]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/hugetlb.c
mm/zsmalloc.c: fix build when CONFIG_COMPACTION=n
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
1211d50a 21#include <linux/mmdebug.h>
174cd4b1 22#include <linux/sched/signal.h>
0fe6e20b 23#include <linux/rmap.h>
c6247f72 24#include <linux/string_helpers.h>
fd6a03ed
NH
25#include <linux/swap.h>
26#include <linux/swapops.h>
8382d914 27#include <linux/jhash.h>
d6606683 28
63551ae0
DG
29#include <asm/page.h>
30#include <asm/pgtable.h>
24669e58 31#include <asm/tlb.h>
63551ae0 32
24669e58 33#include <linux/io.h>
63551ae0 34#include <linux/hugetlb.h>
9dd540e2 35#include <linux/hugetlb_cgroup.h>
9a305230 36#include <linux/node.h>
1a1aad8a 37#include <linux/userfaultfd_k.h>
7835e98b 38#include "internal.h"
1da177e4 39
753162cd 40int hugepages_treat_as_movable;
a5516438 41
c3f38a38 42int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
43unsigned int default_hstate_idx;
44struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
45/*
46 * Minimum page order among possible hugepage sizes, set to a proper value
47 * at boot time.
48 */
49static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 50
53ba51d2
JT
51__initdata LIST_HEAD(huge_boot_pages);
52
e5ff2159
AK
53/* for command line parsing */
54static struct hstate * __initdata parsed_hstate;
55static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 56static unsigned long __initdata default_hstate_size;
9fee021d 57static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 58
3935baa9 59/*
31caf665
NH
60 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61 * free_huge_pages, and surplus_huge_pages.
3935baa9 62 */
c3f38a38 63DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 64
8382d914
DB
65/*
66 * Serializes faults on the same logical page. This is used to
67 * prevent spurious OOMs when the hugepage pool is fully utilized.
68 */
69static int num_fault_mutexes;
c672c7f2 70struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 71
7ca02d0a
MK
72/* Forward declaration */
73static int hugetlb_acct_memory(struct hstate *h, long delta);
74
90481622
DG
75static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76{
77 bool free = (spool->count == 0) && (spool->used_hpages == 0);
78
79 spin_unlock(&spool->lock);
80
81 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
82 * remain, give up any reservations mased on minimum size and
83 * free the subpool */
84 if (free) {
85 if (spool->min_hpages != -1)
86 hugetlb_acct_memory(spool->hstate,
87 -spool->min_hpages);
90481622 88 kfree(spool);
7ca02d0a 89 }
90481622
DG
90}
91
7ca02d0a
MK
92struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
93 long min_hpages)
90481622
DG
94{
95 struct hugepage_subpool *spool;
96
c6a91820 97 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
98 if (!spool)
99 return NULL;
100
101 spin_lock_init(&spool->lock);
102 spool->count = 1;
7ca02d0a
MK
103 spool->max_hpages = max_hpages;
104 spool->hstate = h;
105 spool->min_hpages = min_hpages;
106
107 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108 kfree(spool);
109 return NULL;
110 }
111 spool->rsv_hpages = min_hpages;
90481622
DG
112
113 return spool;
114}
115
116void hugepage_put_subpool(struct hugepage_subpool *spool)
117{
118 spin_lock(&spool->lock);
119 BUG_ON(!spool->count);
120 spool->count--;
121 unlock_or_release_subpool(spool);
122}
123
1c5ecae3
MK
124/*
125 * Subpool accounting for allocating and reserving pages.
126 * Return -ENOMEM if there are not enough resources to satisfy the
127 * the request. Otherwise, return the number of pages by which the
128 * global pools must be adjusted (upward). The returned value may
129 * only be different than the passed value (delta) in the case where
130 * a subpool minimum size must be manitained.
131 */
132static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
133 long delta)
134{
1c5ecae3 135 long ret = delta;
90481622
DG
136
137 if (!spool)
1c5ecae3 138 return ret;
90481622
DG
139
140 spin_lock(&spool->lock);
1c5ecae3
MK
141
142 if (spool->max_hpages != -1) { /* maximum size accounting */
143 if ((spool->used_hpages + delta) <= spool->max_hpages)
144 spool->used_hpages += delta;
145 else {
146 ret = -ENOMEM;
147 goto unlock_ret;
148 }
90481622 149 }
90481622 150
09a95e29
MK
151 /* minimum size accounting */
152 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
153 if (delta > spool->rsv_hpages) {
154 /*
155 * Asking for more reserves than those already taken on
156 * behalf of subpool. Return difference.
157 */
158 ret = delta - spool->rsv_hpages;
159 spool->rsv_hpages = 0;
160 } else {
161 ret = 0; /* reserves already accounted for */
162 spool->rsv_hpages -= delta;
163 }
164 }
165
166unlock_ret:
167 spin_unlock(&spool->lock);
90481622
DG
168 return ret;
169}
170
1c5ecae3
MK
171/*
172 * Subpool accounting for freeing and unreserving pages.
173 * Return the number of global page reservations that must be dropped.
174 * The return value may only be different than the passed value (delta)
175 * in the case where a subpool minimum size must be maintained.
176 */
177static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
178 long delta)
179{
1c5ecae3
MK
180 long ret = delta;
181
90481622 182 if (!spool)
1c5ecae3 183 return delta;
90481622
DG
184
185 spin_lock(&spool->lock);
1c5ecae3
MK
186
187 if (spool->max_hpages != -1) /* maximum size accounting */
188 spool->used_hpages -= delta;
189
09a95e29
MK
190 /* minimum size accounting */
191 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
192 if (spool->rsv_hpages + delta <= spool->min_hpages)
193 ret = 0;
194 else
195 ret = spool->rsv_hpages + delta - spool->min_hpages;
196
197 spool->rsv_hpages += delta;
198 if (spool->rsv_hpages > spool->min_hpages)
199 spool->rsv_hpages = spool->min_hpages;
200 }
201
202 /*
203 * If hugetlbfs_put_super couldn't free spool due to an outstanding
204 * quota reference, free it now.
205 */
90481622 206 unlock_or_release_subpool(spool);
1c5ecae3
MK
207
208 return ret;
90481622
DG
209}
210
211static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212{
213 return HUGETLBFS_SB(inode->i_sb)->spool;
214}
215
216static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217{
496ad9aa 218 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
219}
220
96822904
AW
221/*
222 * Region tracking -- allows tracking of reservations and instantiated pages
223 * across the pages in a mapping.
84afd99b 224 *
1dd308a7
MK
225 * The region data structures are embedded into a resv_map and protected
226 * by a resv_map's lock. The set of regions within the resv_map represent
227 * reservations for huge pages, or huge pages that have already been
228 * instantiated within the map. The from and to elements are huge page
229 * indicies into the associated mapping. from indicates the starting index
230 * of the region. to represents the first index past the end of the region.
231 *
232 * For example, a file region structure with from == 0 and to == 4 represents
233 * four huge pages in a mapping. It is important to note that the to element
234 * represents the first element past the end of the region. This is used in
235 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236 *
237 * Interval notation of the form [from, to) will be used to indicate that
238 * the endpoint from is inclusive and to is exclusive.
96822904
AW
239 */
240struct file_region {
241 struct list_head link;
242 long from;
243 long to;
244};
245
1dd308a7
MK
246/*
247 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
248 * map. In the normal case, existing regions will be expanded
249 * to accommodate the specified range. Sufficient regions should
250 * exist for expansion due to the previous call to region_chg
251 * with the same range. However, it is possible that region_del
252 * could have been called after region_chg and modifed the map
253 * in such a way that no region exists to be expanded. In this
254 * case, pull a region descriptor from the cache associated with
255 * the map and use that for the new range.
cf3ad20b
MK
256 *
257 * Return the number of new huge pages added to the map. This
258 * number is greater than or equal to zero.
1dd308a7 259 */
1406ec9b 260static long region_add(struct resv_map *resv, long f, long t)
96822904 261{
1406ec9b 262 struct list_head *head = &resv->regions;
96822904 263 struct file_region *rg, *nrg, *trg;
cf3ad20b 264 long add = 0;
96822904 265
7b24d861 266 spin_lock(&resv->lock);
96822904
AW
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg, head, link)
269 if (f <= rg->to)
270 break;
271
5e911373
MK
272 /*
273 * If no region exists which can be expanded to include the
274 * specified range, the list must have been modified by an
275 * interleving call to region_del(). Pull a region descriptor
276 * from the cache and use it for this range.
277 */
278 if (&rg->link == head || t < rg->from) {
279 VM_BUG_ON(resv->region_cache_count <= 0);
280
281 resv->region_cache_count--;
282 nrg = list_first_entry(&resv->region_cache, struct file_region,
283 link);
284 list_del(&nrg->link);
285
286 nrg->from = f;
287 nrg->to = t;
288 list_add(&nrg->link, rg->link.prev);
289
290 add += t - f;
291 goto out_locked;
292 }
293
96822904
AW
294 /* Round our left edge to the current segment if it encloses us. */
295 if (f > rg->from)
296 f = rg->from;
297
298 /* Check for and consume any regions we now overlap with. */
299 nrg = rg;
300 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
301 if (&rg->link == head)
302 break;
303 if (rg->from > t)
304 break;
305
306 /* If this area reaches higher then extend our area to
307 * include it completely. If this is not the first area
308 * which we intend to reuse, free it. */
309 if (rg->to > t)
310 t = rg->to;
311 if (rg != nrg) {
cf3ad20b
MK
312 /* Decrement return value by the deleted range.
313 * Another range will span this area so that by
314 * end of routine add will be >= zero
315 */
316 add -= (rg->to - rg->from);
96822904
AW
317 list_del(&rg->link);
318 kfree(rg);
319 }
320 }
cf3ad20b
MK
321
322 add += (nrg->from - f); /* Added to beginning of region */
96822904 323 nrg->from = f;
cf3ad20b 324 add += t - nrg->to; /* Added to end of region */
96822904 325 nrg->to = t;
cf3ad20b 326
5e911373
MK
327out_locked:
328 resv->adds_in_progress--;
7b24d861 329 spin_unlock(&resv->lock);
cf3ad20b
MK
330 VM_BUG_ON(add < 0);
331 return add;
96822904
AW
332}
333
1dd308a7
MK
334/*
335 * Examine the existing reserve map and determine how many
336 * huge pages in the specified range [f, t) are NOT currently
337 * represented. This routine is called before a subsequent
338 * call to region_add that will actually modify the reserve
339 * map to add the specified range [f, t). region_chg does
340 * not change the number of huge pages represented by the
341 * map. However, if the existing regions in the map can not
342 * be expanded to represent the new range, a new file_region
343 * structure is added to the map as a placeholder. This is
344 * so that the subsequent region_add call will have all the
345 * regions it needs and will not fail.
346 *
5e911373
MK
347 * Upon entry, region_chg will also examine the cache of region descriptors
348 * associated with the map. If there are not enough descriptors cached, one
349 * will be allocated for the in progress add operation.
350 *
351 * Returns the number of huge pages that need to be added to the existing
352 * reservation map for the range [f, t). This number is greater or equal to
353 * zero. -ENOMEM is returned if a new file_region structure or cache entry
354 * is needed and can not be allocated.
1dd308a7 355 */
1406ec9b 356static long region_chg(struct resv_map *resv, long f, long t)
96822904 357{
1406ec9b 358 struct list_head *head = &resv->regions;
7b24d861 359 struct file_region *rg, *nrg = NULL;
96822904
AW
360 long chg = 0;
361
7b24d861
DB
362retry:
363 spin_lock(&resv->lock);
5e911373
MK
364retry_locked:
365 resv->adds_in_progress++;
366
367 /*
368 * Check for sufficient descriptors in the cache to accommodate
369 * the number of in progress add operations.
370 */
371 if (resv->adds_in_progress > resv->region_cache_count) {
372 struct file_region *trg;
373
374 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
375 /* Must drop lock to allocate a new descriptor. */
376 resv->adds_in_progress--;
377 spin_unlock(&resv->lock);
378
379 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
380 if (!trg) {
381 kfree(nrg);
5e911373 382 return -ENOMEM;
dbe409e4 383 }
5e911373
MK
384
385 spin_lock(&resv->lock);
386 list_add(&trg->link, &resv->region_cache);
387 resv->region_cache_count++;
388 goto retry_locked;
389 }
390
96822904
AW
391 /* Locate the region we are before or in. */
392 list_for_each_entry(rg, head, link)
393 if (f <= rg->to)
394 break;
395
396 /* If we are below the current region then a new region is required.
397 * Subtle, allocate a new region at the position but make it zero
398 * size such that we can guarantee to record the reservation. */
399 if (&rg->link == head || t < rg->from) {
7b24d861 400 if (!nrg) {
5e911373 401 resv->adds_in_progress--;
7b24d861
DB
402 spin_unlock(&resv->lock);
403 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
404 if (!nrg)
405 return -ENOMEM;
406
407 nrg->from = f;
408 nrg->to = f;
409 INIT_LIST_HEAD(&nrg->link);
410 goto retry;
411 }
96822904 412
7b24d861
DB
413 list_add(&nrg->link, rg->link.prev);
414 chg = t - f;
415 goto out_nrg;
96822904
AW
416 }
417
418 /* Round our left edge to the current segment if it encloses us. */
419 if (f > rg->from)
420 f = rg->from;
421 chg = t - f;
422
423 /* Check for and consume any regions we now overlap with. */
424 list_for_each_entry(rg, rg->link.prev, link) {
425 if (&rg->link == head)
426 break;
427 if (rg->from > t)
7b24d861 428 goto out;
96822904 429
25985edc 430 /* We overlap with this area, if it extends further than
96822904
AW
431 * us then we must extend ourselves. Account for its
432 * existing reservation. */
433 if (rg->to > t) {
434 chg += rg->to - t;
435 t = rg->to;
436 }
437 chg -= rg->to - rg->from;
438 }
7b24d861
DB
439
440out:
441 spin_unlock(&resv->lock);
442 /* We already know we raced and no longer need the new region */
443 kfree(nrg);
444 return chg;
445out_nrg:
446 spin_unlock(&resv->lock);
96822904
AW
447 return chg;
448}
449
5e911373
MK
450/*
451 * Abort the in progress add operation. The adds_in_progress field
452 * of the resv_map keeps track of the operations in progress between
453 * calls to region_chg and region_add. Operations are sometimes
454 * aborted after the call to region_chg. In such cases, region_abort
455 * is called to decrement the adds_in_progress counter.
456 *
457 * NOTE: The range arguments [f, t) are not needed or used in this
458 * routine. They are kept to make reading the calling code easier as
459 * arguments will match the associated region_chg call.
460 */
461static void region_abort(struct resv_map *resv, long f, long t)
462{
463 spin_lock(&resv->lock);
464 VM_BUG_ON(!resv->region_cache_count);
465 resv->adds_in_progress--;
466 spin_unlock(&resv->lock);
467}
468
1dd308a7 469/*
feba16e2
MK
470 * Delete the specified range [f, t) from the reserve map. If the
471 * t parameter is LONG_MAX, this indicates that ALL regions after f
472 * should be deleted. Locate the regions which intersect [f, t)
473 * and either trim, delete or split the existing regions.
474 *
475 * Returns the number of huge pages deleted from the reserve map.
476 * In the normal case, the return value is zero or more. In the
477 * case where a region must be split, a new region descriptor must
478 * be allocated. If the allocation fails, -ENOMEM will be returned.
479 * NOTE: If the parameter t == LONG_MAX, then we will never split
480 * a region and possibly return -ENOMEM. Callers specifying
481 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 482 */
feba16e2 483static long region_del(struct resv_map *resv, long f, long t)
96822904 484{
1406ec9b 485 struct list_head *head = &resv->regions;
96822904 486 struct file_region *rg, *trg;
feba16e2
MK
487 struct file_region *nrg = NULL;
488 long del = 0;
96822904 489
feba16e2 490retry:
7b24d861 491 spin_lock(&resv->lock);
feba16e2 492 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
493 /*
494 * Skip regions before the range to be deleted. file_region
495 * ranges are normally of the form [from, to). However, there
496 * may be a "placeholder" entry in the map which is of the form
497 * (from, to) with from == to. Check for placeholder entries
498 * at the beginning of the range to be deleted.
499 */
500 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 501 continue;
dbe409e4 502
feba16e2 503 if (rg->from >= t)
96822904 504 break;
96822904 505
feba16e2
MK
506 if (f > rg->from && t < rg->to) { /* Must split region */
507 /*
508 * Check for an entry in the cache before dropping
509 * lock and attempting allocation.
510 */
511 if (!nrg &&
512 resv->region_cache_count > resv->adds_in_progress) {
513 nrg = list_first_entry(&resv->region_cache,
514 struct file_region,
515 link);
516 list_del(&nrg->link);
517 resv->region_cache_count--;
518 }
96822904 519
feba16e2
MK
520 if (!nrg) {
521 spin_unlock(&resv->lock);
522 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
523 if (!nrg)
524 return -ENOMEM;
525 goto retry;
526 }
527
528 del += t - f;
529
530 /* New entry for end of split region */
531 nrg->from = t;
532 nrg->to = rg->to;
533 INIT_LIST_HEAD(&nrg->link);
534
535 /* Original entry is trimmed */
536 rg->to = f;
537
538 list_add(&nrg->link, &rg->link);
539 nrg = NULL;
96822904 540 break;
feba16e2
MK
541 }
542
543 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
544 del += rg->to - rg->from;
545 list_del(&rg->link);
546 kfree(rg);
547 continue;
548 }
549
550 if (f <= rg->from) { /* Trim beginning of region */
551 del += t - rg->from;
552 rg->from = t;
553 } else { /* Trim end of region */
554 del += rg->to - f;
555 rg->to = f;
556 }
96822904 557 }
7b24d861 558
7b24d861 559 spin_unlock(&resv->lock);
feba16e2
MK
560 kfree(nrg);
561 return del;
96822904
AW
562}
563
b5cec28d
MK
564/*
565 * A rare out of memory error was encountered which prevented removal of
566 * the reserve map region for a page. The huge page itself was free'ed
567 * and removed from the page cache. This routine will adjust the subpool
568 * usage count, and the global reserve count if needed. By incrementing
569 * these counts, the reserve map entry which could not be deleted will
570 * appear as a "reserved" entry instead of simply dangling with incorrect
571 * counts.
572 */
72e2936c 573void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
574{
575 struct hugepage_subpool *spool = subpool_inode(inode);
576 long rsv_adjust;
577
578 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 579 if (rsv_adjust) {
b5cec28d
MK
580 struct hstate *h = hstate_inode(inode);
581
582 hugetlb_acct_memory(h, 1);
583 }
584}
585
1dd308a7
MK
586/*
587 * Count and return the number of huge pages in the reserve map
588 * that intersect with the range [f, t).
589 */
1406ec9b 590static long region_count(struct resv_map *resv, long f, long t)
84afd99b 591{
1406ec9b 592 struct list_head *head = &resv->regions;
84afd99b
AW
593 struct file_region *rg;
594 long chg = 0;
595
7b24d861 596 spin_lock(&resv->lock);
84afd99b
AW
597 /* Locate each segment we overlap with, and count that overlap. */
598 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
599 long seg_from;
600 long seg_to;
84afd99b
AW
601
602 if (rg->to <= f)
603 continue;
604 if (rg->from >= t)
605 break;
606
607 seg_from = max(rg->from, f);
608 seg_to = min(rg->to, t);
609
610 chg += seg_to - seg_from;
611 }
7b24d861 612 spin_unlock(&resv->lock);
84afd99b
AW
613
614 return chg;
615}
616
e7c4b0bf
AW
617/*
618 * Convert the address within this vma to the page offset within
619 * the mapping, in pagecache page units; huge pages here.
620 */
a5516438
AK
621static pgoff_t vma_hugecache_offset(struct hstate *h,
622 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 623{
a5516438
AK
624 return ((address - vma->vm_start) >> huge_page_shift(h)) +
625 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
626}
627
0fe6e20b
NH
628pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
629 unsigned long address)
630{
631 return vma_hugecache_offset(hstate_vma(vma), vma, address);
632}
dee41079 633EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 634
08fba699
MG
635/*
636 * Return the size of the pages allocated when backing a VMA. In the majority
637 * cases this will be same size as used by the page table entries.
638 */
639unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640{
641 struct hstate *hstate;
642
643 if (!is_vm_hugetlb_page(vma))
644 return PAGE_SIZE;
645
646 hstate = hstate_vma(vma);
647
2415cf12 648 return 1UL << huge_page_shift(hstate);
08fba699 649}
f340ca0f 650EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 651
3340289d
MG
652/*
653 * Return the page size being used by the MMU to back a VMA. In the majority
654 * of cases, the page size used by the kernel matches the MMU size. On
655 * architectures where it differs, an architecture-specific version of this
656 * function is required.
657 */
658#ifndef vma_mmu_pagesize
659unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
660{
661 return vma_kernel_pagesize(vma);
662}
663#endif
664
84afd99b
AW
665/*
666 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
667 * bits of the reservation map pointer, which are always clear due to
668 * alignment.
669 */
670#define HPAGE_RESV_OWNER (1UL << 0)
671#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 672#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 673
a1e78772
MG
674/*
675 * These helpers are used to track how many pages are reserved for
676 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
677 * is guaranteed to have their future faults succeed.
678 *
679 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
680 * the reserve counters are updated with the hugetlb_lock held. It is safe
681 * to reset the VMA at fork() time as it is not in use yet and there is no
682 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
683 *
684 * The private mapping reservation is represented in a subtly different
685 * manner to a shared mapping. A shared mapping has a region map associated
686 * with the underlying file, this region map represents the backing file
687 * pages which have ever had a reservation assigned which this persists even
688 * after the page is instantiated. A private mapping has a region map
689 * associated with the original mmap which is attached to all VMAs which
690 * reference it, this region map represents those offsets which have consumed
691 * reservation ie. where pages have been instantiated.
a1e78772 692 */
e7c4b0bf
AW
693static unsigned long get_vma_private_data(struct vm_area_struct *vma)
694{
695 return (unsigned long)vma->vm_private_data;
696}
697
698static void set_vma_private_data(struct vm_area_struct *vma,
699 unsigned long value)
700{
701 vma->vm_private_data = (void *)value;
702}
703
9119a41e 704struct resv_map *resv_map_alloc(void)
84afd99b
AW
705{
706 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
707 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
708
709 if (!resv_map || !rg) {
710 kfree(resv_map);
711 kfree(rg);
84afd99b 712 return NULL;
5e911373 713 }
84afd99b
AW
714
715 kref_init(&resv_map->refs);
7b24d861 716 spin_lock_init(&resv_map->lock);
84afd99b
AW
717 INIT_LIST_HEAD(&resv_map->regions);
718
5e911373
MK
719 resv_map->adds_in_progress = 0;
720
721 INIT_LIST_HEAD(&resv_map->region_cache);
722 list_add(&rg->link, &resv_map->region_cache);
723 resv_map->region_cache_count = 1;
724
84afd99b
AW
725 return resv_map;
726}
727
9119a41e 728void resv_map_release(struct kref *ref)
84afd99b
AW
729{
730 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
731 struct list_head *head = &resv_map->region_cache;
732 struct file_region *rg, *trg;
84afd99b
AW
733
734 /* Clear out any active regions before we release the map. */
feba16e2 735 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
736
737 /* ... and any entries left in the cache */
738 list_for_each_entry_safe(rg, trg, head, link) {
739 list_del(&rg->link);
740 kfree(rg);
741 }
742
743 VM_BUG_ON(resv_map->adds_in_progress);
744
84afd99b
AW
745 kfree(resv_map);
746}
747
4e35f483
JK
748static inline struct resv_map *inode_resv_map(struct inode *inode)
749{
750 return inode->i_mapping->private_data;
751}
752
84afd99b 753static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 754{
81d1b09c 755 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
756 if (vma->vm_flags & VM_MAYSHARE) {
757 struct address_space *mapping = vma->vm_file->f_mapping;
758 struct inode *inode = mapping->host;
759
760 return inode_resv_map(inode);
761
762 } else {
84afd99b
AW
763 return (struct resv_map *)(get_vma_private_data(vma) &
764 ~HPAGE_RESV_MASK);
4e35f483 765 }
a1e78772
MG
766}
767
84afd99b 768static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 769{
81d1b09c
SL
770 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
771 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 772
84afd99b
AW
773 set_vma_private_data(vma, (get_vma_private_data(vma) &
774 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
775}
776
777static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
778{
81d1b09c
SL
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
781
782 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
783}
784
785static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
786{
81d1b09c 787 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
788
789 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
790}
791
04f2cbe3 792/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
793void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
794{
81d1b09c 795 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 796 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
797 vma->vm_private_data = (void *)0;
798}
799
800/* Returns true if the VMA has associated reserve pages */
559ec2f8 801static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 802{
af0ed73e
JK
803 if (vma->vm_flags & VM_NORESERVE) {
804 /*
805 * This address is already reserved by other process(chg == 0),
806 * so, we should decrement reserved count. Without decrementing,
807 * reserve count remains after releasing inode, because this
808 * allocated page will go into page cache and is regarded as
809 * coming from reserved pool in releasing step. Currently, we
810 * don't have any other solution to deal with this situation
811 * properly, so add work-around here.
812 */
813 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 814 return true;
af0ed73e 815 else
559ec2f8 816 return false;
af0ed73e 817 }
a63884e9
JK
818
819 /* Shared mappings always use reserves */
1fb1b0e9
MK
820 if (vma->vm_flags & VM_MAYSHARE) {
821 /*
822 * We know VM_NORESERVE is not set. Therefore, there SHOULD
823 * be a region map for all pages. The only situation where
824 * there is no region map is if a hole was punched via
825 * fallocate. In this case, there really are no reverves to
826 * use. This situation is indicated if chg != 0.
827 */
828 if (chg)
829 return false;
830 else
831 return true;
832 }
a63884e9
JK
833
834 /*
835 * Only the process that called mmap() has reserves for
836 * private mappings.
837 */
67961f9d
MK
838 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
839 /*
840 * Like the shared case above, a hole punch or truncate
841 * could have been performed on the private mapping.
842 * Examine the value of chg to determine if reserves
843 * actually exist or were previously consumed.
844 * Very Subtle - The value of chg comes from a previous
845 * call to vma_needs_reserves(). The reserve map for
846 * private mappings has different (opposite) semantics
847 * than that of shared mappings. vma_needs_reserves()
848 * has already taken this difference in semantics into
849 * account. Therefore, the meaning of chg is the same
850 * as in the shared case above. Code could easily be
851 * combined, but keeping it separate draws attention to
852 * subtle differences.
853 */
854 if (chg)
855 return false;
856 else
857 return true;
858 }
a63884e9 859
559ec2f8 860 return false;
a1e78772
MG
861}
862
a5516438 863static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
864{
865 int nid = page_to_nid(page);
0edaecfa 866 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
867 h->free_huge_pages++;
868 h->free_huge_pages_node[nid]++;
1da177e4
LT
869}
870
94310cbc 871static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
872{
873 struct page *page;
874
c8721bbb 875 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 876 if (!PageHWPoison(page))
c8721bbb
NH
877 break;
878 /*
879 * if 'non-isolated free hugepage' not found on the list,
880 * the allocation fails.
881 */
882 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 883 return NULL;
0edaecfa 884 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 885 set_page_refcounted(page);
bf50bab2
NH
886 h->free_huge_pages--;
887 h->free_huge_pages_node[nid]--;
888 return page;
889}
890
3e59fcb0
MH
891static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
892 nodemask_t *nmask)
94310cbc 893{
3e59fcb0
MH
894 unsigned int cpuset_mems_cookie;
895 struct zonelist *zonelist;
896 struct zone *zone;
897 struct zoneref *z;
898 int node = -1;
94310cbc 899
3e59fcb0
MH
900 zonelist = node_zonelist(nid, gfp_mask);
901
902retry_cpuset:
903 cpuset_mems_cookie = read_mems_allowed_begin();
904 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
905 struct page *page;
906
907 if (!cpuset_zone_allowed(zone, gfp_mask))
908 continue;
909 /*
910 * no need to ask again on the same node. Pool is node rather than
911 * zone aware
912 */
913 if (zone_to_nid(zone) == node)
914 continue;
915 node = zone_to_nid(zone);
94310cbc 916
94310cbc
AK
917 page = dequeue_huge_page_node_exact(h, node);
918 if (page)
919 return page;
920 }
3e59fcb0
MH
921 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
922 goto retry_cpuset;
923
94310cbc
AK
924 return NULL;
925}
926
86cdb465
NH
927/* Movability of hugepages depends on migration support. */
928static inline gfp_t htlb_alloc_mask(struct hstate *h)
929{
100873d7 930 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
931 return GFP_HIGHUSER_MOVABLE;
932 else
933 return GFP_HIGHUSER;
934}
935
a5516438
AK
936static struct page *dequeue_huge_page_vma(struct hstate *h,
937 struct vm_area_struct *vma,
af0ed73e
JK
938 unsigned long address, int avoid_reserve,
939 long chg)
1da177e4 940{
3e59fcb0 941 struct page *page;
480eccf9 942 struct mempolicy *mpol;
04ec6264 943 gfp_t gfp_mask;
3e59fcb0 944 nodemask_t *nodemask;
04ec6264 945 int nid;
1da177e4 946
a1e78772
MG
947 /*
948 * A child process with MAP_PRIVATE mappings created by their parent
949 * have no page reserves. This check ensures that reservations are
950 * not "stolen". The child may still get SIGKILLed
951 */
af0ed73e 952 if (!vma_has_reserves(vma, chg) &&
a5516438 953 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 954 goto err;
a1e78772 955
04f2cbe3 956 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 957 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 958 goto err;
04f2cbe3 959
04ec6264
VB
960 gfp_mask = htlb_alloc_mask(h);
961 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
962 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
963 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
964 SetPagePrivate(page);
965 h->resv_huge_pages--;
1da177e4 966 }
cc9a6c87 967
52cd3b07 968 mpol_cond_put(mpol);
1da177e4 969 return page;
cc9a6c87
MG
970
971err:
cc9a6c87 972 return NULL;
1da177e4
LT
973}
974
1cac6f2c
LC
975/*
976 * common helper functions for hstate_next_node_to_{alloc|free}.
977 * We may have allocated or freed a huge page based on a different
978 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
979 * be outside of *nodes_allowed. Ensure that we use an allowed
980 * node for alloc or free.
981 */
982static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
983{
0edaf86c 984 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
985 VM_BUG_ON(nid >= MAX_NUMNODES);
986
987 return nid;
988}
989
990static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
991{
992 if (!node_isset(nid, *nodes_allowed))
993 nid = next_node_allowed(nid, nodes_allowed);
994 return nid;
995}
996
997/*
998 * returns the previously saved node ["this node"] from which to
999 * allocate a persistent huge page for the pool and advance the
1000 * next node from which to allocate, handling wrap at end of node
1001 * mask.
1002 */
1003static int hstate_next_node_to_alloc(struct hstate *h,
1004 nodemask_t *nodes_allowed)
1005{
1006 int nid;
1007
1008 VM_BUG_ON(!nodes_allowed);
1009
1010 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1011 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1012
1013 return nid;
1014}
1015
1016/*
1017 * helper for free_pool_huge_page() - return the previously saved
1018 * node ["this node"] from which to free a huge page. Advance the
1019 * next node id whether or not we find a free huge page to free so
1020 * that the next attempt to free addresses the next node.
1021 */
1022static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1023{
1024 int nid;
1025
1026 VM_BUG_ON(!nodes_allowed);
1027
1028 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1029 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1030
1031 return nid;
1032}
1033
1034#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1035 for (nr_nodes = nodes_weight(*mask); \
1036 nr_nodes > 0 && \
1037 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1038 nr_nodes--)
1039
1040#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1041 for (nr_nodes = nodes_weight(*mask); \
1042 nr_nodes > 0 && \
1043 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1044 nr_nodes--)
1045
e1073d1e 1046#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1047static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1048 unsigned int order)
944d9fec
LC
1049{
1050 int i;
1051 int nr_pages = 1 << order;
1052 struct page *p = page + 1;
1053
c8cc708a 1054 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1055 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1056 clear_compound_head(p);
944d9fec 1057 set_page_refcounted(p);
944d9fec
LC
1058 }
1059
1060 set_compound_order(page, 0);
1061 __ClearPageHead(page);
1062}
1063
d00181b9 1064static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1065{
1066 free_contig_range(page_to_pfn(page), 1 << order);
1067}
1068
1069static int __alloc_gigantic_page(unsigned long start_pfn,
79b63f12 1070 unsigned long nr_pages, gfp_t gfp_mask)
944d9fec
LC
1071{
1072 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625 1073 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
79b63f12 1074 gfp_mask);
944d9fec
LC
1075}
1076
f44b2dda
JK
1077static bool pfn_range_valid_gigantic(struct zone *z,
1078 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1079{
1080 unsigned long i, end_pfn = start_pfn + nr_pages;
1081 struct page *page;
1082
1083 for (i = start_pfn; i < end_pfn; i++) {
1084 if (!pfn_valid(i))
1085 return false;
1086
1087 page = pfn_to_page(i);
1088
f44b2dda
JK
1089 if (page_zone(page) != z)
1090 return false;
1091
944d9fec
LC
1092 if (PageReserved(page))
1093 return false;
1094
1095 if (page_count(page) > 0)
1096 return false;
1097
1098 if (PageHuge(page))
1099 return false;
1100 }
1101
1102 return true;
1103}
1104
1105static bool zone_spans_last_pfn(const struct zone *zone,
1106 unsigned long start_pfn, unsigned long nr_pages)
1107{
1108 unsigned long last_pfn = start_pfn + nr_pages - 1;
1109 return zone_spans_pfn(zone, last_pfn);
1110}
1111
79b63f12 1112static struct page *alloc_gigantic_page(int nid, struct hstate *h)
944d9fec 1113{
79b63f12 1114 unsigned int order = huge_page_order(h);
944d9fec
LC
1115 unsigned long nr_pages = 1 << order;
1116 unsigned long ret, pfn, flags;
79b63f12
MH
1117 struct zonelist *zonelist;
1118 struct zone *zone;
1119 struct zoneref *z;
1120 gfp_t gfp_mask;
944d9fec 1121
79b63f12
MH
1122 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1123 zonelist = node_zonelist(nid, gfp_mask);
1124 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), NULL) {
1125 spin_lock_irqsave(&zone->lock, flags);
944d9fec 1126
79b63f12
MH
1127 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1128 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1129 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
944d9fec
LC
1130 /*
1131 * We release the zone lock here because
1132 * alloc_contig_range() will also lock the zone
1133 * at some point. If there's an allocation
1134 * spinning on this lock, it may win the race
1135 * and cause alloc_contig_range() to fail...
1136 */
79b63f12
MH
1137 spin_unlock_irqrestore(&zone->lock, flags);
1138 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
944d9fec
LC
1139 if (!ret)
1140 return pfn_to_page(pfn);
79b63f12 1141 spin_lock_irqsave(&zone->lock, flags);
944d9fec
LC
1142 }
1143 pfn += nr_pages;
1144 }
1145
79b63f12 1146 spin_unlock_irqrestore(&zone->lock, flags);
944d9fec
LC
1147 }
1148
1149 return NULL;
1150}
1151
1152static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1153static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec
LC
1154
1155static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1156{
1157 struct page *page;
1158
79b63f12 1159 page = alloc_gigantic_page(nid, h);
944d9fec
LC
1160 if (page) {
1161 prep_compound_gigantic_page(page, huge_page_order(h));
1162 prep_new_huge_page(h, page, nid);
1163 }
1164
1165 return page;
1166}
1167
1168static int alloc_fresh_gigantic_page(struct hstate *h,
1169 nodemask_t *nodes_allowed)
1170{
1171 struct page *page = NULL;
1172 int nr_nodes, node;
1173
1174 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1175 page = alloc_fresh_gigantic_page_node(h, node);
1176 if (page)
1177 return 1;
1178 }
1179
1180 return 0;
1181}
1182
e1073d1e 1183#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
944d9fec 1184static inline bool gigantic_page_supported(void) { return false; }
d00181b9 1185static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1186static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1187 unsigned int order) { }
944d9fec
LC
1188static inline int alloc_fresh_gigantic_page(struct hstate *h,
1189 nodemask_t *nodes_allowed) { return 0; }
1190#endif
1191
a5516438 1192static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1193{
1194 int i;
a5516438 1195
944d9fec
LC
1196 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1197 return;
18229df5 1198
a5516438
AK
1199 h->nr_huge_pages--;
1200 h->nr_huge_pages_node[page_to_nid(page)]--;
1201 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1202 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1203 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1204 1 << PG_active | 1 << PG_private |
1205 1 << PG_writeback);
6af2acb6 1206 }
309381fe 1207 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1208 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1209 set_page_refcounted(page);
944d9fec
LC
1210 if (hstate_is_gigantic(h)) {
1211 destroy_compound_gigantic_page(page, huge_page_order(h));
1212 free_gigantic_page(page, huge_page_order(h));
1213 } else {
944d9fec
LC
1214 __free_pages(page, huge_page_order(h));
1215 }
6af2acb6
AL
1216}
1217
e5ff2159
AK
1218struct hstate *size_to_hstate(unsigned long size)
1219{
1220 struct hstate *h;
1221
1222 for_each_hstate(h) {
1223 if (huge_page_size(h) == size)
1224 return h;
1225 }
1226 return NULL;
1227}
1228
bcc54222
NH
1229/*
1230 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1231 * to hstate->hugepage_activelist.)
1232 *
1233 * This function can be called for tail pages, but never returns true for them.
1234 */
1235bool page_huge_active(struct page *page)
1236{
1237 VM_BUG_ON_PAGE(!PageHuge(page), page);
1238 return PageHead(page) && PagePrivate(&page[1]);
1239}
1240
1241/* never called for tail page */
1242static void set_page_huge_active(struct page *page)
1243{
1244 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1245 SetPagePrivate(&page[1]);
1246}
1247
1248static void clear_page_huge_active(struct page *page)
1249{
1250 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1251 ClearPagePrivate(&page[1]);
1252}
1253
8f1d26d0 1254void free_huge_page(struct page *page)
27a85ef1 1255{
a5516438
AK
1256 /*
1257 * Can't pass hstate in here because it is called from the
1258 * compound page destructor.
1259 */
e5ff2159 1260 struct hstate *h = page_hstate(page);
7893d1d5 1261 int nid = page_to_nid(page);
90481622
DG
1262 struct hugepage_subpool *spool =
1263 (struct hugepage_subpool *)page_private(page);
07443a85 1264 bool restore_reserve;
27a85ef1 1265
e5df70ab 1266 set_page_private(page, 0);
23be7468 1267 page->mapping = NULL;
b4330afb
MK
1268 VM_BUG_ON_PAGE(page_count(page), page);
1269 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1270 restore_reserve = PagePrivate(page);
16c794b4 1271 ClearPagePrivate(page);
27a85ef1 1272
1c5ecae3 1273 /*
7489b9cc
MK
1274 * If PagePrivate() was set on page, page allocation consumed a
1275 * reservation. If the page was associated with a subpool, there
1276 * would have been a page reserved in the subpool before allocation
1277 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1278 * reservtion, do not call hugepage_subpool_put_pages() as this will
1279 * remove the reserved page from the subpool.
1c5ecae3 1280 */
7489b9cc
MK
1281 if (!restore_reserve) {
1282 /*
1283 * A return code of zero implies that the subpool will be
1284 * under its minimum size if the reservation is not restored
1285 * after page is free. Therefore, force restore_reserve
1286 * operation.
1287 */
1288 if (hugepage_subpool_put_pages(spool, 1) == 0)
1289 restore_reserve = true;
1290 }
1c5ecae3 1291
27a85ef1 1292 spin_lock(&hugetlb_lock);
bcc54222 1293 clear_page_huge_active(page);
6d76dcf4
AK
1294 hugetlb_cgroup_uncharge_page(hstate_index(h),
1295 pages_per_huge_page(h), page);
07443a85
JK
1296 if (restore_reserve)
1297 h->resv_huge_pages++;
1298
944d9fec 1299 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1300 /* remove the page from active list */
1301 list_del(&page->lru);
a5516438
AK
1302 update_and_free_page(h, page);
1303 h->surplus_huge_pages--;
1304 h->surplus_huge_pages_node[nid]--;
7893d1d5 1305 } else {
5d3a551c 1306 arch_clear_hugepage_flags(page);
a5516438 1307 enqueue_huge_page(h, page);
7893d1d5 1308 }
27a85ef1
DG
1309 spin_unlock(&hugetlb_lock);
1310}
1311
a5516438 1312static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1313{
0edaecfa 1314 INIT_LIST_HEAD(&page->lru);
f1e61557 1315 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1316 spin_lock(&hugetlb_lock);
9dd540e2 1317 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1318 h->nr_huge_pages++;
1319 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1320 spin_unlock(&hugetlb_lock);
1321 put_page(page); /* free it into the hugepage allocator */
1322}
1323
d00181b9 1324static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1325{
1326 int i;
1327 int nr_pages = 1 << order;
1328 struct page *p = page + 1;
1329
1330 /* we rely on prep_new_huge_page to set the destructor */
1331 set_compound_order(page, order);
ef5a22be 1332 __ClearPageReserved(page);
de09d31d 1333 __SetPageHead(page);
20a0307c 1334 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1335 /*
1336 * For gigantic hugepages allocated through bootmem at
1337 * boot, it's safer to be consistent with the not-gigantic
1338 * hugepages and clear the PG_reserved bit from all tail pages
1339 * too. Otherwse drivers using get_user_pages() to access tail
1340 * pages may get the reference counting wrong if they see
1341 * PG_reserved set on a tail page (despite the head page not
1342 * having PG_reserved set). Enforcing this consistency between
1343 * head and tail pages allows drivers to optimize away a check
1344 * on the head page when they need know if put_page() is needed
1345 * after get_user_pages().
1346 */
1347 __ClearPageReserved(p);
58a84aa9 1348 set_page_count(p, 0);
1d798ca3 1349 set_compound_head(p, page);
20a0307c 1350 }
b4330afb 1351 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1352}
1353
7795912c
AM
1354/*
1355 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1356 * transparent huge pages. See the PageTransHuge() documentation for more
1357 * details.
1358 */
20a0307c
WF
1359int PageHuge(struct page *page)
1360{
20a0307c
WF
1361 if (!PageCompound(page))
1362 return 0;
1363
1364 page = compound_head(page);
f1e61557 1365 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1366}
43131e14
NH
1367EXPORT_SYMBOL_GPL(PageHuge);
1368
27c73ae7
AA
1369/*
1370 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1371 * normal or transparent huge pages.
1372 */
1373int PageHeadHuge(struct page *page_head)
1374{
27c73ae7
AA
1375 if (!PageHead(page_head))
1376 return 0;
1377
758f66a2 1378 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1379}
27c73ae7 1380
13d60f4b
ZY
1381pgoff_t __basepage_index(struct page *page)
1382{
1383 struct page *page_head = compound_head(page);
1384 pgoff_t index = page_index(page_head);
1385 unsigned long compound_idx;
1386
1387 if (!PageHuge(page_head))
1388 return page_index(page);
1389
1390 if (compound_order(page_head) >= MAX_ORDER)
1391 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1392 else
1393 compound_idx = page - page_head;
1394
1395 return (index << compound_order(page_head)) + compound_idx;
1396}
1397
a5516438 1398static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1399{
1da177e4 1400 struct page *page;
f96efd58 1401
96db800f 1402 page = __alloc_pages_node(nid,
86cdb465 1403 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
dcda9b04 1404 __GFP_RETRY_MAYFAIL|__GFP_NOWARN,
a5516438 1405 huge_page_order(h));
1da177e4 1406 if (page) {
a5516438 1407 prep_new_huge_page(h, page, nid);
1da177e4 1408 }
63b4613c
NA
1409
1410 return page;
1411}
1412
b2261026
JK
1413static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1414{
1415 struct page *page;
1416 int nr_nodes, node;
1417 int ret = 0;
1418
1419 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1420 page = alloc_fresh_huge_page_node(h, node);
1421 if (page) {
1422 ret = 1;
1423 break;
1424 }
1425 }
1426
1427 if (ret)
1428 count_vm_event(HTLB_BUDDY_PGALLOC);
1429 else
1430 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1431
1432 return ret;
1433}
1434
e8c5c824
LS
1435/*
1436 * Free huge page from pool from next node to free.
1437 * Attempt to keep persistent huge pages more or less
1438 * balanced over allowed nodes.
1439 * Called with hugetlb_lock locked.
1440 */
6ae11b27
LS
1441static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1442 bool acct_surplus)
e8c5c824 1443{
b2261026 1444 int nr_nodes, node;
e8c5c824
LS
1445 int ret = 0;
1446
b2261026 1447 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1448 /*
1449 * If we're returning unused surplus pages, only examine
1450 * nodes with surplus pages.
1451 */
b2261026
JK
1452 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1453 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1454 struct page *page =
b2261026 1455 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1456 struct page, lru);
1457 list_del(&page->lru);
1458 h->free_huge_pages--;
b2261026 1459 h->free_huge_pages_node[node]--;
685f3457
LS
1460 if (acct_surplus) {
1461 h->surplus_huge_pages--;
b2261026 1462 h->surplus_huge_pages_node[node]--;
685f3457 1463 }
e8c5c824
LS
1464 update_and_free_page(h, page);
1465 ret = 1;
9a76db09 1466 break;
e8c5c824 1467 }
b2261026 1468 }
e8c5c824
LS
1469
1470 return ret;
1471}
1472
c8721bbb
NH
1473/*
1474 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b
GS
1475 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1476 * number of free hugepages would be reduced below the number of reserved
1477 * hugepages.
c8721bbb 1478 */
c3114a84 1479int dissolve_free_huge_page(struct page *page)
c8721bbb 1480{
082d5b6b
GS
1481 int rc = 0;
1482
c8721bbb
NH
1483 spin_lock(&hugetlb_lock);
1484 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1485 struct page *head = compound_head(page);
1486 struct hstate *h = page_hstate(head);
1487 int nid = page_to_nid(head);
082d5b6b
GS
1488 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1489 rc = -EBUSY;
1490 goto out;
1491 }
c3114a84
AK
1492 /*
1493 * Move PageHWPoison flag from head page to the raw error page,
1494 * which makes any subpages rather than the error page reusable.
1495 */
1496 if (PageHWPoison(head) && page != head) {
1497 SetPageHWPoison(page);
1498 ClearPageHWPoison(head);
1499 }
2247bb33 1500 list_del(&head->lru);
c8721bbb
NH
1501 h->free_huge_pages--;
1502 h->free_huge_pages_node[nid]--;
c1470b33 1503 h->max_huge_pages--;
2247bb33 1504 update_and_free_page(h, head);
c8721bbb 1505 }
082d5b6b 1506out:
c8721bbb 1507 spin_unlock(&hugetlb_lock);
082d5b6b 1508 return rc;
c8721bbb
NH
1509}
1510
1511/*
1512 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1513 * make specified memory blocks removable from the system.
2247bb33
GS
1514 * Note that this will dissolve a free gigantic hugepage completely, if any
1515 * part of it lies within the given range.
082d5b6b
GS
1516 * Also note that if dissolve_free_huge_page() returns with an error, all
1517 * free hugepages that were dissolved before that error are lost.
c8721bbb 1518 */
082d5b6b 1519int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1520{
c8721bbb 1521 unsigned long pfn;
eb03aa00 1522 struct page *page;
082d5b6b 1523 int rc = 0;
c8721bbb 1524
d0177639 1525 if (!hugepages_supported())
082d5b6b 1526 return rc;
d0177639 1527
eb03aa00
GS
1528 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1529 page = pfn_to_page(pfn);
1530 if (PageHuge(page) && !page_count(page)) {
1531 rc = dissolve_free_huge_page(page);
1532 if (rc)
1533 break;
1534 }
1535 }
082d5b6b
GS
1536
1537 return rc;
c8721bbb
NH
1538}
1539
099730d6 1540static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
aaf14e40 1541 gfp_t gfp_mask, int nid, nodemask_t *nmask)
099730d6
DH
1542{
1543 int order = huge_page_order(h);
099730d6 1544
dcda9b04 1545 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
aaf14e40
MH
1546 if (nid == NUMA_NO_NODE)
1547 nid = numa_mem_id();
1548 return __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
099730d6
DH
1549}
1550
aaf14e40
MH
1551static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask,
1552 int nid, nodemask_t *nmask)
7893d1d5
AL
1553{
1554 struct page *page;
bf50bab2 1555 unsigned int r_nid;
7893d1d5 1556
bae7f4ae 1557 if (hstate_is_gigantic(h))
aa888a74
AK
1558 return NULL;
1559
d1c3fb1f
NA
1560 /*
1561 * Assume we will successfully allocate the surplus page to
1562 * prevent racing processes from causing the surplus to exceed
1563 * overcommit
1564 *
1565 * This however introduces a different race, where a process B
1566 * tries to grow the static hugepage pool while alloc_pages() is
1567 * called by process A. B will only examine the per-node
1568 * counters in determining if surplus huge pages can be
1569 * converted to normal huge pages in adjust_pool_surplus(). A
1570 * won't be able to increment the per-node counter, until the
1571 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1572 * no more huge pages can be converted from surplus to normal
1573 * state (and doesn't try to convert again). Thus, we have a
1574 * case where a surplus huge page exists, the pool is grown, and
1575 * the surplus huge page still exists after, even though it
1576 * should just have been converted to a normal huge page. This
1577 * does not leak memory, though, as the hugepage will be freed
1578 * once it is out of use. It also does not allow the counters to
1579 * go out of whack in adjust_pool_surplus() as we don't modify
1580 * the node values until we've gotten the hugepage and only the
1581 * per-node value is checked there.
1582 */
1583 spin_lock(&hugetlb_lock);
a5516438 1584 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1585 spin_unlock(&hugetlb_lock);
1586 return NULL;
1587 } else {
a5516438
AK
1588 h->nr_huge_pages++;
1589 h->surplus_huge_pages++;
d1c3fb1f
NA
1590 }
1591 spin_unlock(&hugetlb_lock);
1592
aaf14e40 1593 page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask);
d1c3fb1f
NA
1594
1595 spin_lock(&hugetlb_lock);
7893d1d5 1596 if (page) {
0edaecfa 1597 INIT_LIST_HEAD(&page->lru);
bf50bab2 1598 r_nid = page_to_nid(page);
f1e61557 1599 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1600 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1601 /*
1602 * We incremented the global counters already
1603 */
bf50bab2
NH
1604 h->nr_huge_pages_node[r_nid]++;
1605 h->surplus_huge_pages_node[r_nid]++;
3b116300 1606 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1607 } else {
a5516438
AK
1608 h->nr_huge_pages--;
1609 h->surplus_huge_pages--;
3b116300 1610 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1611 }
d1c3fb1f 1612 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1613
1614 return page;
1615}
1616
099730d6
DH
1617/*
1618 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1619 */
e0ec90ee 1620static
099730d6
DH
1621struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1622 struct vm_area_struct *vma, unsigned long addr)
1623{
aaf14e40
MH
1624 struct page *page;
1625 struct mempolicy *mpol;
1626 gfp_t gfp_mask = htlb_alloc_mask(h);
1627 int nid;
1628 nodemask_t *nodemask;
1629
1630 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1631 page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask);
1632 mpol_cond_put(mpol);
1633
1634 return page;
099730d6
DH
1635}
1636
bf50bab2
NH
1637/*
1638 * This allocation function is useful in the context where vma is irrelevant.
1639 * E.g. soft-offlining uses this function because it only cares physical
1640 * address of error page.
1641 */
1642struct page *alloc_huge_page_node(struct hstate *h, int nid)
1643{
aaf14e40 1644 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1645 struct page *page = NULL;
bf50bab2 1646
aaf14e40
MH
1647 if (nid != NUMA_NO_NODE)
1648 gfp_mask |= __GFP_THISNODE;
1649
bf50bab2 1650 spin_lock(&hugetlb_lock);
4ef91848 1651 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1652 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1653 spin_unlock(&hugetlb_lock);
1654
94ae8ba7 1655 if (!page)
aaf14e40 1656 page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1657
1658 return page;
1659}
1660
3e59fcb0
MH
1661
1662struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1663 nodemask_t *nmask)
4db9b2ef 1664{
aaf14e40 1665 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1666
1667 spin_lock(&hugetlb_lock);
1668 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1669 struct page *page;
1670
1671 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1672 if (page) {
1673 spin_unlock(&hugetlb_lock);
1674 return page;
4db9b2ef
MH
1675 }
1676 }
1677 spin_unlock(&hugetlb_lock);
4db9b2ef
MH
1678
1679 /* No reservations, try to overcommit */
3e59fcb0
MH
1680
1681 return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1682}
1683
e4e574b7 1684/*
25985edc 1685 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1686 * of size 'delta'.
1687 */
a5516438 1688static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1689{
1690 struct list_head surplus_list;
1691 struct page *page, *tmp;
1692 int ret, i;
1693 int needed, allocated;
28073b02 1694 bool alloc_ok = true;
e4e574b7 1695
a5516438 1696 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1697 if (needed <= 0) {
a5516438 1698 h->resv_huge_pages += delta;
e4e574b7 1699 return 0;
ac09b3a1 1700 }
e4e574b7
AL
1701
1702 allocated = 0;
1703 INIT_LIST_HEAD(&surplus_list);
1704
1705 ret = -ENOMEM;
1706retry:
1707 spin_unlock(&hugetlb_lock);
1708 for (i = 0; i < needed; i++) {
aaf14e40
MH
1709 page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h),
1710 NUMA_NO_NODE, NULL);
28073b02
HD
1711 if (!page) {
1712 alloc_ok = false;
1713 break;
1714 }
e4e574b7 1715 list_add(&page->lru, &surplus_list);
69ed779a 1716 cond_resched();
e4e574b7 1717 }
28073b02 1718 allocated += i;
e4e574b7
AL
1719
1720 /*
1721 * After retaking hugetlb_lock, we need to recalculate 'needed'
1722 * because either resv_huge_pages or free_huge_pages may have changed.
1723 */
1724 spin_lock(&hugetlb_lock);
a5516438
AK
1725 needed = (h->resv_huge_pages + delta) -
1726 (h->free_huge_pages + allocated);
28073b02
HD
1727 if (needed > 0) {
1728 if (alloc_ok)
1729 goto retry;
1730 /*
1731 * We were not able to allocate enough pages to
1732 * satisfy the entire reservation so we free what
1733 * we've allocated so far.
1734 */
1735 goto free;
1736 }
e4e574b7
AL
1737 /*
1738 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1739 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1740 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1741 * allocator. Commit the entire reservation here to prevent another
1742 * process from stealing the pages as they are added to the pool but
1743 * before they are reserved.
e4e574b7
AL
1744 */
1745 needed += allocated;
a5516438 1746 h->resv_huge_pages += delta;
e4e574b7 1747 ret = 0;
a9869b83 1748
19fc3f0a 1749 /* Free the needed pages to the hugetlb pool */
e4e574b7 1750 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1751 if ((--needed) < 0)
1752 break;
a9869b83
NH
1753 /*
1754 * This page is now managed by the hugetlb allocator and has
1755 * no users -- drop the buddy allocator's reference.
1756 */
1757 put_page_testzero(page);
309381fe 1758 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1759 enqueue_huge_page(h, page);
19fc3f0a 1760 }
28073b02 1761free:
b0365c8d 1762 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1763
1764 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1765 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1766 put_page(page);
a9869b83 1767 spin_lock(&hugetlb_lock);
e4e574b7
AL
1768
1769 return ret;
1770}
1771
1772/*
e5bbc8a6
MK
1773 * This routine has two main purposes:
1774 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1775 * in unused_resv_pages. This corresponds to the prior adjustments made
1776 * to the associated reservation map.
1777 * 2) Free any unused surplus pages that may have been allocated to satisfy
1778 * the reservation. As many as unused_resv_pages may be freed.
1779 *
1780 * Called with hugetlb_lock held. However, the lock could be dropped (and
1781 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1782 * we must make sure nobody else can claim pages we are in the process of
1783 * freeing. Do this by ensuring resv_huge_page always is greater than the
1784 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1785 */
a5516438
AK
1786static void return_unused_surplus_pages(struct hstate *h,
1787 unsigned long unused_resv_pages)
e4e574b7 1788{
e4e574b7
AL
1789 unsigned long nr_pages;
1790
aa888a74 1791 /* Cannot return gigantic pages currently */
bae7f4ae 1792 if (hstate_is_gigantic(h))
e5bbc8a6 1793 goto out;
aa888a74 1794
e5bbc8a6
MK
1795 /*
1796 * Part (or even all) of the reservation could have been backed
1797 * by pre-allocated pages. Only free surplus pages.
1798 */
a5516438 1799 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1800
685f3457
LS
1801 /*
1802 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1803 * evenly across all nodes with memory. Iterate across these nodes
1804 * until we can no longer free unreserved surplus pages. This occurs
1805 * when the nodes with surplus pages have no free pages.
1806 * free_pool_huge_page() will balance the the freed pages across the
1807 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1808 *
1809 * Note that we decrement resv_huge_pages as we free the pages. If
1810 * we drop the lock, resv_huge_pages will still be sufficiently large
1811 * to cover subsequent pages we may free.
685f3457
LS
1812 */
1813 while (nr_pages--) {
e5bbc8a6
MK
1814 h->resv_huge_pages--;
1815 unused_resv_pages--;
8cebfcd0 1816 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1817 goto out;
7848a4bf 1818 cond_resched_lock(&hugetlb_lock);
e4e574b7 1819 }
e5bbc8a6
MK
1820
1821out:
1822 /* Fully uncommit the reservation */
1823 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1824}
1825
5e911373 1826
c37f9fb1 1827/*
feba16e2 1828 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1829 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1830 *
1831 * vma_needs_reservation is called to determine if the huge page at addr
1832 * within the vma has an associated reservation. If a reservation is
1833 * needed, the value 1 is returned. The caller is then responsible for
1834 * managing the global reservation and subpool usage counts. After
1835 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1836 * to add the page to the reservation map. If the page allocation fails,
1837 * the reservation must be ended instead of committed. vma_end_reservation
1838 * is called in such cases.
cf3ad20b
MK
1839 *
1840 * In the normal case, vma_commit_reservation returns the same value
1841 * as the preceding vma_needs_reservation call. The only time this
1842 * is not the case is if a reserve map was changed between calls. It
1843 * is the responsibility of the caller to notice the difference and
1844 * take appropriate action.
96b96a96
MK
1845 *
1846 * vma_add_reservation is used in error paths where a reservation must
1847 * be restored when a newly allocated huge page must be freed. It is
1848 * to be called after calling vma_needs_reservation to determine if a
1849 * reservation exists.
c37f9fb1 1850 */
5e911373
MK
1851enum vma_resv_mode {
1852 VMA_NEEDS_RESV,
1853 VMA_COMMIT_RESV,
feba16e2 1854 VMA_END_RESV,
96b96a96 1855 VMA_ADD_RESV,
5e911373 1856};
cf3ad20b
MK
1857static long __vma_reservation_common(struct hstate *h,
1858 struct vm_area_struct *vma, unsigned long addr,
5e911373 1859 enum vma_resv_mode mode)
c37f9fb1 1860{
4e35f483
JK
1861 struct resv_map *resv;
1862 pgoff_t idx;
cf3ad20b 1863 long ret;
c37f9fb1 1864
4e35f483
JK
1865 resv = vma_resv_map(vma);
1866 if (!resv)
84afd99b 1867 return 1;
c37f9fb1 1868
4e35f483 1869 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1870 switch (mode) {
1871 case VMA_NEEDS_RESV:
cf3ad20b 1872 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1873 break;
1874 case VMA_COMMIT_RESV:
1875 ret = region_add(resv, idx, idx + 1);
1876 break;
feba16e2 1877 case VMA_END_RESV:
5e911373
MK
1878 region_abort(resv, idx, idx + 1);
1879 ret = 0;
1880 break;
96b96a96
MK
1881 case VMA_ADD_RESV:
1882 if (vma->vm_flags & VM_MAYSHARE)
1883 ret = region_add(resv, idx, idx + 1);
1884 else {
1885 region_abort(resv, idx, idx + 1);
1886 ret = region_del(resv, idx, idx + 1);
1887 }
1888 break;
5e911373
MK
1889 default:
1890 BUG();
1891 }
84afd99b 1892
4e35f483 1893 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1894 return ret;
67961f9d
MK
1895 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1896 /*
1897 * In most cases, reserves always exist for private mappings.
1898 * However, a file associated with mapping could have been
1899 * hole punched or truncated after reserves were consumed.
1900 * As subsequent fault on such a range will not use reserves.
1901 * Subtle - The reserve map for private mappings has the
1902 * opposite meaning than that of shared mappings. If NO
1903 * entry is in the reserve map, it means a reservation exists.
1904 * If an entry exists in the reserve map, it means the
1905 * reservation has already been consumed. As a result, the
1906 * return value of this routine is the opposite of the
1907 * value returned from reserve map manipulation routines above.
1908 */
1909 if (ret)
1910 return 0;
1911 else
1912 return 1;
1913 }
4e35f483 1914 else
cf3ad20b 1915 return ret < 0 ? ret : 0;
c37f9fb1 1916}
cf3ad20b
MK
1917
1918static long vma_needs_reservation(struct hstate *h,
a5516438 1919 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1920{
5e911373 1921 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1922}
84afd99b 1923
cf3ad20b
MK
1924static long vma_commit_reservation(struct hstate *h,
1925 struct vm_area_struct *vma, unsigned long addr)
1926{
5e911373
MK
1927 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1928}
1929
feba16e2 1930static void vma_end_reservation(struct hstate *h,
5e911373
MK
1931 struct vm_area_struct *vma, unsigned long addr)
1932{
feba16e2 1933 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1934}
1935
96b96a96
MK
1936static long vma_add_reservation(struct hstate *h,
1937 struct vm_area_struct *vma, unsigned long addr)
1938{
1939 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1940}
1941
1942/*
1943 * This routine is called to restore a reservation on error paths. In the
1944 * specific error paths, a huge page was allocated (via alloc_huge_page)
1945 * and is about to be freed. If a reservation for the page existed,
1946 * alloc_huge_page would have consumed the reservation and set PagePrivate
1947 * in the newly allocated page. When the page is freed via free_huge_page,
1948 * the global reservation count will be incremented if PagePrivate is set.
1949 * However, free_huge_page can not adjust the reserve map. Adjust the
1950 * reserve map here to be consistent with global reserve count adjustments
1951 * to be made by free_huge_page.
1952 */
1953static void restore_reserve_on_error(struct hstate *h,
1954 struct vm_area_struct *vma, unsigned long address,
1955 struct page *page)
1956{
1957 if (unlikely(PagePrivate(page))) {
1958 long rc = vma_needs_reservation(h, vma, address);
1959
1960 if (unlikely(rc < 0)) {
1961 /*
1962 * Rare out of memory condition in reserve map
1963 * manipulation. Clear PagePrivate so that
1964 * global reserve count will not be incremented
1965 * by free_huge_page. This will make it appear
1966 * as though the reservation for this page was
1967 * consumed. This may prevent the task from
1968 * faulting in the page at a later time. This
1969 * is better than inconsistent global huge page
1970 * accounting of reserve counts.
1971 */
1972 ClearPagePrivate(page);
1973 } else if (rc) {
1974 rc = vma_add_reservation(h, vma, address);
1975 if (unlikely(rc < 0))
1976 /*
1977 * See above comment about rare out of
1978 * memory condition.
1979 */
1980 ClearPagePrivate(page);
1981 } else
1982 vma_end_reservation(h, vma, address);
1983 }
1984}
1985
70c3547e 1986struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1987 unsigned long addr, int avoid_reserve)
1da177e4 1988{
90481622 1989 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1990 struct hstate *h = hstate_vma(vma);
348ea204 1991 struct page *page;
d85f69b0
MK
1992 long map_chg, map_commit;
1993 long gbl_chg;
6d76dcf4
AK
1994 int ret, idx;
1995 struct hugetlb_cgroup *h_cg;
a1e78772 1996
6d76dcf4 1997 idx = hstate_index(h);
a1e78772 1998 /*
d85f69b0
MK
1999 * Examine the region/reserve map to determine if the process
2000 * has a reservation for the page to be allocated. A return
2001 * code of zero indicates a reservation exists (no change).
a1e78772 2002 */
d85f69b0
MK
2003 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2004 if (map_chg < 0)
76dcee75 2005 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2006
2007 /*
2008 * Processes that did not create the mapping will have no
2009 * reserves as indicated by the region/reserve map. Check
2010 * that the allocation will not exceed the subpool limit.
2011 * Allocations for MAP_NORESERVE mappings also need to be
2012 * checked against any subpool limit.
2013 */
2014 if (map_chg || avoid_reserve) {
2015 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2016 if (gbl_chg < 0) {
feba16e2 2017 vma_end_reservation(h, vma, addr);
76dcee75 2018 return ERR_PTR(-ENOSPC);
5e911373 2019 }
1da177e4 2020
d85f69b0
MK
2021 /*
2022 * Even though there was no reservation in the region/reserve
2023 * map, there could be reservations associated with the
2024 * subpool that can be used. This would be indicated if the
2025 * return value of hugepage_subpool_get_pages() is zero.
2026 * However, if avoid_reserve is specified we still avoid even
2027 * the subpool reservations.
2028 */
2029 if (avoid_reserve)
2030 gbl_chg = 1;
2031 }
2032
6d76dcf4 2033 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2034 if (ret)
2035 goto out_subpool_put;
2036
1da177e4 2037 spin_lock(&hugetlb_lock);
d85f69b0
MK
2038 /*
2039 * glb_chg is passed to indicate whether or not a page must be taken
2040 * from the global free pool (global change). gbl_chg == 0 indicates
2041 * a reservation exists for the allocation.
2042 */
2043 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2044 if (!page) {
94ae8ba7 2045 spin_unlock(&hugetlb_lock);
099730d6 2046 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2047 if (!page)
2048 goto out_uncharge_cgroup;
a88c7695
NH
2049 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2050 SetPagePrivate(page);
2051 h->resv_huge_pages--;
2052 }
79dbb236
AK
2053 spin_lock(&hugetlb_lock);
2054 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2055 /* Fall through */
68842c9b 2056 }
81a6fcae
JK
2057 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2058 spin_unlock(&hugetlb_lock);
348ea204 2059
90481622 2060 set_page_private(page, (unsigned long)spool);
90d8b7e6 2061
d85f69b0
MK
2062 map_commit = vma_commit_reservation(h, vma, addr);
2063 if (unlikely(map_chg > map_commit)) {
33039678
MK
2064 /*
2065 * The page was added to the reservation map between
2066 * vma_needs_reservation and vma_commit_reservation.
2067 * This indicates a race with hugetlb_reserve_pages.
2068 * Adjust for the subpool count incremented above AND
2069 * in hugetlb_reserve_pages for the same page. Also,
2070 * the reservation count added in hugetlb_reserve_pages
2071 * no longer applies.
2072 */
2073 long rsv_adjust;
2074
2075 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2076 hugetlb_acct_memory(h, -rsv_adjust);
2077 }
90d8b7e6 2078 return page;
8f34af6f
JZ
2079
2080out_uncharge_cgroup:
2081 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2082out_subpool_put:
d85f69b0 2083 if (map_chg || avoid_reserve)
8f34af6f 2084 hugepage_subpool_put_pages(spool, 1);
feba16e2 2085 vma_end_reservation(h, vma, addr);
8f34af6f 2086 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2087}
2088
74060e4d
NH
2089/*
2090 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2091 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2092 * where no ERR_VALUE is expected to be returned.
2093 */
2094struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2095 unsigned long addr, int avoid_reserve)
2096{
2097 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2098 if (IS_ERR(page))
2099 page = NULL;
2100 return page;
2101}
2102
e24a1307
AK
2103int alloc_bootmem_huge_page(struct hstate *h)
2104 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2105int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2106{
2107 struct huge_bootmem_page *m;
b2261026 2108 int nr_nodes, node;
aa888a74 2109
b2261026 2110 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2111 void *addr;
2112
8b89a116
GS
2113 addr = memblock_virt_alloc_try_nid_nopanic(
2114 huge_page_size(h), huge_page_size(h),
2115 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2116 if (addr) {
2117 /*
2118 * Use the beginning of the huge page to store the
2119 * huge_bootmem_page struct (until gather_bootmem
2120 * puts them into the mem_map).
2121 */
2122 m = addr;
91f47662 2123 goto found;
aa888a74 2124 }
aa888a74
AK
2125 }
2126 return 0;
2127
2128found:
df994ead 2129 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
2130 /* Put them into a private list first because mem_map is not up yet */
2131 list_add(&m->list, &huge_boot_pages);
2132 m->hstate = h;
2133 return 1;
2134}
2135
d00181b9
KS
2136static void __init prep_compound_huge_page(struct page *page,
2137 unsigned int order)
18229df5
AW
2138{
2139 if (unlikely(order > (MAX_ORDER - 1)))
2140 prep_compound_gigantic_page(page, order);
2141 else
2142 prep_compound_page(page, order);
2143}
2144
aa888a74
AK
2145/* Put bootmem huge pages into the standard lists after mem_map is up */
2146static void __init gather_bootmem_prealloc(void)
2147{
2148 struct huge_bootmem_page *m;
2149
2150 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2151 struct hstate *h = m->hstate;
ee8f248d
BB
2152 struct page *page;
2153
2154#ifdef CONFIG_HIGHMEM
2155 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2156 memblock_free_late(__pa(m),
2157 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2158#else
2159 page = virt_to_page(m);
2160#endif
aa888a74 2161 WARN_ON(page_count(page) != 1);
18229df5 2162 prep_compound_huge_page(page, h->order);
ef5a22be 2163 WARN_ON(PageReserved(page));
aa888a74 2164 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
2165 /*
2166 * If we had gigantic hugepages allocated at boot time, we need
2167 * to restore the 'stolen' pages to totalram_pages in order to
2168 * fix confusing memory reports from free(1) and another
2169 * side-effects, like CommitLimit going negative.
2170 */
bae7f4ae 2171 if (hstate_is_gigantic(h))
3dcc0571 2172 adjust_managed_page_count(page, 1 << h->order);
bac593cd 2173 cond_resched();
aa888a74
AK
2174 }
2175}
2176
8faa8b07 2177static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2178{
2179 unsigned long i;
a5516438 2180
e5ff2159 2181 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2182 if (hstate_is_gigantic(h)) {
aa888a74
AK
2183 if (!alloc_bootmem_huge_page(h))
2184 break;
9b5e5d0f 2185 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 2186 &node_states[N_MEMORY]))
1da177e4 2187 break;
69ed779a 2188 cond_resched();
1da177e4 2189 }
d715cf80
LH
2190 if (i < h->max_huge_pages) {
2191 char buf[32];
2192
c6247f72 2193 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2194 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2195 h->max_huge_pages, buf, i);
2196 h->max_huge_pages = i;
2197 }
e5ff2159
AK
2198}
2199
2200static void __init hugetlb_init_hstates(void)
2201{
2202 struct hstate *h;
2203
2204 for_each_hstate(h) {
641844f5
NH
2205 if (minimum_order > huge_page_order(h))
2206 minimum_order = huge_page_order(h);
2207
8faa8b07 2208 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2209 if (!hstate_is_gigantic(h))
8faa8b07 2210 hugetlb_hstate_alloc_pages(h);
e5ff2159 2211 }
641844f5 2212 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2213}
2214
2215static void __init report_hugepages(void)
2216{
2217 struct hstate *h;
2218
2219 for_each_hstate(h) {
4abd32db 2220 char buf[32];
c6247f72
MW
2221
2222 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2223 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2224 buf, h->free_huge_pages);
e5ff2159
AK
2225 }
2226}
2227
1da177e4 2228#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2229static void try_to_free_low(struct hstate *h, unsigned long count,
2230 nodemask_t *nodes_allowed)
1da177e4 2231{
4415cc8d
CL
2232 int i;
2233
bae7f4ae 2234 if (hstate_is_gigantic(h))
aa888a74
AK
2235 return;
2236
6ae11b27 2237 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2238 struct page *page, *next;
a5516438
AK
2239 struct list_head *freel = &h->hugepage_freelists[i];
2240 list_for_each_entry_safe(page, next, freel, lru) {
2241 if (count >= h->nr_huge_pages)
6b0c880d 2242 return;
1da177e4
LT
2243 if (PageHighMem(page))
2244 continue;
2245 list_del(&page->lru);
e5ff2159 2246 update_and_free_page(h, page);
a5516438
AK
2247 h->free_huge_pages--;
2248 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2249 }
2250 }
2251}
2252#else
6ae11b27
LS
2253static inline void try_to_free_low(struct hstate *h, unsigned long count,
2254 nodemask_t *nodes_allowed)
1da177e4
LT
2255{
2256}
2257#endif
2258
20a0307c
WF
2259/*
2260 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2261 * balanced by operating on them in a round-robin fashion.
2262 * Returns 1 if an adjustment was made.
2263 */
6ae11b27
LS
2264static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2265 int delta)
20a0307c 2266{
b2261026 2267 int nr_nodes, node;
20a0307c
WF
2268
2269 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2270
b2261026
JK
2271 if (delta < 0) {
2272 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2273 if (h->surplus_huge_pages_node[node])
2274 goto found;
e8c5c824 2275 }
b2261026
JK
2276 } else {
2277 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2278 if (h->surplus_huge_pages_node[node] <
2279 h->nr_huge_pages_node[node])
2280 goto found;
e8c5c824 2281 }
b2261026
JK
2282 }
2283 return 0;
20a0307c 2284
b2261026
JK
2285found:
2286 h->surplus_huge_pages += delta;
2287 h->surplus_huge_pages_node[node] += delta;
2288 return 1;
20a0307c
WF
2289}
2290
a5516438 2291#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2292static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2293 nodemask_t *nodes_allowed)
1da177e4 2294{
7893d1d5 2295 unsigned long min_count, ret;
1da177e4 2296
944d9fec 2297 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2298 return h->max_huge_pages;
2299
7893d1d5
AL
2300 /*
2301 * Increase the pool size
2302 * First take pages out of surplus state. Then make up the
2303 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2304 *
d15c7c09 2305 * We might race with __alloc_buddy_huge_page() here and be unable
d1c3fb1f
NA
2306 * to convert a surplus huge page to a normal huge page. That is
2307 * not critical, though, it just means the overall size of the
2308 * pool might be one hugepage larger than it needs to be, but
2309 * within all the constraints specified by the sysctls.
7893d1d5 2310 */
1da177e4 2311 spin_lock(&hugetlb_lock);
a5516438 2312 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2313 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2314 break;
2315 }
2316
a5516438 2317 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2318 /*
2319 * If this allocation races such that we no longer need the
2320 * page, free_huge_page will handle it by freeing the page
2321 * and reducing the surplus.
2322 */
2323 spin_unlock(&hugetlb_lock);
649920c6
JH
2324
2325 /* yield cpu to avoid soft lockup */
2326 cond_resched();
2327
944d9fec
LC
2328 if (hstate_is_gigantic(h))
2329 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2330 else
2331 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
2332 spin_lock(&hugetlb_lock);
2333 if (!ret)
2334 goto out;
2335
536240f2
MG
2336 /* Bail for signals. Probably ctrl-c from user */
2337 if (signal_pending(current))
2338 goto out;
7893d1d5 2339 }
7893d1d5
AL
2340
2341 /*
2342 * Decrease the pool size
2343 * First return free pages to the buddy allocator (being careful
2344 * to keep enough around to satisfy reservations). Then place
2345 * pages into surplus state as needed so the pool will shrink
2346 * to the desired size as pages become free.
d1c3fb1f
NA
2347 *
2348 * By placing pages into the surplus state independent of the
2349 * overcommit value, we are allowing the surplus pool size to
2350 * exceed overcommit. There are few sane options here. Since
d15c7c09 2351 * __alloc_buddy_huge_page() is checking the global counter,
d1c3fb1f
NA
2352 * though, we'll note that we're not allowed to exceed surplus
2353 * and won't grow the pool anywhere else. Not until one of the
2354 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2355 */
a5516438 2356 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2357 min_count = max(count, min_count);
6ae11b27 2358 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2359 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2360 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2361 break;
55f67141 2362 cond_resched_lock(&hugetlb_lock);
1da177e4 2363 }
a5516438 2364 while (count < persistent_huge_pages(h)) {
6ae11b27 2365 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2366 break;
2367 }
2368out:
a5516438 2369 ret = persistent_huge_pages(h);
1da177e4 2370 spin_unlock(&hugetlb_lock);
7893d1d5 2371 return ret;
1da177e4
LT
2372}
2373
a3437870
NA
2374#define HSTATE_ATTR_RO(_name) \
2375 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2376
2377#define HSTATE_ATTR(_name) \
2378 static struct kobj_attribute _name##_attr = \
2379 __ATTR(_name, 0644, _name##_show, _name##_store)
2380
2381static struct kobject *hugepages_kobj;
2382static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2383
9a305230
LS
2384static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2385
2386static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2387{
2388 int i;
9a305230 2389
a3437870 2390 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2391 if (hstate_kobjs[i] == kobj) {
2392 if (nidp)
2393 *nidp = NUMA_NO_NODE;
a3437870 2394 return &hstates[i];
9a305230
LS
2395 }
2396
2397 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2398}
2399
06808b08 2400static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2401 struct kobj_attribute *attr, char *buf)
2402{
9a305230
LS
2403 struct hstate *h;
2404 unsigned long nr_huge_pages;
2405 int nid;
2406
2407 h = kobj_to_hstate(kobj, &nid);
2408 if (nid == NUMA_NO_NODE)
2409 nr_huge_pages = h->nr_huge_pages;
2410 else
2411 nr_huge_pages = h->nr_huge_pages_node[nid];
2412
2413 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2414}
adbe8726 2415
238d3c13
DR
2416static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2417 struct hstate *h, int nid,
2418 unsigned long count, size_t len)
a3437870
NA
2419{
2420 int err;
bad44b5b 2421 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2422
944d9fec 2423 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2424 err = -EINVAL;
2425 goto out;
2426 }
2427
9a305230
LS
2428 if (nid == NUMA_NO_NODE) {
2429 /*
2430 * global hstate attribute
2431 */
2432 if (!(obey_mempolicy &&
2433 init_nodemask_of_mempolicy(nodes_allowed))) {
2434 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2435 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2436 }
2437 } else if (nodes_allowed) {
2438 /*
2439 * per node hstate attribute: adjust count to global,
2440 * but restrict alloc/free to the specified node.
2441 */
2442 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2443 init_nodemask_of_node(nodes_allowed, nid);
2444 } else
8cebfcd0 2445 nodes_allowed = &node_states[N_MEMORY];
9a305230 2446
06808b08 2447 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2448
8cebfcd0 2449 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2450 NODEMASK_FREE(nodes_allowed);
2451
2452 return len;
adbe8726
EM
2453out:
2454 NODEMASK_FREE(nodes_allowed);
2455 return err;
06808b08
LS
2456}
2457
238d3c13
DR
2458static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2459 struct kobject *kobj, const char *buf,
2460 size_t len)
2461{
2462 struct hstate *h;
2463 unsigned long count;
2464 int nid;
2465 int err;
2466
2467 err = kstrtoul(buf, 10, &count);
2468 if (err)
2469 return err;
2470
2471 h = kobj_to_hstate(kobj, &nid);
2472 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2473}
2474
06808b08
LS
2475static ssize_t nr_hugepages_show(struct kobject *kobj,
2476 struct kobj_attribute *attr, char *buf)
2477{
2478 return nr_hugepages_show_common(kobj, attr, buf);
2479}
2480
2481static ssize_t nr_hugepages_store(struct kobject *kobj,
2482 struct kobj_attribute *attr, const char *buf, size_t len)
2483{
238d3c13 2484 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2485}
2486HSTATE_ATTR(nr_hugepages);
2487
06808b08
LS
2488#ifdef CONFIG_NUMA
2489
2490/*
2491 * hstate attribute for optionally mempolicy-based constraint on persistent
2492 * huge page alloc/free.
2493 */
2494static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2495 struct kobj_attribute *attr, char *buf)
2496{
2497 return nr_hugepages_show_common(kobj, attr, buf);
2498}
2499
2500static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2501 struct kobj_attribute *attr, const char *buf, size_t len)
2502{
238d3c13 2503 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2504}
2505HSTATE_ATTR(nr_hugepages_mempolicy);
2506#endif
2507
2508
a3437870
NA
2509static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2510 struct kobj_attribute *attr, char *buf)
2511{
9a305230 2512 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2513 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2514}
adbe8726 2515
a3437870
NA
2516static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2517 struct kobj_attribute *attr, const char *buf, size_t count)
2518{
2519 int err;
2520 unsigned long input;
9a305230 2521 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2522
bae7f4ae 2523 if (hstate_is_gigantic(h))
adbe8726
EM
2524 return -EINVAL;
2525
3dbb95f7 2526 err = kstrtoul(buf, 10, &input);
a3437870 2527 if (err)
73ae31e5 2528 return err;
a3437870
NA
2529
2530 spin_lock(&hugetlb_lock);
2531 h->nr_overcommit_huge_pages = input;
2532 spin_unlock(&hugetlb_lock);
2533
2534 return count;
2535}
2536HSTATE_ATTR(nr_overcommit_hugepages);
2537
2538static ssize_t free_hugepages_show(struct kobject *kobj,
2539 struct kobj_attribute *attr, char *buf)
2540{
9a305230
LS
2541 struct hstate *h;
2542 unsigned long free_huge_pages;
2543 int nid;
2544
2545 h = kobj_to_hstate(kobj, &nid);
2546 if (nid == NUMA_NO_NODE)
2547 free_huge_pages = h->free_huge_pages;
2548 else
2549 free_huge_pages = h->free_huge_pages_node[nid];
2550
2551 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2552}
2553HSTATE_ATTR_RO(free_hugepages);
2554
2555static ssize_t resv_hugepages_show(struct kobject *kobj,
2556 struct kobj_attribute *attr, char *buf)
2557{
9a305230 2558 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2559 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2560}
2561HSTATE_ATTR_RO(resv_hugepages);
2562
2563static ssize_t surplus_hugepages_show(struct kobject *kobj,
2564 struct kobj_attribute *attr, char *buf)
2565{
9a305230
LS
2566 struct hstate *h;
2567 unsigned long surplus_huge_pages;
2568 int nid;
2569
2570 h = kobj_to_hstate(kobj, &nid);
2571 if (nid == NUMA_NO_NODE)
2572 surplus_huge_pages = h->surplus_huge_pages;
2573 else
2574 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2575
2576 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2577}
2578HSTATE_ATTR_RO(surplus_hugepages);
2579
2580static struct attribute *hstate_attrs[] = {
2581 &nr_hugepages_attr.attr,
2582 &nr_overcommit_hugepages_attr.attr,
2583 &free_hugepages_attr.attr,
2584 &resv_hugepages_attr.attr,
2585 &surplus_hugepages_attr.attr,
06808b08
LS
2586#ifdef CONFIG_NUMA
2587 &nr_hugepages_mempolicy_attr.attr,
2588#endif
a3437870
NA
2589 NULL,
2590};
2591
67e5ed96 2592static const struct attribute_group hstate_attr_group = {
a3437870
NA
2593 .attrs = hstate_attrs,
2594};
2595
094e9539
JM
2596static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2597 struct kobject **hstate_kobjs,
67e5ed96 2598 const struct attribute_group *hstate_attr_group)
a3437870
NA
2599{
2600 int retval;
972dc4de 2601 int hi = hstate_index(h);
a3437870 2602
9a305230
LS
2603 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2604 if (!hstate_kobjs[hi])
a3437870
NA
2605 return -ENOMEM;
2606
9a305230 2607 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2608 if (retval)
9a305230 2609 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2610
2611 return retval;
2612}
2613
2614static void __init hugetlb_sysfs_init(void)
2615{
2616 struct hstate *h;
2617 int err;
2618
2619 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2620 if (!hugepages_kobj)
2621 return;
2622
2623 for_each_hstate(h) {
9a305230
LS
2624 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2625 hstate_kobjs, &hstate_attr_group);
a3437870 2626 if (err)
ffb22af5 2627 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2628 }
2629}
2630
9a305230
LS
2631#ifdef CONFIG_NUMA
2632
2633/*
2634 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2635 * with node devices in node_devices[] using a parallel array. The array
2636 * index of a node device or _hstate == node id.
2637 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2638 * the base kernel, on the hugetlb module.
2639 */
2640struct node_hstate {
2641 struct kobject *hugepages_kobj;
2642 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2643};
b4e289a6 2644static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2645
2646/*
10fbcf4c 2647 * A subset of global hstate attributes for node devices
9a305230
LS
2648 */
2649static struct attribute *per_node_hstate_attrs[] = {
2650 &nr_hugepages_attr.attr,
2651 &free_hugepages_attr.attr,
2652 &surplus_hugepages_attr.attr,
2653 NULL,
2654};
2655
67e5ed96 2656static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2657 .attrs = per_node_hstate_attrs,
2658};
2659
2660/*
10fbcf4c 2661 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2662 * Returns node id via non-NULL nidp.
2663 */
2664static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2665{
2666 int nid;
2667
2668 for (nid = 0; nid < nr_node_ids; nid++) {
2669 struct node_hstate *nhs = &node_hstates[nid];
2670 int i;
2671 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2672 if (nhs->hstate_kobjs[i] == kobj) {
2673 if (nidp)
2674 *nidp = nid;
2675 return &hstates[i];
2676 }
2677 }
2678
2679 BUG();
2680 return NULL;
2681}
2682
2683/*
10fbcf4c 2684 * Unregister hstate attributes from a single node device.
9a305230
LS
2685 * No-op if no hstate attributes attached.
2686 */
3cd8b44f 2687static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2688{
2689 struct hstate *h;
10fbcf4c 2690 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2691
2692 if (!nhs->hugepages_kobj)
9b5e5d0f 2693 return; /* no hstate attributes */
9a305230 2694
972dc4de
AK
2695 for_each_hstate(h) {
2696 int idx = hstate_index(h);
2697 if (nhs->hstate_kobjs[idx]) {
2698 kobject_put(nhs->hstate_kobjs[idx]);
2699 nhs->hstate_kobjs[idx] = NULL;
9a305230 2700 }
972dc4de 2701 }
9a305230
LS
2702
2703 kobject_put(nhs->hugepages_kobj);
2704 nhs->hugepages_kobj = NULL;
2705}
2706
9a305230
LS
2707
2708/*
10fbcf4c 2709 * Register hstate attributes for a single node device.
9a305230
LS
2710 * No-op if attributes already registered.
2711 */
3cd8b44f 2712static void hugetlb_register_node(struct node *node)
9a305230
LS
2713{
2714 struct hstate *h;
10fbcf4c 2715 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2716 int err;
2717
2718 if (nhs->hugepages_kobj)
2719 return; /* already allocated */
2720
2721 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2722 &node->dev.kobj);
9a305230
LS
2723 if (!nhs->hugepages_kobj)
2724 return;
2725
2726 for_each_hstate(h) {
2727 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2728 nhs->hstate_kobjs,
2729 &per_node_hstate_attr_group);
2730 if (err) {
ffb22af5
AM
2731 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2732 h->name, node->dev.id);
9a305230
LS
2733 hugetlb_unregister_node(node);
2734 break;
2735 }
2736 }
2737}
2738
2739/*
9b5e5d0f 2740 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2741 * devices of nodes that have memory. All on-line nodes should have
2742 * registered their associated device by this time.
9a305230 2743 */
7d9ca000 2744static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2745{
2746 int nid;
2747
8cebfcd0 2748 for_each_node_state(nid, N_MEMORY) {
8732794b 2749 struct node *node = node_devices[nid];
10fbcf4c 2750 if (node->dev.id == nid)
9a305230
LS
2751 hugetlb_register_node(node);
2752 }
2753
2754 /*
10fbcf4c 2755 * Let the node device driver know we're here so it can
9a305230
LS
2756 * [un]register hstate attributes on node hotplug.
2757 */
2758 register_hugetlbfs_with_node(hugetlb_register_node,
2759 hugetlb_unregister_node);
2760}
2761#else /* !CONFIG_NUMA */
2762
2763static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2764{
2765 BUG();
2766 if (nidp)
2767 *nidp = -1;
2768 return NULL;
2769}
2770
9a305230
LS
2771static void hugetlb_register_all_nodes(void) { }
2772
2773#endif
2774
a3437870
NA
2775static int __init hugetlb_init(void)
2776{
8382d914
DB
2777 int i;
2778
457c1b27 2779 if (!hugepages_supported())
0ef89d25 2780 return 0;
a3437870 2781
e11bfbfc 2782 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2783 if (default_hstate_size != 0) {
2784 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2785 default_hstate_size, HPAGE_SIZE);
2786 }
2787
e11bfbfc
NP
2788 default_hstate_size = HPAGE_SIZE;
2789 if (!size_to_hstate(default_hstate_size))
2790 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2791 }
972dc4de 2792 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2793 if (default_hstate_max_huge_pages) {
2794 if (!default_hstate.max_huge_pages)
2795 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2796 }
a3437870
NA
2797
2798 hugetlb_init_hstates();
aa888a74 2799 gather_bootmem_prealloc();
a3437870
NA
2800 report_hugepages();
2801
2802 hugetlb_sysfs_init();
9a305230 2803 hugetlb_register_all_nodes();
7179e7bf 2804 hugetlb_cgroup_file_init();
9a305230 2805
8382d914
DB
2806#ifdef CONFIG_SMP
2807 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2808#else
2809 num_fault_mutexes = 1;
2810#endif
c672c7f2 2811 hugetlb_fault_mutex_table =
8382d914 2812 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2813 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2814
2815 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2816 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2817 return 0;
2818}
3e89e1c5 2819subsys_initcall(hugetlb_init);
a3437870
NA
2820
2821/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2822void __init hugetlb_bad_size(void)
2823{
2824 parsed_valid_hugepagesz = false;
2825}
2826
d00181b9 2827void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2828{
2829 struct hstate *h;
8faa8b07
AK
2830 unsigned long i;
2831
a3437870 2832 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2833 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2834 return;
2835 }
47d38344 2836 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2837 BUG_ON(order == 0);
47d38344 2838 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2839 h->order = order;
2840 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2841 h->nr_huge_pages = 0;
2842 h->free_huge_pages = 0;
2843 for (i = 0; i < MAX_NUMNODES; ++i)
2844 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2845 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2846 h->next_nid_to_alloc = first_memory_node;
2847 h->next_nid_to_free = first_memory_node;
a3437870
NA
2848 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2849 huge_page_size(h)/1024);
8faa8b07 2850
a3437870
NA
2851 parsed_hstate = h;
2852}
2853
e11bfbfc 2854static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2855{
2856 unsigned long *mhp;
8faa8b07 2857 static unsigned long *last_mhp;
a3437870 2858
9fee021d
VT
2859 if (!parsed_valid_hugepagesz) {
2860 pr_warn("hugepages = %s preceded by "
2861 "an unsupported hugepagesz, ignoring\n", s);
2862 parsed_valid_hugepagesz = true;
2863 return 1;
2864 }
a3437870 2865 /*
47d38344 2866 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2867 * so this hugepages= parameter goes to the "default hstate".
2868 */
9fee021d 2869 else if (!hugetlb_max_hstate)
a3437870
NA
2870 mhp = &default_hstate_max_huge_pages;
2871 else
2872 mhp = &parsed_hstate->max_huge_pages;
2873
8faa8b07 2874 if (mhp == last_mhp) {
598d8091 2875 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2876 return 1;
2877 }
2878
a3437870
NA
2879 if (sscanf(s, "%lu", mhp) <= 0)
2880 *mhp = 0;
2881
8faa8b07
AK
2882 /*
2883 * Global state is always initialized later in hugetlb_init.
2884 * But we need to allocate >= MAX_ORDER hstates here early to still
2885 * use the bootmem allocator.
2886 */
47d38344 2887 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2888 hugetlb_hstate_alloc_pages(parsed_hstate);
2889
2890 last_mhp = mhp;
2891
a3437870
NA
2892 return 1;
2893}
e11bfbfc
NP
2894__setup("hugepages=", hugetlb_nrpages_setup);
2895
2896static int __init hugetlb_default_setup(char *s)
2897{
2898 default_hstate_size = memparse(s, &s);
2899 return 1;
2900}
2901__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2902
8a213460
NA
2903static unsigned int cpuset_mems_nr(unsigned int *array)
2904{
2905 int node;
2906 unsigned int nr = 0;
2907
2908 for_each_node_mask(node, cpuset_current_mems_allowed)
2909 nr += array[node];
2910
2911 return nr;
2912}
2913
2914#ifdef CONFIG_SYSCTL
06808b08
LS
2915static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2916 struct ctl_table *table, int write,
2917 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2918{
e5ff2159 2919 struct hstate *h = &default_hstate;
238d3c13 2920 unsigned long tmp = h->max_huge_pages;
08d4a246 2921 int ret;
e5ff2159 2922
457c1b27 2923 if (!hugepages_supported())
86613628 2924 return -EOPNOTSUPP;
457c1b27 2925
e5ff2159
AK
2926 table->data = &tmp;
2927 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2928 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2929 if (ret)
2930 goto out;
e5ff2159 2931
238d3c13
DR
2932 if (write)
2933 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2934 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2935out:
2936 return ret;
1da177e4 2937}
396faf03 2938
06808b08
LS
2939int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2940 void __user *buffer, size_t *length, loff_t *ppos)
2941{
2942
2943 return hugetlb_sysctl_handler_common(false, table, write,
2944 buffer, length, ppos);
2945}
2946
2947#ifdef CONFIG_NUMA
2948int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2949 void __user *buffer, size_t *length, loff_t *ppos)
2950{
2951 return hugetlb_sysctl_handler_common(true, table, write,
2952 buffer, length, ppos);
2953}
2954#endif /* CONFIG_NUMA */
2955
a3d0c6aa 2956int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2957 void __user *buffer,
a3d0c6aa
NA
2958 size_t *length, loff_t *ppos)
2959{
a5516438 2960 struct hstate *h = &default_hstate;
e5ff2159 2961 unsigned long tmp;
08d4a246 2962 int ret;
e5ff2159 2963
457c1b27 2964 if (!hugepages_supported())
86613628 2965 return -EOPNOTSUPP;
457c1b27 2966
c033a93c 2967 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2968
bae7f4ae 2969 if (write && hstate_is_gigantic(h))
adbe8726
EM
2970 return -EINVAL;
2971
e5ff2159
AK
2972 table->data = &tmp;
2973 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2974 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2975 if (ret)
2976 goto out;
e5ff2159
AK
2977
2978 if (write) {
2979 spin_lock(&hugetlb_lock);
2980 h->nr_overcommit_huge_pages = tmp;
2981 spin_unlock(&hugetlb_lock);
2982 }
08d4a246
MH
2983out:
2984 return ret;
a3d0c6aa
NA
2985}
2986
1da177e4
LT
2987#endif /* CONFIG_SYSCTL */
2988
e1759c21 2989void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2990{
a5516438 2991 struct hstate *h = &default_hstate;
457c1b27
NA
2992 if (!hugepages_supported())
2993 return;
e1759c21 2994 seq_printf(m,
4f98a2fe
RR
2995 "HugePages_Total: %5lu\n"
2996 "HugePages_Free: %5lu\n"
2997 "HugePages_Rsvd: %5lu\n"
2998 "HugePages_Surp: %5lu\n"
2999 "Hugepagesize: %8lu kB\n",
a5516438
AK
3000 h->nr_huge_pages,
3001 h->free_huge_pages,
3002 h->resv_huge_pages,
3003 h->surplus_huge_pages,
3004 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
3005}
3006
3007int hugetlb_report_node_meminfo(int nid, char *buf)
3008{
a5516438 3009 struct hstate *h = &default_hstate;
457c1b27
NA
3010 if (!hugepages_supported())
3011 return 0;
1da177e4
LT
3012 return sprintf(buf,
3013 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3014 "Node %d HugePages_Free: %5u\n"
3015 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3016 nid, h->nr_huge_pages_node[nid],
3017 nid, h->free_huge_pages_node[nid],
3018 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3019}
3020
949f7ec5
DR
3021void hugetlb_show_meminfo(void)
3022{
3023 struct hstate *h;
3024 int nid;
3025
457c1b27
NA
3026 if (!hugepages_supported())
3027 return;
3028
949f7ec5
DR
3029 for_each_node_state(nid, N_MEMORY)
3030 for_each_hstate(h)
3031 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3032 nid,
3033 h->nr_huge_pages_node[nid],
3034 h->free_huge_pages_node[nid],
3035 h->surplus_huge_pages_node[nid],
3036 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3037}
3038
5d317b2b
NH
3039void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3040{
3041 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3042 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3043}
3044
1da177e4
LT
3045/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3046unsigned long hugetlb_total_pages(void)
3047{
d0028588
WL
3048 struct hstate *h;
3049 unsigned long nr_total_pages = 0;
3050
3051 for_each_hstate(h)
3052 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3053 return nr_total_pages;
1da177e4 3054}
1da177e4 3055
a5516438 3056static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3057{
3058 int ret = -ENOMEM;
3059
3060 spin_lock(&hugetlb_lock);
3061 /*
3062 * When cpuset is configured, it breaks the strict hugetlb page
3063 * reservation as the accounting is done on a global variable. Such
3064 * reservation is completely rubbish in the presence of cpuset because
3065 * the reservation is not checked against page availability for the
3066 * current cpuset. Application can still potentially OOM'ed by kernel
3067 * with lack of free htlb page in cpuset that the task is in.
3068 * Attempt to enforce strict accounting with cpuset is almost
3069 * impossible (or too ugly) because cpuset is too fluid that
3070 * task or memory node can be dynamically moved between cpusets.
3071 *
3072 * The change of semantics for shared hugetlb mapping with cpuset is
3073 * undesirable. However, in order to preserve some of the semantics,
3074 * we fall back to check against current free page availability as
3075 * a best attempt and hopefully to minimize the impact of changing
3076 * semantics that cpuset has.
3077 */
3078 if (delta > 0) {
a5516438 3079 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3080 goto out;
3081
a5516438
AK
3082 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3083 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3084 goto out;
3085 }
3086 }
3087
3088 ret = 0;
3089 if (delta < 0)
a5516438 3090 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3091
3092out:
3093 spin_unlock(&hugetlb_lock);
3094 return ret;
3095}
3096
84afd99b
AW
3097static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3098{
f522c3ac 3099 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3100
3101 /*
3102 * This new VMA should share its siblings reservation map if present.
3103 * The VMA will only ever have a valid reservation map pointer where
3104 * it is being copied for another still existing VMA. As that VMA
25985edc 3105 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3106 * after this open call completes. It is therefore safe to take a
3107 * new reference here without additional locking.
3108 */
4e35f483 3109 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3110 kref_get(&resv->refs);
84afd99b
AW
3111}
3112
a1e78772
MG
3113static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3114{
a5516438 3115 struct hstate *h = hstate_vma(vma);
f522c3ac 3116 struct resv_map *resv = vma_resv_map(vma);
90481622 3117 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3118 unsigned long reserve, start, end;
1c5ecae3 3119 long gbl_reserve;
84afd99b 3120
4e35f483
JK
3121 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3122 return;
84afd99b 3123
4e35f483
JK
3124 start = vma_hugecache_offset(h, vma, vma->vm_start);
3125 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3126
4e35f483 3127 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3128
4e35f483
JK
3129 kref_put(&resv->refs, resv_map_release);
3130
3131 if (reserve) {
1c5ecae3
MK
3132 /*
3133 * Decrement reserve counts. The global reserve count may be
3134 * adjusted if the subpool has a minimum size.
3135 */
3136 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3137 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3138 }
a1e78772
MG
3139}
3140
31383c68
DW
3141static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3142{
3143 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3144 return -EINVAL;
3145 return 0;
3146}
3147
1da177e4
LT
3148/*
3149 * We cannot handle pagefaults against hugetlb pages at all. They cause
3150 * handle_mm_fault() to try to instantiate regular-sized pages in the
3151 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3152 * this far.
3153 */
11bac800 3154static int hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3155{
3156 BUG();
d0217ac0 3157 return 0;
1da177e4
LT
3158}
3159
f0f37e2f 3160const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3161 .fault = hugetlb_vm_op_fault,
84afd99b 3162 .open = hugetlb_vm_op_open,
a1e78772 3163 .close = hugetlb_vm_op_close,
31383c68 3164 .split = hugetlb_vm_op_split,
1da177e4
LT
3165};
3166
1e8f889b
DG
3167static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3168 int writable)
63551ae0
DG
3169{
3170 pte_t entry;
3171
1e8f889b 3172 if (writable) {
106c992a
GS
3173 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3174 vma->vm_page_prot)));
63551ae0 3175 } else {
106c992a
GS
3176 entry = huge_pte_wrprotect(mk_huge_pte(page,
3177 vma->vm_page_prot));
63551ae0
DG
3178 }
3179 entry = pte_mkyoung(entry);
3180 entry = pte_mkhuge(entry);
d9ed9faa 3181 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3182
3183 return entry;
3184}
3185
1e8f889b
DG
3186static void set_huge_ptep_writable(struct vm_area_struct *vma,
3187 unsigned long address, pte_t *ptep)
3188{
3189 pte_t entry;
3190
106c992a 3191 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3192 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3193 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3194}
3195
d5ed7444 3196bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3197{
3198 swp_entry_t swp;
3199
3200 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3201 return false;
4a705fef
NH
3202 swp = pte_to_swp_entry(pte);
3203 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3204 return true;
4a705fef 3205 else
d5ed7444 3206 return false;
4a705fef
NH
3207}
3208
3209static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3210{
3211 swp_entry_t swp;
3212
3213 if (huge_pte_none(pte) || pte_present(pte))
3214 return 0;
3215 swp = pte_to_swp_entry(pte);
3216 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3217 return 1;
3218 else
3219 return 0;
3220}
1e8f889b 3221
63551ae0
DG
3222int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3223 struct vm_area_struct *vma)
3224{
f5d1b5bc 3225 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3226 struct page *ptepage;
1c59827d 3227 unsigned long addr;
1e8f889b 3228 int cow;
a5516438
AK
3229 struct hstate *h = hstate_vma(vma);
3230 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3231 unsigned long mmun_start; /* For mmu_notifiers */
3232 unsigned long mmun_end; /* For mmu_notifiers */
3233 int ret = 0;
1e8f889b
DG
3234
3235 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3236
e8569dd2
AS
3237 mmun_start = vma->vm_start;
3238 mmun_end = vma->vm_end;
3239 if (cow)
3240 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3241
a5516438 3242 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3243 spinlock_t *src_ptl, *dst_ptl;
7868a208 3244 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3245 if (!src_pte)
3246 continue;
a5516438 3247 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3248 if (!dst_pte) {
3249 ret = -ENOMEM;
3250 break;
3251 }
c5c99429 3252
f5d1b5bc
MK
3253 /*
3254 * If the pagetables are shared don't copy or take references.
3255 * dst_pte == src_pte is the common case of src/dest sharing.
3256 *
3257 * However, src could have 'unshared' and dst shares with
3258 * another vma. If dst_pte !none, this implies sharing.
3259 * Check here before taking page table lock, and once again
3260 * after taking the lock below.
3261 */
3262 dst_entry = huge_ptep_get(dst_pte);
3263 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3264 continue;
3265
cb900f41
KS
3266 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3267 src_ptl = huge_pte_lockptr(h, src, src_pte);
3268 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3269 entry = huge_ptep_get(src_pte);
f5d1b5bc
MK
3270 dst_entry = huge_ptep_get(dst_pte);
3271 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3272 /*
3273 * Skip if src entry none. Also, skip in the
3274 * unlikely case dst entry !none as this implies
3275 * sharing with another vma.
3276 */
4a705fef
NH
3277 ;
3278 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3279 is_hugetlb_entry_hwpoisoned(entry))) {
3280 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3281
3282 if (is_write_migration_entry(swp_entry) && cow) {
3283 /*
3284 * COW mappings require pages in both
3285 * parent and child to be set to read.
3286 */
3287 make_migration_entry_read(&swp_entry);
3288 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3289 set_huge_swap_pte_at(src, addr, src_pte,
3290 entry, sz);
4a705fef 3291 }
e5251fd4 3292 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3293 } else {
34ee645e 3294 if (cow) {
0f10851e
JG
3295 /*
3296 * No need to notify as we are downgrading page
3297 * table protection not changing it to point
3298 * to a new page.
3299 *
3300 * See Documentation/vm/mmu_notifier.txt
3301 */
7f2e9525 3302 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3303 }
0253d634 3304 entry = huge_ptep_get(src_pte);
1c59827d
HD
3305 ptepage = pte_page(entry);
3306 get_page(ptepage);
53f9263b 3307 page_dup_rmap(ptepage, true);
1c59827d 3308 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3309 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3310 }
cb900f41
KS
3311 spin_unlock(src_ptl);
3312 spin_unlock(dst_ptl);
63551ae0 3313 }
63551ae0 3314
e8569dd2
AS
3315 if (cow)
3316 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3317
3318 return ret;
63551ae0
DG
3319}
3320
24669e58
AK
3321void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3322 unsigned long start, unsigned long end,
3323 struct page *ref_page)
63551ae0
DG
3324{
3325 struct mm_struct *mm = vma->vm_mm;
3326 unsigned long address;
c7546f8f 3327 pte_t *ptep;
63551ae0 3328 pte_t pte;
cb900f41 3329 spinlock_t *ptl;
63551ae0 3330 struct page *page;
a5516438
AK
3331 struct hstate *h = hstate_vma(vma);
3332 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3333 const unsigned long mmun_start = start; /* For mmu_notifiers */
3334 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3335
63551ae0 3336 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3337 BUG_ON(start & ~huge_page_mask(h));
3338 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3339
07e32661
AK
3340 /*
3341 * This is a hugetlb vma, all the pte entries should point
3342 * to huge page.
3343 */
3344 tlb_remove_check_page_size_change(tlb, sz);
24669e58 3345 tlb_start_vma(tlb, vma);
2ec74c3e 3346 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3347 address = start;
569f48b8 3348 for (; address < end; address += sz) {
7868a208 3349 ptep = huge_pte_offset(mm, address, sz);
4c887265 3350 if (!ptep)
c7546f8f
DG
3351 continue;
3352
cb900f41 3353 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3354 if (huge_pmd_unshare(mm, &address, ptep)) {
3355 spin_unlock(ptl);
3356 continue;
3357 }
39dde65c 3358
6629326b 3359 pte = huge_ptep_get(ptep);
31d49da5
AK
3360 if (huge_pte_none(pte)) {
3361 spin_unlock(ptl);
3362 continue;
3363 }
6629326b
HD
3364
3365 /*
9fbc1f63
NH
3366 * Migrating hugepage or HWPoisoned hugepage is already
3367 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3368 */
9fbc1f63 3369 if (unlikely(!pte_present(pte))) {
9386fac3 3370 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3371 spin_unlock(ptl);
3372 continue;
8c4894c6 3373 }
6629326b
HD
3374
3375 page = pte_page(pte);
04f2cbe3
MG
3376 /*
3377 * If a reference page is supplied, it is because a specific
3378 * page is being unmapped, not a range. Ensure the page we
3379 * are about to unmap is the actual page of interest.
3380 */
3381 if (ref_page) {
31d49da5
AK
3382 if (page != ref_page) {
3383 spin_unlock(ptl);
3384 continue;
3385 }
04f2cbe3
MG
3386 /*
3387 * Mark the VMA as having unmapped its page so that
3388 * future faults in this VMA will fail rather than
3389 * looking like data was lost
3390 */
3391 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3392 }
3393
c7546f8f 3394 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3395 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3396 if (huge_pte_dirty(pte))
6649a386 3397 set_page_dirty(page);
9e81130b 3398
5d317b2b 3399 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3400 page_remove_rmap(page, true);
31d49da5 3401
cb900f41 3402 spin_unlock(ptl);
e77b0852 3403 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3404 /*
3405 * Bail out after unmapping reference page if supplied
3406 */
3407 if (ref_page)
3408 break;
fe1668ae 3409 }
2ec74c3e 3410 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3411 tlb_end_vma(tlb, vma);
1da177e4 3412}
63551ae0 3413
d833352a
MG
3414void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3415 struct vm_area_struct *vma, unsigned long start,
3416 unsigned long end, struct page *ref_page)
3417{
3418 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3419
3420 /*
3421 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3422 * test will fail on a vma being torn down, and not grab a page table
3423 * on its way out. We're lucky that the flag has such an appropriate
3424 * name, and can in fact be safely cleared here. We could clear it
3425 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3426 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3427 * because in the context this is called, the VMA is about to be
c8c06efa 3428 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3429 */
3430 vma->vm_flags &= ~VM_MAYSHARE;
3431}
3432
502717f4 3433void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3434 unsigned long end, struct page *ref_page)
502717f4 3435{
24669e58
AK
3436 struct mm_struct *mm;
3437 struct mmu_gather tlb;
3438
3439 mm = vma->vm_mm;
3440
2b047252 3441 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3442 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3443 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
3444}
3445
04f2cbe3
MG
3446/*
3447 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3448 * mappping it owns the reserve page for. The intention is to unmap the page
3449 * from other VMAs and let the children be SIGKILLed if they are faulting the
3450 * same region.
3451 */
2f4612af
DB
3452static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3453 struct page *page, unsigned long address)
04f2cbe3 3454{
7526674d 3455 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3456 struct vm_area_struct *iter_vma;
3457 struct address_space *mapping;
04f2cbe3
MG
3458 pgoff_t pgoff;
3459
3460 /*
3461 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3462 * from page cache lookup which is in HPAGE_SIZE units.
3463 */
7526674d 3464 address = address & huge_page_mask(h);
36e4f20a
MH
3465 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3466 vma->vm_pgoff;
93c76a3d 3467 mapping = vma->vm_file->f_mapping;
04f2cbe3 3468
4eb2b1dc
MG
3469 /*
3470 * Take the mapping lock for the duration of the table walk. As
3471 * this mapping should be shared between all the VMAs,
3472 * __unmap_hugepage_range() is called as the lock is already held
3473 */
83cde9e8 3474 i_mmap_lock_write(mapping);
6b2dbba8 3475 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3476 /* Do not unmap the current VMA */
3477 if (iter_vma == vma)
3478 continue;
3479
2f84a899
MG
3480 /*
3481 * Shared VMAs have their own reserves and do not affect
3482 * MAP_PRIVATE accounting but it is possible that a shared
3483 * VMA is using the same page so check and skip such VMAs.
3484 */
3485 if (iter_vma->vm_flags & VM_MAYSHARE)
3486 continue;
3487
04f2cbe3
MG
3488 /*
3489 * Unmap the page from other VMAs without their own reserves.
3490 * They get marked to be SIGKILLed if they fault in these
3491 * areas. This is because a future no-page fault on this VMA
3492 * could insert a zeroed page instead of the data existing
3493 * from the time of fork. This would look like data corruption
3494 */
3495 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3496 unmap_hugepage_range(iter_vma, address,
3497 address + huge_page_size(h), page);
04f2cbe3 3498 }
83cde9e8 3499 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3500}
3501
0fe6e20b
NH
3502/*
3503 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3504 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3505 * cannot race with other handlers or page migration.
3506 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3507 */
1e8f889b 3508static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3999f52e
AK
3509 unsigned long address, pte_t *ptep,
3510 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3511{
3999f52e 3512 pte_t pte;
a5516438 3513 struct hstate *h = hstate_vma(vma);
1e8f889b 3514 struct page *old_page, *new_page;
ad4404a2 3515 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3516 unsigned long mmun_start; /* For mmu_notifiers */
3517 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b 3518
3999f52e 3519 pte = huge_ptep_get(ptep);
1e8f889b
DG
3520 old_page = pte_page(pte);
3521
04f2cbe3 3522retry_avoidcopy:
1e8f889b
DG
3523 /* If no-one else is actually using this page, avoid the copy
3524 * and just make the page writable */
37a2140d 3525 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3526 page_move_anon_rmap(old_page, vma);
1e8f889b 3527 set_huge_ptep_writable(vma, address, ptep);
83c54070 3528 return 0;
1e8f889b
DG
3529 }
3530
04f2cbe3
MG
3531 /*
3532 * If the process that created a MAP_PRIVATE mapping is about to
3533 * perform a COW due to a shared page count, attempt to satisfy
3534 * the allocation without using the existing reserves. The pagecache
3535 * page is used to determine if the reserve at this address was
3536 * consumed or not. If reserves were used, a partial faulted mapping
3537 * at the time of fork() could consume its reserves on COW instead
3538 * of the full address range.
3539 */
5944d011 3540 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3541 old_page != pagecache_page)
3542 outside_reserve = 1;
3543
09cbfeaf 3544 get_page(old_page);
b76c8cfb 3545
ad4404a2
DB
3546 /*
3547 * Drop page table lock as buddy allocator may be called. It will
3548 * be acquired again before returning to the caller, as expected.
3549 */
cb900f41 3550 spin_unlock(ptl);
04f2cbe3 3551 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3552
2fc39cec 3553 if (IS_ERR(new_page)) {
04f2cbe3
MG
3554 /*
3555 * If a process owning a MAP_PRIVATE mapping fails to COW,
3556 * it is due to references held by a child and an insufficient
3557 * huge page pool. To guarantee the original mappers
3558 * reliability, unmap the page from child processes. The child
3559 * may get SIGKILLed if it later faults.
3560 */
3561 if (outside_reserve) {
09cbfeaf 3562 put_page(old_page);
04f2cbe3 3563 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3564 unmap_ref_private(mm, vma, old_page, address);
3565 BUG_ON(huge_pte_none(pte));
3566 spin_lock(ptl);
7868a208
PA
3567 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3568 huge_page_size(h));
2f4612af
DB
3569 if (likely(ptep &&
3570 pte_same(huge_ptep_get(ptep), pte)))
3571 goto retry_avoidcopy;
3572 /*
3573 * race occurs while re-acquiring page table
3574 * lock, and our job is done.
3575 */
3576 return 0;
04f2cbe3
MG
3577 }
3578
ad4404a2
DB
3579 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3580 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3581 goto out_release_old;
1e8f889b
DG
3582 }
3583
0fe6e20b
NH
3584 /*
3585 * When the original hugepage is shared one, it does not have
3586 * anon_vma prepared.
3587 */
44e2aa93 3588 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3589 ret = VM_FAULT_OOM;
3590 goto out_release_all;
44e2aa93 3591 }
0fe6e20b 3592
47ad8475
AA
3593 copy_user_huge_page(new_page, old_page, address, vma,
3594 pages_per_huge_page(h));
0ed361de 3595 __SetPageUptodate(new_page);
1e8f889b 3596
2ec74c3e
SG
3597 mmun_start = address & huge_page_mask(h);
3598 mmun_end = mmun_start + huge_page_size(h);
3599 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3600
b76c8cfb 3601 /*
cb900f41 3602 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3603 * before the page tables are altered
3604 */
cb900f41 3605 spin_lock(ptl);
7868a208
PA
3606 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3607 huge_page_size(h));
a9af0c5d 3608 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3609 ClearPagePrivate(new_page);
3610
1e8f889b 3611 /* Break COW */
8fe627ec 3612 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3613 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3614 set_huge_pte_at(mm, address, ptep,
3615 make_huge_pte(vma, new_page, 1));
d281ee61 3616 page_remove_rmap(old_page, true);
cd67f0d2 3617 hugepage_add_new_anon_rmap(new_page, vma, address);
dfc12c73 3618 set_page_huge_active(new_page);
1e8f889b
DG
3619 /* Make the old page be freed below */
3620 new_page = old_page;
3621 }
cb900f41 3622 spin_unlock(ptl);
2ec74c3e 3623 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3624out_release_all:
96b96a96 3625 restore_reserve_on_error(h, vma, address, new_page);
09cbfeaf 3626 put_page(new_page);
ad4404a2 3627out_release_old:
09cbfeaf 3628 put_page(old_page);
8312034f 3629
ad4404a2
DB
3630 spin_lock(ptl); /* Caller expects lock to be held */
3631 return ret;
1e8f889b
DG
3632}
3633
04f2cbe3 3634/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3635static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3636 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3637{
3638 struct address_space *mapping;
e7c4b0bf 3639 pgoff_t idx;
04f2cbe3
MG
3640
3641 mapping = vma->vm_file->f_mapping;
a5516438 3642 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3643
3644 return find_lock_page(mapping, idx);
3645}
3646
3ae77f43
HD
3647/*
3648 * Return whether there is a pagecache page to back given address within VMA.
3649 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3650 */
3651static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3652 struct vm_area_struct *vma, unsigned long address)
3653{
3654 struct address_space *mapping;
3655 pgoff_t idx;
3656 struct page *page;
3657
3658 mapping = vma->vm_file->f_mapping;
3659 idx = vma_hugecache_offset(h, vma, address);
3660
3661 page = find_get_page(mapping, idx);
3662 if (page)
3663 put_page(page);
3664 return page != NULL;
3665}
3666
ab76ad54
MK
3667int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3668 pgoff_t idx)
3669{
3670 struct inode *inode = mapping->host;
3671 struct hstate *h = hstate_inode(inode);
3672 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3673
3674 if (err)
3675 return err;
3676 ClearPagePrivate(page);
3677
1aee1ea7
MK
3678 /*
3679 * set page dirty so that it will not be removed from cache/file
3680 * by non-hugetlbfs specific code paths.
3681 */
3682 set_page_dirty(page);
3683
ab76ad54
MK
3684 spin_lock(&inode->i_lock);
3685 inode->i_blocks += blocks_per_huge_page(h);
3686 spin_unlock(&inode->i_lock);
3687 return 0;
3688}
3689
a1ed3dda 3690static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3691 struct address_space *mapping, pgoff_t idx,
3692 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3693{
a5516438 3694 struct hstate *h = hstate_vma(vma);
ac9b9c66 3695 int ret = VM_FAULT_SIGBUS;
409eb8c2 3696 int anon_rmap = 0;
4c887265 3697 unsigned long size;
4c887265 3698 struct page *page;
1e8f889b 3699 pte_t new_pte;
cb900f41 3700 spinlock_t *ptl;
dfc12c73 3701 bool new_page = false;
4c887265 3702
04f2cbe3
MG
3703 /*
3704 * Currently, we are forced to kill the process in the event the
3705 * original mapper has unmapped pages from the child due to a failed
25985edc 3706 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3707 */
3708 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3709 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3710 current->pid);
04f2cbe3
MG
3711 return ret;
3712 }
3713
4c887265
AL
3714 /*
3715 * Use page lock to guard against racing truncation
3716 * before we get page_table_lock.
3717 */
6bda666a
CL
3718retry:
3719 page = find_lock_page(mapping, idx);
3720 if (!page) {
a5516438 3721 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3722 if (idx >= size)
3723 goto out;
1a1aad8a
MK
3724
3725 /*
3726 * Check for page in userfault range
3727 */
3728 if (userfaultfd_missing(vma)) {
3729 u32 hash;
3730 struct vm_fault vmf = {
3731 .vma = vma,
3732 .address = address,
3733 .flags = flags,
3734 /*
3735 * Hard to debug if it ends up being
3736 * used by a callee that assumes
3737 * something about the other
3738 * uninitialized fields... same as in
3739 * memory.c
3740 */
3741 };
3742
3743 /*
3744 * hugetlb_fault_mutex must be dropped before
3745 * handling userfault. Reacquire after handling
3746 * fault to make calling code simpler.
3747 */
0e8e2dc8 3748 hash = hugetlb_fault_mutex_hash(h, mapping, idx, address);
1a1aad8a
MK
3749 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3750 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3751 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3752 goto out;
3753 }
3754
04f2cbe3 3755 page = alloc_huge_page(vma, address, 0);
2fc39cec 3756 if (IS_ERR(page)) {
76dcee75
AK
3757 ret = PTR_ERR(page);
3758 if (ret == -ENOMEM)
3759 ret = VM_FAULT_OOM;
3760 else
3761 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3762 goto out;
3763 }
47ad8475 3764 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3765 __SetPageUptodate(page);
dfc12c73 3766 new_page = true;
ac9b9c66 3767
f83a275d 3768 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3769 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3770 if (err) {
3771 put_page(page);
6bda666a
CL
3772 if (err == -EEXIST)
3773 goto retry;
3774 goto out;
3775 }
23be7468 3776 } else {
6bda666a 3777 lock_page(page);
0fe6e20b
NH
3778 if (unlikely(anon_vma_prepare(vma))) {
3779 ret = VM_FAULT_OOM;
3780 goto backout_unlocked;
3781 }
409eb8c2 3782 anon_rmap = 1;
23be7468 3783 }
0fe6e20b 3784 } else {
998b4382
NH
3785 /*
3786 * If memory error occurs between mmap() and fault, some process
3787 * don't have hwpoisoned swap entry for errored virtual address.
3788 * So we need to block hugepage fault by PG_hwpoison bit check.
3789 */
3790 if (unlikely(PageHWPoison(page))) {
32f84528 3791 ret = VM_FAULT_HWPOISON |
972dc4de 3792 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3793 goto backout_unlocked;
3794 }
6bda666a 3795 }
1e8f889b 3796
57303d80
AW
3797 /*
3798 * If we are going to COW a private mapping later, we examine the
3799 * pending reservations for this page now. This will ensure that
3800 * any allocations necessary to record that reservation occur outside
3801 * the spinlock.
3802 */
5e911373 3803 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3804 if (vma_needs_reservation(h, vma, address) < 0) {
3805 ret = VM_FAULT_OOM;
3806 goto backout_unlocked;
3807 }
5e911373 3808 /* Just decrements count, does not deallocate */
feba16e2 3809 vma_end_reservation(h, vma, address);
5e911373 3810 }
57303d80 3811
8bea8052 3812 ptl = huge_pte_lock(h, mm, ptep);
a5516438 3813 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3814 if (idx >= size)
3815 goto backout;
3816
83c54070 3817 ret = 0;
7f2e9525 3818 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3819 goto backout;
3820
07443a85
JK
3821 if (anon_rmap) {
3822 ClearPagePrivate(page);
409eb8c2 3823 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3824 } else
53f9263b 3825 page_dup_rmap(page, true);
1e8f889b
DG
3826 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3827 && (vma->vm_flags & VM_SHARED)));
3828 set_huge_pte_at(mm, address, ptep, new_pte);
3829
5d317b2b 3830 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3831 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3832 /* Optimization, do the COW without a second fault */
3999f52e 3833 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3834 }
3835
cb900f41 3836 spin_unlock(ptl);
dfc12c73
MK
3837
3838 /*
3839 * Only make newly allocated pages active. Existing pages found
3840 * in the pagecache could be !page_huge_active() if they have been
3841 * isolated for migration.
3842 */
3843 if (new_page)
3844 set_page_huge_active(page);
3845
4c887265
AL
3846 unlock_page(page);
3847out:
ac9b9c66 3848 return ret;
4c887265
AL
3849
3850backout:
cb900f41 3851 spin_unlock(ptl);
2b26736c 3852backout_unlocked:
4c887265 3853 unlock_page(page);
96b96a96 3854 restore_reserve_on_error(h, vma, address, page);
4c887265
AL
3855 put_page(page);
3856 goto out;
ac9b9c66
HD
3857}
3858
8382d914 3859#ifdef CONFIG_SMP
0e8e2dc8 3860u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
8382d914
DB
3861 pgoff_t idx, unsigned long address)
3862{
3863 unsigned long key[2];
3864 u32 hash;
3865
0e8e2dc8
MK
3866 key[0] = (unsigned long) mapping;
3867 key[1] = idx;
8382d914
DB
3868
3869 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3870
3871 return hash & (num_fault_mutexes - 1);
3872}
3873#else
3874/*
3875 * For uniprocesor systems we always use a single mutex, so just
3876 * return 0 and avoid the hashing overhead.
3877 */
0e8e2dc8 3878u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
8382d914
DB
3879 pgoff_t idx, unsigned long address)
3880{
3881 return 0;
3882}
3883#endif
3884
86e5216f 3885int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3886 unsigned long address, unsigned int flags)
86e5216f 3887{
8382d914 3888 pte_t *ptep, entry;
cb900f41 3889 spinlock_t *ptl;
1e8f889b 3890 int ret;
8382d914
DB
3891 u32 hash;
3892 pgoff_t idx;
0fe6e20b 3893 struct page *page = NULL;
57303d80 3894 struct page *pagecache_page = NULL;
a5516438 3895 struct hstate *h = hstate_vma(vma);
8382d914 3896 struct address_space *mapping;
0f792cf9 3897 int need_wait_lock = 0;
86e5216f 3898
1e16a539
KH
3899 address &= huge_page_mask(h);
3900
7868a208 3901 ptep = huge_pte_offset(mm, address, huge_page_size(h));
fd6a03ed
NH
3902 if (ptep) {
3903 entry = huge_ptep_get(ptep);
290408d4 3904 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3905 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3906 return 0;
3907 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3908 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3909 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3910 } else {
3911 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3912 if (!ptep)
3913 return VM_FAULT_OOM;
fd6a03ed
NH
3914 }
3915
8382d914
DB
3916 mapping = vma->vm_file->f_mapping;
3917 idx = vma_hugecache_offset(h, vma, address);
3918
3935baa9
DG
3919 /*
3920 * Serialize hugepage allocation and instantiation, so that we don't
3921 * get spurious allocation failures if two CPUs race to instantiate
3922 * the same page in the page cache.
3923 */
0e8e2dc8 3924 hash = hugetlb_fault_mutex_hash(h, mapping, idx, address);
c672c7f2 3925 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3926
7f2e9525
GS
3927 entry = huge_ptep_get(ptep);
3928 if (huge_pte_none(entry)) {
8382d914 3929 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3930 goto out_mutex;
3935baa9 3931 }
86e5216f 3932
83c54070 3933 ret = 0;
1e8f889b 3934
0f792cf9
NH
3935 /*
3936 * entry could be a migration/hwpoison entry at this point, so this
3937 * check prevents the kernel from going below assuming that we have
3938 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3939 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3940 * handle it.
3941 */
3942 if (!pte_present(entry))
3943 goto out_mutex;
3944
57303d80
AW
3945 /*
3946 * If we are going to COW the mapping later, we examine the pending
3947 * reservations for this page now. This will ensure that any
3948 * allocations necessary to record that reservation occur outside the
3949 * spinlock. For private mappings, we also lookup the pagecache
3950 * page now as it is used to determine if a reservation has been
3951 * consumed.
3952 */
106c992a 3953 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3954 if (vma_needs_reservation(h, vma, address) < 0) {
3955 ret = VM_FAULT_OOM;
b4d1d99f 3956 goto out_mutex;
2b26736c 3957 }
5e911373 3958 /* Just decrements count, does not deallocate */
feba16e2 3959 vma_end_reservation(h, vma, address);
57303d80 3960
f83a275d 3961 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3962 pagecache_page = hugetlbfs_pagecache_page(h,
3963 vma, address);
3964 }
3965
0f792cf9
NH
3966 ptl = huge_pte_lock(h, mm, ptep);
3967
3968 /* Check for a racing update before calling hugetlb_cow */
3969 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3970 goto out_ptl;
3971
56c9cfb1
NH
3972 /*
3973 * hugetlb_cow() requires page locks of pte_page(entry) and
3974 * pagecache_page, so here we need take the former one
3975 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3976 */
3977 page = pte_page(entry);
3978 if (page != pagecache_page)
0f792cf9
NH
3979 if (!trylock_page(page)) {
3980 need_wait_lock = 1;
3981 goto out_ptl;
3982 }
b4d1d99f 3983
0f792cf9 3984 get_page(page);
b4d1d99f 3985
788c7df4 3986 if (flags & FAULT_FLAG_WRITE) {
106c992a 3987 if (!huge_pte_write(entry)) {
3999f52e
AK
3988 ret = hugetlb_cow(mm, vma, address, ptep,
3989 pagecache_page, ptl);
0f792cf9 3990 goto out_put_page;
b4d1d99f 3991 }
106c992a 3992 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3993 }
3994 entry = pte_mkyoung(entry);
788c7df4
HD
3995 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3996 flags & FAULT_FLAG_WRITE))
4b3073e1 3997 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3998out_put_page:
3999 if (page != pagecache_page)
4000 unlock_page(page);
4001 put_page(page);
cb900f41
KS
4002out_ptl:
4003 spin_unlock(ptl);
57303d80
AW
4004
4005 if (pagecache_page) {
4006 unlock_page(pagecache_page);
4007 put_page(pagecache_page);
4008 }
b4d1d99f 4009out_mutex:
c672c7f2 4010 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
4011 /*
4012 * Generally it's safe to hold refcount during waiting page lock. But
4013 * here we just wait to defer the next page fault to avoid busy loop and
4014 * the page is not used after unlocked before returning from the current
4015 * page fault. So we are safe from accessing freed page, even if we wait
4016 * here without taking refcount.
4017 */
4018 if (need_wait_lock)
4019 wait_on_page_locked(page);
1e8f889b 4020 return ret;
86e5216f
AL
4021}
4022
8fb5debc
MK
4023/*
4024 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4025 * modifications for huge pages.
4026 */
4027int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4028 pte_t *dst_pte,
4029 struct vm_area_struct *dst_vma,
4030 unsigned long dst_addr,
4031 unsigned long src_addr,
4032 struct page **pagep)
4033{
1e392147
AA
4034 struct address_space *mapping;
4035 pgoff_t idx;
4036 unsigned long size;
1c9e8def 4037 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4038 struct hstate *h = hstate_vma(dst_vma);
4039 pte_t _dst_pte;
4040 spinlock_t *ptl;
4041 int ret;
4042 struct page *page;
4043
4044 if (!*pagep) {
4045 ret = -ENOMEM;
4046 page = alloc_huge_page(dst_vma, dst_addr, 0);
4047 if (IS_ERR(page))
4048 goto out;
4049
4050 ret = copy_huge_page_from_user(page,
4051 (const void __user *) src_addr,
810a56b9 4052 pages_per_huge_page(h), false);
8fb5debc
MK
4053
4054 /* fallback to copy_from_user outside mmap_sem */
4055 if (unlikely(ret)) {
c9ddac33 4056 ret = -ENOENT;
8fb5debc
MK
4057 *pagep = page;
4058 /* don't free the page */
4059 goto out;
4060 }
4061 } else {
4062 page = *pagep;
4063 *pagep = NULL;
4064 }
4065
4066 /*
4067 * The memory barrier inside __SetPageUptodate makes sure that
4068 * preceding stores to the page contents become visible before
4069 * the set_pte_at() write.
4070 */
4071 __SetPageUptodate(page);
8fb5debc 4072
1e392147
AA
4073 mapping = dst_vma->vm_file->f_mapping;
4074 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4075
1c9e8def
MK
4076 /*
4077 * If shared, add to page cache
4078 */
4079 if (vm_shared) {
1e392147
AA
4080 size = i_size_read(mapping->host) >> huge_page_shift(h);
4081 ret = -EFAULT;
4082 if (idx >= size)
4083 goto out_release_nounlock;
1c9e8def 4084
1e392147
AA
4085 /*
4086 * Serialization between remove_inode_hugepages() and
4087 * huge_add_to_page_cache() below happens through the
4088 * hugetlb_fault_mutex_table that here must be hold by
4089 * the caller.
4090 */
1c9e8def
MK
4091 ret = huge_add_to_page_cache(page, mapping, idx);
4092 if (ret)
4093 goto out_release_nounlock;
4094 }
4095
8fb5debc
MK
4096 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4097 spin_lock(ptl);
4098
1e392147
AA
4099 /*
4100 * Recheck the i_size after holding PT lock to make sure not
4101 * to leave any page mapped (as page_mapped()) beyond the end
4102 * of the i_size (remove_inode_hugepages() is strict about
4103 * enforcing that). If we bail out here, we'll also leave a
4104 * page in the radix tree in the vm_shared case beyond the end
4105 * of the i_size, but remove_inode_hugepages() will take care
4106 * of it as soon as we drop the hugetlb_fault_mutex_table.
4107 */
4108 size = i_size_read(mapping->host) >> huge_page_shift(h);
4109 ret = -EFAULT;
4110 if (idx >= size)
4111 goto out_release_unlock;
4112
8fb5debc
MK
4113 ret = -EEXIST;
4114 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4115 goto out_release_unlock;
4116
1c9e8def
MK
4117 if (vm_shared) {
4118 page_dup_rmap(page, true);
4119 } else {
4120 ClearPagePrivate(page);
4121 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4122 }
8fb5debc
MK
4123
4124 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4125 if (dst_vma->vm_flags & VM_WRITE)
4126 _dst_pte = huge_pte_mkdirty(_dst_pte);
4127 _dst_pte = pte_mkyoung(_dst_pte);
4128
4129 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4130
4131 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4132 dst_vma->vm_flags & VM_WRITE);
4133 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4134
4135 /* No need to invalidate - it was non-present before */
4136 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4137
4138 spin_unlock(ptl);
dfc12c73 4139 set_page_huge_active(page);
1c9e8def
MK
4140 if (vm_shared)
4141 unlock_page(page);
8fb5debc
MK
4142 ret = 0;
4143out:
4144 return ret;
4145out_release_unlock:
4146 spin_unlock(ptl);
1c9e8def
MK
4147 if (vm_shared)
4148 unlock_page(page);
5af10dfd 4149out_release_nounlock:
8fb5debc
MK
4150 put_page(page);
4151 goto out;
4152}
4153
28a35716
ML
4154long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4155 struct page **pages, struct vm_area_struct **vmas,
4156 unsigned long *position, unsigned long *nr_pages,
87ffc118 4157 long i, unsigned int flags, int *nonblocking)
63551ae0 4158{
d5d4b0aa
KC
4159 unsigned long pfn_offset;
4160 unsigned long vaddr = *position;
28a35716 4161 unsigned long remainder = *nr_pages;
a5516438 4162 struct hstate *h = hstate_vma(vma);
2be7cfed 4163 int err = -EFAULT;
63551ae0 4164
63551ae0 4165 while (vaddr < vma->vm_end && remainder) {
4c887265 4166 pte_t *pte;
cb900f41 4167 spinlock_t *ptl = NULL;
2a15efc9 4168 int absent;
4c887265 4169 struct page *page;
63551ae0 4170
02057967
DR
4171 /*
4172 * If we have a pending SIGKILL, don't keep faulting pages and
4173 * potentially allocating memory.
4174 */
4175 if (unlikely(fatal_signal_pending(current))) {
4176 remainder = 0;
4177 break;
4178 }
4179
4c887265
AL
4180 /*
4181 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4182 * each hugepage. We have to make sure we get the
4c887265 4183 * first, for the page indexing below to work.
cb900f41
KS
4184 *
4185 * Note that page table lock is not held when pte is null.
4c887265 4186 */
7868a208
PA
4187 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4188 huge_page_size(h));
cb900f41
KS
4189 if (pte)
4190 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4191 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4192
4193 /*
4194 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4195 * an error where there's an empty slot with no huge pagecache
4196 * to back it. This way, we avoid allocating a hugepage, and
4197 * the sparse dumpfile avoids allocating disk blocks, but its
4198 * huge holes still show up with zeroes where they need to be.
2a15efc9 4199 */
3ae77f43
HD
4200 if (absent && (flags & FOLL_DUMP) &&
4201 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4202 if (pte)
4203 spin_unlock(ptl);
2a15efc9
HD
4204 remainder = 0;
4205 break;
4206 }
63551ae0 4207
9cc3a5bd
NH
4208 /*
4209 * We need call hugetlb_fault for both hugepages under migration
4210 * (in which case hugetlb_fault waits for the migration,) and
4211 * hwpoisoned hugepages (in which case we need to prevent the
4212 * caller from accessing to them.) In order to do this, we use
4213 * here is_swap_pte instead of is_hugetlb_entry_migration and
4214 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4215 * both cases, and because we can't follow correct pages
4216 * directly from any kind of swap entries.
4217 */
4218 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4219 ((flags & FOLL_WRITE) &&
4220 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 4221 int ret;
87ffc118 4222 unsigned int fault_flags = 0;
63551ae0 4223
cb900f41
KS
4224 if (pte)
4225 spin_unlock(ptl);
87ffc118
AA
4226 if (flags & FOLL_WRITE)
4227 fault_flags |= FAULT_FLAG_WRITE;
4228 if (nonblocking)
4229 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4230 if (flags & FOLL_NOWAIT)
4231 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4232 FAULT_FLAG_RETRY_NOWAIT;
4233 if (flags & FOLL_TRIED) {
4234 VM_WARN_ON_ONCE(fault_flags &
4235 FAULT_FLAG_ALLOW_RETRY);
4236 fault_flags |= FAULT_FLAG_TRIED;
4237 }
4238 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4239 if (ret & VM_FAULT_ERROR) {
2be7cfed 4240 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4241 remainder = 0;
4242 break;
4243 }
4244 if (ret & VM_FAULT_RETRY) {
4d331cbe
AA
4245 if (nonblocking &&
4246 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
87ffc118
AA
4247 *nonblocking = 0;
4248 *nr_pages = 0;
4249 /*
4250 * VM_FAULT_RETRY must not return an
4251 * error, it will return zero
4252 * instead.
4253 *
4254 * No need to update "position" as the
4255 * caller will not check it after
4256 * *nr_pages is set to 0.
4257 */
4258 return i;
4259 }
4260 continue;
4c887265
AL
4261 }
4262
a5516438 4263 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4264 page = pte_page(huge_ptep_get(pte));
a991ca8f
LT
4265
4266 /*
4267 * Instead of doing 'try_get_page()' below in the same_page
4268 * loop, just check the count once here.
4269 */
4270 if (unlikely(page_count(page) <= 0)) {
4271 if (pages) {
4272 spin_unlock(ptl);
4273 remainder = 0;
4274 err = -ENOMEM;
4275 break;
4276 }
4277 }
d5d4b0aa 4278same_page:
d6692183 4279 if (pages) {
2a15efc9 4280 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4281 get_page(pages[i]);
d6692183 4282 }
63551ae0
DG
4283
4284 if (vmas)
4285 vmas[i] = vma;
4286
4287 vaddr += PAGE_SIZE;
d5d4b0aa 4288 ++pfn_offset;
63551ae0
DG
4289 --remainder;
4290 ++i;
d5d4b0aa 4291 if (vaddr < vma->vm_end && remainder &&
a5516438 4292 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4293 /*
4294 * We use pfn_offset to avoid touching the pageframes
4295 * of this compound page.
4296 */
4297 goto same_page;
4298 }
cb900f41 4299 spin_unlock(ptl);
63551ae0 4300 }
28a35716 4301 *nr_pages = remainder;
87ffc118
AA
4302 /*
4303 * setting position is actually required only if remainder is
4304 * not zero but it's faster not to add a "if (remainder)"
4305 * branch.
4306 */
63551ae0
DG
4307 *position = vaddr;
4308
2be7cfed 4309 return i ? i : err;
63551ae0 4310}
8f860591 4311
5491ae7b
AK
4312#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4313/*
4314 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4315 * implement this.
4316 */
4317#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4318#endif
4319
7da4d641 4320unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4321 unsigned long address, unsigned long end, pgprot_t newprot)
4322{
4323 struct mm_struct *mm = vma->vm_mm;
4324 unsigned long start = address;
4325 pte_t *ptep;
4326 pte_t pte;
a5516438 4327 struct hstate *h = hstate_vma(vma);
7da4d641 4328 unsigned long pages = 0;
8f860591
ZY
4329
4330 BUG_ON(address >= end);
4331 flush_cache_range(vma, address, end);
4332
a5338093 4333 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 4334 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4335 for (; address < end; address += huge_page_size(h)) {
cb900f41 4336 spinlock_t *ptl;
7868a208 4337 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4338 if (!ptep)
4339 continue;
cb900f41 4340 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4341 if (huge_pmd_unshare(mm, &address, ptep)) {
4342 pages++;
cb900f41 4343 spin_unlock(ptl);
39dde65c 4344 continue;
7da4d641 4345 }
a8bda28d
NH
4346 pte = huge_ptep_get(ptep);
4347 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4348 spin_unlock(ptl);
4349 continue;
4350 }
4351 if (unlikely(is_hugetlb_entry_migration(pte))) {
4352 swp_entry_t entry = pte_to_swp_entry(pte);
4353
4354 if (is_write_migration_entry(entry)) {
4355 pte_t newpte;
4356
4357 make_migration_entry_read(&entry);
4358 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4359 set_huge_swap_pte_at(mm, address, ptep,
4360 newpte, huge_page_size(h));
a8bda28d
NH
4361 pages++;
4362 }
4363 spin_unlock(ptl);
4364 continue;
4365 }
4366 if (!huge_pte_none(pte)) {
8f860591 4367 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 4368 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 4369 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 4370 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 4371 pages++;
8f860591 4372 }
cb900f41 4373 spin_unlock(ptl);
8f860591 4374 }
d833352a 4375 /*
c8c06efa 4376 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4377 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4378 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
4379 * and that page table be reused and filled with junk.
4380 */
5491ae7b 4381 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4382 /*
4383 * No need to call mmu_notifier_invalidate_range() we are downgrading
4384 * page table protection not changing it to point to a new page.
4385 *
4386 * See Documentation/vm/mmu_notifier.txt
4387 */
83cde9e8 4388 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 4389 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
4390
4391 return pages << h->order;
8f860591
ZY
4392}
4393
a1e78772
MG
4394int hugetlb_reserve_pages(struct inode *inode,
4395 long from, long to,
5a6fe125 4396 struct vm_area_struct *vma,
ca16d140 4397 vm_flags_t vm_flags)
e4e574b7 4398{
17c9d12e 4399 long ret, chg;
a5516438 4400 struct hstate *h = hstate_inode(inode);
90481622 4401 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4402 struct resv_map *resv_map;
1c5ecae3 4403 long gbl_reserve;
e4e574b7 4404
1211d50a
MK
4405 /* This should never happen */
4406 if (from > to) {
4407 VM_WARN(1, "%s called with a negative range\n", __func__);
4408 return -EINVAL;
4409 }
4410
17c9d12e
MG
4411 /*
4412 * Only apply hugepage reservation if asked. At fault time, an
4413 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4414 * without using reserves
17c9d12e 4415 */
ca16d140 4416 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4417 return 0;
4418
a1e78772
MG
4419 /*
4420 * Shared mappings base their reservation on the number of pages that
4421 * are already allocated on behalf of the file. Private mappings need
4422 * to reserve the full area even if read-only as mprotect() may be
4423 * called to make the mapping read-write. Assume !vma is a shm mapping
4424 */
9119a41e 4425 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4426 resv_map = inode_resv_map(inode);
9119a41e 4427
1406ec9b 4428 chg = region_chg(resv_map, from, to);
9119a41e
JK
4429
4430 } else {
4431 resv_map = resv_map_alloc();
17c9d12e
MG
4432 if (!resv_map)
4433 return -ENOMEM;
4434
a1e78772 4435 chg = to - from;
84afd99b 4436
17c9d12e
MG
4437 set_vma_resv_map(vma, resv_map);
4438 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4439 }
4440
c50ac050
DH
4441 if (chg < 0) {
4442 ret = chg;
4443 goto out_err;
4444 }
8a630112 4445
1c5ecae3
MK
4446 /*
4447 * There must be enough pages in the subpool for the mapping. If
4448 * the subpool has a minimum size, there may be some global
4449 * reservations already in place (gbl_reserve).
4450 */
4451 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4452 if (gbl_reserve < 0) {
c50ac050
DH
4453 ret = -ENOSPC;
4454 goto out_err;
4455 }
5a6fe125
MG
4456
4457 /*
17c9d12e 4458 * Check enough hugepages are available for the reservation.
90481622 4459 * Hand the pages back to the subpool if there are not
5a6fe125 4460 */
1c5ecae3 4461 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4462 if (ret < 0) {
1c5ecae3
MK
4463 /* put back original number of pages, chg */
4464 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4465 goto out_err;
68842c9b 4466 }
17c9d12e
MG
4467
4468 /*
4469 * Account for the reservations made. Shared mappings record regions
4470 * that have reservations as they are shared by multiple VMAs.
4471 * When the last VMA disappears, the region map says how much
4472 * the reservation was and the page cache tells how much of
4473 * the reservation was consumed. Private mappings are per-VMA and
4474 * only the consumed reservations are tracked. When the VMA
4475 * disappears, the original reservation is the VMA size and the
4476 * consumed reservations are stored in the map. Hence, nothing
4477 * else has to be done for private mappings here
4478 */
33039678
MK
4479 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4480 long add = region_add(resv_map, from, to);
4481
4482 if (unlikely(chg > add)) {
4483 /*
4484 * pages in this range were added to the reserve
4485 * map between region_chg and region_add. This
4486 * indicates a race with alloc_huge_page. Adjust
4487 * the subpool and reserve counts modified above
4488 * based on the difference.
4489 */
4490 long rsv_adjust;
4491
4492 rsv_adjust = hugepage_subpool_put_pages(spool,
4493 chg - add);
4494 hugetlb_acct_memory(h, -rsv_adjust);
4495 }
4496 }
a43a8c39 4497 return 0;
c50ac050 4498out_err:
5e911373 4499 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4500 /* Don't call region_abort if region_chg failed */
4501 if (chg >= 0)
4502 region_abort(resv_map, from, to);
f031dd27
JK
4503 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4504 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4505 return ret;
a43a8c39
KC
4506}
4507
b5cec28d
MK
4508long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4509 long freed)
a43a8c39 4510{
a5516438 4511 struct hstate *h = hstate_inode(inode);
4e35f483 4512 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4513 long chg = 0;
90481622 4514 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4515 long gbl_reserve;
45c682a6 4516
b5cec28d
MK
4517 if (resv_map) {
4518 chg = region_del(resv_map, start, end);
4519 /*
4520 * region_del() can fail in the rare case where a region
4521 * must be split and another region descriptor can not be
4522 * allocated. If end == LONG_MAX, it will not fail.
4523 */
4524 if (chg < 0)
4525 return chg;
4526 }
4527
45c682a6 4528 spin_lock(&inode->i_lock);
e4c6f8be 4529 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4530 spin_unlock(&inode->i_lock);
4531
1c5ecae3
MK
4532 /*
4533 * If the subpool has a minimum size, the number of global
4534 * reservations to be released may be adjusted.
4535 */
4536 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4537 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4538
4539 return 0;
a43a8c39 4540}
93f70f90 4541
3212b535
SC
4542#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4543static unsigned long page_table_shareable(struct vm_area_struct *svma,
4544 struct vm_area_struct *vma,
4545 unsigned long addr, pgoff_t idx)
4546{
4547 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4548 svma->vm_start;
4549 unsigned long sbase = saddr & PUD_MASK;
4550 unsigned long s_end = sbase + PUD_SIZE;
4551
4552 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4553 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4554 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4555
4556 /*
4557 * match the virtual addresses, permission and the alignment of the
4558 * page table page.
4559 */
4560 if (pmd_index(addr) != pmd_index(saddr) ||
4561 vm_flags != svm_flags ||
4562 sbase < svma->vm_start || svma->vm_end < s_end)
4563 return 0;
4564
4565 return saddr;
4566}
4567
31aafb45 4568static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4569{
4570 unsigned long base = addr & PUD_MASK;
4571 unsigned long end = base + PUD_SIZE;
4572
4573 /*
4574 * check on proper vm_flags and page table alignment
4575 */
162aed49 4576 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
4577 return true;
4578 return false;
3212b535
SC
4579}
4580
162aed49
MK
4581/*
4582 * Determine if start,end range within vma could be mapped by shared pmd.
4583 * If yes, adjust start and end to cover range associated with possible
4584 * shared pmd mappings.
4585 */
4586void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4587 unsigned long *start, unsigned long *end)
4588{
4589 unsigned long check_addr = *start;
4590
4591 if (!(vma->vm_flags & VM_MAYSHARE))
4592 return;
4593
4594 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4595 unsigned long a_start = check_addr & PUD_MASK;
4596 unsigned long a_end = a_start + PUD_SIZE;
4597
4598 /*
4599 * If sharing is possible, adjust start/end if necessary.
4600 */
4601 if (range_in_vma(vma, a_start, a_end)) {
4602 if (a_start < *start)
4603 *start = a_start;
4604 if (a_end > *end)
4605 *end = a_end;
4606 }
4607 }
4608}
4609
3212b535
SC
4610/*
4611 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4612 * and returns the corresponding pte. While this is not necessary for the
4613 * !shared pmd case because we can allocate the pmd later as well, it makes the
4614 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4615 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4616 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4617 * bad pmd for sharing.
4618 */
4619pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4620{
4621 struct vm_area_struct *vma = find_vma(mm, addr);
4622 struct address_space *mapping = vma->vm_file->f_mapping;
4623 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4624 vma->vm_pgoff;
4625 struct vm_area_struct *svma;
4626 unsigned long saddr;
4627 pte_t *spte = NULL;
4628 pte_t *pte;
cb900f41 4629 spinlock_t *ptl;
3212b535
SC
4630
4631 if (!vma_shareable(vma, addr))
4632 return (pte_t *)pmd_alloc(mm, pud, addr);
4633
83cde9e8 4634 i_mmap_lock_write(mapping);
3212b535
SC
4635 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4636 if (svma == vma)
4637 continue;
4638
4639 saddr = page_table_shareable(svma, vma, addr, idx);
4640 if (saddr) {
7868a208
PA
4641 spte = huge_pte_offset(svma->vm_mm, saddr,
4642 vma_mmu_pagesize(svma));
3212b535
SC
4643 if (spte) {
4644 get_page(virt_to_page(spte));
4645 break;
4646 }
4647 }
4648 }
4649
4650 if (!spte)
4651 goto out;
4652
8bea8052 4653 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4654 if (pud_none(*pud)) {
3212b535
SC
4655 pud_populate(mm, pud,
4656 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4657 mm_inc_nr_pmds(mm);
dc6c9a35 4658 } else {
3212b535 4659 put_page(virt_to_page(spte));
dc6c9a35 4660 }
cb900f41 4661 spin_unlock(ptl);
3212b535
SC
4662out:
4663 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4664 i_mmap_unlock_write(mapping);
3212b535
SC
4665 return pte;
4666}
4667
4668/*
4669 * unmap huge page backed by shared pte.
4670 *
4671 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4672 * indicated by page_count > 1, unmap is achieved by clearing pud and
4673 * decrementing the ref count. If count == 1, the pte page is not shared.
4674 *
cb900f41 4675 * called with page table lock held.
3212b535
SC
4676 *
4677 * returns: 1 successfully unmapped a shared pte page
4678 * 0 the underlying pte page is not shared, or it is the last user
4679 */
4680int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4681{
4682 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4683 p4d_t *p4d = p4d_offset(pgd, *addr);
4684 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4685
4686 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4687 if (page_count(virt_to_page(ptep)) == 1)
4688 return 0;
4689
4690 pud_clear(pud);
4691 put_page(virt_to_page(ptep));
dc6c9a35 4692 mm_dec_nr_pmds(mm);
3212b535
SC
4693 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4694 return 1;
4695}
9e5fc74c
SC
4696#define want_pmd_share() (1)
4697#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4698pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4699{
4700 return NULL;
4701}
e81f2d22
ZZ
4702
4703int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4704{
4705 return 0;
4706}
162aed49
MK
4707
4708void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4709 unsigned long *start, unsigned long *end)
4710{
4711}
9e5fc74c 4712#define want_pmd_share() (0)
3212b535
SC
4713#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4714
9e5fc74c
SC
4715#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4716pte_t *huge_pte_alloc(struct mm_struct *mm,
4717 unsigned long addr, unsigned long sz)
4718{
4719 pgd_t *pgd;
c2febafc 4720 p4d_t *p4d;
9e5fc74c
SC
4721 pud_t *pud;
4722 pte_t *pte = NULL;
4723
4724 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
4725 p4d = p4d_alloc(mm, pgd, addr);
4726 if (!p4d)
4727 return NULL;
c2febafc 4728 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4729 if (pud) {
4730 if (sz == PUD_SIZE) {
4731 pte = (pte_t *)pud;
4732 } else {
4733 BUG_ON(sz != PMD_SIZE);
4734 if (want_pmd_share() && pud_none(*pud))
4735 pte = huge_pmd_share(mm, addr, pud);
4736 else
4737 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4738 }
4739 }
4e666314 4740 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4741
4742 return pte;
4743}
4744
9b19df29
PA
4745/*
4746 * huge_pte_offset() - Walk the page table to resolve the hugepage
4747 * entry at address @addr
4748 *
4749 * Return: Pointer to page table or swap entry (PUD or PMD) for
4750 * address @addr, or NULL if a p*d_none() entry is encountered and the
4751 * size @sz doesn't match the hugepage size at this level of the page
4752 * table.
4753 */
7868a208
PA
4754pte_t *huge_pte_offset(struct mm_struct *mm,
4755 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4756{
4757 pgd_t *pgd;
c2febafc 4758 p4d_t *p4d;
9e5fc74c 4759 pud_t *pud;
c2febafc 4760 pmd_t *pmd;
9e5fc74c
SC
4761
4762 pgd = pgd_offset(mm, addr);
c2febafc
KS
4763 if (!pgd_present(*pgd))
4764 return NULL;
4765 p4d = p4d_offset(pgd, addr);
4766 if (!p4d_present(*p4d))
4767 return NULL;
9b19df29 4768
c2febafc 4769 pud = pud_offset(p4d, addr);
9b19df29 4770 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 4771 return NULL;
9b19df29
PA
4772 /* hugepage or swap? */
4773 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 4774 return (pte_t *)pud;
9b19df29 4775
c2febafc 4776 pmd = pmd_offset(pud, addr);
9b19df29
PA
4777 if (sz != PMD_SIZE && pmd_none(*pmd))
4778 return NULL;
4779 /* hugepage or swap? */
4780 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4781 return (pte_t *)pmd;
4782
4783 return NULL;
9e5fc74c
SC
4784}
4785
61f77eda
NH
4786#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4787
4788/*
4789 * These functions are overwritable if your architecture needs its own
4790 * behavior.
4791 */
4792struct page * __weak
4793follow_huge_addr(struct mm_struct *mm, unsigned long address,
4794 int write)
4795{
4796 return ERR_PTR(-EINVAL);
4797}
4798
4dc71451
AK
4799struct page * __weak
4800follow_huge_pd(struct vm_area_struct *vma,
4801 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4802{
4803 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4804 return NULL;
4805}
4806
61f77eda 4807struct page * __weak
9e5fc74c 4808follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4809 pmd_t *pmd, int flags)
9e5fc74c 4810{
e66f17ff
NH
4811 struct page *page = NULL;
4812 spinlock_t *ptl;
c9d398fa 4813 pte_t pte;
e66f17ff
NH
4814retry:
4815 ptl = pmd_lockptr(mm, pmd);
4816 spin_lock(ptl);
4817 /*
4818 * make sure that the address range covered by this pmd is not
4819 * unmapped from other threads.
4820 */
4821 if (!pmd_huge(*pmd))
4822 goto out;
c9d398fa
NH
4823 pte = huge_ptep_get((pte_t *)pmd);
4824 if (pte_present(pte)) {
97534127 4825 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4826 if (flags & FOLL_GET)
4827 get_page(page);
4828 } else {
c9d398fa 4829 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4830 spin_unlock(ptl);
4831 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4832 goto retry;
4833 }
4834 /*
4835 * hwpoisoned entry is treated as no_page_table in
4836 * follow_page_mask().
4837 */
4838 }
4839out:
4840 spin_unlock(ptl);
9e5fc74c
SC
4841 return page;
4842}
4843
61f77eda 4844struct page * __weak
9e5fc74c 4845follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4846 pud_t *pud, int flags)
9e5fc74c 4847{
e66f17ff
NH
4848 if (flags & FOLL_GET)
4849 return NULL;
9e5fc74c 4850
e66f17ff 4851 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4852}
4853
faaa5b62
AK
4854struct page * __weak
4855follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4856{
4857 if (flags & FOLL_GET)
4858 return NULL;
4859
4860 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4861}
4862
31caf665
NH
4863bool isolate_huge_page(struct page *page, struct list_head *list)
4864{
bcc54222
NH
4865 bool ret = true;
4866
309381fe 4867 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4868 spin_lock(&hugetlb_lock);
bcc54222
NH
4869 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4870 ret = false;
4871 goto unlock;
4872 }
4873 clear_page_huge_active(page);
31caf665 4874 list_move_tail(&page->lru, list);
bcc54222 4875unlock:
31caf665 4876 spin_unlock(&hugetlb_lock);
bcc54222 4877 return ret;
31caf665
NH
4878}
4879
4880void putback_active_hugepage(struct page *page)
4881{
309381fe 4882 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4883 spin_lock(&hugetlb_lock);
bcc54222 4884 set_page_huge_active(page);
31caf665
NH
4885 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4886 spin_unlock(&hugetlb_lock);
4887 put_page(page);
4888}