]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/hugetlb.c
mm, thp: restructure thp avoidance of light synchronous migration
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
aa888a74 19#include <linux/bootmem.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
0fe6e20b 22#include <linux/rmap.h>
fd6a03ed
NH
23#include <linux/swap.h>
24#include <linux/swapops.h>
c8721bbb 25#include <linux/page-isolation.h>
8382d914 26#include <linux/jhash.h>
d6606683 27
63551ae0
DG
28#include <asm/page.h>
29#include <asm/pgtable.h>
24669e58 30#include <asm/tlb.h>
63551ae0 31
24669e58 32#include <linux/io.h>
63551ae0 33#include <linux/hugetlb.h>
9dd540e2 34#include <linux/hugetlb_cgroup.h>
9a305230 35#include <linux/node.h>
7835e98b 36#include "internal.h"
1da177e4 37
396faf03 38unsigned long hugepages_treat_as_movable;
a5516438 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
43
53ba51d2
JT
44__initdata LIST_HEAD(huge_boot_pages);
45
e5ff2159
AK
46/* for command line parsing */
47static struct hstate * __initdata parsed_hstate;
48static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 49static unsigned long __initdata default_hstate_size;
e5ff2159 50
3935baa9 51/*
31caf665
NH
52 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53 * free_huge_pages, and surplus_huge_pages.
3935baa9 54 */
c3f38a38 55DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 56
8382d914
DB
57/*
58 * Serializes faults on the same logical page. This is used to
59 * prevent spurious OOMs when the hugepage pool is fully utilized.
60 */
61static int num_fault_mutexes;
62static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
63
90481622
DG
64static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
65{
66 bool free = (spool->count == 0) && (spool->used_hpages == 0);
67
68 spin_unlock(&spool->lock);
69
70 /* If no pages are used, and no other handles to the subpool
71 * remain, free the subpool the subpool remain */
72 if (free)
73 kfree(spool);
74}
75
76struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
77{
78 struct hugepage_subpool *spool;
79
80 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
81 if (!spool)
82 return NULL;
83
84 spin_lock_init(&spool->lock);
85 spool->count = 1;
86 spool->max_hpages = nr_blocks;
87 spool->used_hpages = 0;
88
89 return spool;
90}
91
92void hugepage_put_subpool(struct hugepage_subpool *spool)
93{
94 spin_lock(&spool->lock);
95 BUG_ON(!spool->count);
96 spool->count--;
97 unlock_or_release_subpool(spool);
98}
99
100static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
101 long delta)
102{
103 int ret = 0;
104
105 if (!spool)
106 return 0;
107
108 spin_lock(&spool->lock);
109 if ((spool->used_hpages + delta) <= spool->max_hpages) {
110 spool->used_hpages += delta;
111 } else {
112 ret = -ENOMEM;
113 }
114 spin_unlock(&spool->lock);
115
116 return ret;
117}
118
119static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
120 long delta)
121{
122 if (!spool)
123 return;
124
125 spin_lock(&spool->lock);
126 spool->used_hpages -= delta;
127 /* If hugetlbfs_put_super couldn't free spool due to
128 * an outstanding quota reference, free it now. */
129 unlock_or_release_subpool(spool);
130}
131
132static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
133{
134 return HUGETLBFS_SB(inode->i_sb)->spool;
135}
136
137static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
138{
496ad9aa 139 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
140}
141
96822904
AW
142/*
143 * Region tracking -- allows tracking of reservations and instantiated pages
144 * across the pages in a mapping.
84afd99b 145 *
7b24d861
DB
146 * The region data structures are embedded into a resv_map and
147 * protected by a resv_map's lock
96822904
AW
148 */
149struct file_region {
150 struct list_head link;
151 long from;
152 long to;
153};
154
1406ec9b 155static long region_add(struct resv_map *resv, long f, long t)
96822904 156{
1406ec9b 157 struct list_head *head = &resv->regions;
96822904
AW
158 struct file_region *rg, *nrg, *trg;
159
7b24d861 160 spin_lock(&resv->lock);
96822904
AW
161 /* Locate the region we are either in or before. */
162 list_for_each_entry(rg, head, link)
163 if (f <= rg->to)
164 break;
165
166 /* Round our left edge to the current segment if it encloses us. */
167 if (f > rg->from)
168 f = rg->from;
169
170 /* Check for and consume any regions we now overlap with. */
171 nrg = rg;
172 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
173 if (&rg->link == head)
174 break;
175 if (rg->from > t)
176 break;
177
178 /* If this area reaches higher then extend our area to
179 * include it completely. If this is not the first area
180 * which we intend to reuse, free it. */
181 if (rg->to > t)
182 t = rg->to;
183 if (rg != nrg) {
184 list_del(&rg->link);
185 kfree(rg);
186 }
187 }
188 nrg->from = f;
189 nrg->to = t;
7b24d861 190 spin_unlock(&resv->lock);
96822904
AW
191 return 0;
192}
193
1406ec9b 194static long region_chg(struct resv_map *resv, long f, long t)
96822904 195{
1406ec9b 196 struct list_head *head = &resv->regions;
7b24d861 197 struct file_region *rg, *nrg = NULL;
96822904
AW
198 long chg = 0;
199
7b24d861
DB
200retry:
201 spin_lock(&resv->lock);
96822904
AW
202 /* Locate the region we are before or in. */
203 list_for_each_entry(rg, head, link)
204 if (f <= rg->to)
205 break;
206
207 /* If we are below the current region then a new region is required.
208 * Subtle, allocate a new region at the position but make it zero
209 * size such that we can guarantee to record the reservation. */
210 if (&rg->link == head || t < rg->from) {
7b24d861
DB
211 if (!nrg) {
212 spin_unlock(&resv->lock);
213 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
214 if (!nrg)
215 return -ENOMEM;
216
217 nrg->from = f;
218 nrg->to = f;
219 INIT_LIST_HEAD(&nrg->link);
220 goto retry;
221 }
96822904 222
7b24d861
DB
223 list_add(&nrg->link, rg->link.prev);
224 chg = t - f;
225 goto out_nrg;
96822904
AW
226 }
227
228 /* Round our left edge to the current segment if it encloses us. */
229 if (f > rg->from)
230 f = rg->from;
231 chg = t - f;
232
233 /* Check for and consume any regions we now overlap with. */
234 list_for_each_entry(rg, rg->link.prev, link) {
235 if (&rg->link == head)
236 break;
237 if (rg->from > t)
7b24d861 238 goto out;
96822904 239
25985edc 240 /* We overlap with this area, if it extends further than
96822904
AW
241 * us then we must extend ourselves. Account for its
242 * existing reservation. */
243 if (rg->to > t) {
244 chg += rg->to - t;
245 t = rg->to;
246 }
247 chg -= rg->to - rg->from;
248 }
7b24d861
DB
249
250out:
251 spin_unlock(&resv->lock);
252 /* We already know we raced and no longer need the new region */
253 kfree(nrg);
254 return chg;
255out_nrg:
256 spin_unlock(&resv->lock);
96822904
AW
257 return chg;
258}
259
1406ec9b 260static long region_truncate(struct resv_map *resv, long end)
96822904 261{
1406ec9b 262 struct list_head *head = &resv->regions;
96822904
AW
263 struct file_region *rg, *trg;
264 long chg = 0;
265
7b24d861 266 spin_lock(&resv->lock);
96822904
AW
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg, head, link)
269 if (end <= rg->to)
270 break;
271 if (&rg->link == head)
7b24d861 272 goto out;
96822904
AW
273
274 /* If we are in the middle of a region then adjust it. */
275 if (end > rg->from) {
276 chg = rg->to - end;
277 rg->to = end;
278 rg = list_entry(rg->link.next, typeof(*rg), link);
279 }
280
281 /* Drop any remaining regions. */
282 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
283 if (&rg->link == head)
284 break;
285 chg += rg->to - rg->from;
286 list_del(&rg->link);
287 kfree(rg);
288 }
7b24d861
DB
289
290out:
291 spin_unlock(&resv->lock);
96822904
AW
292 return chg;
293}
294
1406ec9b 295static long region_count(struct resv_map *resv, long f, long t)
84afd99b 296{
1406ec9b 297 struct list_head *head = &resv->regions;
84afd99b
AW
298 struct file_region *rg;
299 long chg = 0;
300
7b24d861 301 spin_lock(&resv->lock);
84afd99b
AW
302 /* Locate each segment we overlap with, and count that overlap. */
303 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
304 long seg_from;
305 long seg_to;
84afd99b
AW
306
307 if (rg->to <= f)
308 continue;
309 if (rg->from >= t)
310 break;
311
312 seg_from = max(rg->from, f);
313 seg_to = min(rg->to, t);
314
315 chg += seg_to - seg_from;
316 }
7b24d861 317 spin_unlock(&resv->lock);
84afd99b
AW
318
319 return chg;
320}
321
e7c4b0bf
AW
322/*
323 * Convert the address within this vma to the page offset within
324 * the mapping, in pagecache page units; huge pages here.
325 */
a5516438
AK
326static pgoff_t vma_hugecache_offset(struct hstate *h,
327 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 328{
a5516438
AK
329 return ((address - vma->vm_start) >> huge_page_shift(h)) +
330 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
331}
332
0fe6e20b
NH
333pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
334 unsigned long address)
335{
336 return vma_hugecache_offset(hstate_vma(vma), vma, address);
337}
338
08fba699
MG
339/*
340 * Return the size of the pages allocated when backing a VMA. In the majority
341 * cases this will be same size as used by the page table entries.
342 */
343unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
344{
345 struct hstate *hstate;
346
347 if (!is_vm_hugetlb_page(vma))
348 return PAGE_SIZE;
349
350 hstate = hstate_vma(vma);
351
2415cf12 352 return 1UL << huge_page_shift(hstate);
08fba699 353}
f340ca0f 354EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 355
3340289d
MG
356/*
357 * Return the page size being used by the MMU to back a VMA. In the majority
358 * of cases, the page size used by the kernel matches the MMU size. On
359 * architectures where it differs, an architecture-specific version of this
360 * function is required.
361 */
362#ifndef vma_mmu_pagesize
363unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
364{
365 return vma_kernel_pagesize(vma);
366}
367#endif
368
84afd99b
AW
369/*
370 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
371 * bits of the reservation map pointer, which are always clear due to
372 * alignment.
373 */
374#define HPAGE_RESV_OWNER (1UL << 0)
375#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 376#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 377
a1e78772
MG
378/*
379 * These helpers are used to track how many pages are reserved for
380 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
381 * is guaranteed to have their future faults succeed.
382 *
383 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
384 * the reserve counters are updated with the hugetlb_lock held. It is safe
385 * to reset the VMA at fork() time as it is not in use yet and there is no
386 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
387 *
388 * The private mapping reservation is represented in a subtly different
389 * manner to a shared mapping. A shared mapping has a region map associated
390 * with the underlying file, this region map represents the backing file
391 * pages which have ever had a reservation assigned which this persists even
392 * after the page is instantiated. A private mapping has a region map
393 * associated with the original mmap which is attached to all VMAs which
394 * reference it, this region map represents those offsets which have consumed
395 * reservation ie. where pages have been instantiated.
a1e78772 396 */
e7c4b0bf
AW
397static unsigned long get_vma_private_data(struct vm_area_struct *vma)
398{
399 return (unsigned long)vma->vm_private_data;
400}
401
402static void set_vma_private_data(struct vm_area_struct *vma,
403 unsigned long value)
404{
405 vma->vm_private_data = (void *)value;
406}
407
9119a41e 408struct resv_map *resv_map_alloc(void)
84afd99b
AW
409{
410 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
411 if (!resv_map)
412 return NULL;
413
414 kref_init(&resv_map->refs);
7b24d861 415 spin_lock_init(&resv_map->lock);
84afd99b
AW
416 INIT_LIST_HEAD(&resv_map->regions);
417
418 return resv_map;
419}
420
9119a41e 421void resv_map_release(struct kref *ref)
84afd99b
AW
422{
423 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
424
425 /* Clear out any active regions before we release the map. */
1406ec9b 426 region_truncate(resv_map, 0);
84afd99b
AW
427 kfree(resv_map);
428}
429
4e35f483
JK
430static inline struct resv_map *inode_resv_map(struct inode *inode)
431{
432 return inode->i_mapping->private_data;
433}
434
84afd99b 435static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
436{
437 VM_BUG_ON(!is_vm_hugetlb_page(vma));
4e35f483
JK
438 if (vma->vm_flags & VM_MAYSHARE) {
439 struct address_space *mapping = vma->vm_file->f_mapping;
440 struct inode *inode = mapping->host;
441
442 return inode_resv_map(inode);
443
444 } else {
84afd99b
AW
445 return (struct resv_map *)(get_vma_private_data(vma) &
446 ~HPAGE_RESV_MASK);
4e35f483 447 }
a1e78772
MG
448}
449
84afd99b 450static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
451{
452 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 453 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 454
84afd99b
AW
455 set_vma_private_data(vma, (get_vma_private_data(vma) &
456 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
457}
458
459static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
460{
04f2cbe3 461 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 462 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
463
464 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
465}
466
467static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
468{
469 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
470
471 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
472}
473
04f2cbe3 474/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
475void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
476{
477 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 478 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
479 vma->vm_private_data = (void *)0;
480}
481
482/* Returns true if the VMA has associated reserve pages */
af0ed73e 483static int vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 484{
af0ed73e
JK
485 if (vma->vm_flags & VM_NORESERVE) {
486 /*
487 * This address is already reserved by other process(chg == 0),
488 * so, we should decrement reserved count. Without decrementing,
489 * reserve count remains after releasing inode, because this
490 * allocated page will go into page cache and is regarded as
491 * coming from reserved pool in releasing step. Currently, we
492 * don't have any other solution to deal with this situation
493 * properly, so add work-around here.
494 */
495 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
496 return 1;
497 else
498 return 0;
499 }
a63884e9
JK
500
501 /* Shared mappings always use reserves */
f83a275d 502 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51 503 return 1;
a63884e9
JK
504
505 /*
506 * Only the process that called mmap() has reserves for
507 * private mappings.
508 */
7f09ca51
MG
509 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
510 return 1;
a63884e9 511
7f09ca51 512 return 0;
a1e78772
MG
513}
514
a5516438 515static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
516{
517 int nid = page_to_nid(page);
0edaecfa 518 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
519 h->free_huge_pages++;
520 h->free_huge_pages_node[nid]++;
1da177e4
LT
521}
522
bf50bab2
NH
523static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
524{
525 struct page *page;
526
c8721bbb
NH
527 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
528 if (!is_migrate_isolate_page(page))
529 break;
530 /*
531 * if 'non-isolated free hugepage' not found on the list,
532 * the allocation fails.
533 */
534 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 535 return NULL;
0edaecfa 536 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 537 set_page_refcounted(page);
bf50bab2
NH
538 h->free_huge_pages--;
539 h->free_huge_pages_node[nid]--;
540 return page;
541}
542
86cdb465
NH
543/* Movability of hugepages depends on migration support. */
544static inline gfp_t htlb_alloc_mask(struct hstate *h)
545{
100873d7 546 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
547 return GFP_HIGHUSER_MOVABLE;
548 else
549 return GFP_HIGHUSER;
550}
551
a5516438
AK
552static struct page *dequeue_huge_page_vma(struct hstate *h,
553 struct vm_area_struct *vma,
af0ed73e
JK
554 unsigned long address, int avoid_reserve,
555 long chg)
1da177e4 556{
b1c12cbc 557 struct page *page = NULL;
480eccf9 558 struct mempolicy *mpol;
19770b32 559 nodemask_t *nodemask;
c0ff7453 560 struct zonelist *zonelist;
dd1a239f
MG
561 struct zone *zone;
562 struct zoneref *z;
cc9a6c87 563 unsigned int cpuset_mems_cookie;
1da177e4 564
a1e78772
MG
565 /*
566 * A child process with MAP_PRIVATE mappings created by their parent
567 * have no page reserves. This check ensures that reservations are
568 * not "stolen". The child may still get SIGKILLed
569 */
af0ed73e 570 if (!vma_has_reserves(vma, chg) &&
a5516438 571 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 572 goto err;
a1e78772 573
04f2cbe3 574 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 575 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 576 goto err;
04f2cbe3 577
9966c4bb 578retry_cpuset:
d26914d1 579 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 580 zonelist = huge_zonelist(vma, address,
86cdb465 581 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 582
19770b32
MG
583 for_each_zone_zonelist_nodemask(zone, z, zonelist,
584 MAX_NR_ZONES - 1, nodemask) {
86cdb465 585 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
586 page = dequeue_huge_page_node(h, zone_to_nid(zone));
587 if (page) {
af0ed73e
JK
588 if (avoid_reserve)
589 break;
590 if (!vma_has_reserves(vma, chg))
591 break;
592
07443a85 593 SetPagePrivate(page);
af0ed73e 594 h->resv_huge_pages--;
bf50bab2
NH
595 break;
596 }
3abf7afd 597 }
1da177e4 598 }
cc9a6c87 599
52cd3b07 600 mpol_cond_put(mpol);
d26914d1 601 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 602 goto retry_cpuset;
1da177e4 603 return page;
cc9a6c87
MG
604
605err:
cc9a6c87 606 return NULL;
1da177e4
LT
607}
608
1cac6f2c
LC
609/*
610 * common helper functions for hstate_next_node_to_{alloc|free}.
611 * We may have allocated or freed a huge page based on a different
612 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
613 * be outside of *nodes_allowed. Ensure that we use an allowed
614 * node for alloc or free.
615 */
616static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
617{
618 nid = next_node(nid, *nodes_allowed);
619 if (nid == MAX_NUMNODES)
620 nid = first_node(*nodes_allowed);
621 VM_BUG_ON(nid >= MAX_NUMNODES);
622
623 return nid;
624}
625
626static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
627{
628 if (!node_isset(nid, *nodes_allowed))
629 nid = next_node_allowed(nid, nodes_allowed);
630 return nid;
631}
632
633/*
634 * returns the previously saved node ["this node"] from which to
635 * allocate a persistent huge page for the pool and advance the
636 * next node from which to allocate, handling wrap at end of node
637 * mask.
638 */
639static int hstate_next_node_to_alloc(struct hstate *h,
640 nodemask_t *nodes_allowed)
641{
642 int nid;
643
644 VM_BUG_ON(!nodes_allowed);
645
646 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
647 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
648
649 return nid;
650}
651
652/*
653 * helper for free_pool_huge_page() - return the previously saved
654 * node ["this node"] from which to free a huge page. Advance the
655 * next node id whether or not we find a free huge page to free so
656 * that the next attempt to free addresses the next node.
657 */
658static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
659{
660 int nid;
661
662 VM_BUG_ON(!nodes_allowed);
663
664 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
665 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
666
667 return nid;
668}
669
670#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
671 for (nr_nodes = nodes_weight(*mask); \
672 nr_nodes > 0 && \
673 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
674 nr_nodes--)
675
676#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
677 for (nr_nodes = nodes_weight(*mask); \
678 nr_nodes > 0 && \
679 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
680 nr_nodes--)
681
944d9fec
LC
682#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
683static void destroy_compound_gigantic_page(struct page *page,
684 unsigned long order)
685{
686 int i;
687 int nr_pages = 1 << order;
688 struct page *p = page + 1;
689
690 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
691 __ClearPageTail(p);
692 set_page_refcounted(p);
693 p->first_page = NULL;
694 }
695
696 set_compound_order(page, 0);
697 __ClearPageHead(page);
698}
699
700static void free_gigantic_page(struct page *page, unsigned order)
701{
702 free_contig_range(page_to_pfn(page), 1 << order);
703}
704
705static int __alloc_gigantic_page(unsigned long start_pfn,
706 unsigned long nr_pages)
707{
708 unsigned long end_pfn = start_pfn + nr_pages;
709 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
710}
711
712static bool pfn_range_valid_gigantic(unsigned long start_pfn,
713 unsigned long nr_pages)
714{
715 unsigned long i, end_pfn = start_pfn + nr_pages;
716 struct page *page;
717
718 for (i = start_pfn; i < end_pfn; i++) {
719 if (!pfn_valid(i))
720 return false;
721
722 page = pfn_to_page(i);
723
724 if (PageReserved(page))
725 return false;
726
727 if (page_count(page) > 0)
728 return false;
729
730 if (PageHuge(page))
731 return false;
732 }
733
734 return true;
735}
736
737static bool zone_spans_last_pfn(const struct zone *zone,
738 unsigned long start_pfn, unsigned long nr_pages)
739{
740 unsigned long last_pfn = start_pfn + nr_pages - 1;
741 return zone_spans_pfn(zone, last_pfn);
742}
743
744static struct page *alloc_gigantic_page(int nid, unsigned order)
745{
746 unsigned long nr_pages = 1 << order;
747 unsigned long ret, pfn, flags;
748 struct zone *z;
749
750 z = NODE_DATA(nid)->node_zones;
751 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
752 spin_lock_irqsave(&z->lock, flags);
753
754 pfn = ALIGN(z->zone_start_pfn, nr_pages);
755 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
756 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
757 /*
758 * We release the zone lock here because
759 * alloc_contig_range() will also lock the zone
760 * at some point. If there's an allocation
761 * spinning on this lock, it may win the race
762 * and cause alloc_contig_range() to fail...
763 */
764 spin_unlock_irqrestore(&z->lock, flags);
765 ret = __alloc_gigantic_page(pfn, nr_pages);
766 if (!ret)
767 return pfn_to_page(pfn);
768 spin_lock_irqsave(&z->lock, flags);
769 }
770 pfn += nr_pages;
771 }
772
773 spin_unlock_irqrestore(&z->lock, flags);
774 }
775
776 return NULL;
777}
778
779static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
780static void prep_compound_gigantic_page(struct page *page, unsigned long order);
781
782static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
783{
784 struct page *page;
785
786 page = alloc_gigantic_page(nid, huge_page_order(h));
787 if (page) {
788 prep_compound_gigantic_page(page, huge_page_order(h));
789 prep_new_huge_page(h, page, nid);
790 }
791
792 return page;
793}
794
795static int alloc_fresh_gigantic_page(struct hstate *h,
796 nodemask_t *nodes_allowed)
797{
798 struct page *page = NULL;
799 int nr_nodes, node;
800
801 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
802 page = alloc_fresh_gigantic_page_node(h, node);
803 if (page)
804 return 1;
805 }
806
807 return 0;
808}
809
810static inline bool gigantic_page_supported(void) { return true; }
811#else
812static inline bool gigantic_page_supported(void) { return false; }
813static inline void free_gigantic_page(struct page *page, unsigned order) { }
814static inline void destroy_compound_gigantic_page(struct page *page,
815 unsigned long order) { }
816static inline int alloc_fresh_gigantic_page(struct hstate *h,
817 nodemask_t *nodes_allowed) { return 0; }
818#endif
819
a5516438 820static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
821{
822 int i;
a5516438 823
944d9fec
LC
824 if (hstate_is_gigantic(h) && !gigantic_page_supported())
825 return;
18229df5 826
a5516438
AK
827 h->nr_huge_pages--;
828 h->nr_huge_pages_node[page_to_nid(page)]--;
829 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
830 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
831 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
832 1 << PG_active | 1 << PG_private |
833 1 << PG_writeback);
6af2acb6 834 }
309381fe 835 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
6af2acb6
AL
836 set_compound_page_dtor(page, NULL);
837 set_page_refcounted(page);
944d9fec
LC
838 if (hstate_is_gigantic(h)) {
839 destroy_compound_gigantic_page(page, huge_page_order(h));
840 free_gigantic_page(page, huge_page_order(h));
841 } else {
842 arch_release_hugepage(page);
843 __free_pages(page, huge_page_order(h));
844 }
6af2acb6
AL
845}
846
e5ff2159
AK
847struct hstate *size_to_hstate(unsigned long size)
848{
849 struct hstate *h;
850
851 for_each_hstate(h) {
852 if (huge_page_size(h) == size)
853 return h;
854 }
855 return NULL;
856}
857
8f1d26d0 858void free_huge_page(struct page *page)
27a85ef1 859{
a5516438
AK
860 /*
861 * Can't pass hstate in here because it is called from the
862 * compound page destructor.
863 */
e5ff2159 864 struct hstate *h = page_hstate(page);
7893d1d5 865 int nid = page_to_nid(page);
90481622
DG
866 struct hugepage_subpool *spool =
867 (struct hugepage_subpool *)page_private(page);
07443a85 868 bool restore_reserve;
27a85ef1 869
e5df70ab 870 set_page_private(page, 0);
23be7468 871 page->mapping = NULL;
7893d1d5 872 BUG_ON(page_count(page));
0fe6e20b 873 BUG_ON(page_mapcount(page));
07443a85 874 restore_reserve = PagePrivate(page);
16c794b4 875 ClearPagePrivate(page);
27a85ef1
DG
876
877 spin_lock(&hugetlb_lock);
6d76dcf4
AK
878 hugetlb_cgroup_uncharge_page(hstate_index(h),
879 pages_per_huge_page(h), page);
07443a85
JK
880 if (restore_reserve)
881 h->resv_huge_pages++;
882
944d9fec 883 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
884 /* remove the page from active list */
885 list_del(&page->lru);
a5516438
AK
886 update_and_free_page(h, page);
887 h->surplus_huge_pages--;
888 h->surplus_huge_pages_node[nid]--;
7893d1d5 889 } else {
5d3a551c 890 arch_clear_hugepage_flags(page);
a5516438 891 enqueue_huge_page(h, page);
7893d1d5 892 }
27a85ef1 893 spin_unlock(&hugetlb_lock);
90481622 894 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
895}
896
a5516438 897static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 898{
0edaecfa 899 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
900 set_compound_page_dtor(page, free_huge_page);
901 spin_lock(&hugetlb_lock);
9dd540e2 902 set_hugetlb_cgroup(page, NULL);
a5516438
AK
903 h->nr_huge_pages++;
904 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
905 spin_unlock(&hugetlb_lock);
906 put_page(page); /* free it into the hugepage allocator */
907}
908
2906dd52 909static void prep_compound_gigantic_page(struct page *page, unsigned long order)
20a0307c
WF
910{
911 int i;
912 int nr_pages = 1 << order;
913 struct page *p = page + 1;
914
915 /* we rely on prep_new_huge_page to set the destructor */
916 set_compound_order(page, order);
917 __SetPageHead(page);
ef5a22be 918 __ClearPageReserved(page);
20a0307c
WF
919 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
920 __SetPageTail(p);
ef5a22be
AA
921 /*
922 * For gigantic hugepages allocated through bootmem at
923 * boot, it's safer to be consistent with the not-gigantic
924 * hugepages and clear the PG_reserved bit from all tail pages
925 * too. Otherwse drivers using get_user_pages() to access tail
926 * pages may get the reference counting wrong if they see
927 * PG_reserved set on a tail page (despite the head page not
928 * having PG_reserved set). Enforcing this consistency between
929 * head and tail pages allows drivers to optimize away a check
930 * on the head page when they need know if put_page() is needed
931 * after get_user_pages().
932 */
933 __ClearPageReserved(p);
58a84aa9 934 set_page_count(p, 0);
20a0307c
WF
935 p->first_page = page;
936 }
937}
938
7795912c
AM
939/*
940 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
941 * transparent huge pages. See the PageTransHuge() documentation for more
942 * details.
943 */
20a0307c
WF
944int PageHuge(struct page *page)
945{
20a0307c
WF
946 if (!PageCompound(page))
947 return 0;
948
949 page = compound_head(page);
758f66a2 950 return get_compound_page_dtor(page) == free_huge_page;
20a0307c 951}
43131e14
NH
952EXPORT_SYMBOL_GPL(PageHuge);
953
27c73ae7
AA
954/*
955 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
956 * normal or transparent huge pages.
957 */
958int PageHeadHuge(struct page *page_head)
959{
27c73ae7
AA
960 if (!PageHead(page_head))
961 return 0;
962
758f66a2 963 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 964}
27c73ae7 965
13d60f4b
ZY
966pgoff_t __basepage_index(struct page *page)
967{
968 struct page *page_head = compound_head(page);
969 pgoff_t index = page_index(page_head);
970 unsigned long compound_idx;
971
972 if (!PageHuge(page_head))
973 return page_index(page);
974
975 if (compound_order(page_head) >= MAX_ORDER)
976 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
977 else
978 compound_idx = page - page_head;
979
980 return (index << compound_order(page_head)) + compound_idx;
981}
982
a5516438 983static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 984{
1da177e4 985 struct page *page;
f96efd58 986
6484eb3e 987 page = alloc_pages_exact_node(nid,
86cdb465 988 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 989 __GFP_REPEAT|__GFP_NOWARN,
a5516438 990 huge_page_order(h));
1da177e4 991 if (page) {
7f2e9525 992 if (arch_prepare_hugepage(page)) {
caff3a2c 993 __free_pages(page, huge_page_order(h));
7b8ee84d 994 return NULL;
7f2e9525 995 }
a5516438 996 prep_new_huge_page(h, page, nid);
1da177e4 997 }
63b4613c
NA
998
999 return page;
1000}
1001
b2261026
JK
1002static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1003{
1004 struct page *page;
1005 int nr_nodes, node;
1006 int ret = 0;
1007
1008 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1009 page = alloc_fresh_huge_page_node(h, node);
1010 if (page) {
1011 ret = 1;
1012 break;
1013 }
1014 }
1015
1016 if (ret)
1017 count_vm_event(HTLB_BUDDY_PGALLOC);
1018 else
1019 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1020
1021 return ret;
1022}
1023
e8c5c824
LS
1024/*
1025 * Free huge page from pool from next node to free.
1026 * Attempt to keep persistent huge pages more or less
1027 * balanced over allowed nodes.
1028 * Called with hugetlb_lock locked.
1029 */
6ae11b27
LS
1030static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1031 bool acct_surplus)
e8c5c824 1032{
b2261026 1033 int nr_nodes, node;
e8c5c824
LS
1034 int ret = 0;
1035
b2261026 1036 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1037 /*
1038 * If we're returning unused surplus pages, only examine
1039 * nodes with surplus pages.
1040 */
b2261026
JK
1041 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1042 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1043 struct page *page =
b2261026 1044 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1045 struct page, lru);
1046 list_del(&page->lru);
1047 h->free_huge_pages--;
b2261026 1048 h->free_huge_pages_node[node]--;
685f3457
LS
1049 if (acct_surplus) {
1050 h->surplus_huge_pages--;
b2261026 1051 h->surplus_huge_pages_node[node]--;
685f3457 1052 }
e8c5c824
LS
1053 update_and_free_page(h, page);
1054 ret = 1;
9a76db09 1055 break;
e8c5c824 1056 }
b2261026 1057 }
e8c5c824
LS
1058
1059 return ret;
1060}
1061
c8721bbb
NH
1062/*
1063 * Dissolve a given free hugepage into free buddy pages. This function does
1064 * nothing for in-use (including surplus) hugepages.
1065 */
1066static void dissolve_free_huge_page(struct page *page)
1067{
1068 spin_lock(&hugetlb_lock);
1069 if (PageHuge(page) && !page_count(page)) {
1070 struct hstate *h = page_hstate(page);
1071 int nid = page_to_nid(page);
1072 list_del(&page->lru);
1073 h->free_huge_pages--;
1074 h->free_huge_pages_node[nid]--;
1075 update_and_free_page(h, page);
1076 }
1077 spin_unlock(&hugetlb_lock);
1078}
1079
1080/*
1081 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1082 * make specified memory blocks removable from the system.
1083 * Note that start_pfn should aligned with (minimum) hugepage size.
1084 */
1085void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1086{
1087 unsigned int order = 8 * sizeof(void *);
1088 unsigned long pfn;
1089 struct hstate *h;
1090
1091 /* Set scan step to minimum hugepage size */
1092 for_each_hstate(h)
1093 if (order > huge_page_order(h))
1094 order = huge_page_order(h);
1095 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
1096 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
1097 dissolve_free_huge_page(pfn_to_page(pfn));
1098}
1099
bf50bab2 1100static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
1101{
1102 struct page *page;
bf50bab2 1103 unsigned int r_nid;
7893d1d5 1104
bae7f4ae 1105 if (hstate_is_gigantic(h))
aa888a74
AK
1106 return NULL;
1107
d1c3fb1f
NA
1108 /*
1109 * Assume we will successfully allocate the surplus page to
1110 * prevent racing processes from causing the surplus to exceed
1111 * overcommit
1112 *
1113 * This however introduces a different race, where a process B
1114 * tries to grow the static hugepage pool while alloc_pages() is
1115 * called by process A. B will only examine the per-node
1116 * counters in determining if surplus huge pages can be
1117 * converted to normal huge pages in adjust_pool_surplus(). A
1118 * won't be able to increment the per-node counter, until the
1119 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1120 * no more huge pages can be converted from surplus to normal
1121 * state (and doesn't try to convert again). Thus, we have a
1122 * case where a surplus huge page exists, the pool is grown, and
1123 * the surplus huge page still exists after, even though it
1124 * should just have been converted to a normal huge page. This
1125 * does not leak memory, though, as the hugepage will be freed
1126 * once it is out of use. It also does not allow the counters to
1127 * go out of whack in adjust_pool_surplus() as we don't modify
1128 * the node values until we've gotten the hugepage and only the
1129 * per-node value is checked there.
1130 */
1131 spin_lock(&hugetlb_lock);
a5516438 1132 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1133 spin_unlock(&hugetlb_lock);
1134 return NULL;
1135 } else {
a5516438
AK
1136 h->nr_huge_pages++;
1137 h->surplus_huge_pages++;
d1c3fb1f
NA
1138 }
1139 spin_unlock(&hugetlb_lock);
1140
bf50bab2 1141 if (nid == NUMA_NO_NODE)
86cdb465 1142 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
bf50bab2
NH
1143 __GFP_REPEAT|__GFP_NOWARN,
1144 huge_page_order(h));
1145 else
1146 page = alloc_pages_exact_node(nid,
86cdb465 1147 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
bf50bab2 1148 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 1149
caff3a2c
GS
1150 if (page && arch_prepare_hugepage(page)) {
1151 __free_pages(page, huge_page_order(h));
ea5768c7 1152 page = NULL;
caff3a2c
GS
1153 }
1154
d1c3fb1f 1155 spin_lock(&hugetlb_lock);
7893d1d5 1156 if (page) {
0edaecfa 1157 INIT_LIST_HEAD(&page->lru);
bf50bab2 1158 r_nid = page_to_nid(page);
7893d1d5 1159 set_compound_page_dtor(page, free_huge_page);
9dd540e2 1160 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1161 /*
1162 * We incremented the global counters already
1163 */
bf50bab2
NH
1164 h->nr_huge_pages_node[r_nid]++;
1165 h->surplus_huge_pages_node[r_nid]++;
3b116300 1166 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1167 } else {
a5516438
AK
1168 h->nr_huge_pages--;
1169 h->surplus_huge_pages--;
3b116300 1170 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1171 }
d1c3fb1f 1172 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1173
1174 return page;
1175}
1176
bf50bab2
NH
1177/*
1178 * This allocation function is useful in the context where vma is irrelevant.
1179 * E.g. soft-offlining uses this function because it only cares physical
1180 * address of error page.
1181 */
1182struct page *alloc_huge_page_node(struct hstate *h, int nid)
1183{
4ef91848 1184 struct page *page = NULL;
bf50bab2
NH
1185
1186 spin_lock(&hugetlb_lock);
4ef91848
JK
1187 if (h->free_huge_pages - h->resv_huge_pages > 0)
1188 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1189 spin_unlock(&hugetlb_lock);
1190
94ae8ba7 1191 if (!page)
bf50bab2
NH
1192 page = alloc_buddy_huge_page(h, nid);
1193
1194 return page;
1195}
1196
e4e574b7 1197/*
25985edc 1198 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1199 * of size 'delta'.
1200 */
a5516438 1201static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1202{
1203 struct list_head surplus_list;
1204 struct page *page, *tmp;
1205 int ret, i;
1206 int needed, allocated;
28073b02 1207 bool alloc_ok = true;
e4e574b7 1208
a5516438 1209 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1210 if (needed <= 0) {
a5516438 1211 h->resv_huge_pages += delta;
e4e574b7 1212 return 0;
ac09b3a1 1213 }
e4e574b7
AL
1214
1215 allocated = 0;
1216 INIT_LIST_HEAD(&surplus_list);
1217
1218 ret = -ENOMEM;
1219retry:
1220 spin_unlock(&hugetlb_lock);
1221 for (i = 0; i < needed; i++) {
bf50bab2 1222 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1223 if (!page) {
1224 alloc_ok = false;
1225 break;
1226 }
e4e574b7
AL
1227 list_add(&page->lru, &surplus_list);
1228 }
28073b02 1229 allocated += i;
e4e574b7
AL
1230
1231 /*
1232 * After retaking hugetlb_lock, we need to recalculate 'needed'
1233 * because either resv_huge_pages or free_huge_pages may have changed.
1234 */
1235 spin_lock(&hugetlb_lock);
a5516438
AK
1236 needed = (h->resv_huge_pages + delta) -
1237 (h->free_huge_pages + allocated);
28073b02
HD
1238 if (needed > 0) {
1239 if (alloc_ok)
1240 goto retry;
1241 /*
1242 * We were not able to allocate enough pages to
1243 * satisfy the entire reservation so we free what
1244 * we've allocated so far.
1245 */
1246 goto free;
1247 }
e4e574b7
AL
1248 /*
1249 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1250 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1251 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1252 * allocator. Commit the entire reservation here to prevent another
1253 * process from stealing the pages as they are added to the pool but
1254 * before they are reserved.
e4e574b7
AL
1255 */
1256 needed += allocated;
a5516438 1257 h->resv_huge_pages += delta;
e4e574b7 1258 ret = 0;
a9869b83 1259
19fc3f0a 1260 /* Free the needed pages to the hugetlb pool */
e4e574b7 1261 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1262 if ((--needed) < 0)
1263 break;
a9869b83
NH
1264 /*
1265 * This page is now managed by the hugetlb allocator and has
1266 * no users -- drop the buddy allocator's reference.
1267 */
1268 put_page_testzero(page);
309381fe 1269 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1270 enqueue_huge_page(h, page);
19fc3f0a 1271 }
28073b02 1272free:
b0365c8d 1273 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1274
1275 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1276 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1277 put_page(page);
a9869b83 1278 spin_lock(&hugetlb_lock);
e4e574b7
AL
1279
1280 return ret;
1281}
1282
1283/*
1284 * When releasing a hugetlb pool reservation, any surplus pages that were
1285 * allocated to satisfy the reservation must be explicitly freed if they were
1286 * never used.
685f3457 1287 * Called with hugetlb_lock held.
e4e574b7 1288 */
a5516438
AK
1289static void return_unused_surplus_pages(struct hstate *h,
1290 unsigned long unused_resv_pages)
e4e574b7 1291{
e4e574b7
AL
1292 unsigned long nr_pages;
1293
ac09b3a1 1294 /* Uncommit the reservation */
a5516438 1295 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1296
aa888a74 1297 /* Cannot return gigantic pages currently */
bae7f4ae 1298 if (hstate_is_gigantic(h))
aa888a74
AK
1299 return;
1300
a5516438 1301 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1302
685f3457
LS
1303 /*
1304 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1305 * evenly across all nodes with memory. Iterate across these nodes
1306 * until we can no longer free unreserved surplus pages. This occurs
1307 * when the nodes with surplus pages have no free pages.
1308 * free_pool_huge_page() will balance the the freed pages across the
1309 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1310 */
1311 while (nr_pages--) {
8cebfcd0 1312 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1313 break;
7848a4bf 1314 cond_resched_lock(&hugetlb_lock);
e4e574b7
AL
1315 }
1316}
1317
c37f9fb1
AW
1318/*
1319 * Determine if the huge page at addr within the vma has an associated
1320 * reservation. Where it does not we will need to logically increase
90481622
DG
1321 * reservation and actually increase subpool usage before an allocation
1322 * can occur. Where any new reservation would be required the
1323 * reservation change is prepared, but not committed. Once the page
1324 * has been allocated from the subpool and instantiated the change should
1325 * be committed via vma_commit_reservation. No action is required on
1326 * failure.
c37f9fb1 1327 */
e2f17d94 1328static long vma_needs_reservation(struct hstate *h,
a5516438 1329 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1330{
4e35f483
JK
1331 struct resv_map *resv;
1332 pgoff_t idx;
1333 long chg;
c37f9fb1 1334
4e35f483
JK
1335 resv = vma_resv_map(vma);
1336 if (!resv)
84afd99b 1337 return 1;
c37f9fb1 1338
4e35f483
JK
1339 idx = vma_hugecache_offset(h, vma, addr);
1340 chg = region_chg(resv, idx, idx + 1);
84afd99b 1341
4e35f483
JK
1342 if (vma->vm_flags & VM_MAYSHARE)
1343 return chg;
1344 else
1345 return chg < 0 ? chg : 0;
c37f9fb1 1346}
a5516438
AK
1347static void vma_commit_reservation(struct hstate *h,
1348 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1349{
4e35f483
JK
1350 struct resv_map *resv;
1351 pgoff_t idx;
84afd99b 1352
4e35f483
JK
1353 resv = vma_resv_map(vma);
1354 if (!resv)
1355 return;
84afd99b 1356
4e35f483
JK
1357 idx = vma_hugecache_offset(h, vma, addr);
1358 region_add(resv, idx, idx + 1);
c37f9fb1
AW
1359}
1360
a1e78772 1361static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1362 unsigned long addr, int avoid_reserve)
1da177e4 1363{
90481622 1364 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1365 struct hstate *h = hstate_vma(vma);
348ea204 1366 struct page *page;
e2f17d94 1367 long chg;
6d76dcf4
AK
1368 int ret, idx;
1369 struct hugetlb_cgroup *h_cg;
a1e78772 1370
6d76dcf4 1371 idx = hstate_index(h);
a1e78772 1372 /*
90481622
DG
1373 * Processes that did not create the mapping will have no
1374 * reserves and will not have accounted against subpool
1375 * limit. Check that the subpool limit can be made before
1376 * satisfying the allocation MAP_NORESERVE mappings may also
1377 * need pages and subpool limit allocated allocated if no reserve
1378 * mapping overlaps.
a1e78772 1379 */
a5516438 1380 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1381 if (chg < 0)
76dcee75 1382 return ERR_PTR(-ENOMEM);
8bb3f12e
JK
1383 if (chg || avoid_reserve)
1384 if (hugepage_subpool_get_pages(spool, 1))
76dcee75 1385 return ERR_PTR(-ENOSPC);
1da177e4 1386
6d76dcf4 1387 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
1388 if (ret)
1389 goto out_subpool_put;
1390
1da177e4 1391 spin_lock(&hugetlb_lock);
af0ed73e 1392 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
81a6fcae 1393 if (!page) {
94ae8ba7 1394 spin_unlock(&hugetlb_lock);
bf50bab2 1395 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
8f34af6f
JZ
1396 if (!page)
1397 goto out_uncharge_cgroup;
1398
79dbb236
AK
1399 spin_lock(&hugetlb_lock);
1400 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1401 /* Fall through */
68842c9b 1402 }
81a6fcae
JK
1403 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1404 spin_unlock(&hugetlb_lock);
348ea204 1405
90481622 1406 set_page_private(page, (unsigned long)spool);
90d8b7e6 1407
a5516438 1408 vma_commit_reservation(h, vma, addr);
90d8b7e6 1409 return page;
8f34af6f
JZ
1410
1411out_uncharge_cgroup:
1412 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1413out_subpool_put:
1414 if (chg || avoid_reserve)
1415 hugepage_subpool_put_pages(spool, 1);
1416 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
1417}
1418
74060e4d
NH
1419/*
1420 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1421 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1422 * where no ERR_VALUE is expected to be returned.
1423 */
1424struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1425 unsigned long addr, int avoid_reserve)
1426{
1427 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1428 if (IS_ERR(page))
1429 page = NULL;
1430 return page;
1431}
1432
91f47662 1433int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1434{
1435 struct huge_bootmem_page *m;
b2261026 1436 int nr_nodes, node;
aa888a74 1437
b2261026 1438 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1439 void *addr;
1440
8b89a116
GS
1441 addr = memblock_virt_alloc_try_nid_nopanic(
1442 huge_page_size(h), huge_page_size(h),
1443 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
1444 if (addr) {
1445 /*
1446 * Use the beginning of the huge page to store the
1447 * huge_bootmem_page struct (until gather_bootmem
1448 * puts them into the mem_map).
1449 */
1450 m = addr;
91f47662 1451 goto found;
aa888a74 1452 }
aa888a74
AK
1453 }
1454 return 0;
1455
1456found:
1457 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1458 /* Put them into a private list first because mem_map is not up yet */
1459 list_add(&m->list, &huge_boot_pages);
1460 m->hstate = h;
1461 return 1;
1462}
1463
f412c97a 1464static void __init prep_compound_huge_page(struct page *page, int order)
18229df5
AW
1465{
1466 if (unlikely(order > (MAX_ORDER - 1)))
1467 prep_compound_gigantic_page(page, order);
1468 else
1469 prep_compound_page(page, order);
1470}
1471
aa888a74
AK
1472/* Put bootmem huge pages into the standard lists after mem_map is up */
1473static void __init gather_bootmem_prealloc(void)
1474{
1475 struct huge_bootmem_page *m;
1476
1477 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1478 struct hstate *h = m->hstate;
ee8f248d
BB
1479 struct page *page;
1480
1481#ifdef CONFIG_HIGHMEM
1482 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
1483 memblock_free_late(__pa(m),
1484 sizeof(struct huge_bootmem_page));
ee8f248d
BB
1485#else
1486 page = virt_to_page(m);
1487#endif
aa888a74 1488 WARN_ON(page_count(page) != 1);
18229df5 1489 prep_compound_huge_page(page, h->order);
ef5a22be 1490 WARN_ON(PageReserved(page));
aa888a74 1491 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1492 /*
1493 * If we had gigantic hugepages allocated at boot time, we need
1494 * to restore the 'stolen' pages to totalram_pages in order to
1495 * fix confusing memory reports from free(1) and another
1496 * side-effects, like CommitLimit going negative.
1497 */
bae7f4ae 1498 if (hstate_is_gigantic(h))
3dcc0571 1499 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1500 }
1501}
1502
8faa8b07 1503static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1504{
1505 unsigned long i;
a5516438 1506
e5ff2159 1507 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 1508 if (hstate_is_gigantic(h)) {
aa888a74
AK
1509 if (!alloc_bootmem_huge_page(h))
1510 break;
9b5e5d0f 1511 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1512 &node_states[N_MEMORY]))
1da177e4 1513 break;
1da177e4 1514 }
8faa8b07 1515 h->max_huge_pages = i;
e5ff2159
AK
1516}
1517
1518static void __init hugetlb_init_hstates(void)
1519{
1520 struct hstate *h;
1521
1522 for_each_hstate(h) {
8faa8b07 1523 /* oversize hugepages were init'ed in early boot */
bae7f4ae 1524 if (!hstate_is_gigantic(h))
8faa8b07 1525 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1526 }
1527}
1528
4abd32db
AK
1529static char * __init memfmt(char *buf, unsigned long n)
1530{
1531 if (n >= (1UL << 30))
1532 sprintf(buf, "%lu GB", n >> 30);
1533 else if (n >= (1UL << 20))
1534 sprintf(buf, "%lu MB", n >> 20);
1535 else
1536 sprintf(buf, "%lu KB", n >> 10);
1537 return buf;
1538}
1539
e5ff2159
AK
1540static void __init report_hugepages(void)
1541{
1542 struct hstate *h;
1543
1544 for_each_hstate(h) {
4abd32db 1545 char buf[32];
ffb22af5 1546 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1547 memfmt(buf, huge_page_size(h)),
1548 h->free_huge_pages);
e5ff2159
AK
1549 }
1550}
1551
1da177e4 1552#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1553static void try_to_free_low(struct hstate *h, unsigned long count,
1554 nodemask_t *nodes_allowed)
1da177e4 1555{
4415cc8d
CL
1556 int i;
1557
bae7f4ae 1558 if (hstate_is_gigantic(h))
aa888a74
AK
1559 return;
1560
6ae11b27 1561 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1562 struct page *page, *next;
a5516438
AK
1563 struct list_head *freel = &h->hugepage_freelists[i];
1564 list_for_each_entry_safe(page, next, freel, lru) {
1565 if (count >= h->nr_huge_pages)
6b0c880d 1566 return;
1da177e4
LT
1567 if (PageHighMem(page))
1568 continue;
1569 list_del(&page->lru);
e5ff2159 1570 update_and_free_page(h, page);
a5516438
AK
1571 h->free_huge_pages--;
1572 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1573 }
1574 }
1575}
1576#else
6ae11b27
LS
1577static inline void try_to_free_low(struct hstate *h, unsigned long count,
1578 nodemask_t *nodes_allowed)
1da177e4
LT
1579{
1580}
1581#endif
1582
20a0307c
WF
1583/*
1584 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1585 * balanced by operating on them in a round-robin fashion.
1586 * Returns 1 if an adjustment was made.
1587 */
6ae11b27
LS
1588static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1589 int delta)
20a0307c 1590{
b2261026 1591 int nr_nodes, node;
20a0307c
WF
1592
1593 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1594
b2261026
JK
1595 if (delta < 0) {
1596 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1597 if (h->surplus_huge_pages_node[node])
1598 goto found;
e8c5c824 1599 }
b2261026
JK
1600 } else {
1601 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1602 if (h->surplus_huge_pages_node[node] <
1603 h->nr_huge_pages_node[node])
1604 goto found;
e8c5c824 1605 }
b2261026
JK
1606 }
1607 return 0;
20a0307c 1608
b2261026
JK
1609found:
1610 h->surplus_huge_pages += delta;
1611 h->surplus_huge_pages_node[node] += delta;
1612 return 1;
20a0307c
WF
1613}
1614
a5516438 1615#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1616static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1617 nodemask_t *nodes_allowed)
1da177e4 1618{
7893d1d5 1619 unsigned long min_count, ret;
1da177e4 1620
944d9fec 1621 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
1622 return h->max_huge_pages;
1623
7893d1d5
AL
1624 /*
1625 * Increase the pool size
1626 * First take pages out of surplus state. Then make up the
1627 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1628 *
1629 * We might race with alloc_buddy_huge_page() here and be unable
1630 * to convert a surplus huge page to a normal huge page. That is
1631 * not critical, though, it just means the overall size of the
1632 * pool might be one hugepage larger than it needs to be, but
1633 * within all the constraints specified by the sysctls.
7893d1d5 1634 */
1da177e4 1635 spin_lock(&hugetlb_lock);
a5516438 1636 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1637 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1638 break;
1639 }
1640
a5516438 1641 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1642 /*
1643 * If this allocation races such that we no longer need the
1644 * page, free_huge_page will handle it by freeing the page
1645 * and reducing the surplus.
1646 */
1647 spin_unlock(&hugetlb_lock);
944d9fec
LC
1648 if (hstate_is_gigantic(h))
1649 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1650 else
1651 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1652 spin_lock(&hugetlb_lock);
1653 if (!ret)
1654 goto out;
1655
536240f2
MG
1656 /* Bail for signals. Probably ctrl-c from user */
1657 if (signal_pending(current))
1658 goto out;
7893d1d5 1659 }
7893d1d5
AL
1660
1661 /*
1662 * Decrease the pool size
1663 * First return free pages to the buddy allocator (being careful
1664 * to keep enough around to satisfy reservations). Then place
1665 * pages into surplus state as needed so the pool will shrink
1666 * to the desired size as pages become free.
d1c3fb1f
NA
1667 *
1668 * By placing pages into the surplus state independent of the
1669 * overcommit value, we are allowing the surplus pool size to
1670 * exceed overcommit. There are few sane options here. Since
1671 * alloc_buddy_huge_page() is checking the global counter,
1672 * though, we'll note that we're not allowed to exceed surplus
1673 * and won't grow the pool anywhere else. Not until one of the
1674 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1675 */
a5516438 1676 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1677 min_count = max(count, min_count);
6ae11b27 1678 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1679 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1680 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1681 break;
55f67141 1682 cond_resched_lock(&hugetlb_lock);
1da177e4 1683 }
a5516438 1684 while (count < persistent_huge_pages(h)) {
6ae11b27 1685 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1686 break;
1687 }
1688out:
a5516438 1689 ret = persistent_huge_pages(h);
1da177e4 1690 spin_unlock(&hugetlb_lock);
7893d1d5 1691 return ret;
1da177e4
LT
1692}
1693
a3437870
NA
1694#define HSTATE_ATTR_RO(_name) \
1695 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1696
1697#define HSTATE_ATTR(_name) \
1698 static struct kobj_attribute _name##_attr = \
1699 __ATTR(_name, 0644, _name##_show, _name##_store)
1700
1701static struct kobject *hugepages_kobj;
1702static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1703
9a305230
LS
1704static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1705
1706static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1707{
1708 int i;
9a305230 1709
a3437870 1710 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1711 if (hstate_kobjs[i] == kobj) {
1712 if (nidp)
1713 *nidp = NUMA_NO_NODE;
a3437870 1714 return &hstates[i];
9a305230
LS
1715 }
1716
1717 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1718}
1719
06808b08 1720static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1721 struct kobj_attribute *attr, char *buf)
1722{
9a305230
LS
1723 struct hstate *h;
1724 unsigned long nr_huge_pages;
1725 int nid;
1726
1727 h = kobj_to_hstate(kobj, &nid);
1728 if (nid == NUMA_NO_NODE)
1729 nr_huge_pages = h->nr_huge_pages;
1730 else
1731 nr_huge_pages = h->nr_huge_pages_node[nid];
1732
1733 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1734}
adbe8726 1735
238d3c13
DR
1736static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1737 struct hstate *h, int nid,
1738 unsigned long count, size_t len)
a3437870
NA
1739{
1740 int err;
bad44b5b 1741 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1742
944d9fec 1743 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
1744 err = -EINVAL;
1745 goto out;
1746 }
1747
9a305230
LS
1748 if (nid == NUMA_NO_NODE) {
1749 /*
1750 * global hstate attribute
1751 */
1752 if (!(obey_mempolicy &&
1753 init_nodemask_of_mempolicy(nodes_allowed))) {
1754 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1755 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1756 }
1757 } else if (nodes_allowed) {
1758 /*
1759 * per node hstate attribute: adjust count to global,
1760 * but restrict alloc/free to the specified node.
1761 */
1762 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1763 init_nodemask_of_node(nodes_allowed, nid);
1764 } else
8cebfcd0 1765 nodes_allowed = &node_states[N_MEMORY];
9a305230 1766
06808b08 1767 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1768
8cebfcd0 1769 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1770 NODEMASK_FREE(nodes_allowed);
1771
1772 return len;
adbe8726
EM
1773out:
1774 NODEMASK_FREE(nodes_allowed);
1775 return err;
06808b08
LS
1776}
1777
238d3c13
DR
1778static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1779 struct kobject *kobj, const char *buf,
1780 size_t len)
1781{
1782 struct hstate *h;
1783 unsigned long count;
1784 int nid;
1785 int err;
1786
1787 err = kstrtoul(buf, 10, &count);
1788 if (err)
1789 return err;
1790
1791 h = kobj_to_hstate(kobj, &nid);
1792 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1793}
1794
06808b08
LS
1795static ssize_t nr_hugepages_show(struct kobject *kobj,
1796 struct kobj_attribute *attr, char *buf)
1797{
1798 return nr_hugepages_show_common(kobj, attr, buf);
1799}
1800
1801static ssize_t nr_hugepages_store(struct kobject *kobj,
1802 struct kobj_attribute *attr, const char *buf, size_t len)
1803{
238d3c13 1804 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
1805}
1806HSTATE_ATTR(nr_hugepages);
1807
06808b08
LS
1808#ifdef CONFIG_NUMA
1809
1810/*
1811 * hstate attribute for optionally mempolicy-based constraint on persistent
1812 * huge page alloc/free.
1813 */
1814static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1815 struct kobj_attribute *attr, char *buf)
1816{
1817 return nr_hugepages_show_common(kobj, attr, buf);
1818}
1819
1820static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1821 struct kobj_attribute *attr, const char *buf, size_t len)
1822{
238d3c13 1823 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
1824}
1825HSTATE_ATTR(nr_hugepages_mempolicy);
1826#endif
1827
1828
a3437870
NA
1829static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1830 struct kobj_attribute *attr, char *buf)
1831{
9a305230 1832 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1833 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1834}
adbe8726 1835
a3437870
NA
1836static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1837 struct kobj_attribute *attr, const char *buf, size_t count)
1838{
1839 int err;
1840 unsigned long input;
9a305230 1841 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1842
bae7f4ae 1843 if (hstate_is_gigantic(h))
adbe8726
EM
1844 return -EINVAL;
1845
3dbb95f7 1846 err = kstrtoul(buf, 10, &input);
a3437870 1847 if (err)
73ae31e5 1848 return err;
a3437870
NA
1849
1850 spin_lock(&hugetlb_lock);
1851 h->nr_overcommit_huge_pages = input;
1852 spin_unlock(&hugetlb_lock);
1853
1854 return count;
1855}
1856HSTATE_ATTR(nr_overcommit_hugepages);
1857
1858static ssize_t free_hugepages_show(struct kobject *kobj,
1859 struct kobj_attribute *attr, char *buf)
1860{
9a305230
LS
1861 struct hstate *h;
1862 unsigned long free_huge_pages;
1863 int nid;
1864
1865 h = kobj_to_hstate(kobj, &nid);
1866 if (nid == NUMA_NO_NODE)
1867 free_huge_pages = h->free_huge_pages;
1868 else
1869 free_huge_pages = h->free_huge_pages_node[nid];
1870
1871 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1872}
1873HSTATE_ATTR_RO(free_hugepages);
1874
1875static ssize_t resv_hugepages_show(struct kobject *kobj,
1876 struct kobj_attribute *attr, char *buf)
1877{
9a305230 1878 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1879 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1880}
1881HSTATE_ATTR_RO(resv_hugepages);
1882
1883static ssize_t surplus_hugepages_show(struct kobject *kobj,
1884 struct kobj_attribute *attr, char *buf)
1885{
9a305230
LS
1886 struct hstate *h;
1887 unsigned long surplus_huge_pages;
1888 int nid;
1889
1890 h = kobj_to_hstate(kobj, &nid);
1891 if (nid == NUMA_NO_NODE)
1892 surplus_huge_pages = h->surplus_huge_pages;
1893 else
1894 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1895
1896 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1897}
1898HSTATE_ATTR_RO(surplus_hugepages);
1899
1900static struct attribute *hstate_attrs[] = {
1901 &nr_hugepages_attr.attr,
1902 &nr_overcommit_hugepages_attr.attr,
1903 &free_hugepages_attr.attr,
1904 &resv_hugepages_attr.attr,
1905 &surplus_hugepages_attr.attr,
06808b08
LS
1906#ifdef CONFIG_NUMA
1907 &nr_hugepages_mempolicy_attr.attr,
1908#endif
a3437870
NA
1909 NULL,
1910};
1911
1912static struct attribute_group hstate_attr_group = {
1913 .attrs = hstate_attrs,
1914};
1915
094e9539
JM
1916static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1917 struct kobject **hstate_kobjs,
1918 struct attribute_group *hstate_attr_group)
a3437870
NA
1919{
1920 int retval;
972dc4de 1921 int hi = hstate_index(h);
a3437870 1922
9a305230
LS
1923 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1924 if (!hstate_kobjs[hi])
a3437870
NA
1925 return -ENOMEM;
1926
9a305230 1927 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1928 if (retval)
9a305230 1929 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1930
1931 return retval;
1932}
1933
1934static void __init hugetlb_sysfs_init(void)
1935{
1936 struct hstate *h;
1937 int err;
1938
1939 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1940 if (!hugepages_kobj)
1941 return;
1942
1943 for_each_hstate(h) {
9a305230
LS
1944 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1945 hstate_kobjs, &hstate_attr_group);
a3437870 1946 if (err)
ffb22af5 1947 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1948 }
1949}
1950
9a305230
LS
1951#ifdef CONFIG_NUMA
1952
1953/*
1954 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1955 * with node devices in node_devices[] using a parallel array. The array
1956 * index of a node device or _hstate == node id.
1957 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1958 * the base kernel, on the hugetlb module.
1959 */
1960struct node_hstate {
1961 struct kobject *hugepages_kobj;
1962 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1963};
1964struct node_hstate node_hstates[MAX_NUMNODES];
1965
1966/*
10fbcf4c 1967 * A subset of global hstate attributes for node devices
9a305230
LS
1968 */
1969static struct attribute *per_node_hstate_attrs[] = {
1970 &nr_hugepages_attr.attr,
1971 &free_hugepages_attr.attr,
1972 &surplus_hugepages_attr.attr,
1973 NULL,
1974};
1975
1976static struct attribute_group per_node_hstate_attr_group = {
1977 .attrs = per_node_hstate_attrs,
1978};
1979
1980/*
10fbcf4c 1981 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1982 * Returns node id via non-NULL nidp.
1983 */
1984static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1985{
1986 int nid;
1987
1988 for (nid = 0; nid < nr_node_ids; nid++) {
1989 struct node_hstate *nhs = &node_hstates[nid];
1990 int i;
1991 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1992 if (nhs->hstate_kobjs[i] == kobj) {
1993 if (nidp)
1994 *nidp = nid;
1995 return &hstates[i];
1996 }
1997 }
1998
1999 BUG();
2000 return NULL;
2001}
2002
2003/*
10fbcf4c 2004 * Unregister hstate attributes from a single node device.
9a305230
LS
2005 * No-op if no hstate attributes attached.
2006 */
3cd8b44f 2007static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2008{
2009 struct hstate *h;
10fbcf4c 2010 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2011
2012 if (!nhs->hugepages_kobj)
9b5e5d0f 2013 return; /* no hstate attributes */
9a305230 2014
972dc4de
AK
2015 for_each_hstate(h) {
2016 int idx = hstate_index(h);
2017 if (nhs->hstate_kobjs[idx]) {
2018 kobject_put(nhs->hstate_kobjs[idx]);
2019 nhs->hstate_kobjs[idx] = NULL;
9a305230 2020 }
972dc4de 2021 }
9a305230
LS
2022
2023 kobject_put(nhs->hugepages_kobj);
2024 nhs->hugepages_kobj = NULL;
2025}
2026
2027/*
10fbcf4c 2028 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
2029 * that have them.
2030 */
2031static void hugetlb_unregister_all_nodes(void)
2032{
2033 int nid;
2034
2035 /*
10fbcf4c 2036 * disable node device registrations.
9a305230
LS
2037 */
2038 register_hugetlbfs_with_node(NULL, NULL);
2039
2040 /*
2041 * remove hstate attributes from any nodes that have them.
2042 */
2043 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 2044 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
2045}
2046
2047/*
10fbcf4c 2048 * Register hstate attributes for a single node device.
9a305230
LS
2049 * No-op if attributes already registered.
2050 */
3cd8b44f 2051static void hugetlb_register_node(struct node *node)
9a305230
LS
2052{
2053 struct hstate *h;
10fbcf4c 2054 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2055 int err;
2056
2057 if (nhs->hugepages_kobj)
2058 return; /* already allocated */
2059
2060 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2061 &node->dev.kobj);
9a305230
LS
2062 if (!nhs->hugepages_kobj)
2063 return;
2064
2065 for_each_hstate(h) {
2066 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2067 nhs->hstate_kobjs,
2068 &per_node_hstate_attr_group);
2069 if (err) {
ffb22af5
AM
2070 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2071 h->name, node->dev.id);
9a305230
LS
2072 hugetlb_unregister_node(node);
2073 break;
2074 }
2075 }
2076}
2077
2078/*
9b5e5d0f 2079 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2080 * devices of nodes that have memory. All on-line nodes should have
2081 * registered their associated device by this time.
9a305230
LS
2082 */
2083static void hugetlb_register_all_nodes(void)
2084{
2085 int nid;
2086
8cebfcd0 2087 for_each_node_state(nid, N_MEMORY) {
8732794b 2088 struct node *node = node_devices[nid];
10fbcf4c 2089 if (node->dev.id == nid)
9a305230
LS
2090 hugetlb_register_node(node);
2091 }
2092
2093 /*
10fbcf4c 2094 * Let the node device driver know we're here so it can
9a305230
LS
2095 * [un]register hstate attributes on node hotplug.
2096 */
2097 register_hugetlbfs_with_node(hugetlb_register_node,
2098 hugetlb_unregister_node);
2099}
2100#else /* !CONFIG_NUMA */
2101
2102static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2103{
2104 BUG();
2105 if (nidp)
2106 *nidp = -1;
2107 return NULL;
2108}
2109
2110static void hugetlb_unregister_all_nodes(void) { }
2111
2112static void hugetlb_register_all_nodes(void) { }
2113
2114#endif
2115
a3437870
NA
2116static void __exit hugetlb_exit(void)
2117{
2118 struct hstate *h;
2119
9a305230
LS
2120 hugetlb_unregister_all_nodes();
2121
a3437870 2122 for_each_hstate(h) {
972dc4de 2123 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
2124 }
2125
2126 kobject_put(hugepages_kobj);
8382d914 2127 kfree(htlb_fault_mutex_table);
a3437870
NA
2128}
2129module_exit(hugetlb_exit);
2130
2131static int __init hugetlb_init(void)
2132{
8382d914
DB
2133 int i;
2134
457c1b27 2135 if (!hugepages_supported())
0ef89d25 2136 return 0;
a3437870 2137
e11bfbfc
NP
2138 if (!size_to_hstate(default_hstate_size)) {
2139 default_hstate_size = HPAGE_SIZE;
2140 if (!size_to_hstate(default_hstate_size))
2141 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2142 }
972dc4de 2143 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
2144 if (default_hstate_max_huge_pages)
2145 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
2146
2147 hugetlb_init_hstates();
aa888a74 2148 gather_bootmem_prealloc();
a3437870
NA
2149 report_hugepages();
2150
2151 hugetlb_sysfs_init();
9a305230 2152 hugetlb_register_all_nodes();
7179e7bf 2153 hugetlb_cgroup_file_init();
9a305230 2154
8382d914
DB
2155#ifdef CONFIG_SMP
2156 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2157#else
2158 num_fault_mutexes = 1;
2159#endif
2160 htlb_fault_mutex_table =
2161 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2162 BUG_ON(!htlb_fault_mutex_table);
2163
2164 for (i = 0; i < num_fault_mutexes; i++)
2165 mutex_init(&htlb_fault_mutex_table[i]);
a3437870
NA
2166 return 0;
2167}
2168module_init(hugetlb_init);
2169
2170/* Should be called on processing a hugepagesz=... option */
2171void __init hugetlb_add_hstate(unsigned order)
2172{
2173 struct hstate *h;
8faa8b07
AK
2174 unsigned long i;
2175
a3437870 2176 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 2177 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2178 return;
2179 }
47d38344 2180 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2181 BUG_ON(order == 0);
47d38344 2182 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2183 h->order = order;
2184 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2185 h->nr_huge_pages = 0;
2186 h->free_huge_pages = 0;
2187 for (i = 0; i < MAX_NUMNODES; ++i)
2188 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2189 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
2190 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2191 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
2192 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2193 huge_page_size(h)/1024);
8faa8b07 2194
a3437870
NA
2195 parsed_hstate = h;
2196}
2197
e11bfbfc 2198static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2199{
2200 unsigned long *mhp;
8faa8b07 2201 static unsigned long *last_mhp;
a3437870
NA
2202
2203 /*
47d38344 2204 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2205 * so this hugepages= parameter goes to the "default hstate".
2206 */
47d38344 2207 if (!hugetlb_max_hstate)
a3437870
NA
2208 mhp = &default_hstate_max_huge_pages;
2209 else
2210 mhp = &parsed_hstate->max_huge_pages;
2211
8faa8b07 2212 if (mhp == last_mhp) {
ffb22af5
AM
2213 pr_warning("hugepages= specified twice without "
2214 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2215 return 1;
2216 }
2217
a3437870
NA
2218 if (sscanf(s, "%lu", mhp) <= 0)
2219 *mhp = 0;
2220
8faa8b07
AK
2221 /*
2222 * Global state is always initialized later in hugetlb_init.
2223 * But we need to allocate >= MAX_ORDER hstates here early to still
2224 * use the bootmem allocator.
2225 */
47d38344 2226 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2227 hugetlb_hstate_alloc_pages(parsed_hstate);
2228
2229 last_mhp = mhp;
2230
a3437870
NA
2231 return 1;
2232}
e11bfbfc
NP
2233__setup("hugepages=", hugetlb_nrpages_setup);
2234
2235static int __init hugetlb_default_setup(char *s)
2236{
2237 default_hstate_size = memparse(s, &s);
2238 return 1;
2239}
2240__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2241
8a213460
NA
2242static unsigned int cpuset_mems_nr(unsigned int *array)
2243{
2244 int node;
2245 unsigned int nr = 0;
2246
2247 for_each_node_mask(node, cpuset_current_mems_allowed)
2248 nr += array[node];
2249
2250 return nr;
2251}
2252
2253#ifdef CONFIG_SYSCTL
06808b08
LS
2254static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2255 struct ctl_table *table, int write,
2256 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2257{
e5ff2159 2258 struct hstate *h = &default_hstate;
238d3c13 2259 unsigned long tmp = h->max_huge_pages;
08d4a246 2260 int ret;
e5ff2159 2261
457c1b27
NA
2262 if (!hugepages_supported())
2263 return -ENOTSUPP;
2264
e5ff2159
AK
2265 table->data = &tmp;
2266 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2267 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2268 if (ret)
2269 goto out;
e5ff2159 2270
238d3c13
DR
2271 if (write)
2272 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2273 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2274out:
2275 return ret;
1da177e4 2276}
396faf03 2277
06808b08
LS
2278int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2279 void __user *buffer, size_t *length, loff_t *ppos)
2280{
2281
2282 return hugetlb_sysctl_handler_common(false, table, write,
2283 buffer, length, ppos);
2284}
2285
2286#ifdef CONFIG_NUMA
2287int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2288 void __user *buffer, size_t *length, loff_t *ppos)
2289{
2290 return hugetlb_sysctl_handler_common(true, table, write,
2291 buffer, length, ppos);
2292}
2293#endif /* CONFIG_NUMA */
2294
a3d0c6aa 2295int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2296 void __user *buffer,
a3d0c6aa
NA
2297 size_t *length, loff_t *ppos)
2298{
a5516438 2299 struct hstate *h = &default_hstate;
e5ff2159 2300 unsigned long tmp;
08d4a246 2301 int ret;
e5ff2159 2302
457c1b27
NA
2303 if (!hugepages_supported())
2304 return -ENOTSUPP;
2305
c033a93c 2306 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2307
bae7f4ae 2308 if (write && hstate_is_gigantic(h))
adbe8726
EM
2309 return -EINVAL;
2310
e5ff2159
AK
2311 table->data = &tmp;
2312 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2313 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2314 if (ret)
2315 goto out;
e5ff2159
AK
2316
2317 if (write) {
2318 spin_lock(&hugetlb_lock);
2319 h->nr_overcommit_huge_pages = tmp;
2320 spin_unlock(&hugetlb_lock);
2321 }
08d4a246
MH
2322out:
2323 return ret;
a3d0c6aa
NA
2324}
2325
1da177e4
LT
2326#endif /* CONFIG_SYSCTL */
2327
e1759c21 2328void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2329{
a5516438 2330 struct hstate *h = &default_hstate;
457c1b27
NA
2331 if (!hugepages_supported())
2332 return;
e1759c21 2333 seq_printf(m,
4f98a2fe
RR
2334 "HugePages_Total: %5lu\n"
2335 "HugePages_Free: %5lu\n"
2336 "HugePages_Rsvd: %5lu\n"
2337 "HugePages_Surp: %5lu\n"
2338 "Hugepagesize: %8lu kB\n",
a5516438
AK
2339 h->nr_huge_pages,
2340 h->free_huge_pages,
2341 h->resv_huge_pages,
2342 h->surplus_huge_pages,
2343 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2344}
2345
2346int hugetlb_report_node_meminfo(int nid, char *buf)
2347{
a5516438 2348 struct hstate *h = &default_hstate;
457c1b27
NA
2349 if (!hugepages_supported())
2350 return 0;
1da177e4
LT
2351 return sprintf(buf,
2352 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2353 "Node %d HugePages_Free: %5u\n"
2354 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2355 nid, h->nr_huge_pages_node[nid],
2356 nid, h->free_huge_pages_node[nid],
2357 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2358}
2359
949f7ec5
DR
2360void hugetlb_show_meminfo(void)
2361{
2362 struct hstate *h;
2363 int nid;
2364
457c1b27
NA
2365 if (!hugepages_supported())
2366 return;
2367
949f7ec5
DR
2368 for_each_node_state(nid, N_MEMORY)
2369 for_each_hstate(h)
2370 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2371 nid,
2372 h->nr_huge_pages_node[nid],
2373 h->free_huge_pages_node[nid],
2374 h->surplus_huge_pages_node[nid],
2375 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2376}
2377
1da177e4
LT
2378/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2379unsigned long hugetlb_total_pages(void)
2380{
d0028588
WL
2381 struct hstate *h;
2382 unsigned long nr_total_pages = 0;
2383
2384 for_each_hstate(h)
2385 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2386 return nr_total_pages;
1da177e4 2387}
1da177e4 2388
a5516438 2389static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2390{
2391 int ret = -ENOMEM;
2392
2393 spin_lock(&hugetlb_lock);
2394 /*
2395 * When cpuset is configured, it breaks the strict hugetlb page
2396 * reservation as the accounting is done on a global variable. Such
2397 * reservation is completely rubbish in the presence of cpuset because
2398 * the reservation is not checked against page availability for the
2399 * current cpuset. Application can still potentially OOM'ed by kernel
2400 * with lack of free htlb page in cpuset that the task is in.
2401 * Attempt to enforce strict accounting with cpuset is almost
2402 * impossible (or too ugly) because cpuset is too fluid that
2403 * task or memory node can be dynamically moved between cpusets.
2404 *
2405 * The change of semantics for shared hugetlb mapping with cpuset is
2406 * undesirable. However, in order to preserve some of the semantics,
2407 * we fall back to check against current free page availability as
2408 * a best attempt and hopefully to minimize the impact of changing
2409 * semantics that cpuset has.
2410 */
2411 if (delta > 0) {
a5516438 2412 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2413 goto out;
2414
a5516438
AK
2415 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2416 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2417 goto out;
2418 }
2419 }
2420
2421 ret = 0;
2422 if (delta < 0)
a5516438 2423 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2424
2425out:
2426 spin_unlock(&hugetlb_lock);
2427 return ret;
2428}
2429
84afd99b
AW
2430static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2431{
f522c3ac 2432 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2433
2434 /*
2435 * This new VMA should share its siblings reservation map if present.
2436 * The VMA will only ever have a valid reservation map pointer where
2437 * it is being copied for another still existing VMA. As that VMA
25985edc 2438 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2439 * after this open call completes. It is therefore safe to take a
2440 * new reference here without additional locking.
2441 */
4e35f483 2442 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 2443 kref_get(&resv->refs);
84afd99b
AW
2444}
2445
a1e78772
MG
2446static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2447{
a5516438 2448 struct hstate *h = hstate_vma(vma);
f522c3ac 2449 struct resv_map *resv = vma_resv_map(vma);
90481622 2450 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 2451 unsigned long reserve, start, end;
84afd99b 2452
4e35f483
JK
2453 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2454 return;
84afd99b 2455
4e35f483
JK
2456 start = vma_hugecache_offset(h, vma, vma->vm_start);
2457 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 2458
4e35f483 2459 reserve = (end - start) - region_count(resv, start, end);
84afd99b 2460
4e35f483
JK
2461 kref_put(&resv->refs, resv_map_release);
2462
2463 if (reserve) {
2464 hugetlb_acct_memory(h, -reserve);
2465 hugepage_subpool_put_pages(spool, reserve);
84afd99b 2466 }
a1e78772
MG
2467}
2468
1da177e4
LT
2469/*
2470 * We cannot handle pagefaults against hugetlb pages at all. They cause
2471 * handle_mm_fault() to try to instantiate regular-sized pages in the
2472 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2473 * this far.
2474 */
d0217ac0 2475static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2476{
2477 BUG();
d0217ac0 2478 return 0;
1da177e4
LT
2479}
2480
f0f37e2f 2481const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2482 .fault = hugetlb_vm_op_fault,
84afd99b 2483 .open = hugetlb_vm_op_open,
a1e78772 2484 .close = hugetlb_vm_op_close,
1da177e4
LT
2485};
2486
1e8f889b
DG
2487static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2488 int writable)
63551ae0
DG
2489{
2490 pte_t entry;
2491
1e8f889b 2492 if (writable) {
106c992a
GS
2493 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2494 vma->vm_page_prot)));
63551ae0 2495 } else {
106c992a
GS
2496 entry = huge_pte_wrprotect(mk_huge_pte(page,
2497 vma->vm_page_prot));
63551ae0
DG
2498 }
2499 entry = pte_mkyoung(entry);
2500 entry = pte_mkhuge(entry);
d9ed9faa 2501 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2502
2503 return entry;
2504}
2505
1e8f889b
DG
2506static void set_huge_ptep_writable(struct vm_area_struct *vma,
2507 unsigned long address, pte_t *ptep)
2508{
2509 pte_t entry;
2510
106c992a 2511 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2512 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2513 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2514}
2515
4a705fef
NH
2516static int is_hugetlb_entry_migration(pte_t pte)
2517{
2518 swp_entry_t swp;
2519
2520 if (huge_pte_none(pte) || pte_present(pte))
2521 return 0;
2522 swp = pte_to_swp_entry(pte);
2523 if (non_swap_entry(swp) && is_migration_entry(swp))
2524 return 1;
2525 else
2526 return 0;
2527}
2528
2529static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2530{
2531 swp_entry_t swp;
2532
2533 if (huge_pte_none(pte) || pte_present(pte))
2534 return 0;
2535 swp = pte_to_swp_entry(pte);
2536 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2537 return 1;
2538 else
2539 return 0;
2540}
1e8f889b 2541
63551ae0
DG
2542int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2543 struct vm_area_struct *vma)
2544{
2545 pte_t *src_pte, *dst_pte, entry;
2546 struct page *ptepage;
1c59827d 2547 unsigned long addr;
1e8f889b 2548 int cow;
a5516438
AK
2549 struct hstate *h = hstate_vma(vma);
2550 unsigned long sz = huge_page_size(h);
e8569dd2
AS
2551 unsigned long mmun_start; /* For mmu_notifiers */
2552 unsigned long mmun_end; /* For mmu_notifiers */
2553 int ret = 0;
1e8f889b
DG
2554
2555 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2556
e8569dd2
AS
2557 mmun_start = vma->vm_start;
2558 mmun_end = vma->vm_end;
2559 if (cow)
2560 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2561
a5516438 2562 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 2563 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
2564 src_pte = huge_pte_offset(src, addr);
2565 if (!src_pte)
2566 continue;
a5516438 2567 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
2568 if (!dst_pte) {
2569 ret = -ENOMEM;
2570 break;
2571 }
c5c99429
LW
2572
2573 /* If the pagetables are shared don't copy or take references */
2574 if (dst_pte == src_pte)
2575 continue;
2576
cb900f41
KS
2577 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2578 src_ptl = huge_pte_lockptr(h, src, src_pte);
2579 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
2580 entry = huge_ptep_get(src_pte);
2581 if (huge_pte_none(entry)) { /* skip none entry */
2582 ;
2583 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2584 is_hugetlb_entry_hwpoisoned(entry))) {
2585 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2586
2587 if (is_write_migration_entry(swp_entry) && cow) {
2588 /*
2589 * COW mappings require pages in both
2590 * parent and child to be set to read.
2591 */
2592 make_migration_entry_read(&swp_entry);
2593 entry = swp_entry_to_pte(swp_entry);
2594 set_huge_pte_at(src, addr, src_pte, entry);
2595 }
2596 set_huge_pte_at(dst, addr, dst_pte, entry);
2597 } else {
1e8f889b 2598 if (cow)
7f2e9525 2599 huge_ptep_set_wrprotect(src, addr, src_pte);
0253d634 2600 entry = huge_ptep_get(src_pte);
1c59827d
HD
2601 ptepage = pte_page(entry);
2602 get_page(ptepage);
0fe6e20b 2603 page_dup_rmap(ptepage);
1c59827d
HD
2604 set_huge_pte_at(dst, addr, dst_pte, entry);
2605 }
cb900f41
KS
2606 spin_unlock(src_ptl);
2607 spin_unlock(dst_ptl);
63551ae0 2608 }
63551ae0 2609
e8569dd2
AS
2610 if (cow)
2611 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2612
2613 return ret;
63551ae0
DG
2614}
2615
24669e58
AK
2616void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2617 unsigned long start, unsigned long end,
2618 struct page *ref_page)
63551ae0 2619{
24669e58 2620 int force_flush = 0;
63551ae0
DG
2621 struct mm_struct *mm = vma->vm_mm;
2622 unsigned long address;
c7546f8f 2623 pte_t *ptep;
63551ae0 2624 pte_t pte;
cb900f41 2625 spinlock_t *ptl;
63551ae0 2626 struct page *page;
a5516438
AK
2627 struct hstate *h = hstate_vma(vma);
2628 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2629 const unsigned long mmun_start = start; /* For mmu_notifiers */
2630 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2631
63551ae0 2632 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2633 BUG_ON(start & ~huge_page_mask(h));
2634 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2635
24669e58 2636 tlb_start_vma(tlb, vma);
2ec74c3e 2637 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2638again:
a5516438 2639 for (address = start; address < end; address += sz) {
c7546f8f 2640 ptep = huge_pte_offset(mm, address);
4c887265 2641 if (!ptep)
c7546f8f
DG
2642 continue;
2643
cb900f41 2644 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 2645 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 2646 goto unlock;
39dde65c 2647
6629326b
HD
2648 pte = huge_ptep_get(ptep);
2649 if (huge_pte_none(pte))
cb900f41 2650 goto unlock;
6629326b
HD
2651
2652 /*
2653 * HWPoisoned hugepage is already unmapped and dropped reference
2654 */
8c4894c6 2655 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
106c992a 2656 huge_pte_clear(mm, address, ptep);
cb900f41 2657 goto unlock;
8c4894c6 2658 }
6629326b
HD
2659
2660 page = pte_page(pte);
04f2cbe3
MG
2661 /*
2662 * If a reference page is supplied, it is because a specific
2663 * page is being unmapped, not a range. Ensure the page we
2664 * are about to unmap is the actual page of interest.
2665 */
2666 if (ref_page) {
04f2cbe3 2667 if (page != ref_page)
cb900f41 2668 goto unlock;
04f2cbe3
MG
2669
2670 /*
2671 * Mark the VMA as having unmapped its page so that
2672 * future faults in this VMA will fail rather than
2673 * looking like data was lost
2674 */
2675 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2676 }
2677
c7546f8f 2678 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2679 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2680 if (huge_pte_dirty(pte))
6649a386 2681 set_page_dirty(page);
9e81130b 2682
24669e58
AK
2683 page_remove_rmap(page);
2684 force_flush = !__tlb_remove_page(tlb, page);
cb900f41
KS
2685 if (force_flush) {
2686 spin_unlock(ptl);
24669e58 2687 break;
cb900f41 2688 }
9e81130b 2689 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
2690 if (ref_page) {
2691 spin_unlock(ptl);
9e81130b 2692 break;
cb900f41
KS
2693 }
2694unlock:
2695 spin_unlock(ptl);
63551ae0 2696 }
24669e58
AK
2697 /*
2698 * mmu_gather ran out of room to batch pages, we break out of
2699 * the PTE lock to avoid doing the potential expensive TLB invalidate
2700 * and page-free while holding it.
2701 */
2702 if (force_flush) {
2703 force_flush = 0;
2704 tlb_flush_mmu(tlb);
2705 if (address < end && !ref_page)
2706 goto again;
fe1668ae 2707 }
2ec74c3e 2708 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2709 tlb_end_vma(tlb, vma);
1da177e4 2710}
63551ae0 2711
d833352a
MG
2712void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2713 struct vm_area_struct *vma, unsigned long start,
2714 unsigned long end, struct page *ref_page)
2715{
2716 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2717
2718 /*
2719 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2720 * test will fail on a vma being torn down, and not grab a page table
2721 * on its way out. We're lucky that the flag has such an appropriate
2722 * name, and can in fact be safely cleared here. We could clear it
2723 * before the __unmap_hugepage_range above, but all that's necessary
2724 * is to clear it before releasing the i_mmap_mutex. This works
2725 * because in the context this is called, the VMA is about to be
2726 * destroyed and the i_mmap_mutex is held.
2727 */
2728 vma->vm_flags &= ~VM_MAYSHARE;
2729}
2730
502717f4 2731void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2732 unsigned long end, struct page *ref_page)
502717f4 2733{
24669e58
AK
2734 struct mm_struct *mm;
2735 struct mmu_gather tlb;
2736
2737 mm = vma->vm_mm;
2738
2b047252 2739 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2740 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2741 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
2742}
2743
04f2cbe3
MG
2744/*
2745 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2746 * mappping it owns the reserve page for. The intention is to unmap the page
2747 * from other VMAs and let the children be SIGKILLed if they are faulting the
2748 * same region.
2749 */
2f4612af
DB
2750static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2751 struct page *page, unsigned long address)
04f2cbe3 2752{
7526674d 2753 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2754 struct vm_area_struct *iter_vma;
2755 struct address_space *mapping;
04f2cbe3
MG
2756 pgoff_t pgoff;
2757
2758 /*
2759 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2760 * from page cache lookup which is in HPAGE_SIZE units.
2761 */
7526674d 2762 address = address & huge_page_mask(h);
36e4f20a
MH
2763 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2764 vma->vm_pgoff;
496ad9aa 2765 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2766
4eb2b1dc
MG
2767 /*
2768 * Take the mapping lock for the duration of the table walk. As
2769 * this mapping should be shared between all the VMAs,
2770 * __unmap_hugepage_range() is called as the lock is already held
2771 */
3d48ae45 2772 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2773 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2774 /* Do not unmap the current VMA */
2775 if (iter_vma == vma)
2776 continue;
2777
2778 /*
2779 * Unmap the page from other VMAs without their own reserves.
2780 * They get marked to be SIGKILLed if they fault in these
2781 * areas. This is because a future no-page fault on this VMA
2782 * could insert a zeroed page instead of the data existing
2783 * from the time of fork. This would look like data corruption
2784 */
2785 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2786 unmap_hugepage_range(iter_vma, address,
2787 address + huge_page_size(h), page);
04f2cbe3 2788 }
3d48ae45 2789 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2790}
2791
0fe6e20b
NH
2792/*
2793 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2794 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2795 * cannot race with other handlers or page migration.
2796 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2797 */
1e8f889b 2798static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 2799 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 2800 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 2801{
a5516438 2802 struct hstate *h = hstate_vma(vma);
1e8f889b 2803 struct page *old_page, *new_page;
ad4404a2 2804 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
2805 unsigned long mmun_start; /* For mmu_notifiers */
2806 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2807
2808 old_page = pte_page(pte);
2809
04f2cbe3 2810retry_avoidcopy:
1e8f889b
DG
2811 /* If no-one else is actually using this page, avoid the copy
2812 * and just make the page writable */
37a2140d
JK
2813 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2814 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2815 set_huge_ptep_writable(vma, address, ptep);
83c54070 2816 return 0;
1e8f889b
DG
2817 }
2818
04f2cbe3
MG
2819 /*
2820 * If the process that created a MAP_PRIVATE mapping is about to
2821 * perform a COW due to a shared page count, attempt to satisfy
2822 * the allocation without using the existing reserves. The pagecache
2823 * page is used to determine if the reserve at this address was
2824 * consumed or not. If reserves were used, a partial faulted mapping
2825 * at the time of fork() could consume its reserves on COW instead
2826 * of the full address range.
2827 */
5944d011 2828 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
2829 old_page != pagecache_page)
2830 outside_reserve = 1;
2831
1e8f889b 2832 page_cache_get(old_page);
b76c8cfb 2833
ad4404a2
DB
2834 /*
2835 * Drop page table lock as buddy allocator may be called. It will
2836 * be acquired again before returning to the caller, as expected.
2837 */
cb900f41 2838 spin_unlock(ptl);
04f2cbe3 2839 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2840
2fc39cec 2841 if (IS_ERR(new_page)) {
04f2cbe3
MG
2842 /*
2843 * If a process owning a MAP_PRIVATE mapping fails to COW,
2844 * it is due to references held by a child and an insufficient
2845 * huge page pool. To guarantee the original mappers
2846 * reliability, unmap the page from child processes. The child
2847 * may get SIGKILLed if it later faults.
2848 */
2849 if (outside_reserve) {
ad4404a2 2850 page_cache_release(old_page);
04f2cbe3 2851 BUG_ON(huge_pte_none(pte));
2f4612af
DB
2852 unmap_ref_private(mm, vma, old_page, address);
2853 BUG_ON(huge_pte_none(pte));
2854 spin_lock(ptl);
2855 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2856 if (likely(ptep &&
2857 pte_same(huge_ptep_get(ptep), pte)))
2858 goto retry_avoidcopy;
2859 /*
2860 * race occurs while re-acquiring page table
2861 * lock, and our job is done.
2862 */
2863 return 0;
04f2cbe3
MG
2864 }
2865
ad4404a2
DB
2866 ret = (PTR_ERR(new_page) == -ENOMEM) ?
2867 VM_FAULT_OOM : VM_FAULT_SIGBUS;
2868 goto out_release_old;
1e8f889b
DG
2869 }
2870
0fe6e20b
NH
2871 /*
2872 * When the original hugepage is shared one, it does not have
2873 * anon_vma prepared.
2874 */
44e2aa93 2875 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
2876 ret = VM_FAULT_OOM;
2877 goto out_release_all;
44e2aa93 2878 }
0fe6e20b 2879
47ad8475
AA
2880 copy_user_huge_page(new_page, old_page, address, vma,
2881 pages_per_huge_page(h));
0ed361de 2882 __SetPageUptodate(new_page);
1e8f889b 2883
2ec74c3e
SG
2884 mmun_start = address & huge_page_mask(h);
2885 mmun_end = mmun_start + huge_page_size(h);
2886 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 2887
b76c8cfb 2888 /*
cb900f41 2889 * Retake the page table lock to check for racing updates
b76c8cfb
LW
2890 * before the page tables are altered
2891 */
cb900f41 2892 spin_lock(ptl);
a5516438 2893 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d 2894 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
2895 ClearPagePrivate(new_page);
2896
1e8f889b 2897 /* Break COW */
8fe627ec 2898 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2899 set_huge_pte_at(mm, address, ptep,
2900 make_huge_pte(vma, new_page, 1));
0fe6e20b 2901 page_remove_rmap(old_page);
cd67f0d2 2902 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2903 /* Make the old page be freed below */
2904 new_page = old_page;
2905 }
cb900f41 2906 spin_unlock(ptl);
2ec74c3e 2907 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 2908out_release_all:
1e8f889b 2909 page_cache_release(new_page);
ad4404a2 2910out_release_old:
1e8f889b 2911 page_cache_release(old_page);
8312034f 2912
ad4404a2
DB
2913 spin_lock(ptl); /* Caller expects lock to be held */
2914 return ret;
1e8f889b
DG
2915}
2916
04f2cbe3 2917/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2918static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2919 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2920{
2921 struct address_space *mapping;
e7c4b0bf 2922 pgoff_t idx;
04f2cbe3
MG
2923
2924 mapping = vma->vm_file->f_mapping;
a5516438 2925 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2926
2927 return find_lock_page(mapping, idx);
2928}
2929
3ae77f43
HD
2930/*
2931 * Return whether there is a pagecache page to back given address within VMA.
2932 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2933 */
2934static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2935 struct vm_area_struct *vma, unsigned long address)
2936{
2937 struct address_space *mapping;
2938 pgoff_t idx;
2939 struct page *page;
2940
2941 mapping = vma->vm_file->f_mapping;
2942 idx = vma_hugecache_offset(h, vma, address);
2943
2944 page = find_get_page(mapping, idx);
2945 if (page)
2946 put_page(page);
2947 return page != NULL;
2948}
2949
a1ed3dda 2950static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
2951 struct address_space *mapping, pgoff_t idx,
2952 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2953{
a5516438 2954 struct hstate *h = hstate_vma(vma);
ac9b9c66 2955 int ret = VM_FAULT_SIGBUS;
409eb8c2 2956 int anon_rmap = 0;
4c887265 2957 unsigned long size;
4c887265 2958 struct page *page;
1e8f889b 2959 pte_t new_pte;
cb900f41 2960 spinlock_t *ptl;
4c887265 2961
04f2cbe3
MG
2962 /*
2963 * Currently, we are forced to kill the process in the event the
2964 * original mapper has unmapped pages from the child due to a failed
25985edc 2965 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2966 */
2967 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2968 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2969 current->pid);
04f2cbe3
MG
2970 return ret;
2971 }
2972
4c887265
AL
2973 /*
2974 * Use page lock to guard against racing truncation
2975 * before we get page_table_lock.
2976 */
6bda666a
CL
2977retry:
2978 page = find_lock_page(mapping, idx);
2979 if (!page) {
a5516438 2980 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2981 if (idx >= size)
2982 goto out;
04f2cbe3 2983 page = alloc_huge_page(vma, address, 0);
2fc39cec 2984 if (IS_ERR(page)) {
76dcee75
AK
2985 ret = PTR_ERR(page);
2986 if (ret == -ENOMEM)
2987 ret = VM_FAULT_OOM;
2988 else
2989 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2990 goto out;
2991 }
47ad8475 2992 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2993 __SetPageUptodate(page);
ac9b9c66 2994
f83a275d 2995 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2996 int err;
45c682a6 2997 struct inode *inode = mapping->host;
6bda666a
CL
2998
2999 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3000 if (err) {
3001 put_page(page);
6bda666a
CL
3002 if (err == -EEXIST)
3003 goto retry;
3004 goto out;
3005 }
07443a85 3006 ClearPagePrivate(page);
45c682a6
KC
3007
3008 spin_lock(&inode->i_lock);
a5516438 3009 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 3010 spin_unlock(&inode->i_lock);
23be7468 3011 } else {
6bda666a 3012 lock_page(page);
0fe6e20b
NH
3013 if (unlikely(anon_vma_prepare(vma))) {
3014 ret = VM_FAULT_OOM;
3015 goto backout_unlocked;
3016 }
409eb8c2 3017 anon_rmap = 1;
23be7468 3018 }
0fe6e20b 3019 } else {
998b4382
NH
3020 /*
3021 * If memory error occurs between mmap() and fault, some process
3022 * don't have hwpoisoned swap entry for errored virtual address.
3023 * So we need to block hugepage fault by PG_hwpoison bit check.
3024 */
3025 if (unlikely(PageHWPoison(page))) {
32f84528 3026 ret = VM_FAULT_HWPOISON |
972dc4de 3027 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3028 goto backout_unlocked;
3029 }
6bda666a 3030 }
1e8f889b 3031
57303d80
AW
3032 /*
3033 * If we are going to COW a private mapping later, we examine the
3034 * pending reservations for this page now. This will ensure that
3035 * any allocations necessary to record that reservation occur outside
3036 * the spinlock.
3037 */
788c7df4 3038 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
3039 if (vma_needs_reservation(h, vma, address) < 0) {
3040 ret = VM_FAULT_OOM;
3041 goto backout_unlocked;
3042 }
57303d80 3043
cb900f41
KS
3044 ptl = huge_pte_lockptr(h, mm, ptep);
3045 spin_lock(ptl);
a5516438 3046 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3047 if (idx >= size)
3048 goto backout;
3049
83c54070 3050 ret = 0;
7f2e9525 3051 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3052 goto backout;
3053
07443a85
JK
3054 if (anon_rmap) {
3055 ClearPagePrivate(page);
409eb8c2 3056 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3057 } else
409eb8c2 3058 page_dup_rmap(page);
1e8f889b
DG
3059 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3060 && (vma->vm_flags & VM_SHARED)));
3061 set_huge_pte_at(mm, address, ptep, new_pte);
3062
788c7df4 3063 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3064 /* Optimization, do the COW without a second fault */
cb900f41 3065 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
3066 }
3067
cb900f41 3068 spin_unlock(ptl);
4c887265
AL
3069 unlock_page(page);
3070out:
ac9b9c66 3071 return ret;
4c887265
AL
3072
3073backout:
cb900f41 3074 spin_unlock(ptl);
2b26736c 3075backout_unlocked:
4c887265
AL
3076 unlock_page(page);
3077 put_page(page);
3078 goto out;
ac9b9c66
HD
3079}
3080
8382d914
DB
3081#ifdef CONFIG_SMP
3082static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3083 struct vm_area_struct *vma,
3084 struct address_space *mapping,
3085 pgoff_t idx, unsigned long address)
3086{
3087 unsigned long key[2];
3088 u32 hash;
3089
3090 if (vma->vm_flags & VM_SHARED) {
3091 key[0] = (unsigned long) mapping;
3092 key[1] = idx;
3093 } else {
3094 key[0] = (unsigned long) mm;
3095 key[1] = address >> huge_page_shift(h);
3096 }
3097
3098 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3099
3100 return hash & (num_fault_mutexes - 1);
3101}
3102#else
3103/*
3104 * For uniprocesor systems we always use a single mutex, so just
3105 * return 0 and avoid the hashing overhead.
3106 */
3107static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3108 struct vm_area_struct *vma,
3109 struct address_space *mapping,
3110 pgoff_t idx, unsigned long address)
3111{
3112 return 0;
3113}
3114#endif
3115
86e5216f 3116int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3117 unsigned long address, unsigned int flags)
86e5216f 3118{
8382d914 3119 pte_t *ptep, entry;
cb900f41 3120 spinlock_t *ptl;
1e8f889b 3121 int ret;
8382d914
DB
3122 u32 hash;
3123 pgoff_t idx;
0fe6e20b 3124 struct page *page = NULL;
57303d80 3125 struct page *pagecache_page = NULL;
a5516438 3126 struct hstate *h = hstate_vma(vma);
8382d914 3127 struct address_space *mapping;
86e5216f 3128
1e16a539
KH
3129 address &= huge_page_mask(h);
3130
fd6a03ed
NH
3131 ptep = huge_pte_offset(mm, address);
3132 if (ptep) {
3133 entry = huge_ptep_get(ptep);
290408d4 3134 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3135 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3136 return 0;
3137 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3138 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3139 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
3140 }
3141
a5516438 3142 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
3143 if (!ptep)
3144 return VM_FAULT_OOM;
3145
8382d914
DB
3146 mapping = vma->vm_file->f_mapping;
3147 idx = vma_hugecache_offset(h, vma, address);
3148
3935baa9
DG
3149 /*
3150 * Serialize hugepage allocation and instantiation, so that we don't
3151 * get spurious allocation failures if two CPUs race to instantiate
3152 * the same page in the page cache.
3153 */
8382d914
DB
3154 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3155 mutex_lock(&htlb_fault_mutex_table[hash]);
3156
7f2e9525
GS
3157 entry = huge_ptep_get(ptep);
3158 if (huge_pte_none(entry)) {
8382d914 3159 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3160 goto out_mutex;
3935baa9 3161 }
86e5216f 3162
83c54070 3163 ret = 0;
1e8f889b 3164
57303d80
AW
3165 /*
3166 * If we are going to COW the mapping later, we examine the pending
3167 * reservations for this page now. This will ensure that any
3168 * allocations necessary to record that reservation occur outside the
3169 * spinlock. For private mappings, we also lookup the pagecache
3170 * page now as it is used to determine if a reservation has been
3171 * consumed.
3172 */
106c992a 3173 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3174 if (vma_needs_reservation(h, vma, address) < 0) {
3175 ret = VM_FAULT_OOM;
b4d1d99f 3176 goto out_mutex;
2b26736c 3177 }
57303d80 3178
f83a275d 3179 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3180 pagecache_page = hugetlbfs_pagecache_page(h,
3181 vma, address);
3182 }
3183
56c9cfb1
NH
3184 /*
3185 * hugetlb_cow() requires page locks of pte_page(entry) and
3186 * pagecache_page, so here we need take the former one
3187 * when page != pagecache_page or !pagecache_page.
3188 * Note that locking order is always pagecache_page -> page,
3189 * so no worry about deadlock.
3190 */
3191 page = pte_page(entry);
66aebce7 3192 get_page(page);
56c9cfb1 3193 if (page != pagecache_page)
0fe6e20b 3194 lock_page(page);
0fe6e20b 3195
cb900f41
KS
3196 ptl = huge_pte_lockptr(h, mm, ptep);
3197 spin_lock(ptl);
1e8f889b 3198 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f 3199 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
cb900f41 3200 goto out_ptl;
b4d1d99f
DG
3201
3202
788c7df4 3203 if (flags & FAULT_FLAG_WRITE) {
106c992a 3204 if (!huge_pte_write(entry)) {
57303d80 3205 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41
KS
3206 pagecache_page, ptl);
3207 goto out_ptl;
b4d1d99f 3208 }
106c992a 3209 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3210 }
3211 entry = pte_mkyoung(entry);
788c7df4
HD
3212 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3213 flags & FAULT_FLAG_WRITE))
4b3073e1 3214 update_mmu_cache(vma, address, ptep);
b4d1d99f 3215
cb900f41
KS
3216out_ptl:
3217 spin_unlock(ptl);
57303d80
AW
3218
3219 if (pagecache_page) {
3220 unlock_page(pagecache_page);
3221 put_page(pagecache_page);
3222 }
1f64d69c
DN
3223 if (page != pagecache_page)
3224 unlock_page(page);
66aebce7 3225 put_page(page);
57303d80 3226
b4d1d99f 3227out_mutex:
8382d914 3228 mutex_unlock(&htlb_fault_mutex_table[hash]);
1e8f889b 3229 return ret;
86e5216f
AL
3230}
3231
28a35716
ML
3232long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3233 struct page **pages, struct vm_area_struct **vmas,
3234 unsigned long *position, unsigned long *nr_pages,
3235 long i, unsigned int flags)
63551ae0 3236{
d5d4b0aa
KC
3237 unsigned long pfn_offset;
3238 unsigned long vaddr = *position;
28a35716 3239 unsigned long remainder = *nr_pages;
a5516438 3240 struct hstate *h = hstate_vma(vma);
63551ae0 3241
63551ae0 3242 while (vaddr < vma->vm_end && remainder) {
4c887265 3243 pte_t *pte;
cb900f41 3244 spinlock_t *ptl = NULL;
2a15efc9 3245 int absent;
4c887265 3246 struct page *page;
63551ae0 3247
4c887265
AL
3248 /*
3249 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3250 * each hugepage. We have to make sure we get the
4c887265 3251 * first, for the page indexing below to work.
cb900f41
KS
3252 *
3253 * Note that page table lock is not held when pte is null.
4c887265 3254 */
a5516438 3255 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3256 if (pte)
3257 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3258 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3259
3260 /*
3261 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3262 * an error where there's an empty slot with no huge pagecache
3263 * to back it. This way, we avoid allocating a hugepage, and
3264 * the sparse dumpfile avoids allocating disk blocks, but its
3265 * huge holes still show up with zeroes where they need to be.
2a15efc9 3266 */
3ae77f43
HD
3267 if (absent && (flags & FOLL_DUMP) &&
3268 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3269 if (pte)
3270 spin_unlock(ptl);
2a15efc9
HD
3271 remainder = 0;
3272 break;
3273 }
63551ae0 3274
9cc3a5bd
NH
3275 /*
3276 * We need call hugetlb_fault for both hugepages under migration
3277 * (in which case hugetlb_fault waits for the migration,) and
3278 * hwpoisoned hugepages (in which case we need to prevent the
3279 * caller from accessing to them.) In order to do this, we use
3280 * here is_swap_pte instead of is_hugetlb_entry_migration and
3281 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3282 * both cases, and because we can't follow correct pages
3283 * directly from any kind of swap entries.
3284 */
3285 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3286 ((flags & FOLL_WRITE) &&
3287 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3288 int ret;
63551ae0 3289
cb900f41
KS
3290 if (pte)
3291 spin_unlock(ptl);
2a15efc9
HD
3292 ret = hugetlb_fault(mm, vma, vaddr,
3293 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3294 if (!(ret & VM_FAULT_ERROR))
4c887265 3295 continue;
63551ae0 3296
4c887265 3297 remainder = 0;
4c887265
AL
3298 break;
3299 }
3300
a5516438 3301 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3302 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3303same_page:
d6692183 3304 if (pages) {
2a15efc9 3305 pages[i] = mem_map_offset(page, pfn_offset);
a0368d4e 3306 get_page_foll(pages[i]);
d6692183 3307 }
63551ae0
DG
3308
3309 if (vmas)
3310 vmas[i] = vma;
3311
3312 vaddr += PAGE_SIZE;
d5d4b0aa 3313 ++pfn_offset;
63551ae0
DG
3314 --remainder;
3315 ++i;
d5d4b0aa 3316 if (vaddr < vma->vm_end && remainder &&
a5516438 3317 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
3318 /*
3319 * We use pfn_offset to avoid touching the pageframes
3320 * of this compound page.
3321 */
3322 goto same_page;
3323 }
cb900f41 3324 spin_unlock(ptl);
63551ae0 3325 }
28a35716 3326 *nr_pages = remainder;
63551ae0
DG
3327 *position = vaddr;
3328
2a15efc9 3329 return i ? i : -EFAULT;
63551ae0 3330}
8f860591 3331
7da4d641 3332unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3333 unsigned long address, unsigned long end, pgprot_t newprot)
3334{
3335 struct mm_struct *mm = vma->vm_mm;
3336 unsigned long start = address;
3337 pte_t *ptep;
3338 pte_t pte;
a5516438 3339 struct hstate *h = hstate_vma(vma);
7da4d641 3340 unsigned long pages = 0;
8f860591
ZY
3341
3342 BUG_ON(address >= end);
3343 flush_cache_range(vma, address, end);
3344
a5338093 3345 mmu_notifier_invalidate_range_start(mm, start, end);
3d48ae45 3346 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
a5516438 3347 for (; address < end; address += huge_page_size(h)) {
cb900f41 3348 spinlock_t *ptl;
8f860591
ZY
3349 ptep = huge_pte_offset(mm, address);
3350 if (!ptep)
3351 continue;
cb900f41 3352 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3353 if (huge_pmd_unshare(mm, &address, ptep)) {
3354 pages++;
cb900f41 3355 spin_unlock(ptl);
39dde65c 3356 continue;
7da4d641 3357 }
7f2e9525 3358 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3359 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3360 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3361 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3362 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3363 pages++;
8f860591 3364 }
cb900f41 3365 spin_unlock(ptl);
8f860591 3366 }
d833352a
MG
3367 /*
3368 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3369 * may have cleared our pud entry and done put_page on the page table:
3370 * once we release i_mmap_mutex, another task can do the final put_page
3371 * and that page table be reused and filled with junk.
3372 */
8f860591 3373 flush_tlb_range(vma, start, end);
d833352a 3374 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
a5338093 3375 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
3376
3377 return pages << h->order;
8f860591
ZY
3378}
3379
a1e78772
MG
3380int hugetlb_reserve_pages(struct inode *inode,
3381 long from, long to,
5a6fe125 3382 struct vm_area_struct *vma,
ca16d140 3383 vm_flags_t vm_flags)
e4e574b7 3384{
17c9d12e 3385 long ret, chg;
a5516438 3386 struct hstate *h = hstate_inode(inode);
90481622 3387 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 3388 struct resv_map *resv_map;
e4e574b7 3389
17c9d12e
MG
3390 /*
3391 * Only apply hugepage reservation if asked. At fault time, an
3392 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3393 * without using reserves
17c9d12e 3394 */
ca16d140 3395 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3396 return 0;
3397
a1e78772
MG
3398 /*
3399 * Shared mappings base their reservation on the number of pages that
3400 * are already allocated on behalf of the file. Private mappings need
3401 * to reserve the full area even if read-only as mprotect() may be
3402 * called to make the mapping read-write. Assume !vma is a shm mapping
3403 */
9119a41e 3404 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 3405 resv_map = inode_resv_map(inode);
9119a41e 3406
1406ec9b 3407 chg = region_chg(resv_map, from, to);
9119a41e
JK
3408
3409 } else {
3410 resv_map = resv_map_alloc();
17c9d12e
MG
3411 if (!resv_map)
3412 return -ENOMEM;
3413
a1e78772 3414 chg = to - from;
84afd99b 3415
17c9d12e
MG
3416 set_vma_resv_map(vma, resv_map);
3417 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3418 }
3419
c50ac050
DH
3420 if (chg < 0) {
3421 ret = chg;
3422 goto out_err;
3423 }
8a630112 3424
90481622 3425 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3426 if (hugepage_subpool_get_pages(spool, chg)) {
3427 ret = -ENOSPC;
3428 goto out_err;
3429 }
5a6fe125
MG
3430
3431 /*
17c9d12e 3432 * Check enough hugepages are available for the reservation.
90481622 3433 * Hand the pages back to the subpool if there are not
5a6fe125 3434 */
a5516438 3435 ret = hugetlb_acct_memory(h, chg);
68842c9b 3436 if (ret < 0) {
90481622 3437 hugepage_subpool_put_pages(spool, chg);
c50ac050 3438 goto out_err;
68842c9b 3439 }
17c9d12e
MG
3440
3441 /*
3442 * Account for the reservations made. Shared mappings record regions
3443 * that have reservations as they are shared by multiple VMAs.
3444 * When the last VMA disappears, the region map says how much
3445 * the reservation was and the page cache tells how much of
3446 * the reservation was consumed. Private mappings are per-VMA and
3447 * only the consumed reservations are tracked. When the VMA
3448 * disappears, the original reservation is the VMA size and the
3449 * consumed reservations are stored in the map. Hence, nothing
3450 * else has to be done for private mappings here
3451 */
f83a275d 3452 if (!vma || vma->vm_flags & VM_MAYSHARE)
1406ec9b 3453 region_add(resv_map, from, to);
a43a8c39 3454 return 0;
c50ac050 3455out_err:
f031dd27
JK
3456 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3457 kref_put(&resv_map->refs, resv_map_release);
c50ac050 3458 return ret;
a43a8c39
KC
3459}
3460
3461void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3462{
a5516438 3463 struct hstate *h = hstate_inode(inode);
4e35f483 3464 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 3465 long chg = 0;
90481622 3466 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6 3467
9119a41e 3468 if (resv_map)
1406ec9b 3469 chg = region_truncate(resv_map, offset);
45c682a6 3470 spin_lock(&inode->i_lock);
e4c6f8be 3471 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3472 spin_unlock(&inode->i_lock);
3473
90481622 3474 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3475 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3476}
93f70f90 3477
3212b535
SC
3478#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3479static unsigned long page_table_shareable(struct vm_area_struct *svma,
3480 struct vm_area_struct *vma,
3481 unsigned long addr, pgoff_t idx)
3482{
3483 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3484 svma->vm_start;
3485 unsigned long sbase = saddr & PUD_MASK;
3486 unsigned long s_end = sbase + PUD_SIZE;
3487
3488 /* Allow segments to share if only one is marked locked */
3489 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3490 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3491
3492 /*
3493 * match the virtual addresses, permission and the alignment of the
3494 * page table page.
3495 */
3496 if (pmd_index(addr) != pmd_index(saddr) ||
3497 vm_flags != svm_flags ||
3498 sbase < svma->vm_start || svma->vm_end < s_end)
3499 return 0;
3500
3501 return saddr;
3502}
3503
3504static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3505{
3506 unsigned long base = addr & PUD_MASK;
3507 unsigned long end = base + PUD_SIZE;
3508
3509 /*
3510 * check on proper vm_flags and page table alignment
3511 */
3512 if (vma->vm_flags & VM_MAYSHARE &&
3513 vma->vm_start <= base && end <= vma->vm_end)
3514 return 1;
3515 return 0;
3516}
3517
3518/*
3519 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3520 * and returns the corresponding pte. While this is not necessary for the
3521 * !shared pmd case because we can allocate the pmd later as well, it makes the
3522 * code much cleaner. pmd allocation is essential for the shared case because
3523 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3524 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3525 * bad pmd for sharing.
3526 */
3527pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3528{
3529 struct vm_area_struct *vma = find_vma(mm, addr);
3530 struct address_space *mapping = vma->vm_file->f_mapping;
3531 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3532 vma->vm_pgoff;
3533 struct vm_area_struct *svma;
3534 unsigned long saddr;
3535 pte_t *spte = NULL;
3536 pte_t *pte;
cb900f41 3537 spinlock_t *ptl;
3212b535
SC
3538
3539 if (!vma_shareable(vma, addr))
3540 return (pte_t *)pmd_alloc(mm, pud, addr);
3541
3542 mutex_lock(&mapping->i_mmap_mutex);
3543 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3544 if (svma == vma)
3545 continue;
3546
3547 saddr = page_table_shareable(svma, vma, addr, idx);
3548 if (saddr) {
3549 spte = huge_pte_offset(svma->vm_mm, saddr);
3550 if (spte) {
3551 get_page(virt_to_page(spte));
3552 break;
3553 }
3554 }
3555 }
3556
3557 if (!spte)
3558 goto out;
3559
cb900f41
KS
3560 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3561 spin_lock(ptl);
3212b535
SC
3562 if (pud_none(*pud))
3563 pud_populate(mm, pud,
3564 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3565 else
3566 put_page(virt_to_page(spte));
cb900f41 3567 spin_unlock(ptl);
3212b535
SC
3568out:
3569 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3570 mutex_unlock(&mapping->i_mmap_mutex);
3571 return pte;
3572}
3573
3574/*
3575 * unmap huge page backed by shared pte.
3576 *
3577 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3578 * indicated by page_count > 1, unmap is achieved by clearing pud and
3579 * decrementing the ref count. If count == 1, the pte page is not shared.
3580 *
cb900f41 3581 * called with page table lock held.
3212b535
SC
3582 *
3583 * returns: 1 successfully unmapped a shared pte page
3584 * 0 the underlying pte page is not shared, or it is the last user
3585 */
3586int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3587{
3588 pgd_t *pgd = pgd_offset(mm, *addr);
3589 pud_t *pud = pud_offset(pgd, *addr);
3590
3591 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3592 if (page_count(virt_to_page(ptep)) == 1)
3593 return 0;
3594
3595 pud_clear(pud);
3596 put_page(virt_to_page(ptep));
3597 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3598 return 1;
3599}
9e5fc74c
SC
3600#define want_pmd_share() (1)
3601#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3602pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3603{
3604 return NULL;
3605}
3606#define want_pmd_share() (0)
3212b535
SC
3607#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3608
9e5fc74c
SC
3609#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3610pte_t *huge_pte_alloc(struct mm_struct *mm,
3611 unsigned long addr, unsigned long sz)
3612{
3613 pgd_t *pgd;
3614 pud_t *pud;
3615 pte_t *pte = NULL;
3616
3617 pgd = pgd_offset(mm, addr);
3618 pud = pud_alloc(mm, pgd, addr);
3619 if (pud) {
3620 if (sz == PUD_SIZE) {
3621 pte = (pte_t *)pud;
3622 } else {
3623 BUG_ON(sz != PMD_SIZE);
3624 if (want_pmd_share() && pud_none(*pud))
3625 pte = huge_pmd_share(mm, addr, pud);
3626 else
3627 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3628 }
3629 }
3630 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3631
3632 return pte;
3633}
3634
3635pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3636{
3637 pgd_t *pgd;
3638 pud_t *pud;
3639 pmd_t *pmd = NULL;
3640
3641 pgd = pgd_offset(mm, addr);
3642 if (pgd_present(*pgd)) {
3643 pud = pud_offset(pgd, addr);
3644 if (pud_present(*pud)) {
3645 if (pud_huge(*pud))
3646 return (pte_t *)pud;
3647 pmd = pmd_offset(pud, addr);
3648 }
3649 }
3650 return (pte_t *) pmd;
3651}
3652
3653struct page *
3654follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3655 pmd_t *pmd, int write)
3656{
3657 struct page *page;
3658
3659 page = pte_page(*(pte_t *)pmd);
3660 if (page)
3661 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3662 return page;
3663}
3664
3665struct page *
3666follow_huge_pud(struct mm_struct *mm, unsigned long address,
3667 pud_t *pud, int write)
3668{
3669 struct page *page;
3670
3671 page = pte_page(*(pte_t *)pud);
3672 if (page)
3673 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3674 return page;
3675}
3676
3677#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3678
3679/* Can be overriden by architectures */
3b32123d 3680struct page * __weak
9e5fc74c
SC
3681follow_huge_pud(struct mm_struct *mm, unsigned long address,
3682 pud_t *pud, int write)
3683{
3684 BUG();
3685 return NULL;
3686}
3687
3688#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3689
d5bd9106
AK
3690#ifdef CONFIG_MEMORY_FAILURE
3691
6de2b1aa
NH
3692/* Should be called in hugetlb_lock */
3693static int is_hugepage_on_freelist(struct page *hpage)
3694{
3695 struct page *page;
3696 struct page *tmp;
3697 struct hstate *h = page_hstate(hpage);
3698 int nid = page_to_nid(hpage);
3699
3700 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3701 if (page == hpage)
3702 return 1;
3703 return 0;
3704}
3705
93f70f90
NH
3706/*
3707 * This function is called from memory failure code.
3708 * Assume the caller holds page lock of the head page.
3709 */
6de2b1aa 3710int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3711{
3712 struct hstate *h = page_hstate(hpage);
3713 int nid = page_to_nid(hpage);
6de2b1aa 3714 int ret = -EBUSY;
93f70f90
NH
3715
3716 spin_lock(&hugetlb_lock);
6de2b1aa 3717 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3718 /*
3719 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3720 * but dangling hpage->lru can trigger list-debug warnings
3721 * (this happens when we call unpoison_memory() on it),
3722 * so let it point to itself with list_del_init().
3723 */
3724 list_del_init(&hpage->lru);
8c6c2ecb 3725 set_page_refcounted(hpage);
6de2b1aa
NH
3726 h->free_huge_pages--;
3727 h->free_huge_pages_node[nid]--;
3728 ret = 0;
3729 }
93f70f90 3730 spin_unlock(&hugetlb_lock);
6de2b1aa 3731 return ret;
93f70f90 3732}
6de2b1aa 3733#endif
31caf665
NH
3734
3735bool isolate_huge_page(struct page *page, struct list_head *list)
3736{
309381fe 3737 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3738 if (!get_page_unless_zero(page))
3739 return false;
3740 spin_lock(&hugetlb_lock);
3741 list_move_tail(&page->lru, list);
3742 spin_unlock(&hugetlb_lock);
3743 return true;
3744}
3745
3746void putback_active_hugepage(struct page *page)
3747{
309381fe 3748 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3749 spin_lock(&hugetlb_lock);
3750 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3751 spin_unlock(&hugetlb_lock);
3752 put_page(page);
3753}
c8721bbb
NH
3754
3755bool is_hugepage_active(struct page *page)
3756{
309381fe 3757 VM_BUG_ON_PAGE(!PageHuge(page), page);
c8721bbb
NH
3758 /*
3759 * This function can be called for a tail page because the caller,
3760 * scan_movable_pages, scans through a given pfn-range which typically
3761 * covers one memory block. In systems using gigantic hugepage (1GB
3762 * for x86_64,) a hugepage is larger than a memory block, and we don't
3763 * support migrating such large hugepages for now, so return false
3764 * when called for tail pages.
3765 */
3766 if (PageTail(page))
3767 return false;
3768 /*
3769 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3770 * so we should return false for them.
3771 */
3772 if (unlikely(PageHWPoison(page)))
3773 return false;
3774 return page_count(page) > 0;
3775}