr->flush_coalesced_mmio) {
398 qemu_flush_coalesced_mmio_buffer();
399 }
400 tmp = (*value >> shift) & mask;
401 mr->ops->write(mr->opaque, addr, tmp, size);
402 }
403
404 static void access_with_adjusted_size(hwaddr addr,
405 uint64_t *value,
406 unsigned size,
407 unsigned access_size_min,
408 unsigned access_size_max,
409 void (*access)(void *opaque,
410 hwaddr addr,
411 uint64_t *value,
412 unsigned size,
413 unsigned shift,
414 uint64_t mask),
415 void *opaque)
416 {
417 uint64_t access_mask;
418 unsigned access_size;
419 unsigned i;
420
421 if (!access_size_min) {
422 access_size_min = 1;
423 }
424 if (!access_size_max) {
425 access_size_max = 4;
426 }
427
428 /* FIXME: support unaligned access? */
429 access_size = MAX(MIN(size, access_size_max), access_size_min);
430 access_mask = -1ULL >> (64 - access_size * 8);
431 for (i = 0; i < size; i += access_size) {
432 #ifdef TARGET_WORDS_BIGENDIAN
433 access(opaque, addr + i, value, access_size,
434 (size - access_size - i) * 8, access_mask);
435 #else
436 access(opaque, addr + i, value, access_size, i * 8, access_mask);
437 #endif
438 }
439 }
440
441 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
442 {
443 AddressSpace *as;
444
445 while (mr->parent) {
446 mr = mr->parent;
447 }
448 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
449 if (mr == as->root) {
450 return as;
451 }
452 }
453 abort();
454 }
455
456 /* Render a memory region into the global view. Ranges in @view obscure
457 * ranges in @mr.
458 */
459 static void render_memory_region(FlatView *view,
460 MemoryRegion *mr,
461 Int128 base,
462 AddrRange clip,
463 bool readonly)
464 {
465 MemoryRegion *subregion;
466 unsigned i;
467 hwaddr offset_in_region;
468 Int128 remain;
469 Int128 now;
470 FlatRange fr;
471 AddrRange tmp;
472
473 if (!mr->enabled) {
474 return;
475 }
476
477 int128_addto(&base, int128_make64(mr->addr));
478 readonly |= mr->readonly;
479
480 tmp = addrrange_make(base, mr->size);
481
482 if (!addrrange_intersects(tmp, clip)) {
483 return;
484 }
485
486 clip = addrrange_intersection(tmp, clip);
487
488 if (mr->alias) {
489 int128_subfrom(&base, int128_make64(mr->alias->addr));
490 int128_subfrom(&base, int128_make64(mr->alias_offset));
491 render_memory_region(view, mr->alias, base, clip, readonly);
492 return;
493 }
494
495 /* Render subregions in priority order. */
496 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
497 render_memory_region(view, subregion, base, clip, readonly);
498 }
499
500 if (!mr->terminates) {
501 return;
502 }
503
504 offset_in_region = int128_get64(int128_sub(clip.start, base));
505 base = clip.start;
506 remain = clip.size;
507
508 fr.mr = mr;
509 fr.dirty_log_mask = mr->dirty_log_mask;
510 fr.romd_mode = mr->romd_mode;
511 fr.readonly = readonly;
512
513 /* Render the region itself into any gaps left by the current view. */
514 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
515 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
516 continue;
517 }
518 if (int128_lt(base, view->ranges[i].addr.start)) {
519 now = int128_min(remain,
520 int128_sub(view->ranges[i].addr.start, base));
521 fr.offset_in_region = offset_in_region;
522 fr.addr = addrrange_make(base, now);
523 flatview_insert(view, i, &fr);
524 ++i;
525 int128_addto(&base, now);
526 offset_in_region += int128_get64(now);
527 int128_subfrom(&remain, now);
528 }
529 now = int128_sub(int128_min(int128_add(base, remain),
530 addrrange_end(view->ranges[i].addr)),
531 base);
532 int128_addto(&base, now);
533 offset_in_region += int128_get64(now);
534 int128_subfrom(&remain, now);
535 }
536 if (int128_nz(remain)) {
537 fr.offset_in_region = offset_in_region;
538 fr.addr = addrrange_make(base, remain);
539 flatview_insert(view, i, &fr);
540 }
541 }
542
543 /* Render a memory topology into a list of disjoint absolute ranges. */
544 static FlatView *generate_memory_topology(MemoryRegion *mr)
545 {
546 FlatView *view;
547
548 view = g_new(FlatView, 1);
549 flatview_init(view);
550
551 if (mr) {
552 render_memory_region(view, mr, int128_zero(),
553 addrrange_make(int128_zero(), int128_2_64()), false);
554 }
555 flatview_simplify(view);
556
557 return view;
558 }
559
560 static void address_space_add_del_ioeventfds(AddressSpace *as,
561 MemoryRegionIoeventfd *fds_new,
562 unsigned fds_new_nb,
563 MemoryRegionIoeventfd *fds_old,
564 unsigned fds_old_nb)
565 {
566 unsigned iold, inew;
567 MemoryRegionIoeventfd *fd;
568 MemoryRegionSection section;
569
570 /* Generate a symmetric difference of the old and new fd sets, adding
571 * and deleting as necessary.
572 */
573
574 iold = inew = 0;
575 while (iold < fds_old_nb || inew < fds_new_nb) {
576 if (iold < fds_old_nb
577 && (inew == fds_new_nb
578 || memory_region_ioeventfd_before(fds_old[iold],
579 fds_new[inew]))) {
580 fd = &fds_old[iold];
581 section = (MemoryRegionSection) {
582 .address_space = as,
583 .offset_within_address_space = int128_get64(fd->addr.start),
584 .size = fd->addr.size,
585 };
586 MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
587 fd->match_data, fd->data, fd->e);
588 ++iold;
589 } else if (inew < fds_new_nb
590 && (iold == fds_old_nb
591 || memory_region_ioeventfd_before(fds_new[inew],
592 fds_old[iold]))) {
593 fd = &fds_new[inew];
594 section = (MemoryRegionSection) {
595 .address_space = as,
596 .offset_within_address_space = int128_get64(fd->addr.start),
597 .size = fd->addr.size,
598 };
599 MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
600 fd->match_data, fd->data, fd->e);
601 ++inew;
602 } else {
603 ++iold;
604 ++inew;
605 }
606 }
607 }
608
609 static FlatView *address_space_get_flatview(AddressSpace *as)
610 {
611 FlatView *view;
612
613 qemu_mutex_lock(&flat_view_mutex);
614 view = as->current_map;
615 flatview_ref(view);
616 qemu_mutex_unlock(&flat_view_mutex);
617 return view;
618 }
619
620 static void address_space_update_ioeventfds(AddressSpace *as)
621 {
622 FlatView *view;
623 FlatRange *fr;
624 unsigned ioeventfd_nb = 0;
625 MemoryRegionIoeventfd *ioeventfds = NULL;
626 AddrRange tmp;
627 unsigned i;
628
629 view = address_space_get_flatview(as);
630 FOR_EACH_FLAT_RANGE(fr, view) {
631 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
632 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
633 int128_sub(fr->addr.start,
634 int128_make64(fr->offset_in_region)));
635 if (addrrange_intersects(fr->addr, tmp)) {
636 ++ioeventfd_nb;
637 ioeventfds = g_realloc(ioeventfds,
638 ioeventfd_nb * sizeof(*ioeventfds));
639 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
640 ioeventfds[ioeventfd_nb-1].addr = tmp;
641 }
642 }
643 }
644
645 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
646 as->ioeventfds, as->ioeventfd_nb);
647
648 g_free(as->ioeventfds);
649 as->ioeventfds = ioeventfds;
650 as->ioeventfd_nb = ioeventfd_nb;
651 flatview_unref(view);
652 }
653
654 static void address_space_update_topology_pass(AddressSpace *as,
655 const FlatView *old_view,
656 const FlatView *new_view,
657 bool adding)
658 {
659 unsigned iold, inew;
660 FlatRange *frold, *frnew;
661
662 /* Generate a symmetric difference of the old and new memory maps.
663 * Kill ranges in the old map, and instantiate ranges in the new map.
664 */
665 iold = inew = 0;
666 while (iold < old_view->nr || inew < new_view->nr) {
667 if (iold < old_view->nr) {
668 frold = &old_view->ranges[iold];
669 } else {
670 frold = NULL;
671 }
672 if (inew < new_view->nr) {
673 frnew = &new_view->ranges[inew];
674 } else {
675 frnew = NULL;
676 }
677
678 if (frold
679 && (!frnew
680 || int128_lt(frold->addr.start, frnew->addr.start)
681 || (int128_eq(frold->addr.start, frnew->addr.start)
682 && !flatrange_equal(frold, frnew)))) {
683 /* In old but not in new, or in both but attributes changed. */
684
685 if (!adding) {
686 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
687 }
688
689 ++iold;
690 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
691 /* In both and unchanged (except logging may have changed) */
692
693 if (adding) {
694 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
695 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
696 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
697 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
698 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
699 }
700 }
701
702 ++iold;
703 ++inew;
704 } else {
705 /* In new */
706
707 if (adding) {
708 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
709 }
710
711 ++inew;
712 }
713 }
714 }
715
716
717 static void address_space_update_topology(AddressSpace *as)
718 {
719 FlatView *old_view = address_space_get_flatview(as);
720 FlatView *new_view = generate_memory_topology(as->root);
721
722 address_space_update_topology_pass(as, old_view, new_view, false);
723 address_space_update_topology_pass(as, old_view, new_view, true);
724
725 qemu_mutex_lock(&flat_view_mutex);
726 flatview_unref(as->current_map);
727 as->current_map = new_view;
728 qemu_mutex_unlock(&flat_view_mutex);
729
730 /* Note that all the old MemoryRegions are still alive up to this
731 * point. This relieves most MemoryListeners from the need to
732 * ref/unref the MemoryRegions they get---unless they use them
733 * outside the iothread mutex, in which case precise reference
734 * counting is necessary.
735 */
736 flatview_unref(old_view);
737
738 address_space_update_ioeventfds(as);
739 }
740
741 void memory_region_transaction_begin(void)
742 {
743 qemu_flush_coalesced_mmio_buffer();
744 ++memory_region_transaction_depth;
745 }
746
747 void memory_region_transaction_commit(void)
748 {
749 AddressSpace *as;
750
751 assert(memory_region_transaction_depth);
752 --memory_region_transaction_depth;
753 if (!memory_region_transaction_depth && memory_region_update_pending) {
754 memory_region_update_pending = false;
755 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
756
757 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
758 address_space_update_topology(as);
759 }
760
761 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
762 }
763 }
764
765 static void memory_region_destructor_none(MemoryRegion *mr)
766 {
767 }
768
769 static void memory_region_destructor_ram(MemoryRegion *mr)
770 {
771 qemu_ram_free(mr->ram_addr);
772 }
773
774 static void memory_region_destructor_alias(MemoryRegion *mr)
775 {
776 memory_region_unref(mr->alias);
777 }
778
779 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
780 {
781 qemu_ram_free_from_ptr(mr->ram_addr);
782 }
783
784 static void memory_region_destructor_rom_device(MemoryRegion *mr)
785 {
786 qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
787 }
788
789 static bool memory_region_wrong_endianness(MemoryRegion *mr)
790 {
791 #ifdef TARGET_WORDS_BIGENDIAN
792 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
793 #else
794 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
795 #endif
796 }
797
798 void memory_region_init(MemoryRegion *mr,
799 Object *owner,
800 const char *name,
801 uint64_t size)
802 {
803 mr->ops = &unassigned_mem_ops;
804 mr->opaque = NULL;
805 mr->owner = owner;
806 mr->iommu_ops = NULL;
807 mr->parent = NULL;
808 mr->owner = NULL;
809 mr->size = int128_make64(size);
810 if (size == UINT64_MAX) {
811 mr->size = int128_2_64();
812 }
813 mr->addr = 0;
814 mr->subpage = false;
815 mr->enabled = true;
816 mr->terminates = false;
817 mr->ram = false;
818 mr->romd_mode = true;
819 mr->readonly = false;
820 mr->rom_device = false;
821 mr->destructor = memory_region_destructor_none;
822 mr->priority = 0;
823 mr->may_overlap = false;
824 mr->alias = NULL;
825 QTAILQ_INIT(&mr->subregions);
826 memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
827 QTAILQ_INIT(&mr->coalesced);
828 mr->name = g_strdup(name);
829 mr->dirty_log_mask = 0;
830 mr->ioeventfd_nb = 0;
831 mr->ioeventfds = NULL;
832 mr->flush_coalesced_mmio = false;
833 }
834
835 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
836 unsigned size)
837 {
838 #ifdef DEBUG_UNASSIGNED
839 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
840 #endif
841 if (current_cpu != NULL) {
842 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
843 }
844 return 0;
845 }
846
847 static void unassigned_mem_write(void *opaque, hwaddr addr,
848 uint64_t val, unsigned size)
849 {
850 #ifdef DEBUG_UNASSIGNED
851 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
852 #endif
853 if (current_cpu != NULL) {
854 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
855 }
856 }
857
858 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
859 unsigned size, bool is_write)
860 {
861 return false;
862 }
863
864 const MemoryRegionOps unassigned_mem_ops = {
865 .valid.accepts = unassigned_mem_accepts,
866 .endianness = DEVICE_NATIVE_ENDIAN,
867 };
868
869 bool memory_region_access_valid(MemoryRegion *mr,
870 hwaddr addr,
871 unsigned size,
872 bool is_write)
873 {
874 int access_size_min, access_size_max;
875 int access_size, i;
876
877 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
878 return false;
879 }
880
881 if (!mr->ops->valid.accepts) {
882 return true;
883 }
884
885 access_size_min = mr->ops->valid.min_access_size;
886 if (!mr->ops->valid.min_access_size) {
887 access_size_min = 1;
888 }
889
890 access_size_max = mr->ops->valid.max_access_size;
891 if (!mr->ops->valid.max_access_size) {
892 access_size_max = 4;
893 }
894
895 access_size = MAX(MIN(size, access_size_max), access_size_min);
896 for (i = 0; i < size; i += access_size) {
897 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
898 is_write)) {
899 return false;
900 }
901 }
902
903 return true;
904 }
905
906 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
907 hwaddr addr,
908 unsigned size)
909 {
910 uint64_t data = 0;
911
912 if (mr->ops->read) {
913 access_with_adjusted_size(addr, &data, size,
914 mr->ops->impl.min_access_size,
915 mr->ops->impl.max_access_size,
916 memory_region_read_accessor, mr);
917 } else {
918 access_with_adjusted_size(addr, &data, size, 1, 4,
919 memory_region_oldmmio_read_accessor, mr);
920 }
921
922 return data;
923 }
924
925 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
926 {
927 if (memory_region_wrong_endianness(mr)) {
928 switch (size) {
929 case 1:
930 break;
931 case 2:
932 *data = bswap16(*data);
933 break;
934 case 4:
935 *data = bswap32(*data);
936 break;
937 case 8:
938 *data = bswap64(*data);
939 break;
940 default:
941 abort();
942 }
943 }
944 }
945
946 static bool memory_region_dispatch_read(MemoryRegion *mr,
947 hwaddr addr,
948 uint64_t *pval,
949 unsigned size)
950 {
951 if (!memory_region_access_valid(mr, addr, size, false)) {
952 *pval = unassigned_mem_read(mr, addr, size);
953 return true;
954 }
955
956 *pval = memory_region_dispatch_read1(mr, addr, size);
957 adjust_endianness(mr, pval, size);
958 return false;
959 }
960
961 static bool memory_region_dispatch_write(MemoryRegion *mr,
962 hwaddr addr,
963 uint64_t data,
964 unsigned size)
965 {
966 if (!memory_region_access_valid(mr, addr, size, true)) {
967 unassigned_mem_write(mr, addr, data, size);
968 return true;
969 }
970
971 adjust_endianness(mr, &data, size);
972
973 if (mr->ops->write) {
974 access_with_adjusted_size(addr, &data, size,
975 mr->ops->impl.min_access_size,
976 mr->ops->impl.max_access_size,
977 memory_region_write_accessor, mr);
978 } else {
979 access_with_adjusted_size(addr, &data, size, 1, 4,
980 memory_region_oldmmio_write_accessor, mr);
981 }
982 return false;
983 }
984
985 void memory_region_init_io(MemoryRegion *mr,
986 Object *owner,
987 const MemoryRegionOps *ops,
988 void *opaque,
989 const char *name,
990 uint64_t size)
991 {
992 memory_region_init(mr, owner, name, size);
993 mr->ops = ops;
994 mr->opaque = opaque;
995 mr->terminates = true;
996 mr->ram_addr = ~(ram_addr_t)0;
997 }
998
999 void memory_region_init_ram(MemoryRegion *mr,
1000 Object *owner,
1001 const char *name,
1002 uint64_t size)
1003 {
1004 memory_region_init(mr, owner, name, size);
1005 mr->ram = true;
1006 mr->terminates = true;
1007 mr->destructor = memory_region_destructor_ram;
1008 mr->ram_addr = qemu_ram_alloc(size, mr);
1009 }
1010
1011 void memory_region_init_ram_ptr(MemoryRegion *mr,
1012 Object *owner,
1013 const char *name,
1014 uint64_t size,
1015 void *ptr)
1016 {
1017 memory_region_init(mr, owner, name, size);
1018 mr->ram = true;
1019 mr->terminates = true;
1020 mr->destructor = memory_region_destructor_ram_from_ptr;
1021 mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
1022 }
1023
1024 void memory_region_init_alias(MemoryRegion *mr,
1025 Object *owner,
1026 const char *name,
1027 MemoryRegion *orig,
1028 hwaddr offset,
1029 uint64_t size)
1030 {
1031 memory_region_init(mr, owner, name, size);
1032 memory_region_ref(orig);
1033 mr->destructor = memory_region_destructor_alias;
1034 mr->alias = orig;
1035 mr->alias_offset = offset;
1036 }
1037
1038 void memory_region_init_rom_device(MemoryRegion *mr,
1039 Object *owner,
1040 const MemoryRegionOps *ops,
1041 void *opaque,
1042 const char *name,
1043 uint64_t size)
1044 {
1045 memory_region_init(mr, owner, name, size);
1046 mr->ops = ops;
1047 mr->opaque = opaque;
1048 mr->terminates = true;
1049 mr->rom_device = true;
1050 mr->destructor = memory_region_destructor_rom_device;
1051 mr->ram_addr = qemu_ram_alloc(size, mr);
1052 }
1053
1054 void memory_region_init_iommu(MemoryRegion *mr,
1055 Object *owner,
1056 const MemoryRegionIOMMUOps *ops,
1057 const char *name,
1058 uint64_t size)
1059 {
1060 memory_region_init(mr, owner, name, size);
1061 mr->iommu_ops = ops,
1062 mr->terminates = true; /* then re-forwards */
1063 notifier_list_init(&mr->iommu_notify);
1064 }
1065
1066 void memory_region_init_reservation(MemoryRegion *mr,
1067 Object *owner,
1068 const char *name,
1069 uint64_t size)
1070 {
1071 memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1072 }
1073
1074 void memory_region_destroy(MemoryRegion *mr)
1075 {
1076 assert(QTAILQ_EMPTY(&mr->subregions));
1077 assert(memory_region_transaction_depth == 0);
1078 mr->destructor(mr);
1079 memory_region_clear_coalescing(mr);
1080 g_free((char *)mr->name);
1081 g_free(mr->ioeventfds);
1082 }
1083
1084 Object *memory_region_owner(MemoryRegion *mr)
1085 {
1086 return mr->owner;
1087 }
1088
1089 void memory_region_ref(MemoryRegion *mr)
1090 {
1091 if (mr && mr->owner) {
1092 object_ref(mr->owner);
1093 }
1094 }
1095
1096 void memory_region_unref(MemoryRegion *mr)
1097 {
1098 if (mr && mr->owner) {
1099 object_unref(mr->owner);
1100 }
1101 }
1102
1103 uint64_t memory_region_size(MemoryRegion *mr)
1104 {
1105 if (int128_eq(mr->size, int128_2_64())) {
1106 return UINT64_MAX;
1107 }
1108 return int128_get64(mr->size);
1109 }
1110
1111 const char *memory_region_name(MemoryRegion *mr)
1112 {
1113 return mr->name;
1114 }
1115
1116 bool memory_region_is_ram(MemoryRegion *mr)
1117 {
1118 return mr->ram;
1119 }
1120
1121 bool memory_region_is_logging(MemoryRegion *mr)
1122 {
1123 return mr->dirty_log_mask;
1124 }
1125
1126 bool memory_region_is_rom(MemoryRegion *mr)
1127 {
1128 return mr->ram && mr->readonly;
1129 }
1130
1131 bool memory_region_is_iommu(MemoryRegion *mr)
1132 {
1133 return mr->iommu_ops;
1134 }
1135
1136 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1137 {
1138 notifier_list_add(&mr->iommu_notify, n);
1139 }
1140
1141 void memory_region_unregister_iommu_notifier(Notifier *n)
1142 {
1143 notifier_remove(n);
1144 }
1145
1146 void memory_region_notify_iommu(MemoryRegion *mr,
1147 IOMMUTLBEntry entry)
1148 {
1149 assert(memory_region_is_iommu(mr));
1150 notifier_list_notify(&mr->iommu_notify, &entry);
1151 }
1152
1153 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1154 {
1155 uint8_t mask = 1 << client;
1156
1157 memory_region_transaction_begin();
1158 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1159 memory_region_update_pending |= mr->enabled;
1160 memory_region_transaction_commit();
1161 }
1162
1163 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1164 hwaddr size, unsigned client)
1165 {
1166 assert(mr->terminates);
1167 return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1168 1 << client);
1169 }
1170
1171 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1172 hwaddr size)
1173 {
1174 assert(mr->terminates);
1175 return cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size, -1);
1176 }
1177
1178 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1179 hwaddr size, unsigned client)
1180 {
1181 bool ret;
1182 assert(mr->terminates);
1183 ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1184 1 << client);
1185 if (ret) {
1186 cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1187 mr->ram_addr + addr + size,
1188 1 << client);
1189 }
1190 return ret;
1191 }
1192
1193
1194 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1195 {
1196 AddressSpace *as;
1197 FlatRange *fr;
1198
1199 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1200 FlatView *view = address_space_get_flatview(as);
1201 FOR_EACH_FLAT_RANGE(fr, view) {
1202 if (fr->mr == mr) {
1203 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1204 }
1205 }
1206 flatview_unref(view);
1207 }
1208 }
1209
1210 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1211 {
1212 if (mr->readonly != readonly) {
1213 memory_region_transaction_begin();
1214 mr->readonly = readonly;
1215 memory_region_update_pending |= mr->enabled;
1216 memory_region_transaction_commit();
1217 }
1218 }
1219
1220 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1221 {
1222 if (mr->romd_mode != romd_mode) {
1223 memory_region_transaction_begin();
1224 mr->romd_mode = romd_mode;
1225 memory_region_update_pending |= mr->enabled;
1226 memory_region_transaction_commit();
1227 }
1228 }
1229
1230 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1231 hwaddr size, unsigned client)
1232 {
1233 assert(mr->terminates);
1234 cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1235 mr->ram_addr + addr + size,
1236 1 << client);
1237 }
1238
1239 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1240 {
1241 if (mr->alias) {
1242 return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1243 }
1244
1245 assert(mr->terminates);
1246
1247 return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1248 }
1249
1250 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1251 {
1252 FlatView *view;
1253 FlatRange *fr;
1254 CoalescedMemoryRange *cmr;
1255 AddrRange tmp;
1256 MemoryRegionSection section;
1257
1258 view = address_space_get_flatview(as);
1259 FOR_EACH_FLAT_RANGE(fr, view) {
1260 if (fr->mr == mr) {
1261 section = (MemoryRegionSection) {
1262 .address_space = as,
1263 .offset_within_address_space = int128_get64(fr->addr.start),
1264 .size = fr->addr.size,
1265 };
1266
1267 MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1268 int128_get64(fr->addr.start),
1269 int128_get64(fr->addr.size));
1270 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1271 tmp = addrrange_shift(cmr->addr,
1272 int128_sub(fr->addr.start,
1273 int128_make64(fr->offset_in_region)));
1274 if (!addrrange_intersects(tmp, fr->addr)) {
1275 continue;
1276 }
1277 tmp = addrrange_intersection(tmp, fr->addr);
1278 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1279 int128_get64(tmp.start),
1280 int128_get64(tmp.size));
1281 }
1282 }
1283 }
1284 flatview_unref(view);
1285 }
1286
1287 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1288 {
1289 AddressSpace *as;
1290
1291 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1292 memory_region_update_coalesced_range_as(mr, as);
1293 }
1294 }
1295
1296 void memory_region_set_coalescing(MemoryRegion *mr)
1297 {
1298 memory_region_clear_coalescing(mr);
1299 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1300 }
1301
1302 void memory_region_add_coalescing(MemoryRegion *mr,
1303 hwaddr offset,
1304 uint64_t size)
1305 {
1306 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1307
1308 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1309 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1310 memory_region_update_coalesced_range(mr);
1311 memory_region_set_flush_coalesced(mr);
1312 }
1313
1314 void memory_region_clear_coalescing(MemoryRegion *mr)
1315 {
1316 CoalescedMemoryRange *cmr;
1317
1318 qemu_flush_coalesced_mmio_buffer();
1319 mr->flush_coalesced_mmio = false;
1320
1321 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1322 cmr = QTAILQ_FIRST(&mr->coalesced);
1323 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1324 g_free(cmr);
1325 }
1326 memory_region_update_coalesced_range(mr);
1327 }
1328
1329 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1330 {
1331 mr->flush_coalesced_mmio = true;
1332 }
1333
1334 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1335 {
1336 qemu_flush_coalesced_mmio_buffer();
1337 if (QTAILQ_EMPTY(&mr->coalesced)) {
1338 mr->flush_coalesced_mmio = false;
1339 }
1340 }
1341
1342 void memory_region_add_eventfd(MemoryRegion *mr,
1343 hwaddr addr,
1344 unsigned size,
1345 bool match_data,
1346 uint64_t data,
1347 EventNotifier *e)
1348 {
1349 MemoryRegionIoeventfd mrfd = {
1350 .addr.start = int128_make64(addr),
1351 .addr.size = int128_make64(size),
1352 .match_data = match_data,
1353 .data = data,
1354 .e = e,
1355 };
1356 unsigned i;
1357
1358 adjust_endianness(mr, &mrfd.data, size);
1359 memory_region_transaction_begin();
1360 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1361 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1362 break;
1363 }
1364 }
1365 ++mr->ioeventfd_nb;
1366 mr->ioeventfds = g_realloc(mr->ioeventfds,
1367 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1368 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1369 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1370 mr->ioeventfds[i] = mrfd;
1371 memory_region_update_pending |= mr->enabled;
1372 memory_region_transaction_commit();
1373 }
1374
1375 void memory_region_del_eventfd(MemoryRegion *mr,
1376 hwaddr addr,
1377 unsigned size,
1378 bool match_data,
1379 uint64_t data,
1380 EventNotifier *e)
1381 {
1382 MemoryRegionIoeventfd mrfd = {
1383 .addr.start = int128_make64(addr),
1384 .addr.size = int128_make64(size),
1385 .match_data = match_data,
1386 .data = data,
1387 .e = e,
1388 };
1389 unsigned i;
1390
1391 adjust_endianness(mr, &mrfd.data, size);
1392 memory_region_transaction_begin();
1393 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1394 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1395 break;
1396 }
1397 }
1398 assert(i != mr->ioeventfd_nb);
1399 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1400 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1401 --mr->ioeventfd_nb;
1402 mr->ioeventfds = g_realloc(mr->ioeventfds,
1403 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1404 memory_region_update_pending |= mr->enabled;
1405 memory_region_transaction_commit();
1406 }
1407
1408 static void memory_region_add_subregion_common(MemoryRegion *mr,
1409 hwaddr offset,
1410 MemoryRegion *subregion)
1411 {
1412 MemoryRegion *other;
1413
1414 memory_region_transaction_begin();
1415
1416 assert(!subregion->parent);
1417 memory_region_ref(subregion);
1418 subregion->parent = mr;
1419 subregion->addr = offset;
1420 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1421 if (subregion->may_overlap || other->may_overlap) {
1422 continue;
1423 }
1424 if (int128_ge(int128_make64(offset),
1425 int128_add(int128_make64(other->addr), other->size))
1426 || int128_le(int128_add(int128_make64(offset), subregion->size),
1427 int128_make64(other->addr))) {
1428 continue;
1429 }
1430 #if 0
1431 printf("warning: subregion collision %llx/%llx (%s) "
1432 "vs %llx/%llx (%s)\n",
1433 (unsigned long long)offset,
1434 (unsigned long long)int128_get64(subregion->size),
1435 subregion->name,
1436 (unsigned long long)other->addr,
1437 (unsigned long long)int128_get64(other->size),
1438 other->name);
1439 #endif
1440 }
1441 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1442 if (subregion->priority >= other->priority) {
1443 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1444 goto done;
1445 }
1446 }
1447 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1448 done:
1449 memory_region_update_pending |= mr->enabled && subregion->enabled;
1450 memory_region_transaction_commit();
1451 }
1452
1453
1454 void memory_region_add_subregion(MemoryRegion *mr,
1455 hwaddr offset,
1456 MemoryRegion *subregion)
1457 {
1458 subregion->may_overlap = false;
1459 subregion->priority = 0;
1460 memory_region_add_subregion_common(mr, offset, subregion);
1461 }
1462
1463 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1464 hwaddr offset,
1465 MemoryRegion *subregion,
1466 unsigned priority)
1467 {
1468 subregion->may_overlap = true;
1469 subregion->priority = priority;
1470 memory_region_add_subregion_common(mr, offset, subregion);
1471 }
1472
1473 void memory_region_del_subregion(MemoryRegion *mr,
1474 MemoryRegion *subregion)
1475 {
1476 memory_region_transaction_begin();
1477 assert(subregion->parent == mr);
1478 subregion->parent = NULL;
1479 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1480 memory_region_unref(subregion);
1481 memory_region_update_pending |= mr->enabled && subregion->enabled;
1482 memory_region_transaction_commit();
1483 }
1484
1485 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1486 {
1487 if (enabled == mr->enabled) {
1488 return;
1489 }
1490 memory_region_transaction_begin();
1491 mr->enabled = enabled;
1492 memory_region_update_pending = true;
1493 memory_region_transaction_commit();
1494 }
1495
1496 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1497 {
1498 MemoryRegion *parent = mr->parent;
1499 unsigned priority = mr->priority;
1500 bool may_overlap = mr->may_overlap;
1501
1502 if (addr == mr->addr || !parent) {
1503 mr->addr = addr;
1504 return;
1505 }
1506
1507 memory_region_transaction_begin();
1508 memory_region_ref(mr);
1509 memory_region_del_subregion(parent, mr);
1510 if (may_overlap) {
1511 memory_region_add_subregion_overlap(parent, addr, mr, priority);
1512 } else {
1513 memory_region_add_subregion(parent, addr, mr);
1514 }
1515 memory_region_unref(mr);
1516 memory_region_transaction_commit();
1517 }
1518
1519 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1520 {
1521 assert(mr->alias);
1522
1523 if (offset == mr->alias_offset) {
1524 return;
1525 }
1526
1527 memory_region_transaction_begin();
1528 mr->alias_offset = offset;
1529 memory_region_update_pending |= mr->enabled;
1530 memory_region_transaction_commit();
1531 }
1532
1533 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1534 {
1535 return mr->ram_addr;
1536 }
1537
1538 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1539 {
1540 const AddrRange *addr = addr_;
1541 const FlatRange *fr = fr_;
1542
1543 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1544 return -1;
1545 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1546 return 1;
1547 }
1548 return 0;
1549 }
1550
1551 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1552 {
1553 return bsearch(&addr, view->ranges, view->nr,
1554 sizeof(FlatRange), cmp_flatrange_addr);
1555 }
1556
1557 bool memory_region_present(MemoryRegion *parent, hwaddr addr)
1558 {
1559 MemoryRegion *mr = memory_region_find(parent, addr, 1).mr;
1560 if (!mr) {
1561 return false;
1562 }
1563 memory_region_unref(mr);
1564 return true;
1565 }
1566
1567 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1568 hwaddr addr, uint64_t size)
1569 {
1570 MemoryRegionSection ret = { .mr = NULL };
1571 MemoryRegion *root;
1572 AddressSpace *as;
1573 AddrRange range;
1574 FlatView *view;
1575 FlatRange *fr;
1576
1577 addr += mr->addr;
1578 for (root = mr; root->parent; ) {
1579 root = root->parent;
1580 addr += root->addr;
1581 }
1582
1583 as = memory_region_to_address_space(root);
1584 range = addrrange_make(int128_make64(addr), int128_make64(size));
1585
1586 view = address_space_get_flatview(as);
1587 fr = flatview_lookup(view, range);
1588 if (!fr) {
1589 return ret;
1590 }
1591
1592 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1593 --fr;
1594 }
1595
1596 ret.mr = fr->mr;
1597 ret.address_space = as;
1598 range = addrrange_intersection(range, fr->addr);
1599 ret.offset_within_region = fr->offset_in_region;
1600 ret.offset_within_region += int128_get64(int128_sub(range.start,
1601 fr->addr.start));
1602 ret.size = range.size;
1603 ret.offset_within_address_space = int128_get64(range.start);
1604 ret.readonly = fr->readonly;
1605 memory_region_ref(ret.mr);
1606
1607 flatview_unref(view);
1608 return ret;
1609 }
1610
1611 void address_space_sync_dirty_bitmap(AddressSpace *as)
1612 {
1613 FlatView *view;
1614 FlatRange *fr;
1615
1616 view = address_space_get_flatview(as);
1617 FOR_EACH_FLAT_RANGE(fr, view) {
1618 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1619 }
1620 flatview_unref(view);
1621 }
1622
1623 void memory_global_dirty_log_start(void)
1624 {
1625 global_dirty_log = true;
1626 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1627 }
1628
1629 void memory_global_dirty_log_stop(void)
1630 {
1631 global_dirty_log = false;
1632 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1633 }
1634
1635 static void listener_add_address_space(MemoryListener *listener,
1636 AddressSpace *as)
1637 {
1638 FlatView *view;
1639 FlatRange *fr;
1640
1641 if (listener->address_space_filter
1642 && listener->address_space_filter != as) {
1643 return;
1644 }
1645
1646 if (global_dirty_log) {
1647 if (listener->log_global_start) {
1648 listener->log_global_start(listener);
1649 }
1650 }
1651
1652 view = address_space_get_flatview(as);
1653 FOR_EACH_FLAT_RANGE(fr, view) {
1654 MemoryRegionSection section = {
1655 .mr = fr->mr,
1656 .address_space = as,
1657 .offset_within_region = fr->offset_in_region,
1658 .size = fr->addr.size,
1659 .offset_within_address_space = int128_get64(fr->addr.start),
1660 .readonly = fr->readonly,
1661 };
1662 if (listener->region_add) {
1663 listener->region_add(listener, &section);
1664 }
1665 }
1666 flatview_unref(view);
1667 }
1668
1669 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1670 {
1671 MemoryListener *other = NULL;
1672 AddressSpace *as;
1673
1674 listener->address_space_filter = filter;
1675 if (QTAILQ_EMPTY(&memory_listeners)
1676 || listener->priority >= QTAILQ_LAST(&memory_listeners,
1677 memory_listeners)->priority) {
1678 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1679 } else {
1680 QTAILQ_FOREACH(other, &memory_listeners, link) {
1681 if (listener->priority < other->priority) {
1682 break;
1683 }
1684 }
1685 QTAILQ_INSERT_BEFORE(other, listener, link);
1686 }
1687
1688 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1689 listener_add_address_space(listener, as);
1690 }
1691 }
1692
1693 void memory_listener_unregister(MemoryListener *listener)
1694 {
1695 QTAILQ_REMOVE(&memory_listeners, listener, link);
1696 }
1697
1698 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
1699 {
1700 if (QTAILQ_EMPTY(&address_spaces)) {
1701 memory_init();
1702 }
1703
1704 memory_region_transaction_begin();
1705 as->root = root;
1706 as->current_map = g_new(FlatView, 1);
1707 flatview_init(as->current_map);
1708 as->ioeventfd_nb = 0;
1709 as->ioeventfds = NULL;
1710 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1711 as->name = g_strdup(name ? name : "anonymous");
1712 address_space_init_dispatch(as);
1713 memory_region_update_pending |= root->enabled;
1714 memory_region_transaction_commit();
1715 }
1716
1717 void address_space_destroy(AddressSpace *as)
1718 {
1719 /* Flush out anything from MemoryListeners listening in on this */
1720 memory_region_transaction_begin();
1721 as->root = NULL;
1722 memory_region_transaction_commit();
1723 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
1724 address_space_destroy_dispatch(as);
1725 flatview_unref(as->current_map);
1726 g_free(as->name);
1727 g_free(as->ioeventfds);
1728 }
1729
1730 bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
1731 {
1732 return memory_region_dispatch_read(mr, addr, pval, size);
1733 }
1734
1735 bool io_mem_write(MemoryRegion *mr, hwaddr addr,
1736 uint64_t val, unsigned size)
1737 {
1738 return memory_region_dispatch_write(mr, addr, val, size);
1739 }
1740
1741 typedef struct MemoryRegionList MemoryRegionList;
1742
1743 struct MemoryRegionList {
1744 const MemoryRegion *mr;
1745 bool printed;
1746 QTAILQ_ENTRY(MemoryRegionList) queue;
1747 };
1748
1749 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1750
1751 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1752 const MemoryRegion *mr, unsigned int level,
1753 hwaddr base,
1754 MemoryRegionListHead *alias_print_queue)
1755 {
1756 MemoryRegionList *new_ml, *ml, *next_ml;
1757 MemoryRegionListHead submr_print_queue;
1758 const MemoryRegion *submr;
1759 unsigned int i;
1760
1761 if (!mr || !mr->enabled) {
1762 return;
1763 }
1764
1765 for (i = 0; i < level; i++) {
1766 mon_printf(f, " ");
1767 }
1768
1769 if (mr->alias) {
1770 MemoryRegionList *ml;
1771 bool found = false;
1772
1773 /* check if the alias is already in the queue */
1774 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1775 if (ml->mr == mr->alias && !ml->printed) {
1776 found = true;
1777 }
1778 }
1779
1780 if (!found) {
1781 ml = g_new(MemoryRegionList, 1);
1782 ml->mr = mr->alias;
1783 ml->printed = false;
1784 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1785 }
1786 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
1787 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
1788 "-" TARGET_FMT_plx "\n",
1789 base + mr->addr,
1790 base + mr->addr
1791 + (hwaddr)int128_get64(int128_sub(mr->size, int128_make64(1))),
1792 mr->priority,
1793 mr->romd_mode ? 'R' : '-',
1794 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
1795 : '-',
1796 mr->name,
1797 mr->alias->name,
1798 mr->alias_offset,
1799 mr->alias_offset
1800 + (hwaddr)int128_get64(mr->size) - 1);
1801 } else {
1802 mon_printf(f,
1803 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
1804 base + mr->addr,
1805 base + mr->addr
1806 + (hwaddr)int128_get64(int128_sub(mr->size, int128_make64(1))),
1807 mr->priority,
1808 mr->romd_mode ? 'R' : '-',
1809 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
1810 : '-',
1811 mr->name);
1812 }
1813
1814 QTAILQ_INIT(&submr_print_queue);
1815
1816 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1817 new_ml = g_new(MemoryRegionList, 1);
1818 new_ml->mr = submr;
1819 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1820 if (new_ml->mr->addr < ml->mr->addr ||
1821 (new_ml->mr->addr == ml->mr->addr &&
1822 new_ml->mr->priority > ml->mr->priority)) {
1823 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1824 new_ml = NULL;
1825 break;
1826 }
1827 }
1828 if (new_ml) {
1829 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1830 }
1831 }
1832
1833 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1834 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1835 alias_print_queue);
1836 }
1837
1838 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1839 g_free(ml);
1840 }
1841 }
1842
1843 void mtree_info(fprintf_function mon_printf, void *f)
1844 {
1845 MemoryRegionListHead ml_head;
1846 MemoryRegionList *ml, *ml2;
1847 AddressSpace *as;
1848
1849 QTAILQ_INIT(&ml_head);
1850
1851 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1852 mon_printf(f, "%s\n", as->name);
1853 mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
1854 }
1855
1856 mon_printf(f, "aliases\n");
1857 /* print aliased regions */
1858 QTAILQ_FOREACH(ml, &ml_head, queue) {
1859 if (!ml->printed) {
1860 mon_printf(f, "%s\n", ml->mr->name);
1861 mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1862 }
1863 }
1864
1865 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1866 g_free(ml);
1867 }
1868 }