]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/hugetlb.c
mm/zsmalloc.c: fix build when CONFIG_COMPACTION=n
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
28
29 #include <asm/page.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlb.h>
32
33 #include <linux/io.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/node.h>
37 #include <linux/userfaultfd_k.h>
38 #include "internal.h"
39
40 int hugepages_treat_as_movable;
41
42 int hugetlb_max_hstate __read_mostly;
43 unsigned int default_hstate_idx;
44 struct hstate hstates[HUGE_MAX_HSTATE];
45 /*
46 * Minimum page order among possible hugepage sizes, set to a proper value
47 * at boot time.
48 */
49 static unsigned int minimum_order __read_mostly = UINT_MAX;
50
51 __initdata LIST_HEAD(huge_boot_pages);
52
53 /* for command line parsing */
54 static struct hstate * __initdata parsed_hstate;
55 static unsigned long __initdata default_hstate_max_huge_pages;
56 static unsigned long __initdata default_hstate_size;
57 static bool __initdata parsed_valid_hugepagesz = true;
58
59 /*
60 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61 * free_huge_pages, and surplus_huge_pages.
62 */
63 DEFINE_SPINLOCK(hugetlb_lock);
64
65 /*
66 * Serializes faults on the same logical page. This is used to
67 * prevent spurious OOMs when the hugepage pool is fully utilized.
68 */
69 static int num_fault_mutexes;
70 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
71
72 /* Forward declaration */
73 static int hugetlb_acct_memory(struct hstate *h, long delta);
74
75 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76 {
77 bool free = (spool->count == 0) && (spool->used_hpages == 0);
78
79 spin_unlock(&spool->lock);
80
81 /* If no pages are used, and no other handles to the subpool
82 * remain, give up any reservations mased on minimum size and
83 * free the subpool */
84 if (free) {
85 if (spool->min_hpages != -1)
86 hugetlb_acct_memory(spool->hstate,
87 -spool->min_hpages);
88 kfree(spool);
89 }
90 }
91
92 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
93 long min_hpages)
94 {
95 struct hugepage_subpool *spool;
96
97 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
98 if (!spool)
99 return NULL;
100
101 spin_lock_init(&spool->lock);
102 spool->count = 1;
103 spool->max_hpages = max_hpages;
104 spool->hstate = h;
105 spool->min_hpages = min_hpages;
106
107 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108 kfree(spool);
109 return NULL;
110 }
111 spool->rsv_hpages = min_hpages;
112
113 return spool;
114 }
115
116 void hugepage_put_subpool(struct hugepage_subpool *spool)
117 {
118 spin_lock(&spool->lock);
119 BUG_ON(!spool->count);
120 spool->count--;
121 unlock_or_release_subpool(spool);
122 }
123
124 /*
125 * Subpool accounting for allocating and reserving pages.
126 * Return -ENOMEM if there are not enough resources to satisfy the
127 * the request. Otherwise, return the number of pages by which the
128 * global pools must be adjusted (upward). The returned value may
129 * only be different than the passed value (delta) in the case where
130 * a subpool minimum size must be manitained.
131 */
132 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
133 long delta)
134 {
135 long ret = delta;
136
137 if (!spool)
138 return ret;
139
140 spin_lock(&spool->lock);
141
142 if (spool->max_hpages != -1) { /* maximum size accounting */
143 if ((spool->used_hpages + delta) <= spool->max_hpages)
144 spool->used_hpages += delta;
145 else {
146 ret = -ENOMEM;
147 goto unlock_ret;
148 }
149 }
150
151 /* minimum size accounting */
152 if (spool->min_hpages != -1 && spool->rsv_hpages) {
153 if (delta > spool->rsv_hpages) {
154 /*
155 * Asking for more reserves than those already taken on
156 * behalf of subpool. Return difference.
157 */
158 ret = delta - spool->rsv_hpages;
159 spool->rsv_hpages = 0;
160 } else {
161 ret = 0; /* reserves already accounted for */
162 spool->rsv_hpages -= delta;
163 }
164 }
165
166 unlock_ret:
167 spin_unlock(&spool->lock);
168 return ret;
169 }
170
171 /*
172 * Subpool accounting for freeing and unreserving pages.
173 * Return the number of global page reservations that must be dropped.
174 * The return value may only be different than the passed value (delta)
175 * in the case where a subpool minimum size must be maintained.
176 */
177 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
178 long delta)
179 {
180 long ret = delta;
181
182 if (!spool)
183 return delta;
184
185 spin_lock(&spool->lock);
186
187 if (spool->max_hpages != -1) /* maximum size accounting */
188 spool->used_hpages -= delta;
189
190 /* minimum size accounting */
191 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
192 if (spool->rsv_hpages + delta <= spool->min_hpages)
193 ret = 0;
194 else
195 ret = spool->rsv_hpages + delta - spool->min_hpages;
196
197 spool->rsv_hpages += delta;
198 if (spool->rsv_hpages > spool->min_hpages)
199 spool->rsv_hpages = spool->min_hpages;
200 }
201
202 /*
203 * If hugetlbfs_put_super couldn't free spool due to an outstanding
204 * quota reference, free it now.
205 */
206 unlock_or_release_subpool(spool);
207
208 return ret;
209 }
210
211 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212 {
213 return HUGETLBFS_SB(inode->i_sb)->spool;
214 }
215
216 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217 {
218 return subpool_inode(file_inode(vma->vm_file));
219 }
220
221 /*
222 * Region tracking -- allows tracking of reservations and instantiated pages
223 * across the pages in a mapping.
224 *
225 * The region data structures are embedded into a resv_map and protected
226 * by a resv_map's lock. The set of regions within the resv_map represent
227 * reservations for huge pages, or huge pages that have already been
228 * instantiated within the map. The from and to elements are huge page
229 * indicies into the associated mapping. from indicates the starting index
230 * of the region. to represents the first index past the end of the region.
231 *
232 * For example, a file region structure with from == 0 and to == 4 represents
233 * four huge pages in a mapping. It is important to note that the to element
234 * represents the first element past the end of the region. This is used in
235 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236 *
237 * Interval notation of the form [from, to) will be used to indicate that
238 * the endpoint from is inclusive and to is exclusive.
239 */
240 struct file_region {
241 struct list_head link;
242 long from;
243 long to;
244 };
245
246 /*
247 * Add the huge page range represented by [f, t) to the reserve
248 * map. In the normal case, existing regions will be expanded
249 * to accommodate the specified range. Sufficient regions should
250 * exist for expansion due to the previous call to region_chg
251 * with the same range. However, it is possible that region_del
252 * could have been called after region_chg and modifed the map
253 * in such a way that no region exists to be expanded. In this
254 * case, pull a region descriptor from the cache associated with
255 * the map and use that for the new range.
256 *
257 * Return the number of new huge pages added to the map. This
258 * number is greater than or equal to zero.
259 */
260 static long region_add(struct resv_map *resv, long f, long t)
261 {
262 struct list_head *head = &resv->regions;
263 struct file_region *rg, *nrg, *trg;
264 long add = 0;
265
266 spin_lock(&resv->lock);
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg, head, link)
269 if (f <= rg->to)
270 break;
271
272 /*
273 * If no region exists which can be expanded to include the
274 * specified range, the list must have been modified by an
275 * interleving call to region_del(). Pull a region descriptor
276 * from the cache and use it for this range.
277 */
278 if (&rg->link == head || t < rg->from) {
279 VM_BUG_ON(resv->region_cache_count <= 0);
280
281 resv->region_cache_count--;
282 nrg = list_first_entry(&resv->region_cache, struct file_region,
283 link);
284 list_del(&nrg->link);
285
286 nrg->from = f;
287 nrg->to = t;
288 list_add(&nrg->link, rg->link.prev);
289
290 add += t - f;
291 goto out_locked;
292 }
293
294 /* Round our left edge to the current segment if it encloses us. */
295 if (f > rg->from)
296 f = rg->from;
297
298 /* Check for and consume any regions we now overlap with. */
299 nrg = rg;
300 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
301 if (&rg->link == head)
302 break;
303 if (rg->from > t)
304 break;
305
306 /* If this area reaches higher then extend our area to
307 * include it completely. If this is not the first area
308 * which we intend to reuse, free it. */
309 if (rg->to > t)
310 t = rg->to;
311 if (rg != nrg) {
312 /* Decrement return value by the deleted range.
313 * Another range will span this area so that by
314 * end of routine add will be >= zero
315 */
316 add -= (rg->to - rg->from);
317 list_del(&rg->link);
318 kfree(rg);
319 }
320 }
321
322 add += (nrg->from - f); /* Added to beginning of region */
323 nrg->from = f;
324 add += t - nrg->to; /* Added to end of region */
325 nrg->to = t;
326
327 out_locked:
328 resv->adds_in_progress--;
329 spin_unlock(&resv->lock);
330 VM_BUG_ON(add < 0);
331 return add;
332 }
333
334 /*
335 * Examine the existing reserve map and determine how many
336 * huge pages in the specified range [f, t) are NOT currently
337 * represented. This routine is called before a subsequent
338 * call to region_add that will actually modify the reserve
339 * map to add the specified range [f, t). region_chg does
340 * not change the number of huge pages represented by the
341 * map. However, if the existing regions in the map can not
342 * be expanded to represent the new range, a new file_region
343 * structure is added to the map as a placeholder. This is
344 * so that the subsequent region_add call will have all the
345 * regions it needs and will not fail.
346 *
347 * Upon entry, region_chg will also examine the cache of region descriptors
348 * associated with the map. If there are not enough descriptors cached, one
349 * will be allocated for the in progress add operation.
350 *
351 * Returns the number of huge pages that need to be added to the existing
352 * reservation map for the range [f, t). This number is greater or equal to
353 * zero. -ENOMEM is returned if a new file_region structure or cache entry
354 * is needed and can not be allocated.
355 */
356 static long region_chg(struct resv_map *resv, long f, long t)
357 {
358 struct list_head *head = &resv->regions;
359 struct file_region *rg, *nrg = NULL;
360 long chg = 0;
361
362 retry:
363 spin_lock(&resv->lock);
364 retry_locked:
365 resv->adds_in_progress++;
366
367 /*
368 * Check for sufficient descriptors in the cache to accommodate
369 * the number of in progress add operations.
370 */
371 if (resv->adds_in_progress > resv->region_cache_count) {
372 struct file_region *trg;
373
374 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
375 /* Must drop lock to allocate a new descriptor. */
376 resv->adds_in_progress--;
377 spin_unlock(&resv->lock);
378
379 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
380 if (!trg) {
381 kfree(nrg);
382 return -ENOMEM;
383 }
384
385 spin_lock(&resv->lock);
386 list_add(&trg->link, &resv->region_cache);
387 resv->region_cache_count++;
388 goto retry_locked;
389 }
390
391 /* Locate the region we are before or in. */
392 list_for_each_entry(rg, head, link)
393 if (f <= rg->to)
394 break;
395
396 /* If we are below the current region then a new region is required.
397 * Subtle, allocate a new region at the position but make it zero
398 * size such that we can guarantee to record the reservation. */
399 if (&rg->link == head || t < rg->from) {
400 if (!nrg) {
401 resv->adds_in_progress--;
402 spin_unlock(&resv->lock);
403 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
404 if (!nrg)
405 return -ENOMEM;
406
407 nrg->from = f;
408 nrg->to = f;
409 INIT_LIST_HEAD(&nrg->link);
410 goto retry;
411 }
412
413 list_add(&nrg->link, rg->link.prev);
414 chg = t - f;
415 goto out_nrg;
416 }
417
418 /* Round our left edge to the current segment if it encloses us. */
419 if (f > rg->from)
420 f = rg->from;
421 chg = t - f;
422
423 /* Check for and consume any regions we now overlap with. */
424 list_for_each_entry(rg, rg->link.prev, link) {
425 if (&rg->link == head)
426 break;
427 if (rg->from > t)
428 goto out;
429
430 /* We overlap with this area, if it extends further than
431 * us then we must extend ourselves. Account for its
432 * existing reservation. */
433 if (rg->to > t) {
434 chg += rg->to - t;
435 t = rg->to;
436 }
437 chg -= rg->to - rg->from;
438 }
439
440 out:
441 spin_unlock(&resv->lock);
442 /* We already know we raced and no longer need the new region */
443 kfree(nrg);
444 return chg;
445 out_nrg:
446 spin_unlock(&resv->lock);
447 return chg;
448 }
449
450 /*
451 * Abort the in progress add operation. The adds_in_progress field
452 * of the resv_map keeps track of the operations in progress between
453 * calls to region_chg and region_add. Operations are sometimes
454 * aborted after the call to region_chg. In such cases, region_abort
455 * is called to decrement the adds_in_progress counter.
456 *
457 * NOTE: The range arguments [f, t) are not needed or used in this
458 * routine. They are kept to make reading the calling code easier as
459 * arguments will match the associated region_chg call.
460 */
461 static void region_abort(struct resv_map *resv, long f, long t)
462 {
463 spin_lock(&resv->lock);
464 VM_BUG_ON(!resv->region_cache_count);
465 resv->adds_in_progress--;
466 spin_unlock(&resv->lock);
467 }
468
469 /*
470 * Delete the specified range [f, t) from the reserve map. If the
471 * t parameter is LONG_MAX, this indicates that ALL regions after f
472 * should be deleted. Locate the regions which intersect [f, t)
473 * and either trim, delete or split the existing regions.
474 *
475 * Returns the number of huge pages deleted from the reserve map.
476 * In the normal case, the return value is zero or more. In the
477 * case where a region must be split, a new region descriptor must
478 * be allocated. If the allocation fails, -ENOMEM will be returned.
479 * NOTE: If the parameter t == LONG_MAX, then we will never split
480 * a region and possibly return -ENOMEM. Callers specifying
481 * t == LONG_MAX do not need to check for -ENOMEM error.
482 */
483 static long region_del(struct resv_map *resv, long f, long t)
484 {
485 struct list_head *head = &resv->regions;
486 struct file_region *rg, *trg;
487 struct file_region *nrg = NULL;
488 long del = 0;
489
490 retry:
491 spin_lock(&resv->lock);
492 list_for_each_entry_safe(rg, trg, head, link) {
493 /*
494 * Skip regions before the range to be deleted. file_region
495 * ranges are normally of the form [from, to). However, there
496 * may be a "placeholder" entry in the map which is of the form
497 * (from, to) with from == to. Check for placeholder entries
498 * at the beginning of the range to be deleted.
499 */
500 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
501 continue;
502
503 if (rg->from >= t)
504 break;
505
506 if (f > rg->from && t < rg->to) { /* Must split region */
507 /*
508 * Check for an entry in the cache before dropping
509 * lock and attempting allocation.
510 */
511 if (!nrg &&
512 resv->region_cache_count > resv->adds_in_progress) {
513 nrg = list_first_entry(&resv->region_cache,
514 struct file_region,
515 link);
516 list_del(&nrg->link);
517 resv->region_cache_count--;
518 }
519
520 if (!nrg) {
521 spin_unlock(&resv->lock);
522 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
523 if (!nrg)
524 return -ENOMEM;
525 goto retry;
526 }
527
528 del += t - f;
529
530 /* New entry for end of split region */
531 nrg->from = t;
532 nrg->to = rg->to;
533 INIT_LIST_HEAD(&nrg->link);
534
535 /* Original entry is trimmed */
536 rg->to = f;
537
538 list_add(&nrg->link, &rg->link);
539 nrg = NULL;
540 break;
541 }
542
543 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
544 del += rg->to - rg->from;
545 list_del(&rg->link);
546 kfree(rg);
547 continue;
548 }
549
550 if (f <= rg->from) { /* Trim beginning of region */
551 del += t - rg->from;
552 rg->from = t;
553 } else { /* Trim end of region */
554 del += rg->to - f;
555 rg->to = f;
556 }
557 }
558
559 spin_unlock(&resv->lock);
560 kfree(nrg);
561 return del;
562 }
563
564 /*
565 * A rare out of memory error was encountered which prevented removal of
566 * the reserve map region for a page. The huge page itself was free'ed
567 * and removed from the page cache. This routine will adjust the subpool
568 * usage count, and the global reserve count if needed. By incrementing
569 * these counts, the reserve map entry which could not be deleted will
570 * appear as a "reserved" entry instead of simply dangling with incorrect
571 * counts.
572 */
573 void hugetlb_fix_reserve_counts(struct inode *inode)
574 {
575 struct hugepage_subpool *spool = subpool_inode(inode);
576 long rsv_adjust;
577
578 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
579 if (rsv_adjust) {
580 struct hstate *h = hstate_inode(inode);
581
582 hugetlb_acct_memory(h, 1);
583 }
584 }
585
586 /*
587 * Count and return the number of huge pages in the reserve map
588 * that intersect with the range [f, t).
589 */
590 static long region_count(struct resv_map *resv, long f, long t)
591 {
592 struct list_head *head = &resv->regions;
593 struct file_region *rg;
594 long chg = 0;
595
596 spin_lock(&resv->lock);
597 /* Locate each segment we overlap with, and count that overlap. */
598 list_for_each_entry(rg, head, link) {
599 long seg_from;
600 long seg_to;
601
602 if (rg->to <= f)
603 continue;
604 if (rg->from >= t)
605 break;
606
607 seg_from = max(rg->from, f);
608 seg_to = min(rg->to, t);
609
610 chg += seg_to - seg_from;
611 }
612 spin_unlock(&resv->lock);
613
614 return chg;
615 }
616
617 /*
618 * Convert the address within this vma to the page offset within
619 * the mapping, in pagecache page units; huge pages here.
620 */
621 static pgoff_t vma_hugecache_offset(struct hstate *h,
622 struct vm_area_struct *vma, unsigned long address)
623 {
624 return ((address - vma->vm_start) >> huge_page_shift(h)) +
625 (vma->vm_pgoff >> huge_page_order(h));
626 }
627
628 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
629 unsigned long address)
630 {
631 return vma_hugecache_offset(hstate_vma(vma), vma, address);
632 }
633 EXPORT_SYMBOL_GPL(linear_hugepage_index);
634
635 /*
636 * Return the size of the pages allocated when backing a VMA. In the majority
637 * cases this will be same size as used by the page table entries.
638 */
639 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640 {
641 struct hstate *hstate;
642
643 if (!is_vm_hugetlb_page(vma))
644 return PAGE_SIZE;
645
646 hstate = hstate_vma(vma);
647
648 return 1UL << huge_page_shift(hstate);
649 }
650 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
651
652 /*
653 * Return the page size being used by the MMU to back a VMA. In the majority
654 * of cases, the page size used by the kernel matches the MMU size. On
655 * architectures where it differs, an architecture-specific version of this
656 * function is required.
657 */
658 #ifndef vma_mmu_pagesize
659 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
660 {
661 return vma_kernel_pagesize(vma);
662 }
663 #endif
664
665 /*
666 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
667 * bits of the reservation map pointer, which are always clear due to
668 * alignment.
669 */
670 #define HPAGE_RESV_OWNER (1UL << 0)
671 #define HPAGE_RESV_UNMAPPED (1UL << 1)
672 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
673
674 /*
675 * These helpers are used to track how many pages are reserved for
676 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
677 * is guaranteed to have their future faults succeed.
678 *
679 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
680 * the reserve counters are updated with the hugetlb_lock held. It is safe
681 * to reset the VMA at fork() time as it is not in use yet and there is no
682 * chance of the global counters getting corrupted as a result of the values.
683 *
684 * The private mapping reservation is represented in a subtly different
685 * manner to a shared mapping. A shared mapping has a region map associated
686 * with the underlying file, this region map represents the backing file
687 * pages which have ever had a reservation assigned which this persists even
688 * after the page is instantiated. A private mapping has a region map
689 * associated with the original mmap which is attached to all VMAs which
690 * reference it, this region map represents those offsets which have consumed
691 * reservation ie. where pages have been instantiated.
692 */
693 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
694 {
695 return (unsigned long)vma->vm_private_data;
696 }
697
698 static void set_vma_private_data(struct vm_area_struct *vma,
699 unsigned long value)
700 {
701 vma->vm_private_data = (void *)value;
702 }
703
704 struct resv_map *resv_map_alloc(void)
705 {
706 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
707 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
708
709 if (!resv_map || !rg) {
710 kfree(resv_map);
711 kfree(rg);
712 return NULL;
713 }
714
715 kref_init(&resv_map->refs);
716 spin_lock_init(&resv_map->lock);
717 INIT_LIST_HEAD(&resv_map->regions);
718
719 resv_map->adds_in_progress = 0;
720
721 INIT_LIST_HEAD(&resv_map->region_cache);
722 list_add(&rg->link, &resv_map->region_cache);
723 resv_map->region_cache_count = 1;
724
725 return resv_map;
726 }
727
728 void resv_map_release(struct kref *ref)
729 {
730 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
731 struct list_head *head = &resv_map->region_cache;
732 struct file_region *rg, *trg;
733
734 /* Clear out any active regions before we release the map. */
735 region_del(resv_map, 0, LONG_MAX);
736
737 /* ... and any entries left in the cache */
738 list_for_each_entry_safe(rg, trg, head, link) {
739 list_del(&rg->link);
740 kfree(rg);
741 }
742
743 VM_BUG_ON(resv_map->adds_in_progress);
744
745 kfree(resv_map);
746 }
747
748 static inline struct resv_map *inode_resv_map(struct inode *inode)
749 {
750 return inode->i_mapping->private_data;
751 }
752
753 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
754 {
755 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
756 if (vma->vm_flags & VM_MAYSHARE) {
757 struct address_space *mapping = vma->vm_file->f_mapping;
758 struct inode *inode = mapping->host;
759
760 return inode_resv_map(inode);
761
762 } else {
763 return (struct resv_map *)(get_vma_private_data(vma) &
764 ~HPAGE_RESV_MASK);
765 }
766 }
767
768 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
769 {
770 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
771 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
772
773 set_vma_private_data(vma, (get_vma_private_data(vma) &
774 HPAGE_RESV_MASK) | (unsigned long)map);
775 }
776
777 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
778 {
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
781
782 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
783 }
784
785 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
786 {
787 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
788
789 return (get_vma_private_data(vma) & flag) != 0;
790 }
791
792 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
793 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
794 {
795 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
796 if (!(vma->vm_flags & VM_MAYSHARE))
797 vma->vm_private_data = (void *)0;
798 }
799
800 /* Returns true if the VMA has associated reserve pages */
801 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
802 {
803 if (vma->vm_flags & VM_NORESERVE) {
804 /*
805 * This address is already reserved by other process(chg == 0),
806 * so, we should decrement reserved count. Without decrementing,
807 * reserve count remains after releasing inode, because this
808 * allocated page will go into page cache and is regarded as
809 * coming from reserved pool in releasing step. Currently, we
810 * don't have any other solution to deal with this situation
811 * properly, so add work-around here.
812 */
813 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
814 return true;
815 else
816 return false;
817 }
818
819 /* Shared mappings always use reserves */
820 if (vma->vm_flags & VM_MAYSHARE) {
821 /*
822 * We know VM_NORESERVE is not set. Therefore, there SHOULD
823 * be a region map for all pages. The only situation where
824 * there is no region map is if a hole was punched via
825 * fallocate. In this case, there really are no reverves to
826 * use. This situation is indicated if chg != 0.
827 */
828 if (chg)
829 return false;
830 else
831 return true;
832 }
833
834 /*
835 * Only the process that called mmap() has reserves for
836 * private mappings.
837 */
838 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
839 /*
840 * Like the shared case above, a hole punch or truncate
841 * could have been performed on the private mapping.
842 * Examine the value of chg to determine if reserves
843 * actually exist or were previously consumed.
844 * Very Subtle - The value of chg comes from a previous
845 * call to vma_needs_reserves(). The reserve map for
846 * private mappings has different (opposite) semantics
847 * than that of shared mappings. vma_needs_reserves()
848 * has already taken this difference in semantics into
849 * account. Therefore, the meaning of chg is the same
850 * as in the shared case above. Code could easily be
851 * combined, but keeping it separate draws attention to
852 * subtle differences.
853 */
854 if (chg)
855 return false;
856 else
857 return true;
858 }
859
860 return false;
861 }
862
863 static void enqueue_huge_page(struct hstate *h, struct page *page)
864 {
865 int nid = page_to_nid(page);
866 list_move(&page->lru, &h->hugepage_freelists[nid]);
867 h->free_huge_pages++;
868 h->free_huge_pages_node[nid]++;
869 }
870
871 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
872 {
873 struct page *page;
874
875 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
876 if (!PageHWPoison(page))
877 break;
878 /*
879 * if 'non-isolated free hugepage' not found on the list,
880 * the allocation fails.
881 */
882 if (&h->hugepage_freelists[nid] == &page->lru)
883 return NULL;
884 list_move(&page->lru, &h->hugepage_activelist);
885 set_page_refcounted(page);
886 h->free_huge_pages--;
887 h->free_huge_pages_node[nid]--;
888 return page;
889 }
890
891 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
892 nodemask_t *nmask)
893 {
894 unsigned int cpuset_mems_cookie;
895 struct zonelist *zonelist;
896 struct zone *zone;
897 struct zoneref *z;
898 int node = -1;
899
900 zonelist = node_zonelist(nid, gfp_mask);
901
902 retry_cpuset:
903 cpuset_mems_cookie = read_mems_allowed_begin();
904 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
905 struct page *page;
906
907 if (!cpuset_zone_allowed(zone, gfp_mask))
908 continue;
909 /*
910 * no need to ask again on the same node. Pool is node rather than
911 * zone aware
912 */
913 if (zone_to_nid(zone) == node)
914 continue;
915 node = zone_to_nid(zone);
916
917 page = dequeue_huge_page_node_exact(h, node);
918 if (page)
919 return page;
920 }
921 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
922 goto retry_cpuset;
923
924 return NULL;
925 }
926
927 /* Movability of hugepages depends on migration support. */
928 static inline gfp_t htlb_alloc_mask(struct hstate *h)
929 {
930 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
931 return GFP_HIGHUSER_MOVABLE;
932 else
933 return GFP_HIGHUSER;
934 }
935
936 static struct page *dequeue_huge_page_vma(struct hstate *h,
937 struct vm_area_struct *vma,
938 unsigned long address, int avoid_reserve,
939 long chg)
940 {
941 struct page *page;
942 struct mempolicy *mpol;
943 gfp_t gfp_mask;
944 nodemask_t *nodemask;
945 int nid;
946
947 /*
948 * A child process with MAP_PRIVATE mappings created by their parent
949 * have no page reserves. This check ensures that reservations are
950 * not "stolen". The child may still get SIGKILLed
951 */
952 if (!vma_has_reserves(vma, chg) &&
953 h->free_huge_pages - h->resv_huge_pages == 0)
954 goto err;
955
956 /* If reserves cannot be used, ensure enough pages are in the pool */
957 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
958 goto err;
959
960 gfp_mask = htlb_alloc_mask(h);
961 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
962 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
963 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
964 SetPagePrivate(page);
965 h->resv_huge_pages--;
966 }
967
968 mpol_cond_put(mpol);
969 return page;
970
971 err:
972 return NULL;
973 }
974
975 /*
976 * common helper functions for hstate_next_node_to_{alloc|free}.
977 * We may have allocated or freed a huge page based on a different
978 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
979 * be outside of *nodes_allowed. Ensure that we use an allowed
980 * node for alloc or free.
981 */
982 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
983 {
984 nid = next_node_in(nid, *nodes_allowed);
985 VM_BUG_ON(nid >= MAX_NUMNODES);
986
987 return nid;
988 }
989
990 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
991 {
992 if (!node_isset(nid, *nodes_allowed))
993 nid = next_node_allowed(nid, nodes_allowed);
994 return nid;
995 }
996
997 /*
998 * returns the previously saved node ["this node"] from which to
999 * allocate a persistent huge page for the pool and advance the
1000 * next node from which to allocate, handling wrap at end of node
1001 * mask.
1002 */
1003 static int hstate_next_node_to_alloc(struct hstate *h,
1004 nodemask_t *nodes_allowed)
1005 {
1006 int nid;
1007
1008 VM_BUG_ON(!nodes_allowed);
1009
1010 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1011 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1012
1013 return nid;
1014 }
1015
1016 /*
1017 * helper for free_pool_huge_page() - return the previously saved
1018 * node ["this node"] from which to free a huge page. Advance the
1019 * next node id whether or not we find a free huge page to free so
1020 * that the next attempt to free addresses the next node.
1021 */
1022 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1023 {
1024 int nid;
1025
1026 VM_BUG_ON(!nodes_allowed);
1027
1028 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1029 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1030
1031 return nid;
1032 }
1033
1034 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1035 for (nr_nodes = nodes_weight(*mask); \
1036 nr_nodes > 0 && \
1037 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1038 nr_nodes--)
1039
1040 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1041 for (nr_nodes = nodes_weight(*mask); \
1042 nr_nodes > 0 && \
1043 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1044 nr_nodes--)
1045
1046 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1047 static void destroy_compound_gigantic_page(struct page *page,
1048 unsigned int order)
1049 {
1050 int i;
1051 int nr_pages = 1 << order;
1052 struct page *p = page + 1;
1053
1054 atomic_set(compound_mapcount_ptr(page), 0);
1055 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1056 clear_compound_head(p);
1057 set_page_refcounted(p);
1058 }
1059
1060 set_compound_order(page, 0);
1061 __ClearPageHead(page);
1062 }
1063
1064 static void free_gigantic_page(struct page *page, unsigned int order)
1065 {
1066 free_contig_range(page_to_pfn(page), 1 << order);
1067 }
1068
1069 static int __alloc_gigantic_page(unsigned long start_pfn,
1070 unsigned long nr_pages, gfp_t gfp_mask)
1071 {
1072 unsigned long end_pfn = start_pfn + nr_pages;
1073 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1074 gfp_mask);
1075 }
1076
1077 static bool pfn_range_valid_gigantic(struct zone *z,
1078 unsigned long start_pfn, unsigned long nr_pages)
1079 {
1080 unsigned long i, end_pfn = start_pfn + nr_pages;
1081 struct page *page;
1082
1083 for (i = start_pfn; i < end_pfn; i++) {
1084 if (!pfn_valid(i))
1085 return false;
1086
1087 page = pfn_to_page(i);
1088
1089 if (page_zone(page) != z)
1090 return false;
1091
1092 if (PageReserved(page))
1093 return false;
1094
1095 if (page_count(page) > 0)
1096 return false;
1097
1098 if (PageHuge(page))
1099 return false;
1100 }
1101
1102 return true;
1103 }
1104
1105 static bool zone_spans_last_pfn(const struct zone *zone,
1106 unsigned long start_pfn, unsigned long nr_pages)
1107 {
1108 unsigned long last_pfn = start_pfn + nr_pages - 1;
1109 return zone_spans_pfn(zone, last_pfn);
1110 }
1111
1112 static struct page *alloc_gigantic_page(int nid, struct hstate *h)
1113 {
1114 unsigned int order = huge_page_order(h);
1115 unsigned long nr_pages = 1 << order;
1116 unsigned long ret, pfn, flags;
1117 struct zonelist *zonelist;
1118 struct zone *zone;
1119 struct zoneref *z;
1120 gfp_t gfp_mask;
1121
1122 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1123 zonelist = node_zonelist(nid, gfp_mask);
1124 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), NULL) {
1125 spin_lock_irqsave(&zone->lock, flags);
1126
1127 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1128 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1129 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1130 /*
1131 * We release the zone lock here because
1132 * alloc_contig_range() will also lock the zone
1133 * at some point. If there's an allocation
1134 * spinning on this lock, it may win the race
1135 * and cause alloc_contig_range() to fail...
1136 */
1137 spin_unlock_irqrestore(&zone->lock, flags);
1138 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1139 if (!ret)
1140 return pfn_to_page(pfn);
1141 spin_lock_irqsave(&zone->lock, flags);
1142 }
1143 pfn += nr_pages;
1144 }
1145
1146 spin_unlock_irqrestore(&zone->lock, flags);
1147 }
1148
1149 return NULL;
1150 }
1151
1152 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1153 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1154
1155 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1156 {
1157 struct page *page;
1158
1159 page = alloc_gigantic_page(nid, h);
1160 if (page) {
1161 prep_compound_gigantic_page(page, huge_page_order(h));
1162 prep_new_huge_page(h, page, nid);
1163 }
1164
1165 return page;
1166 }
1167
1168 static int alloc_fresh_gigantic_page(struct hstate *h,
1169 nodemask_t *nodes_allowed)
1170 {
1171 struct page *page = NULL;
1172 int nr_nodes, node;
1173
1174 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1175 page = alloc_fresh_gigantic_page_node(h, node);
1176 if (page)
1177 return 1;
1178 }
1179
1180 return 0;
1181 }
1182
1183 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1184 static inline bool gigantic_page_supported(void) { return false; }
1185 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1186 static inline void destroy_compound_gigantic_page(struct page *page,
1187 unsigned int order) { }
1188 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1189 nodemask_t *nodes_allowed) { return 0; }
1190 #endif
1191
1192 static void update_and_free_page(struct hstate *h, struct page *page)
1193 {
1194 int i;
1195
1196 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1197 return;
1198
1199 h->nr_huge_pages--;
1200 h->nr_huge_pages_node[page_to_nid(page)]--;
1201 for (i = 0; i < pages_per_huge_page(h); i++) {
1202 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1203 1 << PG_referenced | 1 << PG_dirty |
1204 1 << PG_active | 1 << PG_private |
1205 1 << PG_writeback);
1206 }
1207 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1208 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1209 set_page_refcounted(page);
1210 if (hstate_is_gigantic(h)) {
1211 destroy_compound_gigantic_page(page, huge_page_order(h));
1212 free_gigantic_page(page, huge_page_order(h));
1213 } else {
1214 __free_pages(page, huge_page_order(h));
1215 }
1216 }
1217
1218 struct hstate *size_to_hstate(unsigned long size)
1219 {
1220 struct hstate *h;
1221
1222 for_each_hstate(h) {
1223 if (huge_page_size(h) == size)
1224 return h;
1225 }
1226 return NULL;
1227 }
1228
1229 /*
1230 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1231 * to hstate->hugepage_activelist.)
1232 *
1233 * This function can be called for tail pages, but never returns true for them.
1234 */
1235 bool page_huge_active(struct page *page)
1236 {
1237 VM_BUG_ON_PAGE(!PageHuge(page), page);
1238 return PageHead(page) && PagePrivate(&page[1]);
1239 }
1240
1241 /* never called for tail page */
1242 static void set_page_huge_active(struct page *page)
1243 {
1244 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1245 SetPagePrivate(&page[1]);
1246 }
1247
1248 static void clear_page_huge_active(struct page *page)
1249 {
1250 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1251 ClearPagePrivate(&page[1]);
1252 }
1253
1254 void free_huge_page(struct page *page)
1255 {
1256 /*
1257 * Can't pass hstate in here because it is called from the
1258 * compound page destructor.
1259 */
1260 struct hstate *h = page_hstate(page);
1261 int nid = page_to_nid(page);
1262 struct hugepage_subpool *spool =
1263 (struct hugepage_subpool *)page_private(page);
1264 bool restore_reserve;
1265
1266 set_page_private(page, 0);
1267 page->mapping = NULL;
1268 VM_BUG_ON_PAGE(page_count(page), page);
1269 VM_BUG_ON_PAGE(page_mapcount(page), page);
1270 restore_reserve = PagePrivate(page);
1271 ClearPagePrivate(page);
1272
1273 /*
1274 * If PagePrivate() was set on page, page allocation consumed a
1275 * reservation. If the page was associated with a subpool, there
1276 * would have been a page reserved in the subpool before allocation
1277 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1278 * reservtion, do not call hugepage_subpool_put_pages() as this will
1279 * remove the reserved page from the subpool.
1280 */
1281 if (!restore_reserve) {
1282 /*
1283 * A return code of zero implies that the subpool will be
1284 * under its minimum size if the reservation is not restored
1285 * after page is free. Therefore, force restore_reserve
1286 * operation.
1287 */
1288 if (hugepage_subpool_put_pages(spool, 1) == 0)
1289 restore_reserve = true;
1290 }
1291
1292 spin_lock(&hugetlb_lock);
1293 clear_page_huge_active(page);
1294 hugetlb_cgroup_uncharge_page(hstate_index(h),
1295 pages_per_huge_page(h), page);
1296 if (restore_reserve)
1297 h->resv_huge_pages++;
1298
1299 if (h->surplus_huge_pages_node[nid]) {
1300 /* remove the page from active list */
1301 list_del(&page->lru);
1302 update_and_free_page(h, page);
1303 h->surplus_huge_pages--;
1304 h->surplus_huge_pages_node[nid]--;
1305 } else {
1306 arch_clear_hugepage_flags(page);
1307 enqueue_huge_page(h, page);
1308 }
1309 spin_unlock(&hugetlb_lock);
1310 }
1311
1312 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1313 {
1314 INIT_LIST_HEAD(&page->lru);
1315 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1316 spin_lock(&hugetlb_lock);
1317 set_hugetlb_cgroup(page, NULL);
1318 h->nr_huge_pages++;
1319 h->nr_huge_pages_node[nid]++;
1320 spin_unlock(&hugetlb_lock);
1321 put_page(page); /* free it into the hugepage allocator */
1322 }
1323
1324 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1325 {
1326 int i;
1327 int nr_pages = 1 << order;
1328 struct page *p = page + 1;
1329
1330 /* we rely on prep_new_huge_page to set the destructor */
1331 set_compound_order(page, order);
1332 __ClearPageReserved(page);
1333 __SetPageHead(page);
1334 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1335 /*
1336 * For gigantic hugepages allocated through bootmem at
1337 * boot, it's safer to be consistent with the not-gigantic
1338 * hugepages and clear the PG_reserved bit from all tail pages
1339 * too. Otherwse drivers using get_user_pages() to access tail
1340 * pages may get the reference counting wrong if they see
1341 * PG_reserved set on a tail page (despite the head page not
1342 * having PG_reserved set). Enforcing this consistency between
1343 * head and tail pages allows drivers to optimize away a check
1344 * on the head page when they need know if put_page() is needed
1345 * after get_user_pages().
1346 */
1347 __ClearPageReserved(p);
1348 set_page_count(p, 0);
1349 set_compound_head(p, page);
1350 }
1351 atomic_set(compound_mapcount_ptr(page), -1);
1352 }
1353
1354 /*
1355 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1356 * transparent huge pages. See the PageTransHuge() documentation for more
1357 * details.
1358 */
1359 int PageHuge(struct page *page)
1360 {
1361 if (!PageCompound(page))
1362 return 0;
1363
1364 page = compound_head(page);
1365 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1366 }
1367 EXPORT_SYMBOL_GPL(PageHuge);
1368
1369 /*
1370 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1371 * normal or transparent huge pages.
1372 */
1373 int PageHeadHuge(struct page *page_head)
1374 {
1375 if (!PageHead(page_head))
1376 return 0;
1377
1378 return get_compound_page_dtor(page_head) == free_huge_page;
1379 }
1380
1381 pgoff_t __basepage_index(struct page *page)
1382 {
1383 struct page *page_head = compound_head(page);
1384 pgoff_t index = page_index(page_head);
1385 unsigned long compound_idx;
1386
1387 if (!PageHuge(page_head))
1388 return page_index(page);
1389
1390 if (compound_order(page_head) >= MAX_ORDER)
1391 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1392 else
1393 compound_idx = page - page_head;
1394
1395 return (index << compound_order(page_head)) + compound_idx;
1396 }
1397
1398 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1399 {
1400 struct page *page;
1401
1402 page = __alloc_pages_node(nid,
1403 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1404 __GFP_RETRY_MAYFAIL|__GFP_NOWARN,
1405 huge_page_order(h));
1406 if (page) {
1407 prep_new_huge_page(h, page, nid);
1408 }
1409
1410 return page;
1411 }
1412
1413 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1414 {
1415 struct page *page;
1416 int nr_nodes, node;
1417 int ret = 0;
1418
1419 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1420 page = alloc_fresh_huge_page_node(h, node);
1421 if (page) {
1422 ret = 1;
1423 break;
1424 }
1425 }
1426
1427 if (ret)
1428 count_vm_event(HTLB_BUDDY_PGALLOC);
1429 else
1430 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1431
1432 return ret;
1433 }
1434
1435 /*
1436 * Free huge page from pool from next node to free.
1437 * Attempt to keep persistent huge pages more or less
1438 * balanced over allowed nodes.
1439 * Called with hugetlb_lock locked.
1440 */
1441 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1442 bool acct_surplus)
1443 {
1444 int nr_nodes, node;
1445 int ret = 0;
1446
1447 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1448 /*
1449 * If we're returning unused surplus pages, only examine
1450 * nodes with surplus pages.
1451 */
1452 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1453 !list_empty(&h->hugepage_freelists[node])) {
1454 struct page *page =
1455 list_entry(h->hugepage_freelists[node].next,
1456 struct page, lru);
1457 list_del(&page->lru);
1458 h->free_huge_pages--;
1459 h->free_huge_pages_node[node]--;
1460 if (acct_surplus) {
1461 h->surplus_huge_pages--;
1462 h->surplus_huge_pages_node[node]--;
1463 }
1464 update_and_free_page(h, page);
1465 ret = 1;
1466 break;
1467 }
1468 }
1469
1470 return ret;
1471 }
1472
1473 /*
1474 * Dissolve a given free hugepage into free buddy pages. This function does
1475 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1476 * number of free hugepages would be reduced below the number of reserved
1477 * hugepages.
1478 */
1479 int dissolve_free_huge_page(struct page *page)
1480 {
1481 int rc = 0;
1482
1483 spin_lock(&hugetlb_lock);
1484 if (PageHuge(page) && !page_count(page)) {
1485 struct page *head = compound_head(page);
1486 struct hstate *h = page_hstate(head);
1487 int nid = page_to_nid(head);
1488 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1489 rc = -EBUSY;
1490 goto out;
1491 }
1492 /*
1493 * Move PageHWPoison flag from head page to the raw error page,
1494 * which makes any subpages rather than the error page reusable.
1495 */
1496 if (PageHWPoison(head) && page != head) {
1497 SetPageHWPoison(page);
1498 ClearPageHWPoison(head);
1499 }
1500 list_del(&head->lru);
1501 h->free_huge_pages--;
1502 h->free_huge_pages_node[nid]--;
1503 h->max_huge_pages--;
1504 update_and_free_page(h, head);
1505 }
1506 out:
1507 spin_unlock(&hugetlb_lock);
1508 return rc;
1509 }
1510
1511 /*
1512 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1513 * make specified memory blocks removable from the system.
1514 * Note that this will dissolve a free gigantic hugepage completely, if any
1515 * part of it lies within the given range.
1516 * Also note that if dissolve_free_huge_page() returns with an error, all
1517 * free hugepages that were dissolved before that error are lost.
1518 */
1519 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1520 {
1521 unsigned long pfn;
1522 struct page *page;
1523 int rc = 0;
1524
1525 if (!hugepages_supported())
1526 return rc;
1527
1528 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1529 page = pfn_to_page(pfn);
1530 if (PageHuge(page) && !page_count(page)) {
1531 rc = dissolve_free_huge_page(page);
1532 if (rc)
1533 break;
1534 }
1535 }
1536
1537 return rc;
1538 }
1539
1540 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1541 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1542 {
1543 int order = huge_page_order(h);
1544
1545 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1546 if (nid == NUMA_NO_NODE)
1547 nid = numa_mem_id();
1548 return __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1549 }
1550
1551 static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask,
1552 int nid, nodemask_t *nmask)
1553 {
1554 struct page *page;
1555 unsigned int r_nid;
1556
1557 if (hstate_is_gigantic(h))
1558 return NULL;
1559
1560 /*
1561 * Assume we will successfully allocate the surplus page to
1562 * prevent racing processes from causing the surplus to exceed
1563 * overcommit
1564 *
1565 * This however introduces a different race, where a process B
1566 * tries to grow the static hugepage pool while alloc_pages() is
1567 * called by process A. B will only examine the per-node
1568 * counters in determining if surplus huge pages can be
1569 * converted to normal huge pages in adjust_pool_surplus(). A
1570 * won't be able to increment the per-node counter, until the
1571 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1572 * no more huge pages can be converted from surplus to normal
1573 * state (and doesn't try to convert again). Thus, we have a
1574 * case where a surplus huge page exists, the pool is grown, and
1575 * the surplus huge page still exists after, even though it
1576 * should just have been converted to a normal huge page. This
1577 * does not leak memory, though, as the hugepage will be freed
1578 * once it is out of use. It also does not allow the counters to
1579 * go out of whack in adjust_pool_surplus() as we don't modify
1580 * the node values until we've gotten the hugepage and only the
1581 * per-node value is checked there.
1582 */
1583 spin_lock(&hugetlb_lock);
1584 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1585 spin_unlock(&hugetlb_lock);
1586 return NULL;
1587 } else {
1588 h->nr_huge_pages++;
1589 h->surplus_huge_pages++;
1590 }
1591 spin_unlock(&hugetlb_lock);
1592
1593 page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask);
1594
1595 spin_lock(&hugetlb_lock);
1596 if (page) {
1597 INIT_LIST_HEAD(&page->lru);
1598 r_nid = page_to_nid(page);
1599 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1600 set_hugetlb_cgroup(page, NULL);
1601 /*
1602 * We incremented the global counters already
1603 */
1604 h->nr_huge_pages_node[r_nid]++;
1605 h->surplus_huge_pages_node[r_nid]++;
1606 __count_vm_event(HTLB_BUDDY_PGALLOC);
1607 } else {
1608 h->nr_huge_pages--;
1609 h->surplus_huge_pages--;
1610 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1611 }
1612 spin_unlock(&hugetlb_lock);
1613
1614 return page;
1615 }
1616
1617 /*
1618 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1619 */
1620 static
1621 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1622 struct vm_area_struct *vma, unsigned long addr)
1623 {
1624 struct page *page;
1625 struct mempolicy *mpol;
1626 gfp_t gfp_mask = htlb_alloc_mask(h);
1627 int nid;
1628 nodemask_t *nodemask;
1629
1630 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1631 page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask);
1632 mpol_cond_put(mpol);
1633
1634 return page;
1635 }
1636
1637 /*
1638 * This allocation function is useful in the context where vma is irrelevant.
1639 * E.g. soft-offlining uses this function because it only cares physical
1640 * address of error page.
1641 */
1642 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1643 {
1644 gfp_t gfp_mask = htlb_alloc_mask(h);
1645 struct page *page = NULL;
1646
1647 if (nid != NUMA_NO_NODE)
1648 gfp_mask |= __GFP_THISNODE;
1649
1650 spin_lock(&hugetlb_lock);
1651 if (h->free_huge_pages - h->resv_huge_pages > 0)
1652 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1653 spin_unlock(&hugetlb_lock);
1654
1655 if (!page)
1656 page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL);
1657
1658 return page;
1659 }
1660
1661
1662 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1663 nodemask_t *nmask)
1664 {
1665 gfp_t gfp_mask = htlb_alloc_mask(h);
1666
1667 spin_lock(&hugetlb_lock);
1668 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1669 struct page *page;
1670
1671 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1672 if (page) {
1673 spin_unlock(&hugetlb_lock);
1674 return page;
1675 }
1676 }
1677 spin_unlock(&hugetlb_lock);
1678
1679 /* No reservations, try to overcommit */
1680
1681 return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask);
1682 }
1683
1684 /*
1685 * Increase the hugetlb pool such that it can accommodate a reservation
1686 * of size 'delta'.
1687 */
1688 static int gather_surplus_pages(struct hstate *h, int delta)
1689 {
1690 struct list_head surplus_list;
1691 struct page *page, *tmp;
1692 int ret, i;
1693 int needed, allocated;
1694 bool alloc_ok = true;
1695
1696 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1697 if (needed <= 0) {
1698 h->resv_huge_pages += delta;
1699 return 0;
1700 }
1701
1702 allocated = 0;
1703 INIT_LIST_HEAD(&surplus_list);
1704
1705 ret = -ENOMEM;
1706 retry:
1707 spin_unlock(&hugetlb_lock);
1708 for (i = 0; i < needed; i++) {
1709 page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h),
1710 NUMA_NO_NODE, NULL);
1711 if (!page) {
1712 alloc_ok = false;
1713 break;
1714 }
1715 list_add(&page->lru, &surplus_list);
1716 cond_resched();
1717 }
1718 allocated += i;
1719
1720 /*
1721 * After retaking hugetlb_lock, we need to recalculate 'needed'
1722 * because either resv_huge_pages or free_huge_pages may have changed.
1723 */
1724 spin_lock(&hugetlb_lock);
1725 needed = (h->resv_huge_pages + delta) -
1726 (h->free_huge_pages + allocated);
1727 if (needed > 0) {
1728 if (alloc_ok)
1729 goto retry;
1730 /*
1731 * We were not able to allocate enough pages to
1732 * satisfy the entire reservation so we free what
1733 * we've allocated so far.
1734 */
1735 goto free;
1736 }
1737 /*
1738 * The surplus_list now contains _at_least_ the number of extra pages
1739 * needed to accommodate the reservation. Add the appropriate number
1740 * of pages to the hugetlb pool and free the extras back to the buddy
1741 * allocator. Commit the entire reservation here to prevent another
1742 * process from stealing the pages as they are added to the pool but
1743 * before they are reserved.
1744 */
1745 needed += allocated;
1746 h->resv_huge_pages += delta;
1747 ret = 0;
1748
1749 /* Free the needed pages to the hugetlb pool */
1750 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1751 if ((--needed) < 0)
1752 break;
1753 /*
1754 * This page is now managed by the hugetlb allocator and has
1755 * no users -- drop the buddy allocator's reference.
1756 */
1757 put_page_testzero(page);
1758 VM_BUG_ON_PAGE(page_count(page), page);
1759 enqueue_huge_page(h, page);
1760 }
1761 free:
1762 spin_unlock(&hugetlb_lock);
1763
1764 /* Free unnecessary surplus pages to the buddy allocator */
1765 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1766 put_page(page);
1767 spin_lock(&hugetlb_lock);
1768
1769 return ret;
1770 }
1771
1772 /*
1773 * This routine has two main purposes:
1774 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1775 * in unused_resv_pages. This corresponds to the prior adjustments made
1776 * to the associated reservation map.
1777 * 2) Free any unused surplus pages that may have been allocated to satisfy
1778 * the reservation. As many as unused_resv_pages may be freed.
1779 *
1780 * Called with hugetlb_lock held. However, the lock could be dropped (and
1781 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1782 * we must make sure nobody else can claim pages we are in the process of
1783 * freeing. Do this by ensuring resv_huge_page always is greater than the
1784 * number of huge pages we plan to free when dropping the lock.
1785 */
1786 static void return_unused_surplus_pages(struct hstate *h,
1787 unsigned long unused_resv_pages)
1788 {
1789 unsigned long nr_pages;
1790
1791 /* Cannot return gigantic pages currently */
1792 if (hstate_is_gigantic(h))
1793 goto out;
1794
1795 /*
1796 * Part (or even all) of the reservation could have been backed
1797 * by pre-allocated pages. Only free surplus pages.
1798 */
1799 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1800
1801 /*
1802 * We want to release as many surplus pages as possible, spread
1803 * evenly across all nodes with memory. Iterate across these nodes
1804 * until we can no longer free unreserved surplus pages. This occurs
1805 * when the nodes with surplus pages have no free pages.
1806 * free_pool_huge_page() will balance the the freed pages across the
1807 * on-line nodes with memory and will handle the hstate accounting.
1808 *
1809 * Note that we decrement resv_huge_pages as we free the pages. If
1810 * we drop the lock, resv_huge_pages will still be sufficiently large
1811 * to cover subsequent pages we may free.
1812 */
1813 while (nr_pages--) {
1814 h->resv_huge_pages--;
1815 unused_resv_pages--;
1816 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1817 goto out;
1818 cond_resched_lock(&hugetlb_lock);
1819 }
1820
1821 out:
1822 /* Fully uncommit the reservation */
1823 h->resv_huge_pages -= unused_resv_pages;
1824 }
1825
1826
1827 /*
1828 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1829 * are used by the huge page allocation routines to manage reservations.
1830 *
1831 * vma_needs_reservation is called to determine if the huge page at addr
1832 * within the vma has an associated reservation. If a reservation is
1833 * needed, the value 1 is returned. The caller is then responsible for
1834 * managing the global reservation and subpool usage counts. After
1835 * the huge page has been allocated, vma_commit_reservation is called
1836 * to add the page to the reservation map. If the page allocation fails,
1837 * the reservation must be ended instead of committed. vma_end_reservation
1838 * is called in such cases.
1839 *
1840 * In the normal case, vma_commit_reservation returns the same value
1841 * as the preceding vma_needs_reservation call. The only time this
1842 * is not the case is if a reserve map was changed between calls. It
1843 * is the responsibility of the caller to notice the difference and
1844 * take appropriate action.
1845 *
1846 * vma_add_reservation is used in error paths where a reservation must
1847 * be restored when a newly allocated huge page must be freed. It is
1848 * to be called after calling vma_needs_reservation to determine if a
1849 * reservation exists.
1850 */
1851 enum vma_resv_mode {
1852 VMA_NEEDS_RESV,
1853 VMA_COMMIT_RESV,
1854 VMA_END_RESV,
1855 VMA_ADD_RESV,
1856 };
1857 static long __vma_reservation_common(struct hstate *h,
1858 struct vm_area_struct *vma, unsigned long addr,
1859 enum vma_resv_mode mode)
1860 {
1861 struct resv_map *resv;
1862 pgoff_t idx;
1863 long ret;
1864
1865 resv = vma_resv_map(vma);
1866 if (!resv)
1867 return 1;
1868
1869 idx = vma_hugecache_offset(h, vma, addr);
1870 switch (mode) {
1871 case VMA_NEEDS_RESV:
1872 ret = region_chg(resv, idx, idx + 1);
1873 break;
1874 case VMA_COMMIT_RESV:
1875 ret = region_add(resv, idx, idx + 1);
1876 break;
1877 case VMA_END_RESV:
1878 region_abort(resv, idx, idx + 1);
1879 ret = 0;
1880 break;
1881 case VMA_ADD_RESV:
1882 if (vma->vm_flags & VM_MAYSHARE)
1883 ret = region_add(resv, idx, idx + 1);
1884 else {
1885 region_abort(resv, idx, idx + 1);
1886 ret = region_del(resv, idx, idx + 1);
1887 }
1888 break;
1889 default:
1890 BUG();
1891 }
1892
1893 if (vma->vm_flags & VM_MAYSHARE)
1894 return ret;
1895 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1896 /*
1897 * In most cases, reserves always exist for private mappings.
1898 * However, a file associated with mapping could have been
1899 * hole punched or truncated after reserves were consumed.
1900 * As subsequent fault on such a range will not use reserves.
1901 * Subtle - The reserve map for private mappings has the
1902 * opposite meaning than that of shared mappings. If NO
1903 * entry is in the reserve map, it means a reservation exists.
1904 * If an entry exists in the reserve map, it means the
1905 * reservation has already been consumed. As a result, the
1906 * return value of this routine is the opposite of the
1907 * value returned from reserve map manipulation routines above.
1908 */
1909 if (ret)
1910 return 0;
1911 else
1912 return 1;
1913 }
1914 else
1915 return ret < 0 ? ret : 0;
1916 }
1917
1918 static long vma_needs_reservation(struct hstate *h,
1919 struct vm_area_struct *vma, unsigned long addr)
1920 {
1921 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1922 }
1923
1924 static long vma_commit_reservation(struct hstate *h,
1925 struct vm_area_struct *vma, unsigned long addr)
1926 {
1927 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1928 }
1929
1930 static void vma_end_reservation(struct hstate *h,
1931 struct vm_area_struct *vma, unsigned long addr)
1932 {
1933 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1934 }
1935
1936 static long vma_add_reservation(struct hstate *h,
1937 struct vm_area_struct *vma, unsigned long addr)
1938 {
1939 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1940 }
1941
1942 /*
1943 * This routine is called to restore a reservation on error paths. In the
1944 * specific error paths, a huge page was allocated (via alloc_huge_page)
1945 * and is about to be freed. If a reservation for the page existed,
1946 * alloc_huge_page would have consumed the reservation and set PagePrivate
1947 * in the newly allocated page. When the page is freed via free_huge_page,
1948 * the global reservation count will be incremented if PagePrivate is set.
1949 * However, free_huge_page can not adjust the reserve map. Adjust the
1950 * reserve map here to be consistent with global reserve count adjustments
1951 * to be made by free_huge_page.
1952 */
1953 static void restore_reserve_on_error(struct hstate *h,
1954 struct vm_area_struct *vma, unsigned long address,
1955 struct page *page)
1956 {
1957 if (unlikely(PagePrivate(page))) {
1958 long rc = vma_needs_reservation(h, vma, address);
1959
1960 if (unlikely(rc < 0)) {
1961 /*
1962 * Rare out of memory condition in reserve map
1963 * manipulation. Clear PagePrivate so that
1964 * global reserve count will not be incremented
1965 * by free_huge_page. This will make it appear
1966 * as though the reservation for this page was
1967 * consumed. This may prevent the task from
1968 * faulting in the page at a later time. This
1969 * is better than inconsistent global huge page
1970 * accounting of reserve counts.
1971 */
1972 ClearPagePrivate(page);
1973 } else if (rc) {
1974 rc = vma_add_reservation(h, vma, address);
1975 if (unlikely(rc < 0))
1976 /*
1977 * See above comment about rare out of
1978 * memory condition.
1979 */
1980 ClearPagePrivate(page);
1981 } else
1982 vma_end_reservation(h, vma, address);
1983 }
1984 }
1985
1986 struct page *alloc_huge_page(struct vm_area_struct *vma,
1987 unsigned long addr, int avoid_reserve)
1988 {
1989 struct hugepage_subpool *spool = subpool_vma(vma);
1990 struct hstate *h = hstate_vma(vma);
1991 struct page *page;
1992 long map_chg, map_commit;
1993 long gbl_chg;
1994 int ret, idx;
1995 struct hugetlb_cgroup *h_cg;
1996
1997 idx = hstate_index(h);
1998 /*
1999 * Examine the region/reserve map to determine if the process
2000 * has a reservation for the page to be allocated. A return
2001 * code of zero indicates a reservation exists (no change).
2002 */
2003 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2004 if (map_chg < 0)
2005 return ERR_PTR(-ENOMEM);
2006
2007 /*
2008 * Processes that did not create the mapping will have no
2009 * reserves as indicated by the region/reserve map. Check
2010 * that the allocation will not exceed the subpool limit.
2011 * Allocations for MAP_NORESERVE mappings also need to be
2012 * checked against any subpool limit.
2013 */
2014 if (map_chg || avoid_reserve) {
2015 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2016 if (gbl_chg < 0) {
2017 vma_end_reservation(h, vma, addr);
2018 return ERR_PTR(-ENOSPC);
2019 }
2020
2021 /*
2022 * Even though there was no reservation in the region/reserve
2023 * map, there could be reservations associated with the
2024 * subpool that can be used. This would be indicated if the
2025 * return value of hugepage_subpool_get_pages() is zero.
2026 * However, if avoid_reserve is specified we still avoid even
2027 * the subpool reservations.
2028 */
2029 if (avoid_reserve)
2030 gbl_chg = 1;
2031 }
2032
2033 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2034 if (ret)
2035 goto out_subpool_put;
2036
2037 spin_lock(&hugetlb_lock);
2038 /*
2039 * glb_chg is passed to indicate whether or not a page must be taken
2040 * from the global free pool (global change). gbl_chg == 0 indicates
2041 * a reservation exists for the allocation.
2042 */
2043 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2044 if (!page) {
2045 spin_unlock(&hugetlb_lock);
2046 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2047 if (!page)
2048 goto out_uncharge_cgroup;
2049 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2050 SetPagePrivate(page);
2051 h->resv_huge_pages--;
2052 }
2053 spin_lock(&hugetlb_lock);
2054 list_move(&page->lru, &h->hugepage_activelist);
2055 /* Fall through */
2056 }
2057 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2058 spin_unlock(&hugetlb_lock);
2059
2060 set_page_private(page, (unsigned long)spool);
2061
2062 map_commit = vma_commit_reservation(h, vma, addr);
2063 if (unlikely(map_chg > map_commit)) {
2064 /*
2065 * The page was added to the reservation map between
2066 * vma_needs_reservation and vma_commit_reservation.
2067 * This indicates a race with hugetlb_reserve_pages.
2068 * Adjust for the subpool count incremented above AND
2069 * in hugetlb_reserve_pages for the same page. Also,
2070 * the reservation count added in hugetlb_reserve_pages
2071 * no longer applies.
2072 */
2073 long rsv_adjust;
2074
2075 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2076 hugetlb_acct_memory(h, -rsv_adjust);
2077 }
2078 return page;
2079
2080 out_uncharge_cgroup:
2081 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2082 out_subpool_put:
2083 if (map_chg || avoid_reserve)
2084 hugepage_subpool_put_pages(spool, 1);
2085 vma_end_reservation(h, vma, addr);
2086 return ERR_PTR(-ENOSPC);
2087 }
2088
2089 /*
2090 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2091 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2092 * where no ERR_VALUE is expected to be returned.
2093 */
2094 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2095 unsigned long addr, int avoid_reserve)
2096 {
2097 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2098 if (IS_ERR(page))
2099 page = NULL;
2100 return page;
2101 }
2102
2103 int alloc_bootmem_huge_page(struct hstate *h)
2104 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2105 int __alloc_bootmem_huge_page(struct hstate *h)
2106 {
2107 struct huge_bootmem_page *m;
2108 int nr_nodes, node;
2109
2110 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2111 void *addr;
2112
2113 addr = memblock_virt_alloc_try_nid_nopanic(
2114 huge_page_size(h), huge_page_size(h),
2115 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2116 if (addr) {
2117 /*
2118 * Use the beginning of the huge page to store the
2119 * huge_bootmem_page struct (until gather_bootmem
2120 * puts them into the mem_map).
2121 */
2122 m = addr;
2123 goto found;
2124 }
2125 }
2126 return 0;
2127
2128 found:
2129 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2130 /* Put them into a private list first because mem_map is not up yet */
2131 list_add(&m->list, &huge_boot_pages);
2132 m->hstate = h;
2133 return 1;
2134 }
2135
2136 static void __init prep_compound_huge_page(struct page *page,
2137 unsigned int order)
2138 {
2139 if (unlikely(order > (MAX_ORDER - 1)))
2140 prep_compound_gigantic_page(page, order);
2141 else
2142 prep_compound_page(page, order);
2143 }
2144
2145 /* Put bootmem huge pages into the standard lists after mem_map is up */
2146 static void __init gather_bootmem_prealloc(void)
2147 {
2148 struct huge_bootmem_page *m;
2149
2150 list_for_each_entry(m, &huge_boot_pages, list) {
2151 struct hstate *h = m->hstate;
2152 struct page *page;
2153
2154 #ifdef CONFIG_HIGHMEM
2155 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2156 memblock_free_late(__pa(m),
2157 sizeof(struct huge_bootmem_page));
2158 #else
2159 page = virt_to_page(m);
2160 #endif
2161 WARN_ON(page_count(page) != 1);
2162 prep_compound_huge_page(page, h->order);
2163 WARN_ON(PageReserved(page));
2164 prep_new_huge_page(h, page, page_to_nid(page));
2165 /*
2166 * If we had gigantic hugepages allocated at boot time, we need
2167 * to restore the 'stolen' pages to totalram_pages in order to
2168 * fix confusing memory reports from free(1) and another
2169 * side-effects, like CommitLimit going negative.
2170 */
2171 if (hstate_is_gigantic(h))
2172 adjust_managed_page_count(page, 1 << h->order);
2173 cond_resched();
2174 }
2175 }
2176
2177 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2178 {
2179 unsigned long i;
2180
2181 for (i = 0; i < h->max_huge_pages; ++i) {
2182 if (hstate_is_gigantic(h)) {
2183 if (!alloc_bootmem_huge_page(h))
2184 break;
2185 } else if (!alloc_fresh_huge_page(h,
2186 &node_states[N_MEMORY]))
2187 break;
2188 cond_resched();
2189 }
2190 if (i < h->max_huge_pages) {
2191 char buf[32];
2192
2193 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2194 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2195 h->max_huge_pages, buf, i);
2196 h->max_huge_pages = i;
2197 }
2198 }
2199
2200 static void __init hugetlb_init_hstates(void)
2201 {
2202 struct hstate *h;
2203
2204 for_each_hstate(h) {
2205 if (minimum_order > huge_page_order(h))
2206 minimum_order = huge_page_order(h);
2207
2208 /* oversize hugepages were init'ed in early boot */
2209 if (!hstate_is_gigantic(h))
2210 hugetlb_hstate_alloc_pages(h);
2211 }
2212 VM_BUG_ON(minimum_order == UINT_MAX);
2213 }
2214
2215 static void __init report_hugepages(void)
2216 {
2217 struct hstate *h;
2218
2219 for_each_hstate(h) {
2220 char buf[32];
2221
2222 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2223 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2224 buf, h->free_huge_pages);
2225 }
2226 }
2227
2228 #ifdef CONFIG_HIGHMEM
2229 static void try_to_free_low(struct hstate *h, unsigned long count,
2230 nodemask_t *nodes_allowed)
2231 {
2232 int i;
2233
2234 if (hstate_is_gigantic(h))
2235 return;
2236
2237 for_each_node_mask(i, *nodes_allowed) {
2238 struct page *page, *next;
2239 struct list_head *freel = &h->hugepage_freelists[i];
2240 list_for_each_entry_safe(page, next, freel, lru) {
2241 if (count >= h->nr_huge_pages)
2242 return;
2243 if (PageHighMem(page))
2244 continue;
2245 list_del(&page->lru);
2246 update_and_free_page(h, page);
2247 h->free_huge_pages--;
2248 h->free_huge_pages_node[page_to_nid(page)]--;
2249 }
2250 }
2251 }
2252 #else
2253 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2254 nodemask_t *nodes_allowed)
2255 {
2256 }
2257 #endif
2258
2259 /*
2260 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2261 * balanced by operating on them in a round-robin fashion.
2262 * Returns 1 if an adjustment was made.
2263 */
2264 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2265 int delta)
2266 {
2267 int nr_nodes, node;
2268
2269 VM_BUG_ON(delta != -1 && delta != 1);
2270
2271 if (delta < 0) {
2272 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2273 if (h->surplus_huge_pages_node[node])
2274 goto found;
2275 }
2276 } else {
2277 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2278 if (h->surplus_huge_pages_node[node] <
2279 h->nr_huge_pages_node[node])
2280 goto found;
2281 }
2282 }
2283 return 0;
2284
2285 found:
2286 h->surplus_huge_pages += delta;
2287 h->surplus_huge_pages_node[node] += delta;
2288 return 1;
2289 }
2290
2291 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2292 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2293 nodemask_t *nodes_allowed)
2294 {
2295 unsigned long min_count, ret;
2296
2297 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2298 return h->max_huge_pages;
2299
2300 /*
2301 * Increase the pool size
2302 * First take pages out of surplus state. Then make up the
2303 * remaining difference by allocating fresh huge pages.
2304 *
2305 * We might race with __alloc_buddy_huge_page() here and be unable
2306 * to convert a surplus huge page to a normal huge page. That is
2307 * not critical, though, it just means the overall size of the
2308 * pool might be one hugepage larger than it needs to be, but
2309 * within all the constraints specified by the sysctls.
2310 */
2311 spin_lock(&hugetlb_lock);
2312 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2313 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2314 break;
2315 }
2316
2317 while (count > persistent_huge_pages(h)) {
2318 /*
2319 * If this allocation races such that we no longer need the
2320 * page, free_huge_page will handle it by freeing the page
2321 * and reducing the surplus.
2322 */
2323 spin_unlock(&hugetlb_lock);
2324
2325 /* yield cpu to avoid soft lockup */
2326 cond_resched();
2327
2328 if (hstate_is_gigantic(h))
2329 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2330 else
2331 ret = alloc_fresh_huge_page(h, nodes_allowed);
2332 spin_lock(&hugetlb_lock);
2333 if (!ret)
2334 goto out;
2335
2336 /* Bail for signals. Probably ctrl-c from user */
2337 if (signal_pending(current))
2338 goto out;
2339 }
2340
2341 /*
2342 * Decrease the pool size
2343 * First return free pages to the buddy allocator (being careful
2344 * to keep enough around to satisfy reservations). Then place
2345 * pages into surplus state as needed so the pool will shrink
2346 * to the desired size as pages become free.
2347 *
2348 * By placing pages into the surplus state independent of the
2349 * overcommit value, we are allowing the surplus pool size to
2350 * exceed overcommit. There are few sane options here. Since
2351 * __alloc_buddy_huge_page() is checking the global counter,
2352 * though, we'll note that we're not allowed to exceed surplus
2353 * and won't grow the pool anywhere else. Not until one of the
2354 * sysctls are changed, or the surplus pages go out of use.
2355 */
2356 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2357 min_count = max(count, min_count);
2358 try_to_free_low(h, min_count, nodes_allowed);
2359 while (min_count < persistent_huge_pages(h)) {
2360 if (!free_pool_huge_page(h, nodes_allowed, 0))
2361 break;
2362 cond_resched_lock(&hugetlb_lock);
2363 }
2364 while (count < persistent_huge_pages(h)) {
2365 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2366 break;
2367 }
2368 out:
2369 ret = persistent_huge_pages(h);
2370 spin_unlock(&hugetlb_lock);
2371 return ret;
2372 }
2373
2374 #define HSTATE_ATTR_RO(_name) \
2375 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2376
2377 #define HSTATE_ATTR(_name) \
2378 static struct kobj_attribute _name##_attr = \
2379 __ATTR(_name, 0644, _name##_show, _name##_store)
2380
2381 static struct kobject *hugepages_kobj;
2382 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2383
2384 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2385
2386 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2387 {
2388 int i;
2389
2390 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2391 if (hstate_kobjs[i] == kobj) {
2392 if (nidp)
2393 *nidp = NUMA_NO_NODE;
2394 return &hstates[i];
2395 }
2396
2397 return kobj_to_node_hstate(kobj, nidp);
2398 }
2399
2400 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2401 struct kobj_attribute *attr, char *buf)
2402 {
2403 struct hstate *h;
2404 unsigned long nr_huge_pages;
2405 int nid;
2406
2407 h = kobj_to_hstate(kobj, &nid);
2408 if (nid == NUMA_NO_NODE)
2409 nr_huge_pages = h->nr_huge_pages;
2410 else
2411 nr_huge_pages = h->nr_huge_pages_node[nid];
2412
2413 return sprintf(buf, "%lu\n", nr_huge_pages);
2414 }
2415
2416 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2417 struct hstate *h, int nid,
2418 unsigned long count, size_t len)
2419 {
2420 int err;
2421 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2422
2423 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2424 err = -EINVAL;
2425 goto out;
2426 }
2427
2428 if (nid == NUMA_NO_NODE) {
2429 /*
2430 * global hstate attribute
2431 */
2432 if (!(obey_mempolicy &&
2433 init_nodemask_of_mempolicy(nodes_allowed))) {
2434 NODEMASK_FREE(nodes_allowed);
2435 nodes_allowed = &node_states[N_MEMORY];
2436 }
2437 } else if (nodes_allowed) {
2438 /*
2439 * per node hstate attribute: adjust count to global,
2440 * but restrict alloc/free to the specified node.
2441 */
2442 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2443 init_nodemask_of_node(nodes_allowed, nid);
2444 } else
2445 nodes_allowed = &node_states[N_MEMORY];
2446
2447 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2448
2449 if (nodes_allowed != &node_states[N_MEMORY])
2450 NODEMASK_FREE(nodes_allowed);
2451
2452 return len;
2453 out:
2454 NODEMASK_FREE(nodes_allowed);
2455 return err;
2456 }
2457
2458 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2459 struct kobject *kobj, const char *buf,
2460 size_t len)
2461 {
2462 struct hstate *h;
2463 unsigned long count;
2464 int nid;
2465 int err;
2466
2467 err = kstrtoul(buf, 10, &count);
2468 if (err)
2469 return err;
2470
2471 h = kobj_to_hstate(kobj, &nid);
2472 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2473 }
2474
2475 static ssize_t nr_hugepages_show(struct kobject *kobj,
2476 struct kobj_attribute *attr, char *buf)
2477 {
2478 return nr_hugepages_show_common(kobj, attr, buf);
2479 }
2480
2481 static ssize_t nr_hugepages_store(struct kobject *kobj,
2482 struct kobj_attribute *attr, const char *buf, size_t len)
2483 {
2484 return nr_hugepages_store_common(false, kobj, buf, len);
2485 }
2486 HSTATE_ATTR(nr_hugepages);
2487
2488 #ifdef CONFIG_NUMA
2489
2490 /*
2491 * hstate attribute for optionally mempolicy-based constraint on persistent
2492 * huge page alloc/free.
2493 */
2494 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2495 struct kobj_attribute *attr, char *buf)
2496 {
2497 return nr_hugepages_show_common(kobj, attr, buf);
2498 }
2499
2500 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2501 struct kobj_attribute *attr, const char *buf, size_t len)
2502 {
2503 return nr_hugepages_store_common(true, kobj, buf, len);
2504 }
2505 HSTATE_ATTR(nr_hugepages_mempolicy);
2506 #endif
2507
2508
2509 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2510 struct kobj_attribute *attr, char *buf)
2511 {
2512 struct hstate *h = kobj_to_hstate(kobj, NULL);
2513 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2514 }
2515
2516 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2517 struct kobj_attribute *attr, const char *buf, size_t count)
2518 {
2519 int err;
2520 unsigned long input;
2521 struct hstate *h = kobj_to_hstate(kobj, NULL);
2522
2523 if (hstate_is_gigantic(h))
2524 return -EINVAL;
2525
2526 err = kstrtoul(buf, 10, &input);
2527 if (err)
2528 return err;
2529
2530 spin_lock(&hugetlb_lock);
2531 h->nr_overcommit_huge_pages = input;
2532 spin_unlock(&hugetlb_lock);
2533
2534 return count;
2535 }
2536 HSTATE_ATTR(nr_overcommit_hugepages);
2537
2538 static ssize_t free_hugepages_show(struct kobject *kobj,
2539 struct kobj_attribute *attr, char *buf)
2540 {
2541 struct hstate *h;
2542 unsigned long free_huge_pages;
2543 int nid;
2544
2545 h = kobj_to_hstate(kobj, &nid);
2546 if (nid == NUMA_NO_NODE)
2547 free_huge_pages = h->free_huge_pages;
2548 else
2549 free_huge_pages = h->free_huge_pages_node[nid];
2550
2551 return sprintf(buf, "%lu\n", free_huge_pages);
2552 }
2553 HSTATE_ATTR_RO(free_hugepages);
2554
2555 static ssize_t resv_hugepages_show(struct kobject *kobj,
2556 struct kobj_attribute *attr, char *buf)
2557 {
2558 struct hstate *h = kobj_to_hstate(kobj, NULL);
2559 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2560 }
2561 HSTATE_ATTR_RO(resv_hugepages);
2562
2563 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2564 struct kobj_attribute *attr, char *buf)
2565 {
2566 struct hstate *h;
2567 unsigned long surplus_huge_pages;
2568 int nid;
2569
2570 h = kobj_to_hstate(kobj, &nid);
2571 if (nid == NUMA_NO_NODE)
2572 surplus_huge_pages = h->surplus_huge_pages;
2573 else
2574 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2575
2576 return sprintf(buf, "%lu\n", surplus_huge_pages);
2577 }
2578 HSTATE_ATTR_RO(surplus_hugepages);
2579
2580 static struct attribute *hstate_attrs[] = {
2581 &nr_hugepages_attr.attr,
2582 &nr_overcommit_hugepages_attr.attr,
2583 &free_hugepages_attr.attr,
2584 &resv_hugepages_attr.attr,
2585 &surplus_hugepages_attr.attr,
2586 #ifdef CONFIG_NUMA
2587 &nr_hugepages_mempolicy_attr.attr,
2588 #endif
2589 NULL,
2590 };
2591
2592 static const struct attribute_group hstate_attr_group = {
2593 .attrs = hstate_attrs,
2594 };
2595
2596 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2597 struct kobject **hstate_kobjs,
2598 const struct attribute_group *hstate_attr_group)
2599 {
2600 int retval;
2601 int hi = hstate_index(h);
2602
2603 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2604 if (!hstate_kobjs[hi])
2605 return -ENOMEM;
2606
2607 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2608 if (retval)
2609 kobject_put(hstate_kobjs[hi]);
2610
2611 return retval;
2612 }
2613
2614 static void __init hugetlb_sysfs_init(void)
2615 {
2616 struct hstate *h;
2617 int err;
2618
2619 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2620 if (!hugepages_kobj)
2621 return;
2622
2623 for_each_hstate(h) {
2624 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2625 hstate_kobjs, &hstate_attr_group);
2626 if (err)
2627 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2628 }
2629 }
2630
2631 #ifdef CONFIG_NUMA
2632
2633 /*
2634 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2635 * with node devices in node_devices[] using a parallel array. The array
2636 * index of a node device or _hstate == node id.
2637 * This is here to avoid any static dependency of the node device driver, in
2638 * the base kernel, on the hugetlb module.
2639 */
2640 struct node_hstate {
2641 struct kobject *hugepages_kobj;
2642 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2643 };
2644 static struct node_hstate node_hstates[MAX_NUMNODES];
2645
2646 /*
2647 * A subset of global hstate attributes for node devices
2648 */
2649 static struct attribute *per_node_hstate_attrs[] = {
2650 &nr_hugepages_attr.attr,
2651 &free_hugepages_attr.attr,
2652 &surplus_hugepages_attr.attr,
2653 NULL,
2654 };
2655
2656 static const struct attribute_group per_node_hstate_attr_group = {
2657 .attrs = per_node_hstate_attrs,
2658 };
2659
2660 /*
2661 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2662 * Returns node id via non-NULL nidp.
2663 */
2664 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2665 {
2666 int nid;
2667
2668 for (nid = 0; nid < nr_node_ids; nid++) {
2669 struct node_hstate *nhs = &node_hstates[nid];
2670 int i;
2671 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2672 if (nhs->hstate_kobjs[i] == kobj) {
2673 if (nidp)
2674 *nidp = nid;
2675 return &hstates[i];
2676 }
2677 }
2678
2679 BUG();
2680 return NULL;
2681 }
2682
2683 /*
2684 * Unregister hstate attributes from a single node device.
2685 * No-op if no hstate attributes attached.
2686 */
2687 static void hugetlb_unregister_node(struct node *node)
2688 {
2689 struct hstate *h;
2690 struct node_hstate *nhs = &node_hstates[node->dev.id];
2691
2692 if (!nhs->hugepages_kobj)
2693 return; /* no hstate attributes */
2694
2695 for_each_hstate(h) {
2696 int idx = hstate_index(h);
2697 if (nhs->hstate_kobjs[idx]) {
2698 kobject_put(nhs->hstate_kobjs[idx]);
2699 nhs->hstate_kobjs[idx] = NULL;
2700 }
2701 }
2702
2703 kobject_put(nhs->hugepages_kobj);
2704 nhs->hugepages_kobj = NULL;
2705 }
2706
2707
2708 /*
2709 * Register hstate attributes for a single node device.
2710 * No-op if attributes already registered.
2711 */
2712 static void hugetlb_register_node(struct node *node)
2713 {
2714 struct hstate *h;
2715 struct node_hstate *nhs = &node_hstates[node->dev.id];
2716 int err;
2717
2718 if (nhs->hugepages_kobj)
2719 return; /* already allocated */
2720
2721 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2722 &node->dev.kobj);
2723 if (!nhs->hugepages_kobj)
2724 return;
2725
2726 for_each_hstate(h) {
2727 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2728 nhs->hstate_kobjs,
2729 &per_node_hstate_attr_group);
2730 if (err) {
2731 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2732 h->name, node->dev.id);
2733 hugetlb_unregister_node(node);
2734 break;
2735 }
2736 }
2737 }
2738
2739 /*
2740 * hugetlb init time: register hstate attributes for all registered node
2741 * devices of nodes that have memory. All on-line nodes should have
2742 * registered their associated device by this time.
2743 */
2744 static void __init hugetlb_register_all_nodes(void)
2745 {
2746 int nid;
2747
2748 for_each_node_state(nid, N_MEMORY) {
2749 struct node *node = node_devices[nid];
2750 if (node->dev.id == nid)
2751 hugetlb_register_node(node);
2752 }
2753
2754 /*
2755 * Let the node device driver know we're here so it can
2756 * [un]register hstate attributes on node hotplug.
2757 */
2758 register_hugetlbfs_with_node(hugetlb_register_node,
2759 hugetlb_unregister_node);
2760 }
2761 #else /* !CONFIG_NUMA */
2762
2763 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2764 {
2765 BUG();
2766 if (nidp)
2767 *nidp = -1;
2768 return NULL;
2769 }
2770
2771 static void hugetlb_register_all_nodes(void) { }
2772
2773 #endif
2774
2775 static int __init hugetlb_init(void)
2776 {
2777 int i;
2778
2779 if (!hugepages_supported())
2780 return 0;
2781
2782 if (!size_to_hstate(default_hstate_size)) {
2783 if (default_hstate_size != 0) {
2784 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2785 default_hstate_size, HPAGE_SIZE);
2786 }
2787
2788 default_hstate_size = HPAGE_SIZE;
2789 if (!size_to_hstate(default_hstate_size))
2790 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2791 }
2792 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2793 if (default_hstate_max_huge_pages) {
2794 if (!default_hstate.max_huge_pages)
2795 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2796 }
2797
2798 hugetlb_init_hstates();
2799 gather_bootmem_prealloc();
2800 report_hugepages();
2801
2802 hugetlb_sysfs_init();
2803 hugetlb_register_all_nodes();
2804 hugetlb_cgroup_file_init();
2805
2806 #ifdef CONFIG_SMP
2807 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2808 #else
2809 num_fault_mutexes = 1;
2810 #endif
2811 hugetlb_fault_mutex_table =
2812 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2813 BUG_ON(!hugetlb_fault_mutex_table);
2814
2815 for (i = 0; i < num_fault_mutexes; i++)
2816 mutex_init(&hugetlb_fault_mutex_table[i]);
2817 return 0;
2818 }
2819 subsys_initcall(hugetlb_init);
2820
2821 /* Should be called on processing a hugepagesz=... option */
2822 void __init hugetlb_bad_size(void)
2823 {
2824 parsed_valid_hugepagesz = false;
2825 }
2826
2827 void __init hugetlb_add_hstate(unsigned int order)
2828 {
2829 struct hstate *h;
2830 unsigned long i;
2831
2832 if (size_to_hstate(PAGE_SIZE << order)) {
2833 pr_warn("hugepagesz= specified twice, ignoring\n");
2834 return;
2835 }
2836 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2837 BUG_ON(order == 0);
2838 h = &hstates[hugetlb_max_hstate++];
2839 h->order = order;
2840 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2841 h->nr_huge_pages = 0;
2842 h->free_huge_pages = 0;
2843 for (i = 0; i < MAX_NUMNODES; ++i)
2844 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2845 INIT_LIST_HEAD(&h->hugepage_activelist);
2846 h->next_nid_to_alloc = first_memory_node;
2847 h->next_nid_to_free = first_memory_node;
2848 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2849 huge_page_size(h)/1024);
2850
2851 parsed_hstate = h;
2852 }
2853
2854 static int __init hugetlb_nrpages_setup(char *s)
2855 {
2856 unsigned long *mhp;
2857 static unsigned long *last_mhp;
2858
2859 if (!parsed_valid_hugepagesz) {
2860 pr_warn("hugepages = %s preceded by "
2861 "an unsupported hugepagesz, ignoring\n", s);
2862 parsed_valid_hugepagesz = true;
2863 return 1;
2864 }
2865 /*
2866 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2867 * so this hugepages= parameter goes to the "default hstate".
2868 */
2869 else if (!hugetlb_max_hstate)
2870 mhp = &default_hstate_max_huge_pages;
2871 else
2872 mhp = &parsed_hstate->max_huge_pages;
2873
2874 if (mhp == last_mhp) {
2875 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2876 return 1;
2877 }
2878
2879 if (sscanf(s, "%lu", mhp) <= 0)
2880 *mhp = 0;
2881
2882 /*
2883 * Global state is always initialized later in hugetlb_init.
2884 * But we need to allocate >= MAX_ORDER hstates here early to still
2885 * use the bootmem allocator.
2886 */
2887 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2888 hugetlb_hstate_alloc_pages(parsed_hstate);
2889
2890 last_mhp = mhp;
2891
2892 return 1;
2893 }
2894 __setup("hugepages=", hugetlb_nrpages_setup);
2895
2896 static int __init hugetlb_default_setup(char *s)
2897 {
2898 default_hstate_size = memparse(s, &s);
2899 return 1;
2900 }
2901 __setup("default_hugepagesz=", hugetlb_default_setup);
2902
2903 static unsigned int cpuset_mems_nr(unsigned int *array)
2904 {
2905 int node;
2906 unsigned int nr = 0;
2907
2908 for_each_node_mask(node, cpuset_current_mems_allowed)
2909 nr += array[node];
2910
2911 return nr;
2912 }
2913
2914 #ifdef CONFIG_SYSCTL
2915 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2916 struct ctl_table *table, int write,
2917 void __user *buffer, size_t *length, loff_t *ppos)
2918 {
2919 struct hstate *h = &default_hstate;
2920 unsigned long tmp = h->max_huge_pages;
2921 int ret;
2922
2923 if (!hugepages_supported())
2924 return -EOPNOTSUPP;
2925
2926 table->data = &tmp;
2927 table->maxlen = sizeof(unsigned long);
2928 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2929 if (ret)
2930 goto out;
2931
2932 if (write)
2933 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2934 NUMA_NO_NODE, tmp, *length);
2935 out:
2936 return ret;
2937 }
2938
2939 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2940 void __user *buffer, size_t *length, loff_t *ppos)
2941 {
2942
2943 return hugetlb_sysctl_handler_common(false, table, write,
2944 buffer, length, ppos);
2945 }
2946
2947 #ifdef CONFIG_NUMA
2948 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2949 void __user *buffer, size_t *length, loff_t *ppos)
2950 {
2951 return hugetlb_sysctl_handler_common(true, table, write,
2952 buffer, length, ppos);
2953 }
2954 #endif /* CONFIG_NUMA */
2955
2956 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2957 void __user *buffer,
2958 size_t *length, loff_t *ppos)
2959 {
2960 struct hstate *h = &default_hstate;
2961 unsigned long tmp;
2962 int ret;
2963
2964 if (!hugepages_supported())
2965 return -EOPNOTSUPP;
2966
2967 tmp = h->nr_overcommit_huge_pages;
2968
2969 if (write && hstate_is_gigantic(h))
2970 return -EINVAL;
2971
2972 table->data = &tmp;
2973 table->maxlen = sizeof(unsigned long);
2974 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2975 if (ret)
2976 goto out;
2977
2978 if (write) {
2979 spin_lock(&hugetlb_lock);
2980 h->nr_overcommit_huge_pages = tmp;
2981 spin_unlock(&hugetlb_lock);
2982 }
2983 out:
2984 return ret;
2985 }
2986
2987 #endif /* CONFIG_SYSCTL */
2988
2989 void hugetlb_report_meminfo(struct seq_file *m)
2990 {
2991 struct hstate *h = &default_hstate;
2992 if (!hugepages_supported())
2993 return;
2994 seq_printf(m,
2995 "HugePages_Total: %5lu\n"
2996 "HugePages_Free: %5lu\n"
2997 "HugePages_Rsvd: %5lu\n"
2998 "HugePages_Surp: %5lu\n"
2999 "Hugepagesize: %8lu kB\n",
3000 h->nr_huge_pages,
3001 h->free_huge_pages,
3002 h->resv_huge_pages,
3003 h->surplus_huge_pages,
3004 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3005 }
3006
3007 int hugetlb_report_node_meminfo(int nid, char *buf)
3008 {
3009 struct hstate *h = &default_hstate;
3010 if (!hugepages_supported())
3011 return 0;
3012 return sprintf(buf,
3013 "Node %d HugePages_Total: %5u\n"
3014 "Node %d HugePages_Free: %5u\n"
3015 "Node %d HugePages_Surp: %5u\n",
3016 nid, h->nr_huge_pages_node[nid],
3017 nid, h->free_huge_pages_node[nid],
3018 nid, h->surplus_huge_pages_node[nid]);
3019 }
3020
3021 void hugetlb_show_meminfo(void)
3022 {
3023 struct hstate *h;
3024 int nid;
3025
3026 if (!hugepages_supported())
3027 return;
3028
3029 for_each_node_state(nid, N_MEMORY)
3030 for_each_hstate(h)
3031 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3032 nid,
3033 h->nr_huge_pages_node[nid],
3034 h->free_huge_pages_node[nid],
3035 h->surplus_huge_pages_node[nid],
3036 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3037 }
3038
3039 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3040 {
3041 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3042 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3043 }
3044
3045 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3046 unsigned long hugetlb_total_pages(void)
3047 {
3048 struct hstate *h;
3049 unsigned long nr_total_pages = 0;
3050
3051 for_each_hstate(h)
3052 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3053 return nr_total_pages;
3054 }
3055
3056 static int hugetlb_acct_memory(struct hstate *h, long delta)
3057 {
3058 int ret = -ENOMEM;
3059
3060 spin_lock(&hugetlb_lock);
3061 /*
3062 * When cpuset is configured, it breaks the strict hugetlb page
3063 * reservation as the accounting is done on a global variable. Such
3064 * reservation is completely rubbish in the presence of cpuset because
3065 * the reservation is not checked against page availability for the
3066 * current cpuset. Application can still potentially OOM'ed by kernel
3067 * with lack of free htlb page in cpuset that the task is in.
3068 * Attempt to enforce strict accounting with cpuset is almost
3069 * impossible (or too ugly) because cpuset is too fluid that
3070 * task or memory node can be dynamically moved between cpusets.
3071 *
3072 * The change of semantics for shared hugetlb mapping with cpuset is
3073 * undesirable. However, in order to preserve some of the semantics,
3074 * we fall back to check against current free page availability as
3075 * a best attempt and hopefully to minimize the impact of changing
3076 * semantics that cpuset has.
3077 */
3078 if (delta > 0) {
3079 if (gather_surplus_pages(h, delta) < 0)
3080 goto out;
3081
3082 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3083 return_unused_surplus_pages(h, delta);
3084 goto out;
3085 }
3086 }
3087
3088 ret = 0;
3089 if (delta < 0)
3090 return_unused_surplus_pages(h, (unsigned long) -delta);
3091
3092 out:
3093 spin_unlock(&hugetlb_lock);
3094 return ret;
3095 }
3096
3097 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3098 {
3099 struct resv_map *resv = vma_resv_map(vma);
3100
3101 /*
3102 * This new VMA should share its siblings reservation map if present.
3103 * The VMA will only ever have a valid reservation map pointer where
3104 * it is being copied for another still existing VMA. As that VMA
3105 * has a reference to the reservation map it cannot disappear until
3106 * after this open call completes. It is therefore safe to take a
3107 * new reference here without additional locking.
3108 */
3109 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3110 kref_get(&resv->refs);
3111 }
3112
3113 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3114 {
3115 struct hstate *h = hstate_vma(vma);
3116 struct resv_map *resv = vma_resv_map(vma);
3117 struct hugepage_subpool *spool = subpool_vma(vma);
3118 unsigned long reserve, start, end;
3119 long gbl_reserve;
3120
3121 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3122 return;
3123
3124 start = vma_hugecache_offset(h, vma, vma->vm_start);
3125 end = vma_hugecache_offset(h, vma, vma->vm_end);
3126
3127 reserve = (end - start) - region_count(resv, start, end);
3128
3129 kref_put(&resv->refs, resv_map_release);
3130
3131 if (reserve) {
3132 /*
3133 * Decrement reserve counts. The global reserve count may be
3134 * adjusted if the subpool has a minimum size.
3135 */
3136 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3137 hugetlb_acct_memory(h, -gbl_reserve);
3138 }
3139 }
3140
3141 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3142 {
3143 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3144 return -EINVAL;
3145 return 0;
3146 }
3147
3148 /*
3149 * We cannot handle pagefaults against hugetlb pages at all. They cause
3150 * handle_mm_fault() to try to instantiate regular-sized pages in the
3151 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3152 * this far.
3153 */
3154 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3155 {
3156 BUG();
3157 return 0;
3158 }
3159
3160 const struct vm_operations_struct hugetlb_vm_ops = {
3161 .fault = hugetlb_vm_op_fault,
3162 .open = hugetlb_vm_op_open,
3163 .close = hugetlb_vm_op_close,
3164 .split = hugetlb_vm_op_split,
3165 };
3166
3167 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3168 int writable)
3169 {
3170 pte_t entry;
3171
3172 if (writable) {
3173 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3174 vma->vm_page_prot)));
3175 } else {
3176 entry = huge_pte_wrprotect(mk_huge_pte(page,
3177 vma->vm_page_prot));
3178 }
3179 entry = pte_mkyoung(entry);
3180 entry = pte_mkhuge(entry);
3181 entry = arch_make_huge_pte(entry, vma, page, writable);
3182
3183 return entry;
3184 }
3185
3186 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3187 unsigned long address, pte_t *ptep)
3188 {
3189 pte_t entry;
3190
3191 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3192 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3193 update_mmu_cache(vma, address, ptep);
3194 }
3195
3196 bool is_hugetlb_entry_migration(pte_t pte)
3197 {
3198 swp_entry_t swp;
3199
3200 if (huge_pte_none(pte) || pte_present(pte))
3201 return false;
3202 swp = pte_to_swp_entry(pte);
3203 if (non_swap_entry(swp) && is_migration_entry(swp))
3204 return true;
3205 else
3206 return false;
3207 }
3208
3209 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3210 {
3211 swp_entry_t swp;
3212
3213 if (huge_pte_none(pte) || pte_present(pte))
3214 return 0;
3215 swp = pte_to_swp_entry(pte);
3216 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3217 return 1;
3218 else
3219 return 0;
3220 }
3221
3222 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3223 struct vm_area_struct *vma)
3224 {
3225 pte_t *src_pte, *dst_pte, entry, dst_entry;
3226 struct page *ptepage;
3227 unsigned long addr;
3228 int cow;
3229 struct hstate *h = hstate_vma(vma);
3230 unsigned long sz = huge_page_size(h);
3231 unsigned long mmun_start; /* For mmu_notifiers */
3232 unsigned long mmun_end; /* For mmu_notifiers */
3233 int ret = 0;
3234
3235 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3236
3237 mmun_start = vma->vm_start;
3238 mmun_end = vma->vm_end;
3239 if (cow)
3240 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3241
3242 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3243 spinlock_t *src_ptl, *dst_ptl;
3244 src_pte = huge_pte_offset(src, addr, sz);
3245 if (!src_pte)
3246 continue;
3247 dst_pte = huge_pte_alloc(dst, addr, sz);
3248 if (!dst_pte) {
3249 ret = -ENOMEM;
3250 break;
3251 }
3252
3253 /*
3254 * If the pagetables are shared don't copy or take references.
3255 * dst_pte == src_pte is the common case of src/dest sharing.
3256 *
3257 * However, src could have 'unshared' and dst shares with
3258 * another vma. If dst_pte !none, this implies sharing.
3259 * Check here before taking page table lock, and once again
3260 * after taking the lock below.
3261 */
3262 dst_entry = huge_ptep_get(dst_pte);
3263 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3264 continue;
3265
3266 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3267 src_ptl = huge_pte_lockptr(h, src, src_pte);
3268 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3269 entry = huge_ptep_get(src_pte);
3270 dst_entry = huge_ptep_get(dst_pte);
3271 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3272 /*
3273 * Skip if src entry none. Also, skip in the
3274 * unlikely case dst entry !none as this implies
3275 * sharing with another vma.
3276 */
3277 ;
3278 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3279 is_hugetlb_entry_hwpoisoned(entry))) {
3280 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3281
3282 if (is_write_migration_entry(swp_entry) && cow) {
3283 /*
3284 * COW mappings require pages in both
3285 * parent and child to be set to read.
3286 */
3287 make_migration_entry_read(&swp_entry);
3288 entry = swp_entry_to_pte(swp_entry);
3289 set_huge_swap_pte_at(src, addr, src_pte,
3290 entry, sz);
3291 }
3292 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3293 } else {
3294 if (cow) {
3295 /*
3296 * No need to notify as we are downgrading page
3297 * table protection not changing it to point
3298 * to a new page.
3299 *
3300 * See Documentation/vm/mmu_notifier.txt
3301 */
3302 huge_ptep_set_wrprotect(src, addr, src_pte);
3303 }
3304 entry = huge_ptep_get(src_pte);
3305 ptepage = pte_page(entry);
3306 get_page(ptepage);
3307 page_dup_rmap(ptepage, true);
3308 set_huge_pte_at(dst, addr, dst_pte, entry);
3309 hugetlb_count_add(pages_per_huge_page(h), dst);
3310 }
3311 spin_unlock(src_ptl);
3312 spin_unlock(dst_ptl);
3313 }
3314
3315 if (cow)
3316 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3317
3318 return ret;
3319 }
3320
3321 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3322 unsigned long start, unsigned long end,
3323 struct page *ref_page)
3324 {
3325 struct mm_struct *mm = vma->vm_mm;
3326 unsigned long address;
3327 pte_t *ptep;
3328 pte_t pte;
3329 spinlock_t *ptl;
3330 struct page *page;
3331 struct hstate *h = hstate_vma(vma);
3332 unsigned long sz = huge_page_size(h);
3333 const unsigned long mmun_start = start; /* For mmu_notifiers */
3334 const unsigned long mmun_end = end; /* For mmu_notifiers */
3335
3336 WARN_ON(!is_vm_hugetlb_page(vma));
3337 BUG_ON(start & ~huge_page_mask(h));
3338 BUG_ON(end & ~huge_page_mask(h));
3339
3340 /*
3341 * This is a hugetlb vma, all the pte entries should point
3342 * to huge page.
3343 */
3344 tlb_remove_check_page_size_change(tlb, sz);
3345 tlb_start_vma(tlb, vma);
3346 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3347 address = start;
3348 for (; address < end; address += sz) {
3349 ptep = huge_pte_offset(mm, address, sz);
3350 if (!ptep)
3351 continue;
3352
3353 ptl = huge_pte_lock(h, mm, ptep);
3354 if (huge_pmd_unshare(mm, &address, ptep)) {
3355 spin_unlock(ptl);
3356 continue;
3357 }
3358
3359 pte = huge_ptep_get(ptep);
3360 if (huge_pte_none(pte)) {
3361 spin_unlock(ptl);
3362 continue;
3363 }
3364
3365 /*
3366 * Migrating hugepage or HWPoisoned hugepage is already
3367 * unmapped and its refcount is dropped, so just clear pte here.
3368 */
3369 if (unlikely(!pte_present(pte))) {
3370 huge_pte_clear(mm, address, ptep, sz);
3371 spin_unlock(ptl);
3372 continue;
3373 }
3374
3375 page = pte_page(pte);
3376 /*
3377 * If a reference page is supplied, it is because a specific
3378 * page is being unmapped, not a range. Ensure the page we
3379 * are about to unmap is the actual page of interest.
3380 */
3381 if (ref_page) {
3382 if (page != ref_page) {
3383 spin_unlock(ptl);
3384 continue;
3385 }
3386 /*
3387 * Mark the VMA as having unmapped its page so that
3388 * future faults in this VMA will fail rather than
3389 * looking like data was lost
3390 */
3391 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3392 }
3393
3394 pte = huge_ptep_get_and_clear(mm, address, ptep);
3395 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3396 if (huge_pte_dirty(pte))
3397 set_page_dirty(page);
3398
3399 hugetlb_count_sub(pages_per_huge_page(h), mm);
3400 page_remove_rmap(page, true);
3401
3402 spin_unlock(ptl);
3403 tlb_remove_page_size(tlb, page, huge_page_size(h));
3404 /*
3405 * Bail out after unmapping reference page if supplied
3406 */
3407 if (ref_page)
3408 break;
3409 }
3410 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3411 tlb_end_vma(tlb, vma);
3412 }
3413
3414 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3415 struct vm_area_struct *vma, unsigned long start,
3416 unsigned long end, struct page *ref_page)
3417 {
3418 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3419
3420 /*
3421 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3422 * test will fail on a vma being torn down, and not grab a page table
3423 * on its way out. We're lucky that the flag has such an appropriate
3424 * name, and can in fact be safely cleared here. We could clear it
3425 * before the __unmap_hugepage_range above, but all that's necessary
3426 * is to clear it before releasing the i_mmap_rwsem. This works
3427 * because in the context this is called, the VMA is about to be
3428 * destroyed and the i_mmap_rwsem is held.
3429 */
3430 vma->vm_flags &= ~VM_MAYSHARE;
3431 }
3432
3433 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3434 unsigned long end, struct page *ref_page)
3435 {
3436 struct mm_struct *mm;
3437 struct mmu_gather tlb;
3438
3439 mm = vma->vm_mm;
3440
3441 tlb_gather_mmu(&tlb, mm, start, end);
3442 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3443 tlb_finish_mmu(&tlb, start, end);
3444 }
3445
3446 /*
3447 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3448 * mappping it owns the reserve page for. The intention is to unmap the page
3449 * from other VMAs and let the children be SIGKILLed if they are faulting the
3450 * same region.
3451 */
3452 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3453 struct page *page, unsigned long address)
3454 {
3455 struct hstate *h = hstate_vma(vma);
3456 struct vm_area_struct *iter_vma;
3457 struct address_space *mapping;
3458 pgoff_t pgoff;
3459
3460 /*
3461 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3462 * from page cache lookup which is in HPAGE_SIZE units.
3463 */
3464 address = address & huge_page_mask(h);
3465 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3466 vma->vm_pgoff;
3467 mapping = vma->vm_file->f_mapping;
3468
3469 /*
3470 * Take the mapping lock for the duration of the table walk. As
3471 * this mapping should be shared between all the VMAs,
3472 * __unmap_hugepage_range() is called as the lock is already held
3473 */
3474 i_mmap_lock_write(mapping);
3475 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3476 /* Do not unmap the current VMA */
3477 if (iter_vma == vma)
3478 continue;
3479
3480 /*
3481 * Shared VMAs have their own reserves and do not affect
3482 * MAP_PRIVATE accounting but it is possible that a shared
3483 * VMA is using the same page so check and skip such VMAs.
3484 */
3485 if (iter_vma->vm_flags & VM_MAYSHARE)
3486 continue;
3487
3488 /*
3489 * Unmap the page from other VMAs without their own reserves.
3490 * They get marked to be SIGKILLed if they fault in these
3491 * areas. This is because a future no-page fault on this VMA
3492 * could insert a zeroed page instead of the data existing
3493 * from the time of fork. This would look like data corruption
3494 */
3495 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3496 unmap_hugepage_range(iter_vma, address,
3497 address + huge_page_size(h), page);
3498 }
3499 i_mmap_unlock_write(mapping);
3500 }
3501
3502 /*
3503 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3504 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3505 * cannot race with other handlers or page migration.
3506 * Keep the pte_same checks anyway to make transition from the mutex easier.
3507 */
3508 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3509 unsigned long address, pte_t *ptep,
3510 struct page *pagecache_page, spinlock_t *ptl)
3511 {
3512 pte_t pte;
3513 struct hstate *h = hstate_vma(vma);
3514 struct page *old_page, *new_page;
3515 int ret = 0, outside_reserve = 0;
3516 unsigned long mmun_start; /* For mmu_notifiers */
3517 unsigned long mmun_end; /* For mmu_notifiers */
3518
3519 pte = huge_ptep_get(ptep);
3520 old_page = pte_page(pte);
3521
3522 retry_avoidcopy:
3523 /* If no-one else is actually using this page, avoid the copy
3524 * and just make the page writable */
3525 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3526 page_move_anon_rmap(old_page, vma);
3527 set_huge_ptep_writable(vma, address, ptep);
3528 return 0;
3529 }
3530
3531 /*
3532 * If the process that created a MAP_PRIVATE mapping is about to
3533 * perform a COW due to a shared page count, attempt to satisfy
3534 * the allocation without using the existing reserves. The pagecache
3535 * page is used to determine if the reserve at this address was
3536 * consumed or not. If reserves were used, a partial faulted mapping
3537 * at the time of fork() could consume its reserves on COW instead
3538 * of the full address range.
3539 */
3540 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3541 old_page != pagecache_page)
3542 outside_reserve = 1;
3543
3544 get_page(old_page);
3545
3546 /*
3547 * Drop page table lock as buddy allocator may be called. It will
3548 * be acquired again before returning to the caller, as expected.
3549 */
3550 spin_unlock(ptl);
3551 new_page = alloc_huge_page(vma, address, outside_reserve);
3552
3553 if (IS_ERR(new_page)) {
3554 /*
3555 * If a process owning a MAP_PRIVATE mapping fails to COW,
3556 * it is due to references held by a child and an insufficient
3557 * huge page pool. To guarantee the original mappers
3558 * reliability, unmap the page from child processes. The child
3559 * may get SIGKILLed if it later faults.
3560 */
3561 if (outside_reserve) {
3562 put_page(old_page);
3563 BUG_ON(huge_pte_none(pte));
3564 unmap_ref_private(mm, vma, old_page, address);
3565 BUG_ON(huge_pte_none(pte));
3566 spin_lock(ptl);
3567 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3568 huge_page_size(h));
3569 if (likely(ptep &&
3570 pte_same(huge_ptep_get(ptep), pte)))
3571 goto retry_avoidcopy;
3572 /*
3573 * race occurs while re-acquiring page table
3574 * lock, and our job is done.
3575 */
3576 return 0;
3577 }
3578
3579 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3580 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3581 goto out_release_old;
3582 }
3583
3584 /*
3585 * When the original hugepage is shared one, it does not have
3586 * anon_vma prepared.
3587 */
3588 if (unlikely(anon_vma_prepare(vma))) {
3589 ret = VM_FAULT_OOM;
3590 goto out_release_all;
3591 }
3592
3593 copy_user_huge_page(new_page, old_page, address, vma,
3594 pages_per_huge_page(h));
3595 __SetPageUptodate(new_page);
3596
3597 mmun_start = address & huge_page_mask(h);
3598 mmun_end = mmun_start + huge_page_size(h);
3599 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3600
3601 /*
3602 * Retake the page table lock to check for racing updates
3603 * before the page tables are altered
3604 */
3605 spin_lock(ptl);
3606 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3607 huge_page_size(h));
3608 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3609 ClearPagePrivate(new_page);
3610
3611 /* Break COW */
3612 huge_ptep_clear_flush(vma, address, ptep);
3613 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3614 set_huge_pte_at(mm, address, ptep,
3615 make_huge_pte(vma, new_page, 1));
3616 page_remove_rmap(old_page, true);
3617 hugepage_add_new_anon_rmap(new_page, vma, address);
3618 set_page_huge_active(new_page);
3619 /* Make the old page be freed below */
3620 new_page = old_page;
3621 }
3622 spin_unlock(ptl);
3623 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3624 out_release_all:
3625 restore_reserve_on_error(h, vma, address, new_page);
3626 put_page(new_page);
3627 out_release_old:
3628 put_page(old_page);
3629
3630 spin_lock(ptl); /* Caller expects lock to be held */
3631 return ret;
3632 }
3633
3634 /* Return the pagecache page at a given address within a VMA */
3635 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3636 struct vm_area_struct *vma, unsigned long address)
3637 {
3638 struct address_space *mapping;
3639 pgoff_t idx;
3640
3641 mapping = vma->vm_file->f_mapping;
3642 idx = vma_hugecache_offset(h, vma, address);
3643
3644 return find_lock_page(mapping, idx);
3645 }
3646
3647 /*
3648 * Return whether there is a pagecache page to back given address within VMA.
3649 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3650 */
3651 static bool hugetlbfs_pagecache_present(struct hstate *h,
3652 struct vm_area_struct *vma, unsigned long address)
3653 {
3654 struct address_space *mapping;
3655 pgoff_t idx;
3656 struct page *page;
3657
3658 mapping = vma->vm_file->f_mapping;
3659 idx = vma_hugecache_offset(h, vma, address);
3660
3661 page = find_get_page(mapping, idx);
3662 if (page)
3663 put_page(page);
3664 return page != NULL;
3665 }
3666
3667 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3668 pgoff_t idx)
3669 {
3670 struct inode *inode = mapping->host;
3671 struct hstate *h = hstate_inode(inode);
3672 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3673
3674 if (err)
3675 return err;
3676 ClearPagePrivate(page);
3677
3678 /*
3679 * set page dirty so that it will not be removed from cache/file
3680 * by non-hugetlbfs specific code paths.
3681 */
3682 set_page_dirty(page);
3683
3684 spin_lock(&inode->i_lock);
3685 inode->i_blocks += blocks_per_huge_page(h);
3686 spin_unlock(&inode->i_lock);
3687 return 0;
3688 }
3689
3690 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3691 struct address_space *mapping, pgoff_t idx,
3692 unsigned long address, pte_t *ptep, unsigned int flags)
3693 {
3694 struct hstate *h = hstate_vma(vma);
3695 int ret = VM_FAULT_SIGBUS;
3696 int anon_rmap = 0;
3697 unsigned long size;
3698 struct page *page;
3699 pte_t new_pte;
3700 spinlock_t *ptl;
3701 bool new_page = false;
3702
3703 /*
3704 * Currently, we are forced to kill the process in the event the
3705 * original mapper has unmapped pages from the child due to a failed
3706 * COW. Warn that such a situation has occurred as it may not be obvious
3707 */
3708 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3709 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3710 current->pid);
3711 return ret;
3712 }
3713
3714 /*
3715 * Use page lock to guard against racing truncation
3716 * before we get page_table_lock.
3717 */
3718 retry:
3719 page = find_lock_page(mapping, idx);
3720 if (!page) {
3721 size = i_size_read(mapping->host) >> huge_page_shift(h);
3722 if (idx >= size)
3723 goto out;
3724
3725 /*
3726 * Check for page in userfault range
3727 */
3728 if (userfaultfd_missing(vma)) {
3729 u32 hash;
3730 struct vm_fault vmf = {
3731 .vma = vma,
3732 .address = address,
3733 .flags = flags,
3734 /*
3735 * Hard to debug if it ends up being
3736 * used by a callee that assumes
3737 * something about the other
3738 * uninitialized fields... same as in
3739 * memory.c
3740 */
3741 };
3742
3743 /*
3744 * hugetlb_fault_mutex must be dropped before
3745 * handling userfault. Reacquire after handling
3746 * fault to make calling code simpler.
3747 */
3748 hash = hugetlb_fault_mutex_hash(h, mapping, idx, address);
3749 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3750 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3751 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3752 goto out;
3753 }
3754
3755 page = alloc_huge_page(vma, address, 0);
3756 if (IS_ERR(page)) {
3757 ret = PTR_ERR(page);
3758 if (ret == -ENOMEM)
3759 ret = VM_FAULT_OOM;
3760 else
3761 ret = VM_FAULT_SIGBUS;
3762 goto out;
3763 }
3764 clear_huge_page(page, address, pages_per_huge_page(h));
3765 __SetPageUptodate(page);
3766 new_page = true;
3767
3768 if (vma->vm_flags & VM_MAYSHARE) {
3769 int err = huge_add_to_page_cache(page, mapping, idx);
3770 if (err) {
3771 put_page(page);
3772 if (err == -EEXIST)
3773 goto retry;
3774 goto out;
3775 }
3776 } else {
3777 lock_page(page);
3778 if (unlikely(anon_vma_prepare(vma))) {
3779 ret = VM_FAULT_OOM;
3780 goto backout_unlocked;
3781 }
3782 anon_rmap = 1;
3783 }
3784 } else {
3785 /*
3786 * If memory error occurs between mmap() and fault, some process
3787 * don't have hwpoisoned swap entry for errored virtual address.
3788 * So we need to block hugepage fault by PG_hwpoison bit check.
3789 */
3790 if (unlikely(PageHWPoison(page))) {
3791 ret = VM_FAULT_HWPOISON |
3792 VM_FAULT_SET_HINDEX(hstate_index(h));
3793 goto backout_unlocked;
3794 }
3795 }
3796
3797 /*
3798 * If we are going to COW a private mapping later, we examine the
3799 * pending reservations for this page now. This will ensure that
3800 * any allocations necessary to record that reservation occur outside
3801 * the spinlock.
3802 */
3803 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3804 if (vma_needs_reservation(h, vma, address) < 0) {
3805 ret = VM_FAULT_OOM;
3806 goto backout_unlocked;
3807 }
3808 /* Just decrements count, does not deallocate */
3809 vma_end_reservation(h, vma, address);
3810 }
3811
3812 ptl = huge_pte_lock(h, mm, ptep);
3813 size = i_size_read(mapping->host) >> huge_page_shift(h);
3814 if (idx >= size)
3815 goto backout;
3816
3817 ret = 0;
3818 if (!huge_pte_none(huge_ptep_get(ptep)))
3819 goto backout;
3820
3821 if (anon_rmap) {
3822 ClearPagePrivate(page);
3823 hugepage_add_new_anon_rmap(page, vma, address);
3824 } else
3825 page_dup_rmap(page, true);
3826 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3827 && (vma->vm_flags & VM_SHARED)));
3828 set_huge_pte_at(mm, address, ptep, new_pte);
3829
3830 hugetlb_count_add(pages_per_huge_page(h), mm);
3831 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3832 /* Optimization, do the COW without a second fault */
3833 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3834 }
3835
3836 spin_unlock(ptl);
3837
3838 /*
3839 * Only make newly allocated pages active. Existing pages found
3840 * in the pagecache could be !page_huge_active() if they have been
3841 * isolated for migration.
3842 */
3843 if (new_page)
3844 set_page_huge_active(page);
3845
3846 unlock_page(page);
3847 out:
3848 return ret;
3849
3850 backout:
3851 spin_unlock(ptl);
3852 backout_unlocked:
3853 unlock_page(page);
3854 restore_reserve_on_error(h, vma, address, page);
3855 put_page(page);
3856 goto out;
3857 }
3858
3859 #ifdef CONFIG_SMP
3860 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3861 pgoff_t idx, unsigned long address)
3862 {
3863 unsigned long key[2];
3864 u32 hash;
3865
3866 key[0] = (unsigned long) mapping;
3867 key[1] = idx;
3868
3869 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3870
3871 return hash & (num_fault_mutexes - 1);
3872 }
3873 #else
3874 /*
3875 * For uniprocesor systems we always use a single mutex, so just
3876 * return 0 and avoid the hashing overhead.
3877 */
3878 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3879 pgoff_t idx, unsigned long address)
3880 {
3881 return 0;
3882 }
3883 #endif
3884
3885 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3886 unsigned long address, unsigned int flags)
3887 {
3888 pte_t *ptep, entry;
3889 spinlock_t *ptl;
3890 int ret;
3891 u32 hash;
3892 pgoff_t idx;
3893 struct page *page = NULL;
3894 struct page *pagecache_page = NULL;
3895 struct hstate *h = hstate_vma(vma);
3896 struct address_space *mapping;
3897 int need_wait_lock = 0;
3898
3899 address &= huge_page_mask(h);
3900
3901 ptep = huge_pte_offset(mm, address, huge_page_size(h));
3902 if (ptep) {
3903 entry = huge_ptep_get(ptep);
3904 if (unlikely(is_hugetlb_entry_migration(entry))) {
3905 migration_entry_wait_huge(vma, mm, ptep);
3906 return 0;
3907 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3908 return VM_FAULT_HWPOISON_LARGE |
3909 VM_FAULT_SET_HINDEX(hstate_index(h));
3910 } else {
3911 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3912 if (!ptep)
3913 return VM_FAULT_OOM;
3914 }
3915
3916 mapping = vma->vm_file->f_mapping;
3917 idx = vma_hugecache_offset(h, vma, address);
3918
3919 /*
3920 * Serialize hugepage allocation and instantiation, so that we don't
3921 * get spurious allocation failures if two CPUs race to instantiate
3922 * the same page in the page cache.
3923 */
3924 hash = hugetlb_fault_mutex_hash(h, mapping, idx, address);
3925 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3926
3927 entry = huge_ptep_get(ptep);
3928 if (huge_pte_none(entry)) {
3929 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3930 goto out_mutex;
3931 }
3932
3933 ret = 0;
3934
3935 /*
3936 * entry could be a migration/hwpoison entry at this point, so this
3937 * check prevents the kernel from going below assuming that we have
3938 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3939 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3940 * handle it.
3941 */
3942 if (!pte_present(entry))
3943 goto out_mutex;
3944
3945 /*
3946 * If we are going to COW the mapping later, we examine the pending
3947 * reservations for this page now. This will ensure that any
3948 * allocations necessary to record that reservation occur outside the
3949 * spinlock. For private mappings, we also lookup the pagecache
3950 * page now as it is used to determine if a reservation has been
3951 * consumed.
3952 */
3953 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3954 if (vma_needs_reservation(h, vma, address) < 0) {
3955 ret = VM_FAULT_OOM;
3956 goto out_mutex;
3957 }
3958 /* Just decrements count, does not deallocate */
3959 vma_end_reservation(h, vma, address);
3960
3961 if (!(vma->vm_flags & VM_MAYSHARE))
3962 pagecache_page = hugetlbfs_pagecache_page(h,
3963 vma, address);
3964 }
3965
3966 ptl = huge_pte_lock(h, mm, ptep);
3967
3968 /* Check for a racing update before calling hugetlb_cow */
3969 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3970 goto out_ptl;
3971
3972 /*
3973 * hugetlb_cow() requires page locks of pte_page(entry) and
3974 * pagecache_page, so here we need take the former one
3975 * when page != pagecache_page or !pagecache_page.
3976 */
3977 page = pte_page(entry);
3978 if (page != pagecache_page)
3979 if (!trylock_page(page)) {
3980 need_wait_lock = 1;
3981 goto out_ptl;
3982 }
3983
3984 get_page(page);
3985
3986 if (flags & FAULT_FLAG_WRITE) {
3987 if (!huge_pte_write(entry)) {
3988 ret = hugetlb_cow(mm, vma, address, ptep,
3989 pagecache_page, ptl);
3990 goto out_put_page;
3991 }
3992 entry = huge_pte_mkdirty(entry);
3993 }
3994 entry = pte_mkyoung(entry);
3995 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3996 flags & FAULT_FLAG_WRITE))
3997 update_mmu_cache(vma, address, ptep);
3998 out_put_page:
3999 if (page != pagecache_page)
4000 unlock_page(page);
4001 put_page(page);
4002 out_ptl:
4003 spin_unlock(ptl);
4004
4005 if (pagecache_page) {
4006 unlock_page(pagecache_page);
4007 put_page(pagecache_page);
4008 }
4009 out_mutex:
4010 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4011 /*
4012 * Generally it's safe to hold refcount during waiting page lock. But
4013 * here we just wait to defer the next page fault to avoid busy loop and
4014 * the page is not used after unlocked before returning from the current
4015 * page fault. So we are safe from accessing freed page, even if we wait
4016 * here without taking refcount.
4017 */
4018 if (need_wait_lock)
4019 wait_on_page_locked(page);
4020 return ret;
4021 }
4022
4023 /*
4024 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4025 * modifications for huge pages.
4026 */
4027 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4028 pte_t *dst_pte,
4029 struct vm_area_struct *dst_vma,
4030 unsigned long dst_addr,
4031 unsigned long src_addr,
4032 struct page **pagep)
4033 {
4034 struct address_space *mapping;
4035 pgoff_t idx;
4036 unsigned long size;
4037 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4038 struct hstate *h = hstate_vma(dst_vma);
4039 pte_t _dst_pte;
4040 spinlock_t *ptl;
4041 int ret;
4042 struct page *page;
4043
4044 if (!*pagep) {
4045 ret = -ENOMEM;
4046 page = alloc_huge_page(dst_vma, dst_addr, 0);
4047 if (IS_ERR(page))
4048 goto out;
4049
4050 ret = copy_huge_page_from_user(page,
4051 (const void __user *) src_addr,
4052 pages_per_huge_page(h), false);
4053
4054 /* fallback to copy_from_user outside mmap_sem */
4055 if (unlikely(ret)) {
4056 ret = -ENOENT;
4057 *pagep = page;
4058 /* don't free the page */
4059 goto out;
4060 }
4061 } else {
4062 page = *pagep;
4063 *pagep = NULL;
4064 }
4065
4066 /*
4067 * The memory barrier inside __SetPageUptodate makes sure that
4068 * preceding stores to the page contents become visible before
4069 * the set_pte_at() write.
4070 */
4071 __SetPageUptodate(page);
4072
4073 mapping = dst_vma->vm_file->f_mapping;
4074 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4075
4076 /*
4077 * If shared, add to page cache
4078 */
4079 if (vm_shared) {
4080 size = i_size_read(mapping->host) >> huge_page_shift(h);
4081 ret = -EFAULT;
4082 if (idx >= size)
4083 goto out_release_nounlock;
4084
4085 /*
4086 * Serialization between remove_inode_hugepages() and
4087 * huge_add_to_page_cache() below happens through the
4088 * hugetlb_fault_mutex_table that here must be hold by
4089 * the caller.
4090 */
4091 ret = huge_add_to_page_cache(page, mapping, idx);
4092 if (ret)
4093 goto out_release_nounlock;
4094 }
4095
4096 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4097 spin_lock(ptl);
4098
4099 /*
4100 * Recheck the i_size after holding PT lock to make sure not
4101 * to leave any page mapped (as page_mapped()) beyond the end
4102 * of the i_size (remove_inode_hugepages() is strict about
4103 * enforcing that). If we bail out here, we'll also leave a
4104 * page in the radix tree in the vm_shared case beyond the end
4105 * of the i_size, but remove_inode_hugepages() will take care
4106 * of it as soon as we drop the hugetlb_fault_mutex_table.
4107 */
4108 size = i_size_read(mapping->host) >> huge_page_shift(h);
4109 ret = -EFAULT;
4110 if (idx >= size)
4111 goto out_release_unlock;
4112
4113 ret = -EEXIST;
4114 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4115 goto out_release_unlock;
4116
4117 if (vm_shared) {
4118 page_dup_rmap(page, true);
4119 } else {
4120 ClearPagePrivate(page);
4121 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4122 }
4123
4124 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4125 if (dst_vma->vm_flags & VM_WRITE)
4126 _dst_pte = huge_pte_mkdirty(_dst_pte);
4127 _dst_pte = pte_mkyoung(_dst_pte);
4128
4129 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4130
4131 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4132 dst_vma->vm_flags & VM_WRITE);
4133 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4134
4135 /* No need to invalidate - it was non-present before */
4136 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4137
4138 spin_unlock(ptl);
4139 set_page_huge_active(page);
4140 if (vm_shared)
4141 unlock_page(page);
4142 ret = 0;
4143 out:
4144 return ret;
4145 out_release_unlock:
4146 spin_unlock(ptl);
4147 if (vm_shared)
4148 unlock_page(page);
4149 out_release_nounlock:
4150 put_page(page);
4151 goto out;
4152 }
4153
4154 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4155 struct page **pages, struct vm_area_struct **vmas,
4156 unsigned long *position, unsigned long *nr_pages,
4157 long i, unsigned int flags, int *nonblocking)
4158 {
4159 unsigned long pfn_offset;
4160 unsigned long vaddr = *position;
4161 unsigned long remainder = *nr_pages;
4162 struct hstate *h = hstate_vma(vma);
4163 int err = -EFAULT;
4164
4165 while (vaddr < vma->vm_end && remainder) {
4166 pte_t *pte;
4167 spinlock_t *ptl = NULL;
4168 int absent;
4169 struct page *page;
4170
4171 /*
4172 * If we have a pending SIGKILL, don't keep faulting pages and
4173 * potentially allocating memory.
4174 */
4175 if (unlikely(fatal_signal_pending(current))) {
4176 remainder = 0;
4177 break;
4178 }
4179
4180 /*
4181 * Some archs (sparc64, sh*) have multiple pte_ts to
4182 * each hugepage. We have to make sure we get the
4183 * first, for the page indexing below to work.
4184 *
4185 * Note that page table lock is not held when pte is null.
4186 */
4187 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4188 huge_page_size(h));
4189 if (pte)
4190 ptl = huge_pte_lock(h, mm, pte);
4191 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4192
4193 /*
4194 * When coredumping, it suits get_dump_page if we just return
4195 * an error where there's an empty slot with no huge pagecache
4196 * to back it. This way, we avoid allocating a hugepage, and
4197 * the sparse dumpfile avoids allocating disk blocks, but its
4198 * huge holes still show up with zeroes where they need to be.
4199 */
4200 if (absent && (flags & FOLL_DUMP) &&
4201 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4202 if (pte)
4203 spin_unlock(ptl);
4204 remainder = 0;
4205 break;
4206 }
4207
4208 /*
4209 * We need call hugetlb_fault for both hugepages under migration
4210 * (in which case hugetlb_fault waits for the migration,) and
4211 * hwpoisoned hugepages (in which case we need to prevent the
4212 * caller from accessing to them.) In order to do this, we use
4213 * here is_swap_pte instead of is_hugetlb_entry_migration and
4214 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4215 * both cases, and because we can't follow correct pages
4216 * directly from any kind of swap entries.
4217 */
4218 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4219 ((flags & FOLL_WRITE) &&
4220 !huge_pte_write(huge_ptep_get(pte)))) {
4221 int ret;
4222 unsigned int fault_flags = 0;
4223
4224 if (pte)
4225 spin_unlock(ptl);
4226 if (flags & FOLL_WRITE)
4227 fault_flags |= FAULT_FLAG_WRITE;
4228 if (nonblocking)
4229 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4230 if (flags & FOLL_NOWAIT)
4231 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4232 FAULT_FLAG_RETRY_NOWAIT;
4233 if (flags & FOLL_TRIED) {
4234 VM_WARN_ON_ONCE(fault_flags &
4235 FAULT_FLAG_ALLOW_RETRY);
4236 fault_flags |= FAULT_FLAG_TRIED;
4237 }
4238 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4239 if (ret & VM_FAULT_ERROR) {
4240 err = vm_fault_to_errno(ret, flags);
4241 remainder = 0;
4242 break;
4243 }
4244 if (ret & VM_FAULT_RETRY) {
4245 if (nonblocking &&
4246 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4247 *nonblocking = 0;
4248 *nr_pages = 0;
4249 /*
4250 * VM_FAULT_RETRY must not return an
4251 * error, it will return zero
4252 * instead.
4253 *
4254 * No need to update "position" as the
4255 * caller will not check it after
4256 * *nr_pages is set to 0.
4257 */
4258 return i;
4259 }
4260 continue;
4261 }
4262
4263 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4264 page = pte_page(huge_ptep_get(pte));
4265
4266 /*
4267 * Instead of doing 'try_get_page()' below in the same_page
4268 * loop, just check the count once here.
4269 */
4270 if (unlikely(page_count(page) <= 0)) {
4271 if (pages) {
4272 spin_unlock(ptl);
4273 remainder = 0;
4274 err = -ENOMEM;
4275 break;
4276 }
4277 }
4278 same_page:
4279 if (pages) {
4280 pages[i] = mem_map_offset(page, pfn_offset);
4281 get_page(pages[i]);
4282 }
4283
4284 if (vmas)
4285 vmas[i] = vma;
4286
4287 vaddr += PAGE_SIZE;
4288 ++pfn_offset;
4289 --remainder;
4290 ++i;
4291 if (vaddr < vma->vm_end && remainder &&
4292 pfn_offset < pages_per_huge_page(h)) {
4293 /*
4294 * We use pfn_offset to avoid touching the pageframes
4295 * of this compound page.
4296 */
4297 goto same_page;
4298 }
4299 spin_unlock(ptl);
4300 }
4301 *nr_pages = remainder;
4302 /*
4303 * setting position is actually required only if remainder is
4304 * not zero but it's faster not to add a "if (remainder)"
4305 * branch.
4306 */
4307 *position = vaddr;
4308
4309 return i ? i : err;
4310 }
4311
4312 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4313 /*
4314 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4315 * implement this.
4316 */
4317 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4318 #endif
4319
4320 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4321 unsigned long address, unsigned long end, pgprot_t newprot)
4322 {
4323 struct mm_struct *mm = vma->vm_mm;
4324 unsigned long start = address;
4325 pte_t *ptep;
4326 pte_t pte;
4327 struct hstate *h = hstate_vma(vma);
4328 unsigned long pages = 0;
4329
4330 BUG_ON(address >= end);
4331 flush_cache_range(vma, address, end);
4332
4333 mmu_notifier_invalidate_range_start(mm, start, end);
4334 i_mmap_lock_write(vma->vm_file->f_mapping);
4335 for (; address < end; address += huge_page_size(h)) {
4336 spinlock_t *ptl;
4337 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4338 if (!ptep)
4339 continue;
4340 ptl = huge_pte_lock(h, mm, ptep);
4341 if (huge_pmd_unshare(mm, &address, ptep)) {
4342 pages++;
4343 spin_unlock(ptl);
4344 continue;
4345 }
4346 pte = huge_ptep_get(ptep);
4347 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4348 spin_unlock(ptl);
4349 continue;
4350 }
4351 if (unlikely(is_hugetlb_entry_migration(pte))) {
4352 swp_entry_t entry = pte_to_swp_entry(pte);
4353
4354 if (is_write_migration_entry(entry)) {
4355 pte_t newpte;
4356
4357 make_migration_entry_read(&entry);
4358 newpte = swp_entry_to_pte(entry);
4359 set_huge_swap_pte_at(mm, address, ptep,
4360 newpte, huge_page_size(h));
4361 pages++;
4362 }
4363 spin_unlock(ptl);
4364 continue;
4365 }
4366 if (!huge_pte_none(pte)) {
4367 pte = huge_ptep_get_and_clear(mm, address, ptep);
4368 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4369 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4370 set_huge_pte_at(mm, address, ptep, pte);
4371 pages++;
4372 }
4373 spin_unlock(ptl);
4374 }
4375 /*
4376 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4377 * may have cleared our pud entry and done put_page on the page table:
4378 * once we release i_mmap_rwsem, another task can do the final put_page
4379 * and that page table be reused and filled with junk.
4380 */
4381 flush_hugetlb_tlb_range(vma, start, end);
4382 /*
4383 * No need to call mmu_notifier_invalidate_range() we are downgrading
4384 * page table protection not changing it to point to a new page.
4385 *
4386 * See Documentation/vm/mmu_notifier.txt
4387 */
4388 i_mmap_unlock_write(vma->vm_file->f_mapping);
4389 mmu_notifier_invalidate_range_end(mm, start, end);
4390
4391 return pages << h->order;
4392 }
4393
4394 int hugetlb_reserve_pages(struct inode *inode,
4395 long from, long to,
4396 struct vm_area_struct *vma,
4397 vm_flags_t vm_flags)
4398 {
4399 long ret, chg;
4400 struct hstate *h = hstate_inode(inode);
4401 struct hugepage_subpool *spool = subpool_inode(inode);
4402 struct resv_map *resv_map;
4403 long gbl_reserve;
4404
4405 /* This should never happen */
4406 if (from > to) {
4407 VM_WARN(1, "%s called with a negative range\n", __func__);
4408 return -EINVAL;
4409 }
4410
4411 /*
4412 * Only apply hugepage reservation if asked. At fault time, an
4413 * attempt will be made for VM_NORESERVE to allocate a page
4414 * without using reserves
4415 */
4416 if (vm_flags & VM_NORESERVE)
4417 return 0;
4418
4419 /*
4420 * Shared mappings base their reservation on the number of pages that
4421 * are already allocated on behalf of the file. Private mappings need
4422 * to reserve the full area even if read-only as mprotect() may be
4423 * called to make the mapping read-write. Assume !vma is a shm mapping
4424 */
4425 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4426 resv_map = inode_resv_map(inode);
4427
4428 chg = region_chg(resv_map, from, to);
4429
4430 } else {
4431 resv_map = resv_map_alloc();
4432 if (!resv_map)
4433 return -ENOMEM;
4434
4435 chg = to - from;
4436
4437 set_vma_resv_map(vma, resv_map);
4438 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4439 }
4440
4441 if (chg < 0) {
4442 ret = chg;
4443 goto out_err;
4444 }
4445
4446 /*
4447 * There must be enough pages in the subpool for the mapping. If
4448 * the subpool has a minimum size, there may be some global
4449 * reservations already in place (gbl_reserve).
4450 */
4451 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4452 if (gbl_reserve < 0) {
4453 ret = -ENOSPC;
4454 goto out_err;
4455 }
4456
4457 /*
4458 * Check enough hugepages are available for the reservation.
4459 * Hand the pages back to the subpool if there are not
4460 */
4461 ret = hugetlb_acct_memory(h, gbl_reserve);
4462 if (ret < 0) {
4463 /* put back original number of pages, chg */
4464 (void)hugepage_subpool_put_pages(spool, chg);
4465 goto out_err;
4466 }
4467
4468 /*
4469 * Account for the reservations made. Shared mappings record regions
4470 * that have reservations as they are shared by multiple VMAs.
4471 * When the last VMA disappears, the region map says how much
4472 * the reservation was and the page cache tells how much of
4473 * the reservation was consumed. Private mappings are per-VMA and
4474 * only the consumed reservations are tracked. When the VMA
4475 * disappears, the original reservation is the VMA size and the
4476 * consumed reservations are stored in the map. Hence, nothing
4477 * else has to be done for private mappings here
4478 */
4479 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4480 long add = region_add(resv_map, from, to);
4481
4482 if (unlikely(chg > add)) {
4483 /*
4484 * pages in this range were added to the reserve
4485 * map between region_chg and region_add. This
4486 * indicates a race with alloc_huge_page. Adjust
4487 * the subpool and reserve counts modified above
4488 * based on the difference.
4489 */
4490 long rsv_adjust;
4491
4492 rsv_adjust = hugepage_subpool_put_pages(spool,
4493 chg - add);
4494 hugetlb_acct_memory(h, -rsv_adjust);
4495 }
4496 }
4497 return 0;
4498 out_err:
4499 if (!vma || vma->vm_flags & VM_MAYSHARE)
4500 /* Don't call region_abort if region_chg failed */
4501 if (chg >= 0)
4502 region_abort(resv_map, from, to);
4503 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4504 kref_put(&resv_map->refs, resv_map_release);
4505 return ret;
4506 }
4507
4508 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4509 long freed)
4510 {
4511 struct hstate *h = hstate_inode(inode);
4512 struct resv_map *resv_map = inode_resv_map(inode);
4513 long chg = 0;
4514 struct hugepage_subpool *spool = subpool_inode(inode);
4515 long gbl_reserve;
4516
4517 if (resv_map) {
4518 chg = region_del(resv_map, start, end);
4519 /*
4520 * region_del() can fail in the rare case where a region
4521 * must be split and another region descriptor can not be
4522 * allocated. If end == LONG_MAX, it will not fail.
4523 */
4524 if (chg < 0)
4525 return chg;
4526 }
4527
4528 spin_lock(&inode->i_lock);
4529 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4530 spin_unlock(&inode->i_lock);
4531
4532 /*
4533 * If the subpool has a minimum size, the number of global
4534 * reservations to be released may be adjusted.
4535 */
4536 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4537 hugetlb_acct_memory(h, -gbl_reserve);
4538
4539 return 0;
4540 }
4541
4542 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4543 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4544 struct vm_area_struct *vma,
4545 unsigned long addr, pgoff_t idx)
4546 {
4547 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4548 svma->vm_start;
4549 unsigned long sbase = saddr & PUD_MASK;
4550 unsigned long s_end = sbase + PUD_SIZE;
4551
4552 /* Allow segments to share if only one is marked locked */
4553 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4554 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4555
4556 /*
4557 * match the virtual addresses, permission and the alignment of the
4558 * page table page.
4559 */
4560 if (pmd_index(addr) != pmd_index(saddr) ||
4561 vm_flags != svm_flags ||
4562 sbase < svma->vm_start || svma->vm_end < s_end)
4563 return 0;
4564
4565 return saddr;
4566 }
4567
4568 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4569 {
4570 unsigned long base = addr & PUD_MASK;
4571 unsigned long end = base + PUD_SIZE;
4572
4573 /*
4574 * check on proper vm_flags and page table alignment
4575 */
4576 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4577 return true;
4578 return false;
4579 }
4580
4581 /*
4582 * Determine if start,end range within vma could be mapped by shared pmd.
4583 * If yes, adjust start and end to cover range associated with possible
4584 * shared pmd mappings.
4585 */
4586 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4587 unsigned long *start, unsigned long *end)
4588 {
4589 unsigned long check_addr = *start;
4590
4591 if (!(vma->vm_flags & VM_MAYSHARE))
4592 return;
4593
4594 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4595 unsigned long a_start = check_addr & PUD_MASK;
4596 unsigned long a_end = a_start + PUD_SIZE;
4597
4598 /*
4599 * If sharing is possible, adjust start/end if necessary.
4600 */
4601 if (range_in_vma(vma, a_start, a_end)) {
4602 if (a_start < *start)
4603 *start = a_start;
4604 if (a_end > *end)
4605 *end = a_end;
4606 }
4607 }
4608 }
4609
4610 /*
4611 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4612 * and returns the corresponding pte. While this is not necessary for the
4613 * !shared pmd case because we can allocate the pmd later as well, it makes the
4614 * code much cleaner. pmd allocation is essential for the shared case because
4615 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4616 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4617 * bad pmd for sharing.
4618 */
4619 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4620 {
4621 struct vm_area_struct *vma = find_vma(mm, addr);
4622 struct address_space *mapping = vma->vm_file->f_mapping;
4623 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4624 vma->vm_pgoff;
4625 struct vm_area_struct *svma;
4626 unsigned long saddr;
4627 pte_t *spte = NULL;
4628 pte_t *pte;
4629 spinlock_t *ptl;
4630
4631 if (!vma_shareable(vma, addr))
4632 return (pte_t *)pmd_alloc(mm, pud, addr);
4633
4634 i_mmap_lock_write(mapping);
4635 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4636 if (svma == vma)
4637 continue;
4638
4639 saddr = page_table_shareable(svma, vma, addr, idx);
4640 if (saddr) {
4641 spte = huge_pte_offset(svma->vm_mm, saddr,
4642 vma_mmu_pagesize(svma));
4643 if (spte) {
4644 get_page(virt_to_page(spte));
4645 break;
4646 }
4647 }
4648 }
4649
4650 if (!spte)
4651 goto out;
4652
4653 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4654 if (pud_none(*pud)) {
4655 pud_populate(mm, pud,
4656 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4657 mm_inc_nr_pmds(mm);
4658 } else {
4659 put_page(virt_to_page(spte));
4660 }
4661 spin_unlock(ptl);
4662 out:
4663 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4664 i_mmap_unlock_write(mapping);
4665 return pte;
4666 }
4667
4668 /*
4669 * unmap huge page backed by shared pte.
4670 *
4671 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4672 * indicated by page_count > 1, unmap is achieved by clearing pud and
4673 * decrementing the ref count. If count == 1, the pte page is not shared.
4674 *
4675 * called with page table lock held.
4676 *
4677 * returns: 1 successfully unmapped a shared pte page
4678 * 0 the underlying pte page is not shared, or it is the last user
4679 */
4680 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4681 {
4682 pgd_t *pgd = pgd_offset(mm, *addr);
4683 p4d_t *p4d = p4d_offset(pgd, *addr);
4684 pud_t *pud = pud_offset(p4d, *addr);
4685
4686 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4687 if (page_count(virt_to_page(ptep)) == 1)
4688 return 0;
4689
4690 pud_clear(pud);
4691 put_page(virt_to_page(ptep));
4692 mm_dec_nr_pmds(mm);
4693 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4694 return 1;
4695 }
4696 #define want_pmd_share() (1)
4697 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4698 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4699 {
4700 return NULL;
4701 }
4702
4703 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4704 {
4705 return 0;
4706 }
4707
4708 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4709 unsigned long *start, unsigned long *end)
4710 {
4711 }
4712 #define want_pmd_share() (0)
4713 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4714
4715 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4716 pte_t *huge_pte_alloc(struct mm_struct *mm,
4717 unsigned long addr, unsigned long sz)
4718 {
4719 pgd_t *pgd;
4720 p4d_t *p4d;
4721 pud_t *pud;
4722 pte_t *pte = NULL;
4723
4724 pgd = pgd_offset(mm, addr);
4725 p4d = p4d_alloc(mm, pgd, addr);
4726 if (!p4d)
4727 return NULL;
4728 pud = pud_alloc(mm, p4d, addr);
4729 if (pud) {
4730 if (sz == PUD_SIZE) {
4731 pte = (pte_t *)pud;
4732 } else {
4733 BUG_ON(sz != PMD_SIZE);
4734 if (want_pmd_share() && pud_none(*pud))
4735 pte = huge_pmd_share(mm, addr, pud);
4736 else
4737 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4738 }
4739 }
4740 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4741
4742 return pte;
4743 }
4744
4745 /*
4746 * huge_pte_offset() - Walk the page table to resolve the hugepage
4747 * entry at address @addr
4748 *
4749 * Return: Pointer to page table or swap entry (PUD or PMD) for
4750 * address @addr, or NULL if a p*d_none() entry is encountered and the
4751 * size @sz doesn't match the hugepage size at this level of the page
4752 * table.
4753 */
4754 pte_t *huge_pte_offset(struct mm_struct *mm,
4755 unsigned long addr, unsigned long sz)
4756 {
4757 pgd_t *pgd;
4758 p4d_t *p4d;
4759 pud_t *pud;
4760 pmd_t *pmd;
4761
4762 pgd = pgd_offset(mm, addr);
4763 if (!pgd_present(*pgd))
4764 return NULL;
4765 p4d = p4d_offset(pgd, addr);
4766 if (!p4d_present(*p4d))
4767 return NULL;
4768
4769 pud = pud_offset(p4d, addr);
4770 if (sz != PUD_SIZE && pud_none(*pud))
4771 return NULL;
4772 /* hugepage or swap? */
4773 if (pud_huge(*pud) || !pud_present(*pud))
4774 return (pte_t *)pud;
4775
4776 pmd = pmd_offset(pud, addr);
4777 if (sz != PMD_SIZE && pmd_none(*pmd))
4778 return NULL;
4779 /* hugepage or swap? */
4780 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4781 return (pte_t *)pmd;
4782
4783 return NULL;
4784 }
4785
4786 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4787
4788 /*
4789 * These functions are overwritable if your architecture needs its own
4790 * behavior.
4791 */
4792 struct page * __weak
4793 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4794 int write)
4795 {
4796 return ERR_PTR(-EINVAL);
4797 }
4798
4799 struct page * __weak
4800 follow_huge_pd(struct vm_area_struct *vma,
4801 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4802 {
4803 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4804 return NULL;
4805 }
4806
4807 struct page * __weak
4808 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4809 pmd_t *pmd, int flags)
4810 {
4811 struct page *page = NULL;
4812 spinlock_t *ptl;
4813 pte_t pte;
4814 retry:
4815 ptl = pmd_lockptr(mm, pmd);
4816 spin_lock(ptl);
4817 /*
4818 * make sure that the address range covered by this pmd is not
4819 * unmapped from other threads.
4820 */
4821 if (!pmd_huge(*pmd))
4822 goto out;
4823 pte = huge_ptep_get((pte_t *)pmd);
4824 if (pte_present(pte)) {
4825 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4826 if (flags & FOLL_GET)
4827 get_page(page);
4828 } else {
4829 if (is_hugetlb_entry_migration(pte)) {
4830 spin_unlock(ptl);
4831 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4832 goto retry;
4833 }
4834 /*
4835 * hwpoisoned entry is treated as no_page_table in
4836 * follow_page_mask().
4837 */
4838 }
4839 out:
4840 spin_unlock(ptl);
4841 return page;
4842 }
4843
4844 struct page * __weak
4845 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4846 pud_t *pud, int flags)
4847 {
4848 if (flags & FOLL_GET)
4849 return NULL;
4850
4851 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4852 }
4853
4854 struct page * __weak
4855 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4856 {
4857 if (flags & FOLL_GET)
4858 return NULL;
4859
4860 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4861 }
4862
4863 bool isolate_huge_page(struct page *page, struct list_head *list)
4864 {
4865 bool ret = true;
4866
4867 VM_BUG_ON_PAGE(!PageHead(page), page);
4868 spin_lock(&hugetlb_lock);
4869 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4870 ret = false;
4871 goto unlock;
4872 }
4873 clear_page_huge_active(page);
4874 list_move_tail(&page->lru, list);
4875 unlock:
4876 spin_unlock(&hugetlb_lock);
4877 return ret;
4878 }
4879
4880 void putback_active_hugepage(struct page *page)
4881 {
4882 VM_BUG_ON_PAGE(!PageHead(page), page);
4883 spin_lock(&hugetlb_lock);
4884 set_page_huge_active(page);
4885 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4886 spin_unlock(&hugetlb_lock);
4887 put_page(page);
4888 }