]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/hugetlb.c
kasan: report only the first error by default
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
174cd4b1 21#include <linux/sched/signal.h>
0fe6e20b 22#include <linux/rmap.h>
fd6a03ed
NH
23#include <linux/swap.h>
24#include <linux/swapops.h>
c8721bbb 25#include <linux/page-isolation.h>
8382d914 26#include <linux/jhash.h>
d6606683 27
63551ae0
DG
28#include <asm/page.h>
29#include <asm/pgtable.h>
24669e58 30#include <asm/tlb.h>
63551ae0 31
24669e58 32#include <linux/io.h>
63551ae0 33#include <linux/hugetlb.h>
9dd540e2 34#include <linux/hugetlb_cgroup.h>
9a305230 35#include <linux/node.h>
1a1aad8a 36#include <linux/userfaultfd_k.h>
7835e98b 37#include "internal.h"
1da177e4 38
753162cd 39int hugepages_treat_as_movable;
a5516438 40
c3f38a38 41int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
42unsigned int default_hstate_idx;
43struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
44/*
45 * Minimum page order among possible hugepage sizes, set to a proper value
46 * at boot time.
47 */
48static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 49
53ba51d2
JT
50__initdata LIST_HEAD(huge_boot_pages);
51
e5ff2159
AK
52/* for command line parsing */
53static struct hstate * __initdata parsed_hstate;
54static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 55static unsigned long __initdata default_hstate_size;
9fee021d 56static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 57
3935baa9 58/*
31caf665
NH
59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60 * free_huge_pages, and surplus_huge_pages.
3935baa9 61 */
c3f38a38 62DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 63
8382d914
DB
64/*
65 * Serializes faults on the same logical page. This is used to
66 * prevent spurious OOMs when the hugepage pool is fully utilized.
67 */
68static int num_fault_mutexes;
c672c7f2 69struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 70
7ca02d0a
MK
71/* Forward declaration */
72static int hugetlb_acct_memory(struct hstate *h, long delta);
73
90481622
DG
74static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75{
76 bool free = (spool->count == 0) && (spool->used_hpages == 0);
77
78 spin_unlock(&spool->lock);
79
80 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
81 * remain, give up any reservations mased on minimum size and
82 * free the subpool */
83 if (free) {
84 if (spool->min_hpages != -1)
85 hugetlb_acct_memory(spool->hstate,
86 -spool->min_hpages);
90481622 87 kfree(spool);
7ca02d0a 88 }
90481622
DG
89}
90
7ca02d0a
MK
91struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 long min_hpages)
90481622
DG
93{
94 struct hugepage_subpool *spool;
95
c6a91820 96 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
97 if (!spool)
98 return NULL;
99
100 spin_lock_init(&spool->lock);
101 spool->count = 1;
7ca02d0a
MK
102 spool->max_hpages = max_hpages;
103 spool->hstate = h;
104 spool->min_hpages = min_hpages;
105
106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 kfree(spool);
108 return NULL;
109 }
110 spool->rsv_hpages = min_hpages;
90481622
DG
111
112 return spool;
113}
114
115void hugepage_put_subpool(struct hugepage_subpool *spool)
116{
117 spin_lock(&spool->lock);
118 BUG_ON(!spool->count);
119 spool->count--;
120 unlock_or_release_subpool(spool);
121}
122
1c5ecae3
MK
123/*
124 * Subpool accounting for allocating and reserving pages.
125 * Return -ENOMEM if there are not enough resources to satisfy the
126 * the request. Otherwise, return the number of pages by which the
127 * global pools must be adjusted (upward). The returned value may
128 * only be different than the passed value (delta) in the case where
129 * a subpool minimum size must be manitained.
130 */
131static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
132 long delta)
133{
1c5ecae3 134 long ret = delta;
90481622
DG
135
136 if (!spool)
1c5ecae3 137 return ret;
90481622
DG
138
139 spin_lock(&spool->lock);
1c5ecae3
MK
140
141 if (spool->max_hpages != -1) { /* maximum size accounting */
142 if ((spool->used_hpages + delta) <= spool->max_hpages)
143 spool->used_hpages += delta;
144 else {
145 ret = -ENOMEM;
146 goto unlock_ret;
147 }
90481622 148 }
90481622 149
09a95e29
MK
150 /* minimum size accounting */
151 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
152 if (delta > spool->rsv_hpages) {
153 /*
154 * Asking for more reserves than those already taken on
155 * behalf of subpool. Return difference.
156 */
157 ret = delta - spool->rsv_hpages;
158 spool->rsv_hpages = 0;
159 } else {
160 ret = 0; /* reserves already accounted for */
161 spool->rsv_hpages -= delta;
162 }
163 }
164
165unlock_ret:
166 spin_unlock(&spool->lock);
90481622
DG
167 return ret;
168}
169
1c5ecae3
MK
170/*
171 * Subpool accounting for freeing and unreserving pages.
172 * Return the number of global page reservations that must be dropped.
173 * The return value may only be different than the passed value (delta)
174 * in the case where a subpool minimum size must be maintained.
175 */
176static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
177 long delta)
178{
1c5ecae3
MK
179 long ret = delta;
180
90481622 181 if (!spool)
1c5ecae3 182 return delta;
90481622
DG
183
184 spin_lock(&spool->lock);
1c5ecae3
MK
185
186 if (spool->max_hpages != -1) /* maximum size accounting */
187 spool->used_hpages -= delta;
188
09a95e29
MK
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
191 if (spool->rsv_hpages + delta <= spool->min_hpages)
192 ret = 0;
193 else
194 ret = spool->rsv_hpages + delta - spool->min_hpages;
195
196 spool->rsv_hpages += delta;
197 if (spool->rsv_hpages > spool->min_hpages)
198 spool->rsv_hpages = spool->min_hpages;
199 }
200
201 /*
202 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 * quota reference, free it now.
204 */
90481622 205 unlock_or_release_subpool(spool);
1c5ecae3
MK
206
207 return ret;
90481622
DG
208}
209
210static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211{
212 return HUGETLBFS_SB(inode->i_sb)->spool;
213}
214
215static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216{
496ad9aa 217 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
218}
219
96822904
AW
220/*
221 * Region tracking -- allows tracking of reservations and instantiated pages
222 * across the pages in a mapping.
84afd99b 223 *
1dd308a7
MK
224 * The region data structures are embedded into a resv_map and protected
225 * by a resv_map's lock. The set of regions within the resv_map represent
226 * reservations for huge pages, or huge pages that have already been
227 * instantiated within the map. The from and to elements are huge page
228 * indicies into the associated mapping. from indicates the starting index
229 * of the region. to represents the first index past the end of the region.
230 *
231 * For example, a file region structure with from == 0 and to == 4 represents
232 * four huge pages in a mapping. It is important to note that the to element
233 * represents the first element past the end of the region. This is used in
234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235 *
236 * Interval notation of the form [from, to) will be used to indicate that
237 * the endpoint from is inclusive and to is exclusive.
96822904
AW
238 */
239struct file_region {
240 struct list_head link;
241 long from;
242 long to;
243};
244
1dd308a7
MK
245/*
246 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
247 * map. In the normal case, existing regions will be expanded
248 * to accommodate the specified range. Sufficient regions should
249 * exist for expansion due to the previous call to region_chg
250 * with the same range. However, it is possible that region_del
251 * could have been called after region_chg and modifed the map
252 * in such a way that no region exists to be expanded. In this
253 * case, pull a region descriptor from the cache associated with
254 * the map and use that for the new range.
cf3ad20b
MK
255 *
256 * Return the number of new huge pages added to the map. This
257 * number is greater than or equal to zero.
1dd308a7 258 */
1406ec9b 259static long region_add(struct resv_map *resv, long f, long t)
96822904 260{
1406ec9b 261 struct list_head *head = &resv->regions;
96822904 262 struct file_region *rg, *nrg, *trg;
cf3ad20b 263 long add = 0;
96822904 264
7b24d861 265 spin_lock(&resv->lock);
96822904
AW
266 /* Locate the region we are either in or before. */
267 list_for_each_entry(rg, head, link)
268 if (f <= rg->to)
269 break;
270
5e911373
MK
271 /*
272 * If no region exists which can be expanded to include the
273 * specified range, the list must have been modified by an
274 * interleving call to region_del(). Pull a region descriptor
275 * from the cache and use it for this range.
276 */
277 if (&rg->link == head || t < rg->from) {
278 VM_BUG_ON(resv->region_cache_count <= 0);
279
280 resv->region_cache_count--;
281 nrg = list_first_entry(&resv->region_cache, struct file_region,
282 link);
283 list_del(&nrg->link);
284
285 nrg->from = f;
286 nrg->to = t;
287 list_add(&nrg->link, rg->link.prev);
288
289 add += t - f;
290 goto out_locked;
291 }
292
96822904
AW
293 /* Round our left edge to the current segment if it encloses us. */
294 if (f > rg->from)
295 f = rg->from;
296
297 /* Check for and consume any regions we now overlap with. */
298 nrg = rg;
299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 if (&rg->link == head)
301 break;
302 if (rg->from > t)
303 break;
304
305 /* If this area reaches higher then extend our area to
306 * include it completely. If this is not the first area
307 * which we intend to reuse, free it. */
308 if (rg->to > t)
309 t = rg->to;
310 if (rg != nrg) {
cf3ad20b
MK
311 /* Decrement return value by the deleted range.
312 * Another range will span this area so that by
313 * end of routine add will be >= zero
314 */
315 add -= (rg->to - rg->from);
96822904
AW
316 list_del(&rg->link);
317 kfree(rg);
318 }
319 }
cf3ad20b
MK
320
321 add += (nrg->from - f); /* Added to beginning of region */
96822904 322 nrg->from = f;
cf3ad20b 323 add += t - nrg->to; /* Added to end of region */
96822904 324 nrg->to = t;
cf3ad20b 325
5e911373
MK
326out_locked:
327 resv->adds_in_progress--;
7b24d861 328 spin_unlock(&resv->lock);
cf3ad20b
MK
329 VM_BUG_ON(add < 0);
330 return add;
96822904
AW
331}
332
1dd308a7
MK
333/*
334 * Examine the existing reserve map and determine how many
335 * huge pages in the specified range [f, t) are NOT currently
336 * represented. This routine is called before a subsequent
337 * call to region_add that will actually modify the reserve
338 * map to add the specified range [f, t). region_chg does
339 * not change the number of huge pages represented by the
340 * map. However, if the existing regions in the map can not
341 * be expanded to represent the new range, a new file_region
342 * structure is added to the map as a placeholder. This is
343 * so that the subsequent region_add call will have all the
344 * regions it needs and will not fail.
345 *
5e911373
MK
346 * Upon entry, region_chg will also examine the cache of region descriptors
347 * associated with the map. If there are not enough descriptors cached, one
348 * will be allocated for the in progress add operation.
349 *
350 * Returns the number of huge pages that need to be added to the existing
351 * reservation map for the range [f, t). This number is greater or equal to
352 * zero. -ENOMEM is returned if a new file_region structure or cache entry
353 * is needed and can not be allocated.
1dd308a7 354 */
1406ec9b 355static long region_chg(struct resv_map *resv, long f, long t)
96822904 356{
1406ec9b 357 struct list_head *head = &resv->regions;
7b24d861 358 struct file_region *rg, *nrg = NULL;
96822904
AW
359 long chg = 0;
360
7b24d861
DB
361retry:
362 spin_lock(&resv->lock);
5e911373
MK
363retry_locked:
364 resv->adds_in_progress++;
365
366 /*
367 * Check for sufficient descriptors in the cache to accommodate
368 * the number of in progress add operations.
369 */
370 if (resv->adds_in_progress > resv->region_cache_count) {
371 struct file_region *trg;
372
373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 /* Must drop lock to allocate a new descriptor. */
375 resv->adds_in_progress--;
376 spin_unlock(&resv->lock);
377
378 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
379 if (!trg) {
380 kfree(nrg);
5e911373 381 return -ENOMEM;
dbe409e4 382 }
5e911373
MK
383
384 spin_lock(&resv->lock);
385 list_add(&trg->link, &resv->region_cache);
386 resv->region_cache_count++;
387 goto retry_locked;
388 }
389
96822904
AW
390 /* Locate the region we are before or in. */
391 list_for_each_entry(rg, head, link)
392 if (f <= rg->to)
393 break;
394
395 /* If we are below the current region then a new region is required.
396 * Subtle, allocate a new region at the position but make it zero
397 * size such that we can guarantee to record the reservation. */
398 if (&rg->link == head || t < rg->from) {
7b24d861 399 if (!nrg) {
5e911373 400 resv->adds_in_progress--;
7b24d861
DB
401 spin_unlock(&resv->lock);
402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 if (!nrg)
404 return -ENOMEM;
405
406 nrg->from = f;
407 nrg->to = f;
408 INIT_LIST_HEAD(&nrg->link);
409 goto retry;
410 }
96822904 411
7b24d861
DB
412 list_add(&nrg->link, rg->link.prev);
413 chg = t - f;
414 goto out_nrg;
96822904
AW
415 }
416
417 /* Round our left edge to the current segment if it encloses us. */
418 if (f > rg->from)
419 f = rg->from;
420 chg = t - f;
421
422 /* Check for and consume any regions we now overlap with. */
423 list_for_each_entry(rg, rg->link.prev, link) {
424 if (&rg->link == head)
425 break;
426 if (rg->from > t)
7b24d861 427 goto out;
96822904 428
25985edc 429 /* We overlap with this area, if it extends further than
96822904
AW
430 * us then we must extend ourselves. Account for its
431 * existing reservation. */
432 if (rg->to > t) {
433 chg += rg->to - t;
434 t = rg->to;
435 }
436 chg -= rg->to - rg->from;
437 }
7b24d861
DB
438
439out:
440 spin_unlock(&resv->lock);
441 /* We already know we raced and no longer need the new region */
442 kfree(nrg);
443 return chg;
444out_nrg:
445 spin_unlock(&resv->lock);
96822904
AW
446 return chg;
447}
448
5e911373
MK
449/*
450 * Abort the in progress add operation. The adds_in_progress field
451 * of the resv_map keeps track of the operations in progress between
452 * calls to region_chg and region_add. Operations are sometimes
453 * aborted after the call to region_chg. In such cases, region_abort
454 * is called to decrement the adds_in_progress counter.
455 *
456 * NOTE: The range arguments [f, t) are not needed or used in this
457 * routine. They are kept to make reading the calling code easier as
458 * arguments will match the associated region_chg call.
459 */
460static void region_abort(struct resv_map *resv, long f, long t)
461{
462 spin_lock(&resv->lock);
463 VM_BUG_ON(!resv->region_cache_count);
464 resv->adds_in_progress--;
465 spin_unlock(&resv->lock);
466}
467
1dd308a7 468/*
feba16e2
MK
469 * Delete the specified range [f, t) from the reserve map. If the
470 * t parameter is LONG_MAX, this indicates that ALL regions after f
471 * should be deleted. Locate the regions which intersect [f, t)
472 * and either trim, delete or split the existing regions.
473 *
474 * Returns the number of huge pages deleted from the reserve map.
475 * In the normal case, the return value is zero or more. In the
476 * case where a region must be split, a new region descriptor must
477 * be allocated. If the allocation fails, -ENOMEM will be returned.
478 * NOTE: If the parameter t == LONG_MAX, then we will never split
479 * a region and possibly return -ENOMEM. Callers specifying
480 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 481 */
feba16e2 482static long region_del(struct resv_map *resv, long f, long t)
96822904 483{
1406ec9b 484 struct list_head *head = &resv->regions;
96822904 485 struct file_region *rg, *trg;
feba16e2
MK
486 struct file_region *nrg = NULL;
487 long del = 0;
96822904 488
feba16e2 489retry:
7b24d861 490 spin_lock(&resv->lock);
feba16e2 491 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
492 /*
493 * Skip regions before the range to be deleted. file_region
494 * ranges are normally of the form [from, to). However, there
495 * may be a "placeholder" entry in the map which is of the form
496 * (from, to) with from == to. Check for placeholder entries
497 * at the beginning of the range to be deleted.
498 */
499 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 500 continue;
dbe409e4 501
feba16e2 502 if (rg->from >= t)
96822904 503 break;
96822904 504
feba16e2
MK
505 if (f > rg->from && t < rg->to) { /* Must split region */
506 /*
507 * Check for an entry in the cache before dropping
508 * lock and attempting allocation.
509 */
510 if (!nrg &&
511 resv->region_cache_count > resv->adds_in_progress) {
512 nrg = list_first_entry(&resv->region_cache,
513 struct file_region,
514 link);
515 list_del(&nrg->link);
516 resv->region_cache_count--;
517 }
96822904 518
feba16e2
MK
519 if (!nrg) {
520 spin_unlock(&resv->lock);
521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 if (!nrg)
523 return -ENOMEM;
524 goto retry;
525 }
526
527 del += t - f;
528
529 /* New entry for end of split region */
530 nrg->from = t;
531 nrg->to = rg->to;
532 INIT_LIST_HEAD(&nrg->link);
533
534 /* Original entry is trimmed */
535 rg->to = f;
536
537 list_add(&nrg->link, &rg->link);
538 nrg = NULL;
96822904 539 break;
feba16e2
MK
540 }
541
542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 del += rg->to - rg->from;
544 list_del(&rg->link);
545 kfree(rg);
546 continue;
547 }
548
549 if (f <= rg->from) { /* Trim beginning of region */
550 del += t - rg->from;
551 rg->from = t;
552 } else { /* Trim end of region */
553 del += rg->to - f;
554 rg->to = f;
555 }
96822904 556 }
7b24d861 557
7b24d861 558 spin_unlock(&resv->lock);
feba16e2
MK
559 kfree(nrg);
560 return del;
96822904
AW
561}
562
b5cec28d
MK
563/*
564 * A rare out of memory error was encountered which prevented removal of
565 * the reserve map region for a page. The huge page itself was free'ed
566 * and removed from the page cache. This routine will adjust the subpool
567 * usage count, and the global reserve count if needed. By incrementing
568 * these counts, the reserve map entry which could not be deleted will
569 * appear as a "reserved" entry instead of simply dangling with incorrect
570 * counts.
571 */
72e2936c 572void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
573{
574 struct hugepage_subpool *spool = subpool_inode(inode);
575 long rsv_adjust;
576
577 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 578 if (rsv_adjust) {
b5cec28d
MK
579 struct hstate *h = hstate_inode(inode);
580
581 hugetlb_acct_memory(h, 1);
582 }
583}
584
1dd308a7
MK
585/*
586 * Count and return the number of huge pages in the reserve map
587 * that intersect with the range [f, t).
588 */
1406ec9b 589static long region_count(struct resv_map *resv, long f, long t)
84afd99b 590{
1406ec9b 591 struct list_head *head = &resv->regions;
84afd99b
AW
592 struct file_region *rg;
593 long chg = 0;
594
7b24d861 595 spin_lock(&resv->lock);
84afd99b
AW
596 /* Locate each segment we overlap with, and count that overlap. */
597 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
598 long seg_from;
599 long seg_to;
84afd99b
AW
600
601 if (rg->to <= f)
602 continue;
603 if (rg->from >= t)
604 break;
605
606 seg_from = max(rg->from, f);
607 seg_to = min(rg->to, t);
608
609 chg += seg_to - seg_from;
610 }
7b24d861 611 spin_unlock(&resv->lock);
84afd99b
AW
612
613 return chg;
614}
615
e7c4b0bf
AW
616/*
617 * Convert the address within this vma to the page offset within
618 * the mapping, in pagecache page units; huge pages here.
619 */
a5516438
AK
620static pgoff_t vma_hugecache_offset(struct hstate *h,
621 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 622{
a5516438
AK
623 return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
625}
626
0fe6e20b
NH
627pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 unsigned long address)
629{
630 return vma_hugecache_offset(hstate_vma(vma), vma, address);
631}
dee41079 632EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 633
08fba699
MG
634/*
635 * Return the size of the pages allocated when backing a VMA. In the majority
636 * cases this will be same size as used by the page table entries.
637 */
638unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639{
640 struct hstate *hstate;
641
642 if (!is_vm_hugetlb_page(vma))
643 return PAGE_SIZE;
644
645 hstate = hstate_vma(vma);
646
2415cf12 647 return 1UL << huge_page_shift(hstate);
08fba699 648}
f340ca0f 649EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 650
3340289d
MG
651/*
652 * Return the page size being used by the MMU to back a VMA. In the majority
653 * of cases, the page size used by the kernel matches the MMU size. On
654 * architectures where it differs, an architecture-specific version of this
655 * function is required.
656 */
657#ifndef vma_mmu_pagesize
658unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
659{
660 return vma_kernel_pagesize(vma);
661}
662#endif
663
84afd99b
AW
664/*
665 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
666 * bits of the reservation map pointer, which are always clear due to
667 * alignment.
668 */
669#define HPAGE_RESV_OWNER (1UL << 0)
670#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 671#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 672
a1e78772
MG
673/*
674 * These helpers are used to track how many pages are reserved for
675 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
676 * is guaranteed to have their future faults succeed.
677 *
678 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
679 * the reserve counters are updated with the hugetlb_lock held. It is safe
680 * to reset the VMA at fork() time as it is not in use yet and there is no
681 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
682 *
683 * The private mapping reservation is represented in a subtly different
684 * manner to a shared mapping. A shared mapping has a region map associated
685 * with the underlying file, this region map represents the backing file
686 * pages which have ever had a reservation assigned which this persists even
687 * after the page is instantiated. A private mapping has a region map
688 * associated with the original mmap which is attached to all VMAs which
689 * reference it, this region map represents those offsets which have consumed
690 * reservation ie. where pages have been instantiated.
a1e78772 691 */
e7c4b0bf
AW
692static unsigned long get_vma_private_data(struct vm_area_struct *vma)
693{
694 return (unsigned long)vma->vm_private_data;
695}
696
697static void set_vma_private_data(struct vm_area_struct *vma,
698 unsigned long value)
699{
700 vma->vm_private_data = (void *)value;
701}
702
9119a41e 703struct resv_map *resv_map_alloc(void)
84afd99b
AW
704{
705 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
706 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
707
708 if (!resv_map || !rg) {
709 kfree(resv_map);
710 kfree(rg);
84afd99b 711 return NULL;
5e911373 712 }
84afd99b
AW
713
714 kref_init(&resv_map->refs);
7b24d861 715 spin_lock_init(&resv_map->lock);
84afd99b
AW
716 INIT_LIST_HEAD(&resv_map->regions);
717
5e911373
MK
718 resv_map->adds_in_progress = 0;
719
720 INIT_LIST_HEAD(&resv_map->region_cache);
721 list_add(&rg->link, &resv_map->region_cache);
722 resv_map->region_cache_count = 1;
723
84afd99b
AW
724 return resv_map;
725}
726
9119a41e 727void resv_map_release(struct kref *ref)
84afd99b
AW
728{
729 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
730 struct list_head *head = &resv_map->region_cache;
731 struct file_region *rg, *trg;
84afd99b
AW
732
733 /* Clear out any active regions before we release the map. */
feba16e2 734 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
735
736 /* ... and any entries left in the cache */
737 list_for_each_entry_safe(rg, trg, head, link) {
738 list_del(&rg->link);
739 kfree(rg);
740 }
741
742 VM_BUG_ON(resv_map->adds_in_progress);
743
84afd99b
AW
744 kfree(resv_map);
745}
746
4e35f483
JK
747static inline struct resv_map *inode_resv_map(struct inode *inode)
748{
749 return inode->i_mapping->private_data;
750}
751
84afd99b 752static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 753{
81d1b09c 754 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
755 if (vma->vm_flags & VM_MAYSHARE) {
756 struct address_space *mapping = vma->vm_file->f_mapping;
757 struct inode *inode = mapping->host;
758
759 return inode_resv_map(inode);
760
761 } else {
84afd99b
AW
762 return (struct resv_map *)(get_vma_private_data(vma) &
763 ~HPAGE_RESV_MASK);
4e35f483 764 }
a1e78772
MG
765}
766
84afd99b 767static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 768{
81d1b09c
SL
769 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
770 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 771
84afd99b
AW
772 set_vma_private_data(vma, (get_vma_private_data(vma) &
773 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
774}
775
776static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
777{
81d1b09c
SL
778 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
779 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
780
781 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
782}
783
784static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
785{
81d1b09c 786 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
787
788 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
789}
790
04f2cbe3 791/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
792void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
793{
81d1b09c 794 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 795 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
796 vma->vm_private_data = (void *)0;
797}
798
799/* Returns true if the VMA has associated reserve pages */
559ec2f8 800static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 801{
af0ed73e
JK
802 if (vma->vm_flags & VM_NORESERVE) {
803 /*
804 * This address is already reserved by other process(chg == 0),
805 * so, we should decrement reserved count. Without decrementing,
806 * reserve count remains after releasing inode, because this
807 * allocated page will go into page cache and is regarded as
808 * coming from reserved pool in releasing step. Currently, we
809 * don't have any other solution to deal with this situation
810 * properly, so add work-around here.
811 */
812 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 813 return true;
af0ed73e 814 else
559ec2f8 815 return false;
af0ed73e 816 }
a63884e9
JK
817
818 /* Shared mappings always use reserves */
1fb1b0e9
MK
819 if (vma->vm_flags & VM_MAYSHARE) {
820 /*
821 * We know VM_NORESERVE is not set. Therefore, there SHOULD
822 * be a region map for all pages. The only situation where
823 * there is no region map is if a hole was punched via
824 * fallocate. In this case, there really are no reverves to
825 * use. This situation is indicated if chg != 0.
826 */
827 if (chg)
828 return false;
829 else
830 return true;
831 }
a63884e9
JK
832
833 /*
834 * Only the process that called mmap() has reserves for
835 * private mappings.
836 */
67961f9d
MK
837 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
838 /*
839 * Like the shared case above, a hole punch or truncate
840 * could have been performed on the private mapping.
841 * Examine the value of chg to determine if reserves
842 * actually exist or were previously consumed.
843 * Very Subtle - The value of chg comes from a previous
844 * call to vma_needs_reserves(). The reserve map for
845 * private mappings has different (opposite) semantics
846 * than that of shared mappings. vma_needs_reserves()
847 * has already taken this difference in semantics into
848 * account. Therefore, the meaning of chg is the same
849 * as in the shared case above. Code could easily be
850 * combined, but keeping it separate draws attention to
851 * subtle differences.
852 */
853 if (chg)
854 return false;
855 else
856 return true;
857 }
a63884e9 858
559ec2f8 859 return false;
a1e78772
MG
860}
861
a5516438 862static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
863{
864 int nid = page_to_nid(page);
0edaecfa 865 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
866 h->free_huge_pages++;
867 h->free_huge_pages_node[nid]++;
1da177e4
LT
868}
869
bf50bab2
NH
870static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
871{
872 struct page *page;
873
c8721bbb
NH
874 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
875 if (!is_migrate_isolate_page(page))
876 break;
877 /*
878 * if 'non-isolated free hugepage' not found on the list,
879 * the allocation fails.
880 */
881 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 882 return NULL;
0edaecfa 883 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 884 set_page_refcounted(page);
bf50bab2
NH
885 h->free_huge_pages--;
886 h->free_huge_pages_node[nid]--;
887 return page;
888}
889
86cdb465
NH
890/* Movability of hugepages depends on migration support. */
891static inline gfp_t htlb_alloc_mask(struct hstate *h)
892{
100873d7 893 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
894 return GFP_HIGHUSER_MOVABLE;
895 else
896 return GFP_HIGHUSER;
897}
898
a5516438
AK
899static struct page *dequeue_huge_page_vma(struct hstate *h,
900 struct vm_area_struct *vma,
af0ed73e
JK
901 unsigned long address, int avoid_reserve,
902 long chg)
1da177e4 903{
b1c12cbc 904 struct page *page = NULL;
480eccf9 905 struct mempolicy *mpol;
19770b32 906 nodemask_t *nodemask;
c0ff7453 907 struct zonelist *zonelist;
dd1a239f
MG
908 struct zone *zone;
909 struct zoneref *z;
cc9a6c87 910 unsigned int cpuset_mems_cookie;
1da177e4 911
a1e78772
MG
912 /*
913 * A child process with MAP_PRIVATE mappings created by their parent
914 * have no page reserves. This check ensures that reservations are
915 * not "stolen". The child may still get SIGKILLed
916 */
af0ed73e 917 if (!vma_has_reserves(vma, chg) &&
a5516438 918 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 919 goto err;
a1e78772 920
04f2cbe3 921 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 922 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 923 goto err;
04f2cbe3 924
9966c4bb 925retry_cpuset:
d26914d1 926 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 927 zonelist = huge_zonelist(vma, address,
86cdb465 928 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 929
19770b32
MG
930 for_each_zone_zonelist_nodemask(zone, z, zonelist,
931 MAX_NR_ZONES - 1, nodemask) {
344736f2 932 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
933 page = dequeue_huge_page_node(h, zone_to_nid(zone));
934 if (page) {
af0ed73e
JK
935 if (avoid_reserve)
936 break;
937 if (!vma_has_reserves(vma, chg))
938 break;
939
07443a85 940 SetPagePrivate(page);
af0ed73e 941 h->resv_huge_pages--;
bf50bab2
NH
942 break;
943 }
3abf7afd 944 }
1da177e4 945 }
cc9a6c87 946
52cd3b07 947 mpol_cond_put(mpol);
d26914d1 948 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 949 goto retry_cpuset;
1da177e4 950 return page;
cc9a6c87
MG
951
952err:
cc9a6c87 953 return NULL;
1da177e4
LT
954}
955
1cac6f2c
LC
956/*
957 * common helper functions for hstate_next_node_to_{alloc|free}.
958 * We may have allocated or freed a huge page based on a different
959 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
960 * be outside of *nodes_allowed. Ensure that we use an allowed
961 * node for alloc or free.
962 */
963static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
964{
0edaf86c 965 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
966 VM_BUG_ON(nid >= MAX_NUMNODES);
967
968 return nid;
969}
970
971static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
972{
973 if (!node_isset(nid, *nodes_allowed))
974 nid = next_node_allowed(nid, nodes_allowed);
975 return nid;
976}
977
978/*
979 * returns the previously saved node ["this node"] from which to
980 * allocate a persistent huge page for the pool and advance the
981 * next node from which to allocate, handling wrap at end of node
982 * mask.
983 */
984static int hstate_next_node_to_alloc(struct hstate *h,
985 nodemask_t *nodes_allowed)
986{
987 int nid;
988
989 VM_BUG_ON(!nodes_allowed);
990
991 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
992 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
993
994 return nid;
995}
996
997/*
998 * helper for free_pool_huge_page() - return the previously saved
999 * node ["this node"] from which to free a huge page. Advance the
1000 * next node id whether or not we find a free huge page to free so
1001 * that the next attempt to free addresses the next node.
1002 */
1003static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1004{
1005 int nid;
1006
1007 VM_BUG_ON(!nodes_allowed);
1008
1009 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1010 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1011
1012 return nid;
1013}
1014
1015#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1016 for (nr_nodes = nodes_weight(*mask); \
1017 nr_nodes > 0 && \
1018 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1019 nr_nodes--)
1020
1021#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1022 for (nr_nodes = nodes_weight(*mask); \
1023 nr_nodes > 0 && \
1024 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1025 nr_nodes--)
1026
461a7184 1027#if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
d08de8e2
GS
1028 ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1029 defined(CONFIG_CMA))
944d9fec 1030static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1031 unsigned int order)
944d9fec
LC
1032{
1033 int i;
1034 int nr_pages = 1 << order;
1035 struct page *p = page + 1;
1036
c8cc708a 1037 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1038 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1039 clear_compound_head(p);
944d9fec 1040 set_page_refcounted(p);
944d9fec
LC
1041 }
1042
1043 set_compound_order(page, 0);
1044 __ClearPageHead(page);
1045}
1046
d00181b9 1047static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1048{
1049 free_contig_range(page_to_pfn(page), 1 << order);
1050}
1051
1052static int __alloc_gigantic_page(unsigned long start_pfn,
1053 unsigned long nr_pages)
1054{
1055 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625
LS
1056 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1057 GFP_KERNEL);
944d9fec
LC
1058}
1059
f44b2dda
JK
1060static bool pfn_range_valid_gigantic(struct zone *z,
1061 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1062{
1063 unsigned long i, end_pfn = start_pfn + nr_pages;
1064 struct page *page;
1065
1066 for (i = start_pfn; i < end_pfn; i++) {
1067 if (!pfn_valid(i))
1068 return false;
1069
1070 page = pfn_to_page(i);
1071
f44b2dda
JK
1072 if (page_zone(page) != z)
1073 return false;
1074
944d9fec
LC
1075 if (PageReserved(page))
1076 return false;
1077
1078 if (page_count(page) > 0)
1079 return false;
1080
1081 if (PageHuge(page))
1082 return false;
1083 }
1084
1085 return true;
1086}
1087
1088static bool zone_spans_last_pfn(const struct zone *zone,
1089 unsigned long start_pfn, unsigned long nr_pages)
1090{
1091 unsigned long last_pfn = start_pfn + nr_pages - 1;
1092 return zone_spans_pfn(zone, last_pfn);
1093}
1094
d00181b9 1095static struct page *alloc_gigantic_page(int nid, unsigned int order)
944d9fec
LC
1096{
1097 unsigned long nr_pages = 1 << order;
1098 unsigned long ret, pfn, flags;
1099 struct zone *z;
1100
1101 z = NODE_DATA(nid)->node_zones;
1102 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1103 spin_lock_irqsave(&z->lock, flags);
1104
1105 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1106 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
f44b2dda 1107 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
944d9fec
LC
1108 /*
1109 * We release the zone lock here because
1110 * alloc_contig_range() will also lock the zone
1111 * at some point. If there's an allocation
1112 * spinning on this lock, it may win the race
1113 * and cause alloc_contig_range() to fail...
1114 */
1115 spin_unlock_irqrestore(&z->lock, flags);
1116 ret = __alloc_gigantic_page(pfn, nr_pages);
1117 if (!ret)
1118 return pfn_to_page(pfn);
1119 spin_lock_irqsave(&z->lock, flags);
1120 }
1121 pfn += nr_pages;
1122 }
1123
1124 spin_unlock_irqrestore(&z->lock, flags);
1125 }
1126
1127 return NULL;
1128}
1129
1130static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1131static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec
LC
1132
1133static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1134{
1135 struct page *page;
1136
1137 page = alloc_gigantic_page(nid, huge_page_order(h));
1138 if (page) {
1139 prep_compound_gigantic_page(page, huge_page_order(h));
1140 prep_new_huge_page(h, page, nid);
1141 }
1142
1143 return page;
1144}
1145
1146static int alloc_fresh_gigantic_page(struct hstate *h,
1147 nodemask_t *nodes_allowed)
1148{
1149 struct page *page = NULL;
1150 int nr_nodes, node;
1151
1152 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1153 page = alloc_fresh_gigantic_page_node(h, node);
1154 if (page)
1155 return 1;
1156 }
1157
1158 return 0;
1159}
1160
1161static inline bool gigantic_page_supported(void) { return true; }
1162#else
1163static inline bool gigantic_page_supported(void) { return false; }
d00181b9 1164static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1165static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1166 unsigned int order) { }
944d9fec
LC
1167static inline int alloc_fresh_gigantic_page(struct hstate *h,
1168 nodemask_t *nodes_allowed) { return 0; }
1169#endif
1170
a5516438 1171static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1172{
1173 int i;
a5516438 1174
944d9fec
LC
1175 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1176 return;
18229df5 1177
a5516438
AK
1178 h->nr_huge_pages--;
1179 h->nr_huge_pages_node[page_to_nid(page)]--;
1180 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1181 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1182 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1183 1 << PG_active | 1 << PG_private |
1184 1 << PG_writeback);
6af2acb6 1185 }
309381fe 1186 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1187 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1188 set_page_refcounted(page);
944d9fec
LC
1189 if (hstate_is_gigantic(h)) {
1190 destroy_compound_gigantic_page(page, huge_page_order(h));
1191 free_gigantic_page(page, huge_page_order(h));
1192 } else {
944d9fec
LC
1193 __free_pages(page, huge_page_order(h));
1194 }
6af2acb6
AL
1195}
1196
e5ff2159
AK
1197struct hstate *size_to_hstate(unsigned long size)
1198{
1199 struct hstate *h;
1200
1201 for_each_hstate(h) {
1202 if (huge_page_size(h) == size)
1203 return h;
1204 }
1205 return NULL;
1206}
1207
bcc54222
NH
1208/*
1209 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1210 * to hstate->hugepage_activelist.)
1211 *
1212 * This function can be called for tail pages, but never returns true for them.
1213 */
1214bool page_huge_active(struct page *page)
1215{
1216 VM_BUG_ON_PAGE(!PageHuge(page), page);
1217 return PageHead(page) && PagePrivate(&page[1]);
1218}
1219
1220/* never called for tail page */
1221static void set_page_huge_active(struct page *page)
1222{
1223 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1224 SetPagePrivate(&page[1]);
1225}
1226
1227static void clear_page_huge_active(struct page *page)
1228{
1229 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1230 ClearPagePrivate(&page[1]);
1231}
1232
8f1d26d0 1233void free_huge_page(struct page *page)
27a85ef1 1234{
a5516438
AK
1235 /*
1236 * Can't pass hstate in here because it is called from the
1237 * compound page destructor.
1238 */
e5ff2159 1239 struct hstate *h = page_hstate(page);
7893d1d5 1240 int nid = page_to_nid(page);
90481622
DG
1241 struct hugepage_subpool *spool =
1242 (struct hugepage_subpool *)page_private(page);
07443a85 1243 bool restore_reserve;
27a85ef1 1244
e5df70ab 1245 set_page_private(page, 0);
23be7468 1246 page->mapping = NULL;
b4330afb
MK
1247 VM_BUG_ON_PAGE(page_count(page), page);
1248 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1249 restore_reserve = PagePrivate(page);
16c794b4 1250 ClearPagePrivate(page);
27a85ef1 1251
1c5ecae3
MK
1252 /*
1253 * A return code of zero implies that the subpool will be under its
1254 * minimum size if the reservation is not restored after page is free.
1255 * Therefore, force restore_reserve operation.
1256 */
1257 if (hugepage_subpool_put_pages(spool, 1) == 0)
1258 restore_reserve = true;
1259
27a85ef1 1260 spin_lock(&hugetlb_lock);
bcc54222 1261 clear_page_huge_active(page);
6d76dcf4
AK
1262 hugetlb_cgroup_uncharge_page(hstate_index(h),
1263 pages_per_huge_page(h), page);
07443a85
JK
1264 if (restore_reserve)
1265 h->resv_huge_pages++;
1266
944d9fec 1267 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1268 /* remove the page from active list */
1269 list_del(&page->lru);
a5516438
AK
1270 update_and_free_page(h, page);
1271 h->surplus_huge_pages--;
1272 h->surplus_huge_pages_node[nid]--;
7893d1d5 1273 } else {
5d3a551c 1274 arch_clear_hugepage_flags(page);
a5516438 1275 enqueue_huge_page(h, page);
7893d1d5 1276 }
27a85ef1
DG
1277 spin_unlock(&hugetlb_lock);
1278}
1279
a5516438 1280static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1281{
0edaecfa 1282 INIT_LIST_HEAD(&page->lru);
f1e61557 1283 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1284 spin_lock(&hugetlb_lock);
9dd540e2 1285 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1286 h->nr_huge_pages++;
1287 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1288 spin_unlock(&hugetlb_lock);
1289 put_page(page); /* free it into the hugepage allocator */
1290}
1291
d00181b9 1292static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1293{
1294 int i;
1295 int nr_pages = 1 << order;
1296 struct page *p = page + 1;
1297
1298 /* we rely on prep_new_huge_page to set the destructor */
1299 set_compound_order(page, order);
ef5a22be 1300 __ClearPageReserved(page);
de09d31d 1301 __SetPageHead(page);
20a0307c 1302 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1303 /*
1304 * For gigantic hugepages allocated through bootmem at
1305 * boot, it's safer to be consistent with the not-gigantic
1306 * hugepages and clear the PG_reserved bit from all tail pages
1307 * too. Otherwse drivers using get_user_pages() to access tail
1308 * pages may get the reference counting wrong if they see
1309 * PG_reserved set on a tail page (despite the head page not
1310 * having PG_reserved set). Enforcing this consistency between
1311 * head and tail pages allows drivers to optimize away a check
1312 * on the head page when they need know if put_page() is needed
1313 * after get_user_pages().
1314 */
1315 __ClearPageReserved(p);
58a84aa9 1316 set_page_count(p, 0);
1d798ca3 1317 set_compound_head(p, page);
20a0307c 1318 }
b4330afb 1319 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1320}
1321
7795912c
AM
1322/*
1323 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1324 * transparent huge pages. See the PageTransHuge() documentation for more
1325 * details.
1326 */
20a0307c
WF
1327int PageHuge(struct page *page)
1328{
20a0307c
WF
1329 if (!PageCompound(page))
1330 return 0;
1331
1332 page = compound_head(page);
f1e61557 1333 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1334}
43131e14
NH
1335EXPORT_SYMBOL_GPL(PageHuge);
1336
27c73ae7
AA
1337/*
1338 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1339 * normal or transparent huge pages.
1340 */
1341int PageHeadHuge(struct page *page_head)
1342{
27c73ae7
AA
1343 if (!PageHead(page_head))
1344 return 0;
1345
758f66a2 1346 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1347}
27c73ae7 1348
13d60f4b
ZY
1349pgoff_t __basepage_index(struct page *page)
1350{
1351 struct page *page_head = compound_head(page);
1352 pgoff_t index = page_index(page_head);
1353 unsigned long compound_idx;
1354
1355 if (!PageHuge(page_head))
1356 return page_index(page);
1357
1358 if (compound_order(page_head) >= MAX_ORDER)
1359 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1360 else
1361 compound_idx = page - page_head;
1362
1363 return (index << compound_order(page_head)) + compound_idx;
1364}
1365
a5516438 1366static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1367{
1da177e4 1368 struct page *page;
f96efd58 1369
96db800f 1370 page = __alloc_pages_node(nid,
86cdb465 1371 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 1372 __GFP_REPEAT|__GFP_NOWARN,
a5516438 1373 huge_page_order(h));
1da177e4 1374 if (page) {
a5516438 1375 prep_new_huge_page(h, page, nid);
1da177e4 1376 }
63b4613c
NA
1377
1378 return page;
1379}
1380
b2261026
JK
1381static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1382{
1383 struct page *page;
1384 int nr_nodes, node;
1385 int ret = 0;
1386
1387 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1388 page = alloc_fresh_huge_page_node(h, node);
1389 if (page) {
1390 ret = 1;
1391 break;
1392 }
1393 }
1394
1395 if (ret)
1396 count_vm_event(HTLB_BUDDY_PGALLOC);
1397 else
1398 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1399
1400 return ret;
1401}
1402
e8c5c824
LS
1403/*
1404 * Free huge page from pool from next node to free.
1405 * Attempt to keep persistent huge pages more or less
1406 * balanced over allowed nodes.
1407 * Called with hugetlb_lock locked.
1408 */
6ae11b27
LS
1409static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1410 bool acct_surplus)
e8c5c824 1411{
b2261026 1412 int nr_nodes, node;
e8c5c824
LS
1413 int ret = 0;
1414
b2261026 1415 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1416 /*
1417 * If we're returning unused surplus pages, only examine
1418 * nodes with surplus pages.
1419 */
b2261026
JK
1420 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1421 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1422 struct page *page =
b2261026 1423 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1424 struct page, lru);
1425 list_del(&page->lru);
1426 h->free_huge_pages--;
b2261026 1427 h->free_huge_pages_node[node]--;
685f3457
LS
1428 if (acct_surplus) {
1429 h->surplus_huge_pages--;
b2261026 1430 h->surplus_huge_pages_node[node]--;
685f3457 1431 }
e8c5c824
LS
1432 update_and_free_page(h, page);
1433 ret = 1;
9a76db09 1434 break;
e8c5c824 1435 }
b2261026 1436 }
e8c5c824
LS
1437
1438 return ret;
1439}
1440
c8721bbb
NH
1441/*
1442 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b
GS
1443 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1444 * number of free hugepages would be reduced below the number of reserved
1445 * hugepages.
c8721bbb 1446 */
082d5b6b 1447static int dissolve_free_huge_page(struct page *page)
c8721bbb 1448{
082d5b6b
GS
1449 int rc = 0;
1450
c8721bbb
NH
1451 spin_lock(&hugetlb_lock);
1452 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1453 struct page *head = compound_head(page);
1454 struct hstate *h = page_hstate(head);
1455 int nid = page_to_nid(head);
082d5b6b
GS
1456 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1457 rc = -EBUSY;
1458 goto out;
1459 }
2247bb33 1460 list_del(&head->lru);
c8721bbb
NH
1461 h->free_huge_pages--;
1462 h->free_huge_pages_node[nid]--;
c1470b33 1463 h->max_huge_pages--;
2247bb33 1464 update_and_free_page(h, head);
c8721bbb 1465 }
082d5b6b 1466out:
c8721bbb 1467 spin_unlock(&hugetlb_lock);
082d5b6b 1468 return rc;
c8721bbb
NH
1469}
1470
1471/*
1472 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1473 * make specified memory blocks removable from the system.
2247bb33
GS
1474 * Note that this will dissolve a free gigantic hugepage completely, if any
1475 * part of it lies within the given range.
082d5b6b
GS
1476 * Also note that if dissolve_free_huge_page() returns with an error, all
1477 * free hugepages that were dissolved before that error are lost.
c8721bbb 1478 */
082d5b6b 1479int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1480{
c8721bbb 1481 unsigned long pfn;
eb03aa00 1482 struct page *page;
082d5b6b 1483 int rc = 0;
c8721bbb 1484
d0177639 1485 if (!hugepages_supported())
082d5b6b 1486 return rc;
d0177639 1487
eb03aa00
GS
1488 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1489 page = pfn_to_page(pfn);
1490 if (PageHuge(page) && !page_count(page)) {
1491 rc = dissolve_free_huge_page(page);
1492 if (rc)
1493 break;
1494 }
1495 }
082d5b6b
GS
1496
1497 return rc;
c8721bbb
NH
1498}
1499
099730d6
DH
1500/*
1501 * There are 3 ways this can get called:
1502 * 1. With vma+addr: we use the VMA's memory policy
1503 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1504 * page from any node, and let the buddy allocator itself figure
1505 * it out.
1506 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1507 * strictly from 'nid'
1508 */
1509static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1510 struct vm_area_struct *vma, unsigned long addr, int nid)
1511{
1512 int order = huge_page_order(h);
1513 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1514 unsigned int cpuset_mems_cookie;
1515
1516 /*
1517 * We need a VMA to get a memory policy. If we do not
e0ec90ee
DH
1518 * have one, we use the 'nid' argument.
1519 *
1520 * The mempolicy stuff below has some non-inlined bits
1521 * and calls ->vm_ops. That makes it hard to optimize at
1522 * compile-time, even when NUMA is off and it does
1523 * nothing. This helps the compiler optimize it out.
099730d6 1524 */
e0ec90ee 1525 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
099730d6
DH
1526 /*
1527 * If a specific node is requested, make sure to
1528 * get memory from there, but only when a node
1529 * is explicitly specified.
1530 */
1531 if (nid != NUMA_NO_NODE)
1532 gfp |= __GFP_THISNODE;
1533 /*
1534 * Make sure to call something that can handle
1535 * nid=NUMA_NO_NODE
1536 */
1537 return alloc_pages_node(nid, gfp, order);
1538 }
1539
1540 /*
1541 * OK, so we have a VMA. Fetch the mempolicy and try to
e0ec90ee
DH
1542 * allocate a huge page with it. We will only reach this
1543 * when CONFIG_NUMA=y.
099730d6
DH
1544 */
1545 do {
1546 struct page *page;
1547 struct mempolicy *mpol;
1548 struct zonelist *zl;
1549 nodemask_t *nodemask;
1550
1551 cpuset_mems_cookie = read_mems_allowed_begin();
1552 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1553 mpol_cond_put(mpol);
1554 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1555 if (page)
1556 return page;
1557 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1558
1559 return NULL;
1560}
1561
1562/*
1563 * There are two ways to allocate a huge page:
1564 * 1. When you have a VMA and an address (like a fault)
1565 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1566 *
1567 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1568 * this case which signifies that the allocation should be done with
1569 * respect for the VMA's memory policy.
1570 *
1571 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1572 * implies that memory policies will not be taken in to account.
1573 */
1574static struct page *__alloc_buddy_huge_page(struct hstate *h,
1575 struct vm_area_struct *vma, unsigned long addr, int nid)
7893d1d5
AL
1576{
1577 struct page *page;
bf50bab2 1578 unsigned int r_nid;
7893d1d5 1579
bae7f4ae 1580 if (hstate_is_gigantic(h))
aa888a74
AK
1581 return NULL;
1582
099730d6
DH
1583 /*
1584 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1585 * This makes sure the caller is picking _one_ of the modes with which
1586 * we can call this function, not both.
1587 */
1588 if (vma || (addr != -1)) {
e0ec90ee
DH
1589 VM_WARN_ON_ONCE(addr == -1);
1590 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
099730d6 1591 }
d1c3fb1f
NA
1592 /*
1593 * Assume we will successfully allocate the surplus page to
1594 * prevent racing processes from causing the surplus to exceed
1595 * overcommit
1596 *
1597 * This however introduces a different race, where a process B
1598 * tries to grow the static hugepage pool while alloc_pages() is
1599 * called by process A. B will only examine the per-node
1600 * counters in determining if surplus huge pages can be
1601 * converted to normal huge pages in adjust_pool_surplus(). A
1602 * won't be able to increment the per-node counter, until the
1603 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1604 * no more huge pages can be converted from surplus to normal
1605 * state (and doesn't try to convert again). Thus, we have a
1606 * case where a surplus huge page exists, the pool is grown, and
1607 * the surplus huge page still exists after, even though it
1608 * should just have been converted to a normal huge page. This
1609 * does not leak memory, though, as the hugepage will be freed
1610 * once it is out of use. It also does not allow the counters to
1611 * go out of whack in adjust_pool_surplus() as we don't modify
1612 * the node values until we've gotten the hugepage and only the
1613 * per-node value is checked there.
1614 */
1615 spin_lock(&hugetlb_lock);
a5516438 1616 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1617 spin_unlock(&hugetlb_lock);
1618 return NULL;
1619 } else {
a5516438
AK
1620 h->nr_huge_pages++;
1621 h->surplus_huge_pages++;
d1c3fb1f
NA
1622 }
1623 spin_unlock(&hugetlb_lock);
1624
099730d6 1625 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
d1c3fb1f
NA
1626
1627 spin_lock(&hugetlb_lock);
7893d1d5 1628 if (page) {
0edaecfa 1629 INIT_LIST_HEAD(&page->lru);
bf50bab2 1630 r_nid = page_to_nid(page);
f1e61557 1631 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1632 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1633 /*
1634 * We incremented the global counters already
1635 */
bf50bab2
NH
1636 h->nr_huge_pages_node[r_nid]++;
1637 h->surplus_huge_pages_node[r_nid]++;
3b116300 1638 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1639 } else {
a5516438
AK
1640 h->nr_huge_pages--;
1641 h->surplus_huge_pages--;
3b116300 1642 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1643 }
d1c3fb1f 1644 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1645
1646 return page;
1647}
1648
099730d6
DH
1649/*
1650 * Allocate a huge page from 'nid'. Note, 'nid' may be
1651 * NUMA_NO_NODE, which means that it may be allocated
1652 * anywhere.
1653 */
e0ec90ee 1654static
099730d6
DH
1655struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1656{
1657 unsigned long addr = -1;
1658
1659 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1660}
1661
1662/*
1663 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1664 */
e0ec90ee 1665static
099730d6
DH
1666struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1667 struct vm_area_struct *vma, unsigned long addr)
1668{
1669 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1670}
1671
bf50bab2
NH
1672/*
1673 * This allocation function is useful in the context where vma is irrelevant.
1674 * E.g. soft-offlining uses this function because it only cares physical
1675 * address of error page.
1676 */
1677struct page *alloc_huge_page_node(struct hstate *h, int nid)
1678{
4ef91848 1679 struct page *page = NULL;
bf50bab2
NH
1680
1681 spin_lock(&hugetlb_lock);
4ef91848
JK
1682 if (h->free_huge_pages - h->resv_huge_pages > 0)
1683 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1684 spin_unlock(&hugetlb_lock);
1685
94ae8ba7 1686 if (!page)
099730d6 1687 page = __alloc_buddy_huge_page_no_mpol(h, nid);
bf50bab2
NH
1688
1689 return page;
1690}
1691
e4e574b7 1692/*
25985edc 1693 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1694 * of size 'delta'.
1695 */
a5516438 1696static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1697{
1698 struct list_head surplus_list;
1699 struct page *page, *tmp;
1700 int ret, i;
1701 int needed, allocated;
28073b02 1702 bool alloc_ok = true;
e4e574b7 1703
a5516438 1704 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1705 if (needed <= 0) {
a5516438 1706 h->resv_huge_pages += delta;
e4e574b7 1707 return 0;
ac09b3a1 1708 }
e4e574b7
AL
1709
1710 allocated = 0;
1711 INIT_LIST_HEAD(&surplus_list);
1712
1713 ret = -ENOMEM;
1714retry:
1715 spin_unlock(&hugetlb_lock);
1716 for (i = 0; i < needed; i++) {
099730d6 1717 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
28073b02
HD
1718 if (!page) {
1719 alloc_ok = false;
1720 break;
1721 }
e4e574b7
AL
1722 list_add(&page->lru, &surplus_list);
1723 }
28073b02 1724 allocated += i;
e4e574b7
AL
1725
1726 /*
1727 * After retaking hugetlb_lock, we need to recalculate 'needed'
1728 * because either resv_huge_pages or free_huge_pages may have changed.
1729 */
1730 spin_lock(&hugetlb_lock);
a5516438
AK
1731 needed = (h->resv_huge_pages + delta) -
1732 (h->free_huge_pages + allocated);
28073b02
HD
1733 if (needed > 0) {
1734 if (alloc_ok)
1735 goto retry;
1736 /*
1737 * We were not able to allocate enough pages to
1738 * satisfy the entire reservation so we free what
1739 * we've allocated so far.
1740 */
1741 goto free;
1742 }
e4e574b7
AL
1743 /*
1744 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1745 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1746 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1747 * allocator. Commit the entire reservation here to prevent another
1748 * process from stealing the pages as they are added to the pool but
1749 * before they are reserved.
e4e574b7
AL
1750 */
1751 needed += allocated;
a5516438 1752 h->resv_huge_pages += delta;
e4e574b7 1753 ret = 0;
a9869b83 1754
19fc3f0a 1755 /* Free the needed pages to the hugetlb pool */
e4e574b7 1756 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1757 if ((--needed) < 0)
1758 break;
a9869b83
NH
1759 /*
1760 * This page is now managed by the hugetlb allocator and has
1761 * no users -- drop the buddy allocator's reference.
1762 */
1763 put_page_testzero(page);
309381fe 1764 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1765 enqueue_huge_page(h, page);
19fc3f0a 1766 }
28073b02 1767free:
b0365c8d 1768 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1769
1770 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1771 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1772 put_page(page);
a9869b83 1773 spin_lock(&hugetlb_lock);
e4e574b7
AL
1774
1775 return ret;
1776}
1777
1778/*
e5bbc8a6
MK
1779 * This routine has two main purposes:
1780 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1781 * in unused_resv_pages. This corresponds to the prior adjustments made
1782 * to the associated reservation map.
1783 * 2) Free any unused surplus pages that may have been allocated to satisfy
1784 * the reservation. As many as unused_resv_pages may be freed.
1785 *
1786 * Called with hugetlb_lock held. However, the lock could be dropped (and
1787 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1788 * we must make sure nobody else can claim pages we are in the process of
1789 * freeing. Do this by ensuring resv_huge_page always is greater than the
1790 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1791 */
a5516438
AK
1792static void return_unused_surplus_pages(struct hstate *h,
1793 unsigned long unused_resv_pages)
e4e574b7 1794{
e4e574b7
AL
1795 unsigned long nr_pages;
1796
aa888a74 1797 /* Cannot return gigantic pages currently */
bae7f4ae 1798 if (hstate_is_gigantic(h))
e5bbc8a6 1799 goto out;
aa888a74 1800
e5bbc8a6
MK
1801 /*
1802 * Part (or even all) of the reservation could have been backed
1803 * by pre-allocated pages. Only free surplus pages.
1804 */
a5516438 1805 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1806
685f3457
LS
1807 /*
1808 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1809 * evenly across all nodes with memory. Iterate across these nodes
1810 * until we can no longer free unreserved surplus pages. This occurs
1811 * when the nodes with surplus pages have no free pages.
1812 * free_pool_huge_page() will balance the the freed pages across the
1813 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1814 *
1815 * Note that we decrement resv_huge_pages as we free the pages. If
1816 * we drop the lock, resv_huge_pages will still be sufficiently large
1817 * to cover subsequent pages we may free.
685f3457
LS
1818 */
1819 while (nr_pages--) {
e5bbc8a6
MK
1820 h->resv_huge_pages--;
1821 unused_resv_pages--;
8cebfcd0 1822 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1823 goto out;
7848a4bf 1824 cond_resched_lock(&hugetlb_lock);
e4e574b7 1825 }
e5bbc8a6
MK
1826
1827out:
1828 /* Fully uncommit the reservation */
1829 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1830}
1831
5e911373 1832
c37f9fb1 1833/*
feba16e2 1834 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1835 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1836 *
1837 * vma_needs_reservation is called to determine if the huge page at addr
1838 * within the vma has an associated reservation. If a reservation is
1839 * needed, the value 1 is returned. The caller is then responsible for
1840 * managing the global reservation and subpool usage counts. After
1841 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1842 * to add the page to the reservation map. If the page allocation fails,
1843 * the reservation must be ended instead of committed. vma_end_reservation
1844 * is called in such cases.
cf3ad20b
MK
1845 *
1846 * In the normal case, vma_commit_reservation returns the same value
1847 * as the preceding vma_needs_reservation call. The only time this
1848 * is not the case is if a reserve map was changed between calls. It
1849 * is the responsibility of the caller to notice the difference and
1850 * take appropriate action.
96b96a96
MK
1851 *
1852 * vma_add_reservation is used in error paths where a reservation must
1853 * be restored when a newly allocated huge page must be freed. It is
1854 * to be called after calling vma_needs_reservation to determine if a
1855 * reservation exists.
c37f9fb1 1856 */
5e911373
MK
1857enum vma_resv_mode {
1858 VMA_NEEDS_RESV,
1859 VMA_COMMIT_RESV,
feba16e2 1860 VMA_END_RESV,
96b96a96 1861 VMA_ADD_RESV,
5e911373 1862};
cf3ad20b
MK
1863static long __vma_reservation_common(struct hstate *h,
1864 struct vm_area_struct *vma, unsigned long addr,
5e911373 1865 enum vma_resv_mode mode)
c37f9fb1 1866{
4e35f483
JK
1867 struct resv_map *resv;
1868 pgoff_t idx;
cf3ad20b 1869 long ret;
c37f9fb1 1870
4e35f483
JK
1871 resv = vma_resv_map(vma);
1872 if (!resv)
84afd99b 1873 return 1;
c37f9fb1 1874
4e35f483 1875 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1876 switch (mode) {
1877 case VMA_NEEDS_RESV:
cf3ad20b 1878 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1879 break;
1880 case VMA_COMMIT_RESV:
1881 ret = region_add(resv, idx, idx + 1);
1882 break;
feba16e2 1883 case VMA_END_RESV:
5e911373
MK
1884 region_abort(resv, idx, idx + 1);
1885 ret = 0;
1886 break;
96b96a96
MK
1887 case VMA_ADD_RESV:
1888 if (vma->vm_flags & VM_MAYSHARE)
1889 ret = region_add(resv, idx, idx + 1);
1890 else {
1891 region_abort(resv, idx, idx + 1);
1892 ret = region_del(resv, idx, idx + 1);
1893 }
1894 break;
5e911373
MK
1895 default:
1896 BUG();
1897 }
84afd99b 1898
4e35f483 1899 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1900 return ret;
67961f9d
MK
1901 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1902 /*
1903 * In most cases, reserves always exist for private mappings.
1904 * However, a file associated with mapping could have been
1905 * hole punched or truncated after reserves were consumed.
1906 * As subsequent fault on such a range will not use reserves.
1907 * Subtle - The reserve map for private mappings has the
1908 * opposite meaning than that of shared mappings. If NO
1909 * entry is in the reserve map, it means a reservation exists.
1910 * If an entry exists in the reserve map, it means the
1911 * reservation has already been consumed. As a result, the
1912 * return value of this routine is the opposite of the
1913 * value returned from reserve map manipulation routines above.
1914 */
1915 if (ret)
1916 return 0;
1917 else
1918 return 1;
1919 }
4e35f483 1920 else
cf3ad20b 1921 return ret < 0 ? ret : 0;
c37f9fb1 1922}
cf3ad20b
MK
1923
1924static long vma_needs_reservation(struct hstate *h,
a5516438 1925 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1926{
5e911373 1927 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1928}
84afd99b 1929
cf3ad20b
MK
1930static long vma_commit_reservation(struct hstate *h,
1931 struct vm_area_struct *vma, unsigned long addr)
1932{
5e911373
MK
1933 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1934}
1935
feba16e2 1936static void vma_end_reservation(struct hstate *h,
5e911373
MK
1937 struct vm_area_struct *vma, unsigned long addr)
1938{
feba16e2 1939 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1940}
1941
96b96a96
MK
1942static long vma_add_reservation(struct hstate *h,
1943 struct vm_area_struct *vma, unsigned long addr)
1944{
1945 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1946}
1947
1948/*
1949 * This routine is called to restore a reservation on error paths. In the
1950 * specific error paths, a huge page was allocated (via alloc_huge_page)
1951 * and is about to be freed. If a reservation for the page existed,
1952 * alloc_huge_page would have consumed the reservation and set PagePrivate
1953 * in the newly allocated page. When the page is freed via free_huge_page,
1954 * the global reservation count will be incremented if PagePrivate is set.
1955 * However, free_huge_page can not adjust the reserve map. Adjust the
1956 * reserve map here to be consistent with global reserve count adjustments
1957 * to be made by free_huge_page.
1958 */
1959static void restore_reserve_on_error(struct hstate *h,
1960 struct vm_area_struct *vma, unsigned long address,
1961 struct page *page)
1962{
1963 if (unlikely(PagePrivate(page))) {
1964 long rc = vma_needs_reservation(h, vma, address);
1965
1966 if (unlikely(rc < 0)) {
1967 /*
1968 * Rare out of memory condition in reserve map
1969 * manipulation. Clear PagePrivate so that
1970 * global reserve count will not be incremented
1971 * by free_huge_page. This will make it appear
1972 * as though the reservation for this page was
1973 * consumed. This may prevent the task from
1974 * faulting in the page at a later time. This
1975 * is better than inconsistent global huge page
1976 * accounting of reserve counts.
1977 */
1978 ClearPagePrivate(page);
1979 } else if (rc) {
1980 rc = vma_add_reservation(h, vma, address);
1981 if (unlikely(rc < 0))
1982 /*
1983 * See above comment about rare out of
1984 * memory condition.
1985 */
1986 ClearPagePrivate(page);
1987 } else
1988 vma_end_reservation(h, vma, address);
1989 }
1990}
1991
70c3547e 1992struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1993 unsigned long addr, int avoid_reserve)
1da177e4 1994{
90481622 1995 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1996 struct hstate *h = hstate_vma(vma);
348ea204 1997 struct page *page;
d85f69b0
MK
1998 long map_chg, map_commit;
1999 long gbl_chg;
6d76dcf4
AK
2000 int ret, idx;
2001 struct hugetlb_cgroup *h_cg;
a1e78772 2002
6d76dcf4 2003 idx = hstate_index(h);
a1e78772 2004 /*
d85f69b0
MK
2005 * Examine the region/reserve map to determine if the process
2006 * has a reservation for the page to be allocated. A return
2007 * code of zero indicates a reservation exists (no change).
a1e78772 2008 */
d85f69b0
MK
2009 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2010 if (map_chg < 0)
76dcee75 2011 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2012
2013 /*
2014 * Processes that did not create the mapping will have no
2015 * reserves as indicated by the region/reserve map. Check
2016 * that the allocation will not exceed the subpool limit.
2017 * Allocations for MAP_NORESERVE mappings also need to be
2018 * checked against any subpool limit.
2019 */
2020 if (map_chg || avoid_reserve) {
2021 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2022 if (gbl_chg < 0) {
feba16e2 2023 vma_end_reservation(h, vma, addr);
76dcee75 2024 return ERR_PTR(-ENOSPC);
5e911373 2025 }
1da177e4 2026
d85f69b0
MK
2027 /*
2028 * Even though there was no reservation in the region/reserve
2029 * map, there could be reservations associated with the
2030 * subpool that can be used. This would be indicated if the
2031 * return value of hugepage_subpool_get_pages() is zero.
2032 * However, if avoid_reserve is specified we still avoid even
2033 * the subpool reservations.
2034 */
2035 if (avoid_reserve)
2036 gbl_chg = 1;
2037 }
2038
6d76dcf4 2039 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2040 if (ret)
2041 goto out_subpool_put;
2042
1da177e4 2043 spin_lock(&hugetlb_lock);
d85f69b0
MK
2044 /*
2045 * glb_chg is passed to indicate whether or not a page must be taken
2046 * from the global free pool (global change). gbl_chg == 0 indicates
2047 * a reservation exists for the allocation.
2048 */
2049 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2050 if (!page) {
94ae8ba7 2051 spin_unlock(&hugetlb_lock);
099730d6 2052 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2053 if (!page)
2054 goto out_uncharge_cgroup;
a88c7695
NH
2055 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2056 SetPagePrivate(page);
2057 h->resv_huge_pages--;
2058 }
79dbb236
AK
2059 spin_lock(&hugetlb_lock);
2060 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2061 /* Fall through */
68842c9b 2062 }
81a6fcae
JK
2063 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2064 spin_unlock(&hugetlb_lock);
348ea204 2065
90481622 2066 set_page_private(page, (unsigned long)spool);
90d8b7e6 2067
d85f69b0
MK
2068 map_commit = vma_commit_reservation(h, vma, addr);
2069 if (unlikely(map_chg > map_commit)) {
33039678
MK
2070 /*
2071 * The page was added to the reservation map between
2072 * vma_needs_reservation and vma_commit_reservation.
2073 * This indicates a race with hugetlb_reserve_pages.
2074 * Adjust for the subpool count incremented above AND
2075 * in hugetlb_reserve_pages for the same page. Also,
2076 * the reservation count added in hugetlb_reserve_pages
2077 * no longer applies.
2078 */
2079 long rsv_adjust;
2080
2081 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2082 hugetlb_acct_memory(h, -rsv_adjust);
2083 }
90d8b7e6 2084 return page;
8f34af6f
JZ
2085
2086out_uncharge_cgroup:
2087 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2088out_subpool_put:
d85f69b0 2089 if (map_chg || avoid_reserve)
8f34af6f 2090 hugepage_subpool_put_pages(spool, 1);
feba16e2 2091 vma_end_reservation(h, vma, addr);
8f34af6f 2092 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2093}
2094
74060e4d
NH
2095/*
2096 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2097 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2098 * where no ERR_VALUE is expected to be returned.
2099 */
2100struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2101 unsigned long addr, int avoid_reserve)
2102{
2103 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2104 if (IS_ERR(page))
2105 page = NULL;
2106 return page;
2107}
2108
91f47662 2109int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2110{
2111 struct huge_bootmem_page *m;
b2261026 2112 int nr_nodes, node;
aa888a74 2113
b2261026 2114 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2115 void *addr;
2116
8b89a116
GS
2117 addr = memblock_virt_alloc_try_nid_nopanic(
2118 huge_page_size(h), huge_page_size(h),
2119 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2120 if (addr) {
2121 /*
2122 * Use the beginning of the huge page to store the
2123 * huge_bootmem_page struct (until gather_bootmem
2124 * puts them into the mem_map).
2125 */
2126 m = addr;
91f47662 2127 goto found;
aa888a74 2128 }
aa888a74
AK
2129 }
2130 return 0;
2131
2132found:
df994ead 2133 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
2134 /* Put them into a private list first because mem_map is not up yet */
2135 list_add(&m->list, &huge_boot_pages);
2136 m->hstate = h;
2137 return 1;
2138}
2139
d00181b9
KS
2140static void __init prep_compound_huge_page(struct page *page,
2141 unsigned int order)
18229df5
AW
2142{
2143 if (unlikely(order > (MAX_ORDER - 1)))
2144 prep_compound_gigantic_page(page, order);
2145 else
2146 prep_compound_page(page, order);
2147}
2148
aa888a74
AK
2149/* Put bootmem huge pages into the standard lists after mem_map is up */
2150static void __init gather_bootmem_prealloc(void)
2151{
2152 struct huge_bootmem_page *m;
2153
2154 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2155 struct hstate *h = m->hstate;
ee8f248d
BB
2156 struct page *page;
2157
2158#ifdef CONFIG_HIGHMEM
2159 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2160 memblock_free_late(__pa(m),
2161 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2162#else
2163 page = virt_to_page(m);
2164#endif
aa888a74 2165 WARN_ON(page_count(page) != 1);
18229df5 2166 prep_compound_huge_page(page, h->order);
ef5a22be 2167 WARN_ON(PageReserved(page));
aa888a74 2168 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
2169 /*
2170 * If we had gigantic hugepages allocated at boot time, we need
2171 * to restore the 'stolen' pages to totalram_pages in order to
2172 * fix confusing memory reports from free(1) and another
2173 * side-effects, like CommitLimit going negative.
2174 */
bae7f4ae 2175 if (hstate_is_gigantic(h))
3dcc0571 2176 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
2177 }
2178}
2179
8faa8b07 2180static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2181{
2182 unsigned long i;
a5516438 2183
e5ff2159 2184 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2185 if (hstate_is_gigantic(h)) {
aa888a74
AK
2186 if (!alloc_bootmem_huge_page(h))
2187 break;
9b5e5d0f 2188 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 2189 &node_states[N_MEMORY]))
1da177e4 2190 break;
1da177e4 2191 }
8faa8b07 2192 h->max_huge_pages = i;
e5ff2159
AK
2193}
2194
2195static void __init hugetlb_init_hstates(void)
2196{
2197 struct hstate *h;
2198
2199 for_each_hstate(h) {
641844f5
NH
2200 if (minimum_order > huge_page_order(h))
2201 minimum_order = huge_page_order(h);
2202
8faa8b07 2203 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2204 if (!hstate_is_gigantic(h))
8faa8b07 2205 hugetlb_hstate_alloc_pages(h);
e5ff2159 2206 }
641844f5 2207 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2208}
2209
4abd32db
AK
2210static char * __init memfmt(char *buf, unsigned long n)
2211{
2212 if (n >= (1UL << 30))
2213 sprintf(buf, "%lu GB", n >> 30);
2214 else if (n >= (1UL << 20))
2215 sprintf(buf, "%lu MB", n >> 20);
2216 else
2217 sprintf(buf, "%lu KB", n >> 10);
2218 return buf;
2219}
2220
e5ff2159
AK
2221static void __init report_hugepages(void)
2222{
2223 struct hstate *h;
2224
2225 for_each_hstate(h) {
4abd32db 2226 char buf[32];
ffb22af5 2227 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
2228 memfmt(buf, huge_page_size(h)),
2229 h->free_huge_pages);
e5ff2159
AK
2230 }
2231}
2232
1da177e4 2233#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2234static void try_to_free_low(struct hstate *h, unsigned long count,
2235 nodemask_t *nodes_allowed)
1da177e4 2236{
4415cc8d
CL
2237 int i;
2238
bae7f4ae 2239 if (hstate_is_gigantic(h))
aa888a74
AK
2240 return;
2241
6ae11b27 2242 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2243 struct page *page, *next;
a5516438
AK
2244 struct list_head *freel = &h->hugepage_freelists[i];
2245 list_for_each_entry_safe(page, next, freel, lru) {
2246 if (count >= h->nr_huge_pages)
6b0c880d 2247 return;
1da177e4
LT
2248 if (PageHighMem(page))
2249 continue;
2250 list_del(&page->lru);
e5ff2159 2251 update_and_free_page(h, page);
a5516438
AK
2252 h->free_huge_pages--;
2253 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2254 }
2255 }
2256}
2257#else
6ae11b27
LS
2258static inline void try_to_free_low(struct hstate *h, unsigned long count,
2259 nodemask_t *nodes_allowed)
1da177e4
LT
2260{
2261}
2262#endif
2263
20a0307c
WF
2264/*
2265 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2266 * balanced by operating on them in a round-robin fashion.
2267 * Returns 1 if an adjustment was made.
2268 */
6ae11b27
LS
2269static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2270 int delta)
20a0307c 2271{
b2261026 2272 int nr_nodes, node;
20a0307c
WF
2273
2274 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2275
b2261026
JK
2276 if (delta < 0) {
2277 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2278 if (h->surplus_huge_pages_node[node])
2279 goto found;
e8c5c824 2280 }
b2261026
JK
2281 } else {
2282 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2283 if (h->surplus_huge_pages_node[node] <
2284 h->nr_huge_pages_node[node])
2285 goto found;
e8c5c824 2286 }
b2261026
JK
2287 }
2288 return 0;
20a0307c 2289
b2261026
JK
2290found:
2291 h->surplus_huge_pages += delta;
2292 h->surplus_huge_pages_node[node] += delta;
2293 return 1;
20a0307c
WF
2294}
2295
a5516438 2296#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2297static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2298 nodemask_t *nodes_allowed)
1da177e4 2299{
7893d1d5 2300 unsigned long min_count, ret;
1da177e4 2301
944d9fec 2302 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2303 return h->max_huge_pages;
2304
7893d1d5
AL
2305 /*
2306 * Increase the pool size
2307 * First take pages out of surplus state. Then make up the
2308 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2309 *
d15c7c09 2310 * We might race with __alloc_buddy_huge_page() here and be unable
d1c3fb1f
NA
2311 * to convert a surplus huge page to a normal huge page. That is
2312 * not critical, though, it just means the overall size of the
2313 * pool might be one hugepage larger than it needs to be, but
2314 * within all the constraints specified by the sysctls.
7893d1d5 2315 */
1da177e4 2316 spin_lock(&hugetlb_lock);
a5516438 2317 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2318 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2319 break;
2320 }
2321
a5516438 2322 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2323 /*
2324 * If this allocation races such that we no longer need the
2325 * page, free_huge_page will handle it by freeing the page
2326 * and reducing the surplus.
2327 */
2328 spin_unlock(&hugetlb_lock);
649920c6
JH
2329
2330 /* yield cpu to avoid soft lockup */
2331 cond_resched();
2332
944d9fec
LC
2333 if (hstate_is_gigantic(h))
2334 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2335 else
2336 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
2337 spin_lock(&hugetlb_lock);
2338 if (!ret)
2339 goto out;
2340
536240f2
MG
2341 /* Bail for signals. Probably ctrl-c from user */
2342 if (signal_pending(current))
2343 goto out;
7893d1d5 2344 }
7893d1d5
AL
2345
2346 /*
2347 * Decrease the pool size
2348 * First return free pages to the buddy allocator (being careful
2349 * to keep enough around to satisfy reservations). Then place
2350 * pages into surplus state as needed so the pool will shrink
2351 * to the desired size as pages become free.
d1c3fb1f
NA
2352 *
2353 * By placing pages into the surplus state independent of the
2354 * overcommit value, we are allowing the surplus pool size to
2355 * exceed overcommit. There are few sane options here. Since
d15c7c09 2356 * __alloc_buddy_huge_page() is checking the global counter,
d1c3fb1f
NA
2357 * though, we'll note that we're not allowed to exceed surplus
2358 * and won't grow the pool anywhere else. Not until one of the
2359 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2360 */
a5516438 2361 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2362 min_count = max(count, min_count);
6ae11b27 2363 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2364 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2365 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2366 break;
55f67141 2367 cond_resched_lock(&hugetlb_lock);
1da177e4 2368 }
a5516438 2369 while (count < persistent_huge_pages(h)) {
6ae11b27 2370 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2371 break;
2372 }
2373out:
a5516438 2374 ret = persistent_huge_pages(h);
1da177e4 2375 spin_unlock(&hugetlb_lock);
7893d1d5 2376 return ret;
1da177e4
LT
2377}
2378
a3437870
NA
2379#define HSTATE_ATTR_RO(_name) \
2380 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2381
2382#define HSTATE_ATTR(_name) \
2383 static struct kobj_attribute _name##_attr = \
2384 __ATTR(_name, 0644, _name##_show, _name##_store)
2385
2386static struct kobject *hugepages_kobj;
2387static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2388
9a305230
LS
2389static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2390
2391static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2392{
2393 int i;
9a305230 2394
a3437870 2395 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2396 if (hstate_kobjs[i] == kobj) {
2397 if (nidp)
2398 *nidp = NUMA_NO_NODE;
a3437870 2399 return &hstates[i];
9a305230
LS
2400 }
2401
2402 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2403}
2404
06808b08 2405static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2406 struct kobj_attribute *attr, char *buf)
2407{
9a305230
LS
2408 struct hstate *h;
2409 unsigned long nr_huge_pages;
2410 int nid;
2411
2412 h = kobj_to_hstate(kobj, &nid);
2413 if (nid == NUMA_NO_NODE)
2414 nr_huge_pages = h->nr_huge_pages;
2415 else
2416 nr_huge_pages = h->nr_huge_pages_node[nid];
2417
2418 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2419}
adbe8726 2420
238d3c13
DR
2421static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2422 struct hstate *h, int nid,
2423 unsigned long count, size_t len)
a3437870
NA
2424{
2425 int err;
bad44b5b 2426 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2427
944d9fec 2428 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2429 err = -EINVAL;
2430 goto out;
2431 }
2432
9a305230
LS
2433 if (nid == NUMA_NO_NODE) {
2434 /*
2435 * global hstate attribute
2436 */
2437 if (!(obey_mempolicy &&
2438 init_nodemask_of_mempolicy(nodes_allowed))) {
2439 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2440 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2441 }
2442 } else if (nodes_allowed) {
2443 /*
2444 * per node hstate attribute: adjust count to global,
2445 * but restrict alloc/free to the specified node.
2446 */
2447 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2448 init_nodemask_of_node(nodes_allowed, nid);
2449 } else
8cebfcd0 2450 nodes_allowed = &node_states[N_MEMORY];
9a305230 2451
06808b08 2452 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2453
8cebfcd0 2454 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2455 NODEMASK_FREE(nodes_allowed);
2456
2457 return len;
adbe8726
EM
2458out:
2459 NODEMASK_FREE(nodes_allowed);
2460 return err;
06808b08
LS
2461}
2462
238d3c13
DR
2463static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2464 struct kobject *kobj, const char *buf,
2465 size_t len)
2466{
2467 struct hstate *h;
2468 unsigned long count;
2469 int nid;
2470 int err;
2471
2472 err = kstrtoul(buf, 10, &count);
2473 if (err)
2474 return err;
2475
2476 h = kobj_to_hstate(kobj, &nid);
2477 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2478}
2479
06808b08
LS
2480static ssize_t nr_hugepages_show(struct kobject *kobj,
2481 struct kobj_attribute *attr, char *buf)
2482{
2483 return nr_hugepages_show_common(kobj, attr, buf);
2484}
2485
2486static ssize_t nr_hugepages_store(struct kobject *kobj,
2487 struct kobj_attribute *attr, const char *buf, size_t len)
2488{
238d3c13 2489 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2490}
2491HSTATE_ATTR(nr_hugepages);
2492
06808b08
LS
2493#ifdef CONFIG_NUMA
2494
2495/*
2496 * hstate attribute for optionally mempolicy-based constraint on persistent
2497 * huge page alloc/free.
2498 */
2499static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2500 struct kobj_attribute *attr, char *buf)
2501{
2502 return nr_hugepages_show_common(kobj, attr, buf);
2503}
2504
2505static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2506 struct kobj_attribute *attr, const char *buf, size_t len)
2507{
238d3c13 2508 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2509}
2510HSTATE_ATTR(nr_hugepages_mempolicy);
2511#endif
2512
2513
a3437870
NA
2514static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2515 struct kobj_attribute *attr, char *buf)
2516{
9a305230 2517 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2518 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2519}
adbe8726 2520
a3437870
NA
2521static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2522 struct kobj_attribute *attr, const char *buf, size_t count)
2523{
2524 int err;
2525 unsigned long input;
9a305230 2526 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2527
bae7f4ae 2528 if (hstate_is_gigantic(h))
adbe8726
EM
2529 return -EINVAL;
2530
3dbb95f7 2531 err = kstrtoul(buf, 10, &input);
a3437870 2532 if (err)
73ae31e5 2533 return err;
a3437870
NA
2534
2535 spin_lock(&hugetlb_lock);
2536 h->nr_overcommit_huge_pages = input;
2537 spin_unlock(&hugetlb_lock);
2538
2539 return count;
2540}
2541HSTATE_ATTR(nr_overcommit_hugepages);
2542
2543static ssize_t free_hugepages_show(struct kobject *kobj,
2544 struct kobj_attribute *attr, char *buf)
2545{
9a305230
LS
2546 struct hstate *h;
2547 unsigned long free_huge_pages;
2548 int nid;
2549
2550 h = kobj_to_hstate(kobj, &nid);
2551 if (nid == NUMA_NO_NODE)
2552 free_huge_pages = h->free_huge_pages;
2553 else
2554 free_huge_pages = h->free_huge_pages_node[nid];
2555
2556 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2557}
2558HSTATE_ATTR_RO(free_hugepages);
2559
2560static ssize_t resv_hugepages_show(struct kobject *kobj,
2561 struct kobj_attribute *attr, char *buf)
2562{
9a305230 2563 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2564 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2565}
2566HSTATE_ATTR_RO(resv_hugepages);
2567
2568static ssize_t surplus_hugepages_show(struct kobject *kobj,
2569 struct kobj_attribute *attr, char *buf)
2570{
9a305230
LS
2571 struct hstate *h;
2572 unsigned long surplus_huge_pages;
2573 int nid;
2574
2575 h = kobj_to_hstate(kobj, &nid);
2576 if (nid == NUMA_NO_NODE)
2577 surplus_huge_pages = h->surplus_huge_pages;
2578 else
2579 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2580
2581 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2582}
2583HSTATE_ATTR_RO(surplus_hugepages);
2584
2585static struct attribute *hstate_attrs[] = {
2586 &nr_hugepages_attr.attr,
2587 &nr_overcommit_hugepages_attr.attr,
2588 &free_hugepages_attr.attr,
2589 &resv_hugepages_attr.attr,
2590 &surplus_hugepages_attr.attr,
06808b08
LS
2591#ifdef CONFIG_NUMA
2592 &nr_hugepages_mempolicy_attr.attr,
2593#endif
a3437870
NA
2594 NULL,
2595};
2596
2597static struct attribute_group hstate_attr_group = {
2598 .attrs = hstate_attrs,
2599};
2600
094e9539
JM
2601static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2602 struct kobject **hstate_kobjs,
2603 struct attribute_group *hstate_attr_group)
a3437870
NA
2604{
2605 int retval;
972dc4de 2606 int hi = hstate_index(h);
a3437870 2607
9a305230
LS
2608 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2609 if (!hstate_kobjs[hi])
a3437870
NA
2610 return -ENOMEM;
2611
9a305230 2612 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2613 if (retval)
9a305230 2614 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2615
2616 return retval;
2617}
2618
2619static void __init hugetlb_sysfs_init(void)
2620{
2621 struct hstate *h;
2622 int err;
2623
2624 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2625 if (!hugepages_kobj)
2626 return;
2627
2628 for_each_hstate(h) {
9a305230
LS
2629 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2630 hstate_kobjs, &hstate_attr_group);
a3437870 2631 if (err)
ffb22af5 2632 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2633 }
2634}
2635
9a305230
LS
2636#ifdef CONFIG_NUMA
2637
2638/*
2639 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2640 * with node devices in node_devices[] using a parallel array. The array
2641 * index of a node device or _hstate == node id.
2642 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2643 * the base kernel, on the hugetlb module.
2644 */
2645struct node_hstate {
2646 struct kobject *hugepages_kobj;
2647 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2648};
b4e289a6 2649static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2650
2651/*
10fbcf4c 2652 * A subset of global hstate attributes for node devices
9a305230
LS
2653 */
2654static struct attribute *per_node_hstate_attrs[] = {
2655 &nr_hugepages_attr.attr,
2656 &free_hugepages_attr.attr,
2657 &surplus_hugepages_attr.attr,
2658 NULL,
2659};
2660
2661static struct attribute_group per_node_hstate_attr_group = {
2662 .attrs = per_node_hstate_attrs,
2663};
2664
2665/*
10fbcf4c 2666 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2667 * Returns node id via non-NULL nidp.
2668 */
2669static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2670{
2671 int nid;
2672
2673 for (nid = 0; nid < nr_node_ids; nid++) {
2674 struct node_hstate *nhs = &node_hstates[nid];
2675 int i;
2676 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2677 if (nhs->hstate_kobjs[i] == kobj) {
2678 if (nidp)
2679 *nidp = nid;
2680 return &hstates[i];
2681 }
2682 }
2683
2684 BUG();
2685 return NULL;
2686}
2687
2688/*
10fbcf4c 2689 * Unregister hstate attributes from a single node device.
9a305230
LS
2690 * No-op if no hstate attributes attached.
2691 */
3cd8b44f 2692static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2693{
2694 struct hstate *h;
10fbcf4c 2695 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2696
2697 if (!nhs->hugepages_kobj)
9b5e5d0f 2698 return; /* no hstate attributes */
9a305230 2699
972dc4de
AK
2700 for_each_hstate(h) {
2701 int idx = hstate_index(h);
2702 if (nhs->hstate_kobjs[idx]) {
2703 kobject_put(nhs->hstate_kobjs[idx]);
2704 nhs->hstate_kobjs[idx] = NULL;
9a305230 2705 }
972dc4de 2706 }
9a305230
LS
2707
2708 kobject_put(nhs->hugepages_kobj);
2709 nhs->hugepages_kobj = NULL;
2710}
2711
9a305230
LS
2712
2713/*
10fbcf4c 2714 * Register hstate attributes for a single node device.
9a305230
LS
2715 * No-op if attributes already registered.
2716 */
3cd8b44f 2717static void hugetlb_register_node(struct node *node)
9a305230
LS
2718{
2719 struct hstate *h;
10fbcf4c 2720 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2721 int err;
2722
2723 if (nhs->hugepages_kobj)
2724 return; /* already allocated */
2725
2726 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2727 &node->dev.kobj);
9a305230
LS
2728 if (!nhs->hugepages_kobj)
2729 return;
2730
2731 for_each_hstate(h) {
2732 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2733 nhs->hstate_kobjs,
2734 &per_node_hstate_attr_group);
2735 if (err) {
ffb22af5
AM
2736 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2737 h->name, node->dev.id);
9a305230
LS
2738 hugetlb_unregister_node(node);
2739 break;
2740 }
2741 }
2742}
2743
2744/*
9b5e5d0f 2745 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2746 * devices of nodes that have memory. All on-line nodes should have
2747 * registered their associated device by this time.
9a305230 2748 */
7d9ca000 2749static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2750{
2751 int nid;
2752
8cebfcd0 2753 for_each_node_state(nid, N_MEMORY) {
8732794b 2754 struct node *node = node_devices[nid];
10fbcf4c 2755 if (node->dev.id == nid)
9a305230
LS
2756 hugetlb_register_node(node);
2757 }
2758
2759 /*
10fbcf4c 2760 * Let the node device driver know we're here so it can
9a305230
LS
2761 * [un]register hstate attributes on node hotplug.
2762 */
2763 register_hugetlbfs_with_node(hugetlb_register_node,
2764 hugetlb_unregister_node);
2765}
2766#else /* !CONFIG_NUMA */
2767
2768static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2769{
2770 BUG();
2771 if (nidp)
2772 *nidp = -1;
2773 return NULL;
2774}
2775
9a305230
LS
2776static void hugetlb_register_all_nodes(void) { }
2777
2778#endif
2779
a3437870
NA
2780static int __init hugetlb_init(void)
2781{
8382d914
DB
2782 int i;
2783
457c1b27 2784 if (!hugepages_supported())
0ef89d25 2785 return 0;
a3437870 2786
e11bfbfc
NP
2787 if (!size_to_hstate(default_hstate_size)) {
2788 default_hstate_size = HPAGE_SIZE;
2789 if (!size_to_hstate(default_hstate_size))
2790 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2791 }
972dc4de 2792 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2793 if (default_hstate_max_huge_pages) {
2794 if (!default_hstate.max_huge_pages)
2795 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2796 }
a3437870
NA
2797
2798 hugetlb_init_hstates();
aa888a74 2799 gather_bootmem_prealloc();
a3437870
NA
2800 report_hugepages();
2801
2802 hugetlb_sysfs_init();
9a305230 2803 hugetlb_register_all_nodes();
7179e7bf 2804 hugetlb_cgroup_file_init();
9a305230 2805
8382d914
DB
2806#ifdef CONFIG_SMP
2807 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2808#else
2809 num_fault_mutexes = 1;
2810#endif
c672c7f2 2811 hugetlb_fault_mutex_table =
8382d914 2812 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2813 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2814
2815 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2816 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2817 return 0;
2818}
3e89e1c5 2819subsys_initcall(hugetlb_init);
a3437870
NA
2820
2821/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2822void __init hugetlb_bad_size(void)
2823{
2824 parsed_valid_hugepagesz = false;
2825}
2826
d00181b9 2827void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2828{
2829 struct hstate *h;
8faa8b07
AK
2830 unsigned long i;
2831
a3437870 2832 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2833 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2834 return;
2835 }
47d38344 2836 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2837 BUG_ON(order == 0);
47d38344 2838 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2839 h->order = order;
2840 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2841 h->nr_huge_pages = 0;
2842 h->free_huge_pages = 0;
2843 for (i = 0; i < MAX_NUMNODES; ++i)
2844 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2845 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2846 h->next_nid_to_alloc = first_memory_node;
2847 h->next_nid_to_free = first_memory_node;
a3437870
NA
2848 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2849 huge_page_size(h)/1024);
8faa8b07 2850
a3437870
NA
2851 parsed_hstate = h;
2852}
2853
e11bfbfc 2854static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2855{
2856 unsigned long *mhp;
8faa8b07 2857 static unsigned long *last_mhp;
a3437870 2858
9fee021d
VT
2859 if (!parsed_valid_hugepagesz) {
2860 pr_warn("hugepages = %s preceded by "
2861 "an unsupported hugepagesz, ignoring\n", s);
2862 parsed_valid_hugepagesz = true;
2863 return 1;
2864 }
a3437870 2865 /*
47d38344 2866 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2867 * so this hugepages= parameter goes to the "default hstate".
2868 */
9fee021d 2869 else if (!hugetlb_max_hstate)
a3437870
NA
2870 mhp = &default_hstate_max_huge_pages;
2871 else
2872 mhp = &parsed_hstate->max_huge_pages;
2873
8faa8b07 2874 if (mhp == last_mhp) {
598d8091 2875 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2876 return 1;
2877 }
2878
a3437870
NA
2879 if (sscanf(s, "%lu", mhp) <= 0)
2880 *mhp = 0;
2881
8faa8b07
AK
2882 /*
2883 * Global state is always initialized later in hugetlb_init.
2884 * But we need to allocate >= MAX_ORDER hstates here early to still
2885 * use the bootmem allocator.
2886 */
47d38344 2887 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2888 hugetlb_hstate_alloc_pages(parsed_hstate);
2889
2890 last_mhp = mhp;
2891
a3437870
NA
2892 return 1;
2893}
e11bfbfc
NP
2894__setup("hugepages=", hugetlb_nrpages_setup);
2895
2896static int __init hugetlb_default_setup(char *s)
2897{
2898 default_hstate_size = memparse(s, &s);
2899 return 1;
2900}
2901__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2902
8a213460
NA
2903static unsigned int cpuset_mems_nr(unsigned int *array)
2904{
2905 int node;
2906 unsigned int nr = 0;
2907
2908 for_each_node_mask(node, cpuset_current_mems_allowed)
2909 nr += array[node];
2910
2911 return nr;
2912}
2913
2914#ifdef CONFIG_SYSCTL
06808b08
LS
2915static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2916 struct ctl_table *table, int write,
2917 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2918{
e5ff2159 2919 struct hstate *h = &default_hstate;
238d3c13 2920 unsigned long tmp = h->max_huge_pages;
08d4a246 2921 int ret;
e5ff2159 2922
457c1b27 2923 if (!hugepages_supported())
86613628 2924 return -EOPNOTSUPP;
457c1b27 2925
e5ff2159
AK
2926 table->data = &tmp;
2927 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2928 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2929 if (ret)
2930 goto out;
e5ff2159 2931
238d3c13
DR
2932 if (write)
2933 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2934 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2935out:
2936 return ret;
1da177e4 2937}
396faf03 2938
06808b08
LS
2939int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2940 void __user *buffer, size_t *length, loff_t *ppos)
2941{
2942
2943 return hugetlb_sysctl_handler_common(false, table, write,
2944 buffer, length, ppos);
2945}
2946
2947#ifdef CONFIG_NUMA
2948int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2949 void __user *buffer, size_t *length, loff_t *ppos)
2950{
2951 return hugetlb_sysctl_handler_common(true, table, write,
2952 buffer, length, ppos);
2953}
2954#endif /* CONFIG_NUMA */
2955
a3d0c6aa 2956int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2957 void __user *buffer,
a3d0c6aa
NA
2958 size_t *length, loff_t *ppos)
2959{
a5516438 2960 struct hstate *h = &default_hstate;
e5ff2159 2961 unsigned long tmp;
08d4a246 2962 int ret;
e5ff2159 2963
457c1b27 2964 if (!hugepages_supported())
86613628 2965 return -EOPNOTSUPP;
457c1b27 2966
c033a93c 2967 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2968
bae7f4ae 2969 if (write && hstate_is_gigantic(h))
adbe8726
EM
2970 return -EINVAL;
2971
e5ff2159
AK
2972 table->data = &tmp;
2973 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2974 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2975 if (ret)
2976 goto out;
e5ff2159
AK
2977
2978 if (write) {
2979 spin_lock(&hugetlb_lock);
2980 h->nr_overcommit_huge_pages = tmp;
2981 spin_unlock(&hugetlb_lock);
2982 }
08d4a246
MH
2983out:
2984 return ret;
a3d0c6aa
NA
2985}
2986
1da177e4
LT
2987#endif /* CONFIG_SYSCTL */
2988
e1759c21 2989void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2990{
a5516438 2991 struct hstate *h = &default_hstate;
457c1b27
NA
2992 if (!hugepages_supported())
2993 return;
e1759c21 2994 seq_printf(m,
4f98a2fe
RR
2995 "HugePages_Total: %5lu\n"
2996 "HugePages_Free: %5lu\n"
2997 "HugePages_Rsvd: %5lu\n"
2998 "HugePages_Surp: %5lu\n"
2999 "Hugepagesize: %8lu kB\n",
a5516438
AK
3000 h->nr_huge_pages,
3001 h->free_huge_pages,
3002 h->resv_huge_pages,
3003 h->surplus_huge_pages,
3004 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
3005}
3006
3007int hugetlb_report_node_meminfo(int nid, char *buf)
3008{
a5516438 3009 struct hstate *h = &default_hstate;
457c1b27
NA
3010 if (!hugepages_supported())
3011 return 0;
1da177e4
LT
3012 return sprintf(buf,
3013 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3014 "Node %d HugePages_Free: %5u\n"
3015 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3016 nid, h->nr_huge_pages_node[nid],
3017 nid, h->free_huge_pages_node[nid],
3018 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3019}
3020
949f7ec5
DR
3021void hugetlb_show_meminfo(void)
3022{
3023 struct hstate *h;
3024 int nid;
3025
457c1b27
NA
3026 if (!hugepages_supported())
3027 return;
3028
949f7ec5
DR
3029 for_each_node_state(nid, N_MEMORY)
3030 for_each_hstate(h)
3031 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3032 nid,
3033 h->nr_huge_pages_node[nid],
3034 h->free_huge_pages_node[nid],
3035 h->surplus_huge_pages_node[nid],
3036 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3037}
3038
5d317b2b
NH
3039void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3040{
3041 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3042 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3043}
3044
1da177e4
LT
3045/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3046unsigned long hugetlb_total_pages(void)
3047{
d0028588
WL
3048 struct hstate *h;
3049 unsigned long nr_total_pages = 0;
3050
3051 for_each_hstate(h)
3052 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3053 return nr_total_pages;
1da177e4 3054}
1da177e4 3055
a5516438 3056static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3057{
3058 int ret = -ENOMEM;
3059
3060 spin_lock(&hugetlb_lock);
3061 /*
3062 * When cpuset is configured, it breaks the strict hugetlb page
3063 * reservation as the accounting is done on a global variable. Such
3064 * reservation is completely rubbish in the presence of cpuset because
3065 * the reservation is not checked against page availability for the
3066 * current cpuset. Application can still potentially OOM'ed by kernel
3067 * with lack of free htlb page in cpuset that the task is in.
3068 * Attempt to enforce strict accounting with cpuset is almost
3069 * impossible (or too ugly) because cpuset is too fluid that
3070 * task or memory node can be dynamically moved between cpusets.
3071 *
3072 * The change of semantics for shared hugetlb mapping with cpuset is
3073 * undesirable. However, in order to preserve some of the semantics,
3074 * we fall back to check against current free page availability as
3075 * a best attempt and hopefully to minimize the impact of changing
3076 * semantics that cpuset has.
3077 */
3078 if (delta > 0) {
a5516438 3079 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3080 goto out;
3081
a5516438
AK
3082 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3083 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3084 goto out;
3085 }
3086 }
3087
3088 ret = 0;
3089 if (delta < 0)
a5516438 3090 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3091
3092out:
3093 spin_unlock(&hugetlb_lock);
3094 return ret;
3095}
3096
84afd99b
AW
3097static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3098{
f522c3ac 3099 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3100
3101 /*
3102 * This new VMA should share its siblings reservation map if present.
3103 * The VMA will only ever have a valid reservation map pointer where
3104 * it is being copied for another still existing VMA. As that VMA
25985edc 3105 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3106 * after this open call completes. It is therefore safe to take a
3107 * new reference here without additional locking.
3108 */
4e35f483 3109 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3110 kref_get(&resv->refs);
84afd99b
AW
3111}
3112
a1e78772
MG
3113static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3114{
a5516438 3115 struct hstate *h = hstate_vma(vma);
f522c3ac 3116 struct resv_map *resv = vma_resv_map(vma);
90481622 3117 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3118 unsigned long reserve, start, end;
1c5ecae3 3119 long gbl_reserve;
84afd99b 3120
4e35f483
JK
3121 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3122 return;
84afd99b 3123
4e35f483
JK
3124 start = vma_hugecache_offset(h, vma, vma->vm_start);
3125 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3126
4e35f483 3127 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3128
4e35f483
JK
3129 kref_put(&resv->refs, resv_map_release);
3130
3131 if (reserve) {
1c5ecae3
MK
3132 /*
3133 * Decrement reserve counts. The global reserve count may be
3134 * adjusted if the subpool has a minimum size.
3135 */
3136 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3137 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3138 }
a1e78772
MG
3139}
3140
1da177e4
LT
3141/*
3142 * We cannot handle pagefaults against hugetlb pages at all. They cause
3143 * handle_mm_fault() to try to instantiate regular-sized pages in the
3144 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3145 * this far.
3146 */
11bac800 3147static int hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3148{
3149 BUG();
d0217ac0 3150 return 0;
1da177e4
LT
3151}
3152
f0f37e2f 3153const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3154 .fault = hugetlb_vm_op_fault,
84afd99b 3155 .open = hugetlb_vm_op_open,
a1e78772 3156 .close = hugetlb_vm_op_close,
1da177e4
LT
3157};
3158
1e8f889b
DG
3159static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3160 int writable)
63551ae0
DG
3161{
3162 pte_t entry;
3163
1e8f889b 3164 if (writable) {
106c992a
GS
3165 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3166 vma->vm_page_prot)));
63551ae0 3167 } else {
106c992a
GS
3168 entry = huge_pte_wrprotect(mk_huge_pte(page,
3169 vma->vm_page_prot));
63551ae0
DG
3170 }
3171 entry = pte_mkyoung(entry);
3172 entry = pte_mkhuge(entry);
d9ed9faa 3173 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3174
3175 return entry;
3176}
3177
1e8f889b
DG
3178static void set_huge_ptep_writable(struct vm_area_struct *vma,
3179 unsigned long address, pte_t *ptep)
3180{
3181 pte_t entry;
3182
106c992a 3183 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3184 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3185 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3186}
3187
4a705fef
NH
3188static int is_hugetlb_entry_migration(pte_t pte)
3189{
3190 swp_entry_t swp;
3191
3192 if (huge_pte_none(pte) || pte_present(pte))
3193 return 0;
3194 swp = pte_to_swp_entry(pte);
3195 if (non_swap_entry(swp) && is_migration_entry(swp))
3196 return 1;
3197 else
3198 return 0;
3199}
3200
3201static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3202{
3203 swp_entry_t swp;
3204
3205 if (huge_pte_none(pte) || pte_present(pte))
3206 return 0;
3207 swp = pte_to_swp_entry(pte);
3208 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3209 return 1;
3210 else
3211 return 0;
3212}
1e8f889b 3213
63551ae0
DG
3214int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3215 struct vm_area_struct *vma)
3216{
3217 pte_t *src_pte, *dst_pte, entry;
3218 struct page *ptepage;
1c59827d 3219 unsigned long addr;
1e8f889b 3220 int cow;
a5516438
AK
3221 struct hstate *h = hstate_vma(vma);
3222 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3223 unsigned long mmun_start; /* For mmu_notifiers */
3224 unsigned long mmun_end; /* For mmu_notifiers */
3225 int ret = 0;
1e8f889b
DG
3226
3227 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3228
e8569dd2
AS
3229 mmun_start = vma->vm_start;
3230 mmun_end = vma->vm_end;
3231 if (cow)
3232 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3233
a5516438 3234 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3235 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
3236 src_pte = huge_pte_offset(src, addr);
3237 if (!src_pte)
3238 continue;
a5516438 3239 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3240 if (!dst_pte) {
3241 ret = -ENOMEM;
3242 break;
3243 }
c5c99429
LW
3244
3245 /* If the pagetables are shared don't copy or take references */
3246 if (dst_pte == src_pte)
3247 continue;
3248
cb900f41
KS
3249 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3250 src_ptl = huge_pte_lockptr(h, src, src_pte);
3251 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3252 entry = huge_ptep_get(src_pte);
3253 if (huge_pte_none(entry)) { /* skip none entry */
3254 ;
3255 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3256 is_hugetlb_entry_hwpoisoned(entry))) {
3257 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3258
3259 if (is_write_migration_entry(swp_entry) && cow) {
3260 /*
3261 * COW mappings require pages in both
3262 * parent and child to be set to read.
3263 */
3264 make_migration_entry_read(&swp_entry);
3265 entry = swp_entry_to_pte(swp_entry);
3266 set_huge_pte_at(src, addr, src_pte, entry);
3267 }
3268 set_huge_pte_at(dst, addr, dst_pte, entry);
3269 } else {
34ee645e 3270 if (cow) {
7f2e9525 3271 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e
JR
3272 mmu_notifier_invalidate_range(src, mmun_start,
3273 mmun_end);
3274 }
0253d634 3275 entry = huge_ptep_get(src_pte);
1c59827d
HD
3276 ptepage = pte_page(entry);
3277 get_page(ptepage);
53f9263b 3278 page_dup_rmap(ptepage, true);
1c59827d 3279 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3280 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3281 }
cb900f41
KS
3282 spin_unlock(src_ptl);
3283 spin_unlock(dst_ptl);
63551ae0 3284 }
63551ae0 3285
e8569dd2
AS
3286 if (cow)
3287 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3288
3289 return ret;
63551ae0
DG
3290}
3291
24669e58
AK
3292void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3293 unsigned long start, unsigned long end,
3294 struct page *ref_page)
63551ae0
DG
3295{
3296 struct mm_struct *mm = vma->vm_mm;
3297 unsigned long address;
c7546f8f 3298 pte_t *ptep;
63551ae0 3299 pte_t pte;
cb900f41 3300 spinlock_t *ptl;
63551ae0 3301 struct page *page;
a5516438
AK
3302 struct hstate *h = hstate_vma(vma);
3303 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3304 const unsigned long mmun_start = start; /* For mmu_notifiers */
3305 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3306
63551ae0 3307 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3308 BUG_ON(start & ~huge_page_mask(h));
3309 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3310
07e32661
AK
3311 /*
3312 * This is a hugetlb vma, all the pte entries should point
3313 * to huge page.
3314 */
3315 tlb_remove_check_page_size_change(tlb, sz);
24669e58 3316 tlb_start_vma(tlb, vma);
2ec74c3e 3317 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3318 address = start;
569f48b8 3319 for (; address < end; address += sz) {
c7546f8f 3320 ptep = huge_pte_offset(mm, address);
4c887265 3321 if (!ptep)
c7546f8f
DG
3322 continue;
3323
cb900f41 3324 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3325 if (huge_pmd_unshare(mm, &address, ptep)) {
3326 spin_unlock(ptl);
3327 continue;
3328 }
39dde65c 3329
6629326b 3330 pte = huge_ptep_get(ptep);
31d49da5
AK
3331 if (huge_pte_none(pte)) {
3332 spin_unlock(ptl);
3333 continue;
3334 }
6629326b
HD
3335
3336 /*
9fbc1f63
NH
3337 * Migrating hugepage or HWPoisoned hugepage is already
3338 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3339 */
9fbc1f63 3340 if (unlikely(!pte_present(pte))) {
106c992a 3341 huge_pte_clear(mm, address, ptep);
31d49da5
AK
3342 spin_unlock(ptl);
3343 continue;
8c4894c6 3344 }
6629326b
HD
3345
3346 page = pte_page(pte);
04f2cbe3
MG
3347 /*
3348 * If a reference page is supplied, it is because a specific
3349 * page is being unmapped, not a range. Ensure the page we
3350 * are about to unmap is the actual page of interest.
3351 */
3352 if (ref_page) {
31d49da5
AK
3353 if (page != ref_page) {
3354 spin_unlock(ptl);
3355 continue;
3356 }
04f2cbe3
MG
3357 /*
3358 * Mark the VMA as having unmapped its page so that
3359 * future faults in this VMA will fail rather than
3360 * looking like data was lost
3361 */
3362 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3363 }
3364
c7546f8f 3365 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3366 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3367 if (huge_pte_dirty(pte))
6649a386 3368 set_page_dirty(page);
9e81130b 3369
5d317b2b 3370 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3371 page_remove_rmap(page, true);
31d49da5 3372
cb900f41 3373 spin_unlock(ptl);
e77b0852 3374 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3375 /*
3376 * Bail out after unmapping reference page if supplied
3377 */
3378 if (ref_page)
3379 break;
fe1668ae 3380 }
2ec74c3e 3381 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3382 tlb_end_vma(tlb, vma);
1da177e4 3383}
63551ae0 3384
d833352a
MG
3385void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3386 struct vm_area_struct *vma, unsigned long start,
3387 unsigned long end, struct page *ref_page)
3388{
3389 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3390
3391 /*
3392 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3393 * test will fail on a vma being torn down, and not grab a page table
3394 * on its way out. We're lucky that the flag has such an appropriate
3395 * name, and can in fact be safely cleared here. We could clear it
3396 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3397 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3398 * because in the context this is called, the VMA is about to be
c8c06efa 3399 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3400 */
3401 vma->vm_flags &= ~VM_MAYSHARE;
3402}
3403
502717f4 3404void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3405 unsigned long end, struct page *ref_page)
502717f4 3406{
24669e58
AK
3407 struct mm_struct *mm;
3408 struct mmu_gather tlb;
3409
3410 mm = vma->vm_mm;
3411
2b047252 3412 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3413 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3414 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
3415}
3416
04f2cbe3
MG
3417/*
3418 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3419 * mappping it owns the reserve page for. The intention is to unmap the page
3420 * from other VMAs and let the children be SIGKILLed if they are faulting the
3421 * same region.
3422 */
2f4612af
DB
3423static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3424 struct page *page, unsigned long address)
04f2cbe3 3425{
7526674d 3426 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3427 struct vm_area_struct *iter_vma;
3428 struct address_space *mapping;
04f2cbe3
MG
3429 pgoff_t pgoff;
3430
3431 /*
3432 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3433 * from page cache lookup which is in HPAGE_SIZE units.
3434 */
7526674d 3435 address = address & huge_page_mask(h);
36e4f20a
MH
3436 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3437 vma->vm_pgoff;
93c76a3d 3438 mapping = vma->vm_file->f_mapping;
04f2cbe3 3439
4eb2b1dc
MG
3440 /*
3441 * Take the mapping lock for the duration of the table walk. As
3442 * this mapping should be shared between all the VMAs,
3443 * __unmap_hugepage_range() is called as the lock is already held
3444 */
83cde9e8 3445 i_mmap_lock_write(mapping);
6b2dbba8 3446 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3447 /* Do not unmap the current VMA */
3448 if (iter_vma == vma)
3449 continue;
3450
2f84a899
MG
3451 /*
3452 * Shared VMAs have their own reserves and do not affect
3453 * MAP_PRIVATE accounting but it is possible that a shared
3454 * VMA is using the same page so check and skip such VMAs.
3455 */
3456 if (iter_vma->vm_flags & VM_MAYSHARE)
3457 continue;
3458
04f2cbe3
MG
3459 /*
3460 * Unmap the page from other VMAs without their own reserves.
3461 * They get marked to be SIGKILLed if they fault in these
3462 * areas. This is because a future no-page fault on this VMA
3463 * could insert a zeroed page instead of the data existing
3464 * from the time of fork. This would look like data corruption
3465 */
3466 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3467 unmap_hugepage_range(iter_vma, address,
3468 address + huge_page_size(h), page);
04f2cbe3 3469 }
83cde9e8 3470 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3471}
3472
0fe6e20b
NH
3473/*
3474 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3475 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3476 * cannot race with other handlers or page migration.
3477 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3478 */
1e8f889b 3479static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3999f52e
AK
3480 unsigned long address, pte_t *ptep,
3481 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3482{
3999f52e 3483 pte_t pte;
a5516438 3484 struct hstate *h = hstate_vma(vma);
1e8f889b 3485 struct page *old_page, *new_page;
ad4404a2 3486 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3487 unsigned long mmun_start; /* For mmu_notifiers */
3488 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b 3489
3999f52e 3490 pte = huge_ptep_get(ptep);
1e8f889b
DG
3491 old_page = pte_page(pte);
3492
04f2cbe3 3493retry_avoidcopy:
1e8f889b
DG
3494 /* If no-one else is actually using this page, avoid the copy
3495 * and just make the page writable */
37a2140d 3496 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3497 page_move_anon_rmap(old_page, vma);
1e8f889b 3498 set_huge_ptep_writable(vma, address, ptep);
83c54070 3499 return 0;
1e8f889b
DG
3500 }
3501
04f2cbe3
MG
3502 /*
3503 * If the process that created a MAP_PRIVATE mapping is about to
3504 * perform a COW due to a shared page count, attempt to satisfy
3505 * the allocation without using the existing reserves. The pagecache
3506 * page is used to determine if the reserve at this address was
3507 * consumed or not. If reserves were used, a partial faulted mapping
3508 * at the time of fork() could consume its reserves on COW instead
3509 * of the full address range.
3510 */
5944d011 3511 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3512 old_page != pagecache_page)
3513 outside_reserve = 1;
3514
09cbfeaf 3515 get_page(old_page);
b76c8cfb 3516
ad4404a2
DB
3517 /*
3518 * Drop page table lock as buddy allocator may be called. It will
3519 * be acquired again before returning to the caller, as expected.
3520 */
cb900f41 3521 spin_unlock(ptl);
04f2cbe3 3522 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3523
2fc39cec 3524 if (IS_ERR(new_page)) {
04f2cbe3
MG
3525 /*
3526 * If a process owning a MAP_PRIVATE mapping fails to COW,
3527 * it is due to references held by a child and an insufficient
3528 * huge page pool. To guarantee the original mappers
3529 * reliability, unmap the page from child processes. The child
3530 * may get SIGKILLed if it later faults.
3531 */
3532 if (outside_reserve) {
09cbfeaf 3533 put_page(old_page);
04f2cbe3 3534 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3535 unmap_ref_private(mm, vma, old_page, address);
3536 BUG_ON(huge_pte_none(pte));
3537 spin_lock(ptl);
3538 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3539 if (likely(ptep &&
3540 pte_same(huge_ptep_get(ptep), pte)))
3541 goto retry_avoidcopy;
3542 /*
3543 * race occurs while re-acquiring page table
3544 * lock, and our job is done.
3545 */
3546 return 0;
04f2cbe3
MG
3547 }
3548
ad4404a2
DB
3549 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3550 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3551 goto out_release_old;
1e8f889b
DG
3552 }
3553
0fe6e20b
NH
3554 /*
3555 * When the original hugepage is shared one, it does not have
3556 * anon_vma prepared.
3557 */
44e2aa93 3558 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3559 ret = VM_FAULT_OOM;
3560 goto out_release_all;
44e2aa93 3561 }
0fe6e20b 3562
47ad8475
AA
3563 copy_user_huge_page(new_page, old_page, address, vma,
3564 pages_per_huge_page(h));
0ed361de 3565 __SetPageUptodate(new_page);
bcc54222 3566 set_page_huge_active(new_page);
1e8f889b 3567
2ec74c3e
SG
3568 mmun_start = address & huge_page_mask(h);
3569 mmun_end = mmun_start + huge_page_size(h);
3570 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3571
b76c8cfb 3572 /*
cb900f41 3573 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3574 * before the page tables are altered
3575 */
cb900f41 3576 spin_lock(ptl);
a5516438 3577 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d 3578 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3579 ClearPagePrivate(new_page);
3580
1e8f889b 3581 /* Break COW */
8fe627ec 3582 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3583 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3584 set_huge_pte_at(mm, address, ptep,
3585 make_huge_pte(vma, new_page, 1));
d281ee61 3586 page_remove_rmap(old_page, true);
cd67f0d2 3587 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3588 /* Make the old page be freed below */
3589 new_page = old_page;
3590 }
cb900f41 3591 spin_unlock(ptl);
2ec74c3e 3592 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3593out_release_all:
96b96a96 3594 restore_reserve_on_error(h, vma, address, new_page);
09cbfeaf 3595 put_page(new_page);
ad4404a2 3596out_release_old:
09cbfeaf 3597 put_page(old_page);
8312034f 3598
ad4404a2
DB
3599 spin_lock(ptl); /* Caller expects lock to be held */
3600 return ret;
1e8f889b
DG
3601}
3602
04f2cbe3 3603/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3604static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3605 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3606{
3607 struct address_space *mapping;
e7c4b0bf 3608 pgoff_t idx;
04f2cbe3
MG
3609
3610 mapping = vma->vm_file->f_mapping;
a5516438 3611 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3612
3613 return find_lock_page(mapping, idx);
3614}
3615
3ae77f43
HD
3616/*
3617 * Return whether there is a pagecache page to back given address within VMA.
3618 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3619 */
3620static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3621 struct vm_area_struct *vma, unsigned long address)
3622{
3623 struct address_space *mapping;
3624 pgoff_t idx;
3625 struct page *page;
3626
3627 mapping = vma->vm_file->f_mapping;
3628 idx = vma_hugecache_offset(h, vma, address);
3629
3630 page = find_get_page(mapping, idx);
3631 if (page)
3632 put_page(page);
3633 return page != NULL;
3634}
3635
ab76ad54
MK
3636int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3637 pgoff_t idx)
3638{
3639 struct inode *inode = mapping->host;
3640 struct hstate *h = hstate_inode(inode);
3641 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3642
3643 if (err)
3644 return err;
3645 ClearPagePrivate(page);
3646
3647 spin_lock(&inode->i_lock);
3648 inode->i_blocks += blocks_per_huge_page(h);
3649 spin_unlock(&inode->i_lock);
3650 return 0;
3651}
3652
a1ed3dda 3653static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3654 struct address_space *mapping, pgoff_t idx,
3655 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3656{
a5516438 3657 struct hstate *h = hstate_vma(vma);
ac9b9c66 3658 int ret = VM_FAULT_SIGBUS;
409eb8c2 3659 int anon_rmap = 0;
4c887265 3660 unsigned long size;
4c887265 3661 struct page *page;
1e8f889b 3662 pte_t new_pte;
cb900f41 3663 spinlock_t *ptl;
4c887265 3664
04f2cbe3
MG
3665 /*
3666 * Currently, we are forced to kill the process in the event the
3667 * original mapper has unmapped pages from the child due to a failed
25985edc 3668 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3669 */
3670 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3671 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3672 current->pid);
04f2cbe3
MG
3673 return ret;
3674 }
3675
4c887265
AL
3676 /*
3677 * Use page lock to guard against racing truncation
3678 * before we get page_table_lock.
3679 */
6bda666a
CL
3680retry:
3681 page = find_lock_page(mapping, idx);
3682 if (!page) {
a5516438 3683 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3684 if (idx >= size)
3685 goto out;
1a1aad8a
MK
3686
3687 /*
3688 * Check for page in userfault range
3689 */
3690 if (userfaultfd_missing(vma)) {
3691 u32 hash;
3692 struct vm_fault vmf = {
3693 .vma = vma,
3694 .address = address,
3695 .flags = flags,
3696 /*
3697 * Hard to debug if it ends up being
3698 * used by a callee that assumes
3699 * something about the other
3700 * uninitialized fields... same as in
3701 * memory.c
3702 */
3703 };
3704
3705 /*
3706 * hugetlb_fault_mutex must be dropped before
3707 * handling userfault. Reacquire after handling
3708 * fault to make calling code simpler.
3709 */
3710 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3711 idx, address);
3712 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3713 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3714 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3715 goto out;
3716 }
3717
04f2cbe3 3718 page = alloc_huge_page(vma, address, 0);
2fc39cec 3719 if (IS_ERR(page)) {
76dcee75
AK
3720 ret = PTR_ERR(page);
3721 if (ret == -ENOMEM)
3722 ret = VM_FAULT_OOM;
3723 else
3724 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3725 goto out;
3726 }
47ad8475 3727 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3728 __SetPageUptodate(page);
bcc54222 3729 set_page_huge_active(page);
ac9b9c66 3730
f83a275d 3731 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3732 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3733 if (err) {
3734 put_page(page);
6bda666a
CL
3735 if (err == -EEXIST)
3736 goto retry;
3737 goto out;
3738 }
23be7468 3739 } else {
6bda666a 3740 lock_page(page);
0fe6e20b
NH
3741 if (unlikely(anon_vma_prepare(vma))) {
3742 ret = VM_FAULT_OOM;
3743 goto backout_unlocked;
3744 }
409eb8c2 3745 anon_rmap = 1;
23be7468 3746 }
0fe6e20b 3747 } else {
998b4382
NH
3748 /*
3749 * If memory error occurs between mmap() and fault, some process
3750 * don't have hwpoisoned swap entry for errored virtual address.
3751 * So we need to block hugepage fault by PG_hwpoison bit check.
3752 */
3753 if (unlikely(PageHWPoison(page))) {
32f84528 3754 ret = VM_FAULT_HWPOISON |
972dc4de 3755 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3756 goto backout_unlocked;
3757 }
6bda666a 3758 }
1e8f889b 3759
57303d80
AW
3760 /*
3761 * If we are going to COW a private mapping later, we examine the
3762 * pending reservations for this page now. This will ensure that
3763 * any allocations necessary to record that reservation occur outside
3764 * the spinlock.
3765 */
5e911373 3766 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3767 if (vma_needs_reservation(h, vma, address) < 0) {
3768 ret = VM_FAULT_OOM;
3769 goto backout_unlocked;
3770 }
5e911373 3771 /* Just decrements count, does not deallocate */
feba16e2 3772 vma_end_reservation(h, vma, address);
5e911373 3773 }
57303d80 3774
8bea8052 3775 ptl = huge_pte_lock(h, mm, ptep);
a5516438 3776 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3777 if (idx >= size)
3778 goto backout;
3779
83c54070 3780 ret = 0;
7f2e9525 3781 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3782 goto backout;
3783
07443a85
JK
3784 if (anon_rmap) {
3785 ClearPagePrivate(page);
409eb8c2 3786 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3787 } else
53f9263b 3788 page_dup_rmap(page, true);
1e8f889b
DG
3789 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3790 && (vma->vm_flags & VM_SHARED)));
3791 set_huge_pte_at(mm, address, ptep, new_pte);
3792
5d317b2b 3793 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3794 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3795 /* Optimization, do the COW without a second fault */
3999f52e 3796 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3797 }
3798
cb900f41 3799 spin_unlock(ptl);
4c887265
AL
3800 unlock_page(page);
3801out:
ac9b9c66 3802 return ret;
4c887265
AL
3803
3804backout:
cb900f41 3805 spin_unlock(ptl);
2b26736c 3806backout_unlocked:
4c887265 3807 unlock_page(page);
96b96a96 3808 restore_reserve_on_error(h, vma, address, page);
4c887265
AL
3809 put_page(page);
3810 goto out;
ac9b9c66
HD
3811}
3812
8382d914 3813#ifdef CONFIG_SMP
c672c7f2 3814u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3815 struct vm_area_struct *vma,
3816 struct address_space *mapping,
3817 pgoff_t idx, unsigned long address)
3818{
3819 unsigned long key[2];
3820 u32 hash;
3821
3822 if (vma->vm_flags & VM_SHARED) {
3823 key[0] = (unsigned long) mapping;
3824 key[1] = idx;
3825 } else {
3826 key[0] = (unsigned long) mm;
3827 key[1] = address >> huge_page_shift(h);
3828 }
3829
3830 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3831
3832 return hash & (num_fault_mutexes - 1);
3833}
3834#else
3835/*
3836 * For uniprocesor systems we always use a single mutex, so just
3837 * return 0 and avoid the hashing overhead.
3838 */
c672c7f2 3839u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3840 struct vm_area_struct *vma,
3841 struct address_space *mapping,
3842 pgoff_t idx, unsigned long address)
3843{
3844 return 0;
3845}
3846#endif
3847
86e5216f 3848int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3849 unsigned long address, unsigned int flags)
86e5216f 3850{
8382d914 3851 pte_t *ptep, entry;
cb900f41 3852 spinlock_t *ptl;
1e8f889b 3853 int ret;
8382d914
DB
3854 u32 hash;
3855 pgoff_t idx;
0fe6e20b 3856 struct page *page = NULL;
57303d80 3857 struct page *pagecache_page = NULL;
a5516438 3858 struct hstate *h = hstate_vma(vma);
8382d914 3859 struct address_space *mapping;
0f792cf9 3860 int need_wait_lock = 0;
86e5216f 3861
1e16a539
KH
3862 address &= huge_page_mask(h);
3863
fd6a03ed
NH
3864 ptep = huge_pte_offset(mm, address);
3865 if (ptep) {
3866 entry = huge_ptep_get(ptep);
290408d4 3867 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3868 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3869 return 0;
3870 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3871 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3872 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3873 } else {
3874 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3875 if (!ptep)
3876 return VM_FAULT_OOM;
fd6a03ed
NH
3877 }
3878
8382d914
DB
3879 mapping = vma->vm_file->f_mapping;
3880 idx = vma_hugecache_offset(h, vma, address);
3881
3935baa9
DG
3882 /*
3883 * Serialize hugepage allocation and instantiation, so that we don't
3884 * get spurious allocation failures if two CPUs race to instantiate
3885 * the same page in the page cache.
3886 */
c672c7f2
MK
3887 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3888 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3889
7f2e9525
GS
3890 entry = huge_ptep_get(ptep);
3891 if (huge_pte_none(entry)) {
8382d914 3892 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3893 goto out_mutex;
3935baa9 3894 }
86e5216f 3895
83c54070 3896 ret = 0;
1e8f889b 3897
0f792cf9
NH
3898 /*
3899 * entry could be a migration/hwpoison entry at this point, so this
3900 * check prevents the kernel from going below assuming that we have
3901 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3902 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3903 * handle it.
3904 */
3905 if (!pte_present(entry))
3906 goto out_mutex;
3907
57303d80
AW
3908 /*
3909 * If we are going to COW the mapping later, we examine the pending
3910 * reservations for this page now. This will ensure that any
3911 * allocations necessary to record that reservation occur outside the
3912 * spinlock. For private mappings, we also lookup the pagecache
3913 * page now as it is used to determine if a reservation has been
3914 * consumed.
3915 */
106c992a 3916 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3917 if (vma_needs_reservation(h, vma, address) < 0) {
3918 ret = VM_FAULT_OOM;
b4d1d99f 3919 goto out_mutex;
2b26736c 3920 }
5e911373 3921 /* Just decrements count, does not deallocate */
feba16e2 3922 vma_end_reservation(h, vma, address);
57303d80 3923
f83a275d 3924 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3925 pagecache_page = hugetlbfs_pagecache_page(h,
3926 vma, address);
3927 }
3928
0f792cf9
NH
3929 ptl = huge_pte_lock(h, mm, ptep);
3930
3931 /* Check for a racing update before calling hugetlb_cow */
3932 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3933 goto out_ptl;
3934
56c9cfb1
NH
3935 /*
3936 * hugetlb_cow() requires page locks of pte_page(entry) and
3937 * pagecache_page, so here we need take the former one
3938 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3939 */
3940 page = pte_page(entry);
3941 if (page != pagecache_page)
0f792cf9
NH
3942 if (!trylock_page(page)) {
3943 need_wait_lock = 1;
3944 goto out_ptl;
3945 }
b4d1d99f 3946
0f792cf9 3947 get_page(page);
b4d1d99f 3948
788c7df4 3949 if (flags & FAULT_FLAG_WRITE) {
106c992a 3950 if (!huge_pte_write(entry)) {
3999f52e
AK
3951 ret = hugetlb_cow(mm, vma, address, ptep,
3952 pagecache_page, ptl);
0f792cf9 3953 goto out_put_page;
b4d1d99f 3954 }
106c992a 3955 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3956 }
3957 entry = pte_mkyoung(entry);
788c7df4
HD
3958 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3959 flags & FAULT_FLAG_WRITE))
4b3073e1 3960 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3961out_put_page:
3962 if (page != pagecache_page)
3963 unlock_page(page);
3964 put_page(page);
cb900f41
KS
3965out_ptl:
3966 spin_unlock(ptl);
57303d80
AW
3967
3968 if (pagecache_page) {
3969 unlock_page(pagecache_page);
3970 put_page(pagecache_page);
3971 }
b4d1d99f 3972out_mutex:
c672c7f2 3973 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
3974 /*
3975 * Generally it's safe to hold refcount during waiting page lock. But
3976 * here we just wait to defer the next page fault to avoid busy loop and
3977 * the page is not used after unlocked before returning from the current
3978 * page fault. So we are safe from accessing freed page, even if we wait
3979 * here without taking refcount.
3980 */
3981 if (need_wait_lock)
3982 wait_on_page_locked(page);
1e8f889b 3983 return ret;
86e5216f
AL
3984}
3985
8fb5debc
MK
3986/*
3987 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
3988 * modifications for huge pages.
3989 */
3990int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
3991 pte_t *dst_pte,
3992 struct vm_area_struct *dst_vma,
3993 unsigned long dst_addr,
3994 unsigned long src_addr,
3995 struct page **pagep)
3996{
1c9e8def 3997 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
3998 struct hstate *h = hstate_vma(dst_vma);
3999 pte_t _dst_pte;
4000 spinlock_t *ptl;
4001 int ret;
4002 struct page *page;
4003
4004 if (!*pagep) {
4005 ret = -ENOMEM;
4006 page = alloc_huge_page(dst_vma, dst_addr, 0);
4007 if (IS_ERR(page))
4008 goto out;
4009
4010 ret = copy_huge_page_from_user(page,
4011 (const void __user *) src_addr,
810a56b9 4012 pages_per_huge_page(h), false);
8fb5debc
MK
4013
4014 /* fallback to copy_from_user outside mmap_sem */
4015 if (unlikely(ret)) {
4016 ret = -EFAULT;
4017 *pagep = page;
4018 /* don't free the page */
4019 goto out;
4020 }
4021 } else {
4022 page = *pagep;
4023 *pagep = NULL;
4024 }
4025
4026 /*
4027 * The memory barrier inside __SetPageUptodate makes sure that
4028 * preceding stores to the page contents become visible before
4029 * the set_pte_at() write.
4030 */
4031 __SetPageUptodate(page);
4032 set_page_huge_active(page);
4033
1c9e8def
MK
4034 /*
4035 * If shared, add to page cache
4036 */
4037 if (vm_shared) {
4038 struct address_space *mapping = dst_vma->vm_file->f_mapping;
4039 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4040
4041 ret = huge_add_to_page_cache(page, mapping, idx);
4042 if (ret)
4043 goto out_release_nounlock;
4044 }
4045
8fb5debc
MK
4046 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4047 spin_lock(ptl);
4048
4049 ret = -EEXIST;
4050 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4051 goto out_release_unlock;
4052
1c9e8def
MK
4053 if (vm_shared) {
4054 page_dup_rmap(page, true);
4055 } else {
4056 ClearPagePrivate(page);
4057 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4058 }
8fb5debc
MK
4059
4060 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4061 if (dst_vma->vm_flags & VM_WRITE)
4062 _dst_pte = huge_pte_mkdirty(_dst_pte);
4063 _dst_pte = pte_mkyoung(_dst_pte);
4064
4065 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4066
4067 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4068 dst_vma->vm_flags & VM_WRITE);
4069 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4070
4071 /* No need to invalidate - it was non-present before */
4072 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4073
4074 spin_unlock(ptl);
1c9e8def
MK
4075 if (vm_shared)
4076 unlock_page(page);
8fb5debc
MK
4077 ret = 0;
4078out:
4079 return ret;
4080out_release_unlock:
4081 spin_unlock(ptl);
1c9e8def
MK
4082out_release_nounlock:
4083 if (vm_shared)
4084 unlock_page(page);
8fb5debc
MK
4085 put_page(page);
4086 goto out;
4087}
4088
28a35716
ML
4089long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4090 struct page **pages, struct vm_area_struct **vmas,
4091 unsigned long *position, unsigned long *nr_pages,
87ffc118 4092 long i, unsigned int flags, int *nonblocking)
63551ae0 4093{
d5d4b0aa
KC
4094 unsigned long pfn_offset;
4095 unsigned long vaddr = *position;
28a35716 4096 unsigned long remainder = *nr_pages;
a5516438 4097 struct hstate *h = hstate_vma(vma);
63551ae0 4098
63551ae0 4099 while (vaddr < vma->vm_end && remainder) {
4c887265 4100 pte_t *pte;
cb900f41 4101 spinlock_t *ptl = NULL;
2a15efc9 4102 int absent;
4c887265 4103 struct page *page;
63551ae0 4104
02057967
DR
4105 /*
4106 * If we have a pending SIGKILL, don't keep faulting pages and
4107 * potentially allocating memory.
4108 */
4109 if (unlikely(fatal_signal_pending(current))) {
4110 remainder = 0;
4111 break;
4112 }
4113
4c887265
AL
4114 /*
4115 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4116 * each hugepage. We have to make sure we get the
4c887265 4117 * first, for the page indexing below to work.
cb900f41
KS
4118 *
4119 * Note that page table lock is not held when pte is null.
4c887265 4120 */
a5516438 4121 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
4122 if (pte)
4123 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4124 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4125
4126 /*
4127 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4128 * an error where there's an empty slot with no huge pagecache
4129 * to back it. This way, we avoid allocating a hugepage, and
4130 * the sparse dumpfile avoids allocating disk blocks, but its
4131 * huge holes still show up with zeroes where they need to be.
2a15efc9 4132 */
3ae77f43
HD
4133 if (absent && (flags & FOLL_DUMP) &&
4134 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4135 if (pte)
4136 spin_unlock(ptl);
2a15efc9
HD
4137 remainder = 0;
4138 break;
4139 }
63551ae0 4140
9cc3a5bd
NH
4141 /*
4142 * We need call hugetlb_fault for both hugepages under migration
4143 * (in which case hugetlb_fault waits for the migration,) and
4144 * hwpoisoned hugepages (in which case we need to prevent the
4145 * caller from accessing to them.) In order to do this, we use
4146 * here is_swap_pte instead of is_hugetlb_entry_migration and
4147 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4148 * both cases, and because we can't follow correct pages
4149 * directly from any kind of swap entries.
4150 */
4151 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4152 ((flags & FOLL_WRITE) &&
4153 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 4154 int ret;
87ffc118 4155 unsigned int fault_flags = 0;
63551ae0 4156
cb900f41
KS
4157 if (pte)
4158 spin_unlock(ptl);
87ffc118
AA
4159 if (flags & FOLL_WRITE)
4160 fault_flags |= FAULT_FLAG_WRITE;
4161 if (nonblocking)
4162 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4163 if (flags & FOLL_NOWAIT)
4164 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4165 FAULT_FLAG_RETRY_NOWAIT;
4166 if (flags & FOLL_TRIED) {
4167 VM_WARN_ON_ONCE(fault_flags &
4168 FAULT_FLAG_ALLOW_RETRY);
4169 fault_flags |= FAULT_FLAG_TRIED;
4170 }
4171 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4172 if (ret & VM_FAULT_ERROR) {
4173 remainder = 0;
4174 break;
4175 }
4176 if (ret & VM_FAULT_RETRY) {
4177 if (nonblocking)
4178 *nonblocking = 0;
4179 *nr_pages = 0;
4180 /*
4181 * VM_FAULT_RETRY must not return an
4182 * error, it will return zero
4183 * instead.
4184 *
4185 * No need to update "position" as the
4186 * caller will not check it after
4187 * *nr_pages is set to 0.
4188 */
4189 return i;
4190 }
4191 continue;
4c887265
AL
4192 }
4193
a5516438 4194 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4195 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 4196same_page:
d6692183 4197 if (pages) {
2a15efc9 4198 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4199 get_page(pages[i]);
d6692183 4200 }
63551ae0
DG
4201
4202 if (vmas)
4203 vmas[i] = vma;
4204
4205 vaddr += PAGE_SIZE;
d5d4b0aa 4206 ++pfn_offset;
63551ae0
DG
4207 --remainder;
4208 ++i;
d5d4b0aa 4209 if (vaddr < vma->vm_end && remainder &&
a5516438 4210 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4211 /*
4212 * We use pfn_offset to avoid touching the pageframes
4213 * of this compound page.
4214 */
4215 goto same_page;
4216 }
cb900f41 4217 spin_unlock(ptl);
63551ae0 4218 }
28a35716 4219 *nr_pages = remainder;
87ffc118
AA
4220 /*
4221 * setting position is actually required only if remainder is
4222 * not zero but it's faster not to add a "if (remainder)"
4223 * branch.
4224 */
63551ae0
DG
4225 *position = vaddr;
4226
2a15efc9 4227 return i ? i : -EFAULT;
63551ae0 4228}
8f860591 4229
5491ae7b
AK
4230#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4231/*
4232 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4233 * implement this.
4234 */
4235#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4236#endif
4237
7da4d641 4238unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4239 unsigned long address, unsigned long end, pgprot_t newprot)
4240{
4241 struct mm_struct *mm = vma->vm_mm;
4242 unsigned long start = address;
4243 pte_t *ptep;
4244 pte_t pte;
a5516438 4245 struct hstate *h = hstate_vma(vma);
7da4d641 4246 unsigned long pages = 0;
8f860591
ZY
4247
4248 BUG_ON(address >= end);
4249 flush_cache_range(vma, address, end);
4250
a5338093 4251 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 4252 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4253 for (; address < end; address += huge_page_size(h)) {
cb900f41 4254 spinlock_t *ptl;
8f860591
ZY
4255 ptep = huge_pte_offset(mm, address);
4256 if (!ptep)
4257 continue;
cb900f41 4258 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4259 if (huge_pmd_unshare(mm, &address, ptep)) {
4260 pages++;
cb900f41 4261 spin_unlock(ptl);
39dde65c 4262 continue;
7da4d641 4263 }
a8bda28d
NH
4264 pte = huge_ptep_get(ptep);
4265 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4266 spin_unlock(ptl);
4267 continue;
4268 }
4269 if (unlikely(is_hugetlb_entry_migration(pte))) {
4270 swp_entry_t entry = pte_to_swp_entry(pte);
4271
4272 if (is_write_migration_entry(entry)) {
4273 pte_t newpte;
4274
4275 make_migration_entry_read(&entry);
4276 newpte = swp_entry_to_pte(entry);
4277 set_huge_pte_at(mm, address, ptep, newpte);
4278 pages++;
4279 }
4280 spin_unlock(ptl);
4281 continue;
4282 }
4283 if (!huge_pte_none(pte)) {
8f860591 4284 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 4285 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 4286 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 4287 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 4288 pages++;
8f860591 4289 }
cb900f41 4290 spin_unlock(ptl);
8f860591 4291 }
d833352a 4292 /*
c8c06efa 4293 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4294 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4295 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
4296 * and that page table be reused and filled with junk.
4297 */
5491ae7b 4298 flush_hugetlb_tlb_range(vma, start, end);
34ee645e 4299 mmu_notifier_invalidate_range(mm, start, end);
83cde9e8 4300 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 4301 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
4302
4303 return pages << h->order;
8f860591
ZY
4304}
4305
a1e78772
MG
4306int hugetlb_reserve_pages(struct inode *inode,
4307 long from, long to,
5a6fe125 4308 struct vm_area_struct *vma,
ca16d140 4309 vm_flags_t vm_flags)
e4e574b7 4310{
17c9d12e 4311 long ret, chg;
a5516438 4312 struct hstate *h = hstate_inode(inode);
90481622 4313 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4314 struct resv_map *resv_map;
1c5ecae3 4315 long gbl_reserve;
e4e574b7 4316
17c9d12e
MG
4317 /*
4318 * Only apply hugepage reservation if asked. At fault time, an
4319 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4320 * without using reserves
17c9d12e 4321 */
ca16d140 4322 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4323 return 0;
4324
a1e78772
MG
4325 /*
4326 * Shared mappings base their reservation on the number of pages that
4327 * are already allocated on behalf of the file. Private mappings need
4328 * to reserve the full area even if read-only as mprotect() may be
4329 * called to make the mapping read-write. Assume !vma is a shm mapping
4330 */
9119a41e 4331 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4332 resv_map = inode_resv_map(inode);
9119a41e 4333
1406ec9b 4334 chg = region_chg(resv_map, from, to);
9119a41e
JK
4335
4336 } else {
4337 resv_map = resv_map_alloc();
17c9d12e
MG
4338 if (!resv_map)
4339 return -ENOMEM;
4340
a1e78772 4341 chg = to - from;
84afd99b 4342
17c9d12e
MG
4343 set_vma_resv_map(vma, resv_map);
4344 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4345 }
4346
c50ac050
DH
4347 if (chg < 0) {
4348 ret = chg;
4349 goto out_err;
4350 }
8a630112 4351
1c5ecae3
MK
4352 /*
4353 * There must be enough pages in the subpool for the mapping. If
4354 * the subpool has a minimum size, there may be some global
4355 * reservations already in place (gbl_reserve).
4356 */
4357 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4358 if (gbl_reserve < 0) {
c50ac050
DH
4359 ret = -ENOSPC;
4360 goto out_err;
4361 }
5a6fe125
MG
4362
4363 /*
17c9d12e 4364 * Check enough hugepages are available for the reservation.
90481622 4365 * Hand the pages back to the subpool if there are not
5a6fe125 4366 */
1c5ecae3 4367 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4368 if (ret < 0) {
1c5ecae3
MK
4369 /* put back original number of pages, chg */
4370 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4371 goto out_err;
68842c9b 4372 }
17c9d12e
MG
4373
4374 /*
4375 * Account for the reservations made. Shared mappings record regions
4376 * that have reservations as they are shared by multiple VMAs.
4377 * When the last VMA disappears, the region map says how much
4378 * the reservation was and the page cache tells how much of
4379 * the reservation was consumed. Private mappings are per-VMA and
4380 * only the consumed reservations are tracked. When the VMA
4381 * disappears, the original reservation is the VMA size and the
4382 * consumed reservations are stored in the map. Hence, nothing
4383 * else has to be done for private mappings here
4384 */
33039678
MK
4385 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4386 long add = region_add(resv_map, from, to);
4387
4388 if (unlikely(chg > add)) {
4389 /*
4390 * pages in this range were added to the reserve
4391 * map between region_chg and region_add. This
4392 * indicates a race with alloc_huge_page. Adjust
4393 * the subpool and reserve counts modified above
4394 * based on the difference.
4395 */
4396 long rsv_adjust;
4397
4398 rsv_adjust = hugepage_subpool_put_pages(spool,
4399 chg - add);
4400 hugetlb_acct_memory(h, -rsv_adjust);
4401 }
4402 }
a43a8c39 4403 return 0;
c50ac050 4404out_err:
5e911373
MK
4405 if (!vma || vma->vm_flags & VM_MAYSHARE)
4406 region_abort(resv_map, from, to);
f031dd27
JK
4407 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4408 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4409 return ret;
a43a8c39
KC
4410}
4411
b5cec28d
MK
4412long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4413 long freed)
a43a8c39 4414{
a5516438 4415 struct hstate *h = hstate_inode(inode);
4e35f483 4416 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4417 long chg = 0;
90481622 4418 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4419 long gbl_reserve;
45c682a6 4420
b5cec28d
MK
4421 if (resv_map) {
4422 chg = region_del(resv_map, start, end);
4423 /*
4424 * region_del() can fail in the rare case where a region
4425 * must be split and another region descriptor can not be
4426 * allocated. If end == LONG_MAX, it will not fail.
4427 */
4428 if (chg < 0)
4429 return chg;
4430 }
4431
45c682a6 4432 spin_lock(&inode->i_lock);
e4c6f8be 4433 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4434 spin_unlock(&inode->i_lock);
4435
1c5ecae3
MK
4436 /*
4437 * If the subpool has a minimum size, the number of global
4438 * reservations to be released may be adjusted.
4439 */
4440 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4441 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4442
4443 return 0;
a43a8c39 4444}
93f70f90 4445
3212b535
SC
4446#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4447static unsigned long page_table_shareable(struct vm_area_struct *svma,
4448 struct vm_area_struct *vma,
4449 unsigned long addr, pgoff_t idx)
4450{
4451 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4452 svma->vm_start;
4453 unsigned long sbase = saddr & PUD_MASK;
4454 unsigned long s_end = sbase + PUD_SIZE;
4455
4456 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4457 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4458 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4459
4460 /*
4461 * match the virtual addresses, permission and the alignment of the
4462 * page table page.
4463 */
4464 if (pmd_index(addr) != pmd_index(saddr) ||
4465 vm_flags != svm_flags ||
4466 sbase < svma->vm_start || svma->vm_end < s_end)
4467 return 0;
4468
4469 return saddr;
4470}
4471
31aafb45 4472static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4473{
4474 unsigned long base = addr & PUD_MASK;
4475 unsigned long end = base + PUD_SIZE;
4476
4477 /*
4478 * check on proper vm_flags and page table alignment
4479 */
4480 if (vma->vm_flags & VM_MAYSHARE &&
4481 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4482 return true;
4483 return false;
3212b535
SC
4484}
4485
4486/*
4487 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4488 * and returns the corresponding pte. While this is not necessary for the
4489 * !shared pmd case because we can allocate the pmd later as well, it makes the
4490 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4491 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4492 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4493 * bad pmd for sharing.
4494 */
4495pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4496{
4497 struct vm_area_struct *vma = find_vma(mm, addr);
4498 struct address_space *mapping = vma->vm_file->f_mapping;
4499 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4500 vma->vm_pgoff;
4501 struct vm_area_struct *svma;
4502 unsigned long saddr;
4503 pte_t *spte = NULL;
4504 pte_t *pte;
cb900f41 4505 spinlock_t *ptl;
3212b535
SC
4506
4507 if (!vma_shareable(vma, addr))
4508 return (pte_t *)pmd_alloc(mm, pud, addr);
4509
83cde9e8 4510 i_mmap_lock_write(mapping);
3212b535
SC
4511 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4512 if (svma == vma)
4513 continue;
4514
4515 saddr = page_table_shareable(svma, vma, addr, idx);
4516 if (saddr) {
4517 spte = huge_pte_offset(svma->vm_mm, saddr);
4518 if (spte) {
4519 get_page(virt_to_page(spte));
4520 break;
4521 }
4522 }
4523 }
4524
4525 if (!spte)
4526 goto out;
4527
8bea8052 4528 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4529 if (pud_none(*pud)) {
3212b535
SC
4530 pud_populate(mm, pud,
4531 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4532 mm_inc_nr_pmds(mm);
dc6c9a35 4533 } else {
3212b535 4534 put_page(virt_to_page(spte));
dc6c9a35 4535 }
cb900f41 4536 spin_unlock(ptl);
3212b535
SC
4537out:
4538 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4539 i_mmap_unlock_write(mapping);
3212b535
SC
4540 return pte;
4541}
4542
4543/*
4544 * unmap huge page backed by shared pte.
4545 *
4546 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4547 * indicated by page_count > 1, unmap is achieved by clearing pud and
4548 * decrementing the ref count. If count == 1, the pte page is not shared.
4549 *
cb900f41 4550 * called with page table lock held.
3212b535
SC
4551 *
4552 * returns: 1 successfully unmapped a shared pte page
4553 * 0 the underlying pte page is not shared, or it is the last user
4554 */
4555int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4556{
4557 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4558 p4d_t *p4d = p4d_offset(pgd, *addr);
4559 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4560
4561 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4562 if (page_count(virt_to_page(ptep)) == 1)
4563 return 0;
4564
4565 pud_clear(pud);
4566 put_page(virt_to_page(ptep));
dc6c9a35 4567 mm_dec_nr_pmds(mm);
3212b535
SC
4568 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4569 return 1;
4570}
9e5fc74c
SC
4571#define want_pmd_share() (1)
4572#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4573pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4574{
4575 return NULL;
4576}
e81f2d22
ZZ
4577
4578int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4579{
4580 return 0;
4581}
9e5fc74c 4582#define want_pmd_share() (0)
3212b535
SC
4583#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4584
9e5fc74c
SC
4585#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4586pte_t *huge_pte_alloc(struct mm_struct *mm,
4587 unsigned long addr, unsigned long sz)
4588{
4589 pgd_t *pgd;
c2febafc 4590 p4d_t *p4d;
9e5fc74c
SC
4591 pud_t *pud;
4592 pte_t *pte = NULL;
4593
4594 pgd = pgd_offset(mm, addr);
c2febafc
KS
4595 p4d = p4d_offset(pgd, addr);
4596 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4597 if (pud) {
4598 if (sz == PUD_SIZE) {
4599 pte = (pte_t *)pud;
4600 } else {
4601 BUG_ON(sz != PMD_SIZE);
4602 if (want_pmd_share() && pud_none(*pud))
4603 pte = huge_pmd_share(mm, addr, pud);
4604 else
4605 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4606 }
4607 }
4e666314 4608 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4609
4610 return pte;
4611}
4612
4613pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4614{
4615 pgd_t *pgd;
c2febafc 4616 p4d_t *p4d;
9e5fc74c 4617 pud_t *pud;
c2febafc 4618 pmd_t *pmd;
9e5fc74c
SC
4619
4620 pgd = pgd_offset(mm, addr);
c2febafc
KS
4621 if (!pgd_present(*pgd))
4622 return NULL;
4623 p4d = p4d_offset(pgd, addr);
4624 if (!p4d_present(*p4d))
4625 return NULL;
4626 pud = pud_offset(p4d, addr);
4627 if (!pud_present(*pud))
4628 return NULL;
4629 if (pud_huge(*pud))
4630 return (pte_t *)pud;
4631 pmd = pmd_offset(pud, addr);
9e5fc74c
SC
4632 return (pte_t *) pmd;
4633}
4634
61f77eda
NH
4635#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4636
4637/*
4638 * These functions are overwritable if your architecture needs its own
4639 * behavior.
4640 */
4641struct page * __weak
4642follow_huge_addr(struct mm_struct *mm, unsigned long address,
4643 int write)
4644{
4645 return ERR_PTR(-EINVAL);
4646}
4647
4648struct page * __weak
9e5fc74c 4649follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4650 pmd_t *pmd, int flags)
9e5fc74c 4651{
e66f17ff
NH
4652 struct page *page = NULL;
4653 spinlock_t *ptl;
c9d398fa 4654 pte_t pte;
e66f17ff
NH
4655retry:
4656 ptl = pmd_lockptr(mm, pmd);
4657 spin_lock(ptl);
4658 /*
4659 * make sure that the address range covered by this pmd is not
4660 * unmapped from other threads.
4661 */
4662 if (!pmd_huge(*pmd))
4663 goto out;
c9d398fa
NH
4664 pte = huge_ptep_get((pte_t *)pmd);
4665 if (pte_present(pte)) {
97534127 4666 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4667 if (flags & FOLL_GET)
4668 get_page(page);
4669 } else {
c9d398fa 4670 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4671 spin_unlock(ptl);
4672 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4673 goto retry;
4674 }
4675 /*
4676 * hwpoisoned entry is treated as no_page_table in
4677 * follow_page_mask().
4678 */
4679 }
4680out:
4681 spin_unlock(ptl);
9e5fc74c
SC
4682 return page;
4683}
4684
61f77eda 4685struct page * __weak
9e5fc74c 4686follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4687 pud_t *pud, int flags)
9e5fc74c 4688{
e66f17ff
NH
4689 if (flags & FOLL_GET)
4690 return NULL;
9e5fc74c 4691
e66f17ff 4692 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4693}
4694
d5bd9106
AK
4695#ifdef CONFIG_MEMORY_FAILURE
4696
93f70f90
NH
4697/*
4698 * This function is called from memory failure code.
93f70f90 4699 */
6de2b1aa 4700int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
4701{
4702 struct hstate *h = page_hstate(hpage);
4703 int nid = page_to_nid(hpage);
6de2b1aa 4704 int ret = -EBUSY;
93f70f90
NH
4705
4706 spin_lock(&hugetlb_lock);
7e1f049e
NH
4707 /*
4708 * Just checking !page_huge_active is not enough, because that could be
4709 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4710 */
4711 if (!page_huge_active(hpage) && !page_count(hpage)) {
56f2fb14
NH
4712 /*
4713 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4714 * but dangling hpage->lru can trigger list-debug warnings
4715 * (this happens when we call unpoison_memory() on it),
4716 * so let it point to itself with list_del_init().
4717 */
4718 list_del_init(&hpage->lru);
8c6c2ecb 4719 set_page_refcounted(hpage);
6de2b1aa
NH
4720 h->free_huge_pages--;
4721 h->free_huge_pages_node[nid]--;
4722 ret = 0;
4723 }
93f70f90 4724 spin_unlock(&hugetlb_lock);
6de2b1aa 4725 return ret;
93f70f90 4726}
6de2b1aa 4727#endif
31caf665
NH
4728
4729bool isolate_huge_page(struct page *page, struct list_head *list)
4730{
bcc54222
NH
4731 bool ret = true;
4732
309381fe 4733 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4734 spin_lock(&hugetlb_lock);
bcc54222
NH
4735 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4736 ret = false;
4737 goto unlock;
4738 }
4739 clear_page_huge_active(page);
31caf665 4740 list_move_tail(&page->lru, list);
bcc54222 4741unlock:
31caf665 4742 spin_unlock(&hugetlb_lock);
bcc54222 4743 return ret;
31caf665
NH
4744}
4745
4746void putback_active_hugepage(struct page *page)
4747{
309381fe 4748 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4749 spin_lock(&hugetlb_lock);
bcc54222 4750 set_page_huge_active(page);
31caf665
NH
4751 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4752 spin_unlock(&hugetlb_lock);
4753 put_page(page);
4754}