]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - mm/memblock.c
mm, swap: bounds check swap_info array accesses to avoid NULL derefs
[mirror_ubuntu-disco-kernel.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/kmemleak.h>
21 #include <linux/seq_file.h>
22 #include <linux/memblock.h>
23
24 #include <asm/sections.h>
25 #include <linux/io.h>
26
27 #include "internal.h"
28
29 #define INIT_MEMBLOCK_REGIONS 128
30 #define INIT_PHYSMEM_REGIONS 4
31
32 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
33 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
34 #endif
35
36 /**
37 * DOC: memblock overview
38 *
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
41 * running.
42 *
43 * Memblock views the system memory as collections of contiguous
44 * regions. There are several types of these collections:
45 *
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
49 * ``mem=`` command line parameter
50 * * ``reserved`` - describes the regions that were allocated
51 * * ``physmap`` - describes the actual physical memory regardless of
52 * the possible restrictions; the ``physmap`` type is only available
53 * on some architectures.
54 *
55 * Each region is represented by :c:type:`struct memblock_region` that
56 * defines the region extents, its attributes and NUMA node id on NUMA
57 * systems. Every memory type is described by the :c:type:`struct
58 * memblock_type` which contains an array of memory regions along with
59 * the allocator metadata. The memory types are nicely wrapped with
60 * :c:type:`struct memblock`. This structure is statically initialzed
61 * at build time. The region arrays for the "memory" and "reserved"
62 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
63 * "physmap" type to %INIT_PHYSMEM_REGIONS.
64 * The :c:func:`memblock_allow_resize` enables automatic resizing of
65 * the region arrays during addition of new regions. This feature
66 * should be used with care so that memory allocated for the region
67 * array will not overlap with areas that should be reserved, for
68 * example initrd.
69 *
70 * The early architecture setup should tell memblock what the physical
71 * memory layout is by using :c:func:`memblock_add` or
72 * :c:func:`memblock_add_node` functions. The first function does not
73 * assign the region to a NUMA node and it is appropriate for UMA
74 * systems. Yet, it is possible to use it on NUMA systems as well and
75 * assign the region to a NUMA node later in the setup process using
76 * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
77 * performs such an assignment directly.
78 *
79 * Once memblock is setup the memory can be allocated using either
80 * memblock or bootmem APIs.
81 *
82 * As the system boot progresses, the architecture specific
83 * :c:func:`mem_init` function frees all the memory to the buddy page
84 * allocator.
85 *
86 * If an architecure enables %CONFIG_ARCH_DISCARD_MEMBLOCK, the
87 * memblock data structures will be discarded after the system
88 * initialization compltes.
89 */
90
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 struct pglist_data __refdata contig_page_data;
93 EXPORT_SYMBOL(contig_page_data);
94 #endif
95
96 unsigned long max_low_pfn;
97 unsigned long min_low_pfn;
98 unsigned long max_pfn;
99 unsigned long long max_possible_pfn;
100
101 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
102 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
103 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
104 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
105 #endif
106
107 struct memblock memblock __initdata_memblock = {
108 .memory.regions = memblock_memory_init_regions,
109 .memory.cnt = 1, /* empty dummy entry */
110 .memory.max = INIT_MEMBLOCK_REGIONS,
111 .memory.name = "memory",
112
113 .reserved.regions = memblock_reserved_init_regions,
114 .reserved.cnt = 1, /* empty dummy entry */
115 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
116 .reserved.name = "reserved",
117
118 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
119 .physmem.regions = memblock_physmem_init_regions,
120 .physmem.cnt = 1, /* empty dummy entry */
121 .physmem.max = INIT_PHYSMEM_REGIONS,
122 .physmem.name = "physmem",
123 #endif
124
125 .bottom_up = false,
126 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
127 };
128
129 int memblock_debug __initdata_memblock;
130 static bool system_has_some_mirror __initdata_memblock = false;
131 static int memblock_can_resize __initdata_memblock;
132 static int memblock_memory_in_slab __initdata_memblock = 0;
133 static int memblock_reserved_in_slab __initdata_memblock = 0;
134
135 enum memblock_flags __init_memblock choose_memblock_flags(void)
136 {
137 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
138 }
139
140 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
141 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
142 {
143 return *size = min(*size, PHYS_ADDR_MAX - base);
144 }
145
146 /*
147 * Address comparison utilities
148 */
149 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
150 phys_addr_t base2, phys_addr_t size2)
151 {
152 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
153 }
154
155 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
156 phys_addr_t base, phys_addr_t size)
157 {
158 unsigned long i;
159
160 for (i = 0; i < type->cnt; i++)
161 if (memblock_addrs_overlap(base, size, type->regions[i].base,
162 type->regions[i].size))
163 break;
164 return i < type->cnt;
165 }
166
167 /**
168 * __memblock_find_range_bottom_up - find free area utility in bottom-up
169 * @start: start of candidate range
170 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
171 * %MEMBLOCK_ALLOC_ACCESSIBLE
172 * @size: size of free area to find
173 * @align: alignment of free area to find
174 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
175 * @flags: pick from blocks based on memory attributes
176 *
177 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
178 *
179 * Return:
180 * Found address on success, 0 on failure.
181 */
182 static phys_addr_t __init_memblock
183 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
184 phys_addr_t size, phys_addr_t align, int nid,
185 enum memblock_flags flags)
186 {
187 phys_addr_t this_start, this_end, cand;
188 u64 i;
189
190 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
191 this_start = clamp(this_start, start, end);
192 this_end = clamp(this_end, start, end);
193
194 cand = round_up(this_start, align);
195 if (cand < this_end && this_end - cand >= size)
196 return cand;
197 }
198
199 return 0;
200 }
201
202 /**
203 * __memblock_find_range_top_down - find free area utility, in top-down
204 * @start: start of candidate range
205 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
206 * %MEMBLOCK_ALLOC_ACCESSIBLE
207 * @size: size of free area to find
208 * @align: alignment of free area to find
209 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
210 * @flags: pick from blocks based on memory attributes
211 *
212 * Utility called from memblock_find_in_range_node(), find free area top-down.
213 *
214 * Return:
215 * Found address on success, 0 on failure.
216 */
217 static phys_addr_t __init_memblock
218 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
219 phys_addr_t size, phys_addr_t align, int nid,
220 enum memblock_flags flags)
221 {
222 phys_addr_t this_start, this_end, cand;
223 u64 i;
224
225 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
226 NULL) {
227 this_start = clamp(this_start, start, end);
228 this_end = clamp(this_end, start, end);
229
230 if (this_end < size)
231 continue;
232
233 cand = round_down(this_end - size, align);
234 if (cand >= this_start)
235 return cand;
236 }
237
238 return 0;
239 }
240
241 /**
242 * memblock_find_in_range_node - find free area in given range and node
243 * @size: size of free area to find
244 * @align: alignment of free area to find
245 * @start: start of candidate range
246 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
247 * %MEMBLOCK_ALLOC_ACCESSIBLE
248 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
249 * @flags: pick from blocks based on memory attributes
250 *
251 * Find @size free area aligned to @align in the specified range and node.
252 *
253 * When allocation direction is bottom-up, the @start should be greater
254 * than the end of the kernel image. Otherwise, it will be trimmed. The
255 * reason is that we want the bottom-up allocation just near the kernel
256 * image so it is highly likely that the allocated memory and the kernel
257 * will reside in the same node.
258 *
259 * If bottom-up allocation failed, will try to allocate memory top-down.
260 *
261 * Return:
262 * Found address on success, 0 on failure.
263 */
264 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
265 phys_addr_t align, phys_addr_t start,
266 phys_addr_t end, int nid,
267 enum memblock_flags flags)
268 {
269 phys_addr_t kernel_end, ret;
270
271 /* pump up @end */
272 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
273 end == MEMBLOCK_ALLOC_KASAN)
274 end = memblock.current_limit;
275
276 /* avoid allocating the first page */
277 start = max_t(phys_addr_t, start, PAGE_SIZE);
278 end = max(start, end);
279 kernel_end = __pa_symbol(_end);
280
281 /*
282 * try bottom-up allocation only when bottom-up mode
283 * is set and @end is above the kernel image.
284 */
285 if (memblock_bottom_up() && end > kernel_end) {
286 phys_addr_t bottom_up_start;
287
288 /* make sure we will allocate above the kernel */
289 bottom_up_start = max(start, kernel_end);
290
291 /* ok, try bottom-up allocation first */
292 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
293 size, align, nid, flags);
294 if (ret)
295 return ret;
296
297 /*
298 * we always limit bottom-up allocation above the kernel,
299 * but top-down allocation doesn't have the limit, so
300 * retrying top-down allocation may succeed when bottom-up
301 * allocation failed.
302 *
303 * bottom-up allocation is expected to be fail very rarely,
304 * so we use WARN_ONCE() here to see the stack trace if
305 * fail happens.
306 */
307 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
308 "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
309 }
310
311 return __memblock_find_range_top_down(start, end, size, align, nid,
312 flags);
313 }
314
315 /**
316 * memblock_find_in_range - find free area in given range
317 * @start: start of candidate range
318 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
319 * %MEMBLOCK_ALLOC_ACCESSIBLE
320 * @size: size of free area to find
321 * @align: alignment of free area to find
322 *
323 * Find @size free area aligned to @align in the specified range.
324 *
325 * Return:
326 * Found address on success, 0 on failure.
327 */
328 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
329 phys_addr_t end, phys_addr_t size,
330 phys_addr_t align)
331 {
332 phys_addr_t ret;
333 enum memblock_flags flags = choose_memblock_flags();
334
335 again:
336 ret = memblock_find_in_range_node(size, align, start, end,
337 NUMA_NO_NODE, flags);
338
339 if (!ret && (flags & MEMBLOCK_MIRROR)) {
340 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
341 &size);
342 flags &= ~MEMBLOCK_MIRROR;
343 goto again;
344 }
345
346 return ret;
347 }
348
349 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
350 {
351 type->total_size -= type->regions[r].size;
352 memmove(&type->regions[r], &type->regions[r + 1],
353 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
354 type->cnt--;
355
356 /* Special case for empty arrays */
357 if (type->cnt == 0) {
358 WARN_ON(type->total_size != 0);
359 type->cnt = 1;
360 type->regions[0].base = 0;
361 type->regions[0].size = 0;
362 type->regions[0].flags = 0;
363 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
364 }
365 }
366
367 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
368 /**
369 * memblock_discard - discard memory and reserved arrays if they were allocated
370 */
371 void __init memblock_discard(void)
372 {
373 phys_addr_t addr, size;
374
375 if (memblock.reserved.regions != memblock_reserved_init_regions) {
376 addr = __pa(memblock.reserved.regions);
377 size = PAGE_ALIGN(sizeof(struct memblock_region) *
378 memblock.reserved.max);
379 __memblock_free_late(addr, size);
380 }
381
382 if (memblock.memory.regions != memblock_memory_init_regions) {
383 addr = __pa(memblock.memory.regions);
384 size = PAGE_ALIGN(sizeof(struct memblock_region) *
385 memblock.memory.max);
386 __memblock_free_late(addr, size);
387 }
388 }
389 #endif
390
391 /**
392 * memblock_double_array - double the size of the memblock regions array
393 * @type: memblock type of the regions array being doubled
394 * @new_area_start: starting address of memory range to avoid overlap with
395 * @new_area_size: size of memory range to avoid overlap with
396 *
397 * Double the size of the @type regions array. If memblock is being used to
398 * allocate memory for a new reserved regions array and there is a previously
399 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
400 * waiting to be reserved, ensure the memory used by the new array does
401 * not overlap.
402 *
403 * Return:
404 * 0 on success, -1 on failure.
405 */
406 static int __init_memblock memblock_double_array(struct memblock_type *type,
407 phys_addr_t new_area_start,
408 phys_addr_t new_area_size)
409 {
410 struct memblock_region *new_array, *old_array;
411 phys_addr_t old_alloc_size, new_alloc_size;
412 phys_addr_t old_size, new_size, addr, new_end;
413 int use_slab = slab_is_available();
414 int *in_slab;
415
416 /* We don't allow resizing until we know about the reserved regions
417 * of memory that aren't suitable for allocation
418 */
419 if (!memblock_can_resize)
420 return -1;
421
422 /* Calculate new doubled size */
423 old_size = type->max * sizeof(struct memblock_region);
424 new_size = old_size << 1;
425 /*
426 * We need to allocated new one align to PAGE_SIZE,
427 * so we can free them completely later.
428 */
429 old_alloc_size = PAGE_ALIGN(old_size);
430 new_alloc_size = PAGE_ALIGN(new_size);
431
432 /* Retrieve the slab flag */
433 if (type == &memblock.memory)
434 in_slab = &memblock_memory_in_slab;
435 else
436 in_slab = &memblock_reserved_in_slab;
437
438 /* Try to find some space for it.
439 *
440 * WARNING: We assume that either slab_is_available() and we use it or
441 * we use MEMBLOCK for allocations. That means that this is unsafe to
442 * use when bootmem is currently active (unless bootmem itself is
443 * implemented on top of MEMBLOCK which isn't the case yet)
444 *
445 * This should however not be an issue for now, as we currently only
446 * call into MEMBLOCK while it's still active, or much later when slab
447 * is active for memory hotplug operations
448 */
449 if (use_slab) {
450 new_array = kmalloc(new_size, GFP_KERNEL);
451 addr = new_array ? __pa(new_array) : 0;
452 } else {
453 /* only exclude range when trying to double reserved.regions */
454 if (type != &memblock.reserved)
455 new_area_start = new_area_size = 0;
456
457 addr = memblock_find_in_range(new_area_start + new_area_size,
458 memblock.current_limit,
459 new_alloc_size, PAGE_SIZE);
460 if (!addr && new_area_size)
461 addr = memblock_find_in_range(0,
462 min(new_area_start, memblock.current_limit),
463 new_alloc_size, PAGE_SIZE);
464
465 new_array = addr ? __va(addr) : NULL;
466 }
467 if (!addr) {
468 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
469 type->name, type->max, type->max * 2);
470 return -1;
471 }
472
473 new_end = addr + new_size - 1;
474 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
475 type->name, type->max * 2, &addr, &new_end);
476
477 /*
478 * Found space, we now need to move the array over before we add the
479 * reserved region since it may be our reserved array itself that is
480 * full.
481 */
482 memcpy(new_array, type->regions, old_size);
483 memset(new_array + type->max, 0, old_size);
484 old_array = type->regions;
485 type->regions = new_array;
486 type->max <<= 1;
487
488 /* Free old array. We needn't free it if the array is the static one */
489 if (*in_slab)
490 kfree(old_array);
491 else if (old_array != memblock_memory_init_regions &&
492 old_array != memblock_reserved_init_regions)
493 memblock_free(__pa(old_array), old_alloc_size);
494
495 /*
496 * Reserve the new array if that comes from the memblock. Otherwise, we
497 * needn't do it
498 */
499 if (!use_slab)
500 BUG_ON(memblock_reserve(addr, new_alloc_size));
501
502 /* Update slab flag */
503 *in_slab = use_slab;
504
505 return 0;
506 }
507
508 /**
509 * memblock_merge_regions - merge neighboring compatible regions
510 * @type: memblock type to scan
511 *
512 * Scan @type and merge neighboring compatible regions.
513 */
514 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
515 {
516 int i = 0;
517
518 /* cnt never goes below 1 */
519 while (i < type->cnt - 1) {
520 struct memblock_region *this = &type->regions[i];
521 struct memblock_region *next = &type->regions[i + 1];
522
523 if (this->base + this->size != next->base ||
524 memblock_get_region_node(this) !=
525 memblock_get_region_node(next) ||
526 this->flags != next->flags) {
527 BUG_ON(this->base + this->size > next->base);
528 i++;
529 continue;
530 }
531
532 this->size += next->size;
533 /* move forward from next + 1, index of which is i + 2 */
534 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
535 type->cnt--;
536 }
537 }
538
539 /**
540 * memblock_insert_region - insert new memblock region
541 * @type: memblock type to insert into
542 * @idx: index for the insertion point
543 * @base: base address of the new region
544 * @size: size of the new region
545 * @nid: node id of the new region
546 * @flags: flags of the new region
547 *
548 * Insert new memblock region [@base, @base + @size) into @type at @idx.
549 * @type must already have extra room to accommodate the new region.
550 */
551 static void __init_memblock memblock_insert_region(struct memblock_type *type,
552 int idx, phys_addr_t base,
553 phys_addr_t size,
554 int nid,
555 enum memblock_flags flags)
556 {
557 struct memblock_region *rgn = &type->regions[idx];
558
559 BUG_ON(type->cnt >= type->max);
560 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
561 rgn->base = base;
562 rgn->size = size;
563 rgn->flags = flags;
564 memblock_set_region_node(rgn, nid);
565 type->cnt++;
566 type->total_size += size;
567 }
568
569 /**
570 * memblock_add_range - add new memblock region
571 * @type: memblock type to add new region into
572 * @base: base address of the new region
573 * @size: size of the new region
574 * @nid: nid of the new region
575 * @flags: flags of the new region
576 *
577 * Add new memblock region [@base, @base + @size) into @type. The new region
578 * is allowed to overlap with existing ones - overlaps don't affect already
579 * existing regions. @type is guaranteed to be minimal (all neighbouring
580 * compatible regions are merged) after the addition.
581 *
582 * Return:
583 * 0 on success, -errno on failure.
584 */
585 int __init_memblock memblock_add_range(struct memblock_type *type,
586 phys_addr_t base, phys_addr_t size,
587 int nid, enum memblock_flags flags)
588 {
589 bool insert = false;
590 phys_addr_t obase = base;
591 phys_addr_t end = base + memblock_cap_size(base, &size);
592 int idx, nr_new;
593 struct memblock_region *rgn;
594
595 if (!size)
596 return 0;
597
598 /* special case for empty array */
599 if (type->regions[0].size == 0) {
600 WARN_ON(type->cnt != 1 || type->total_size);
601 type->regions[0].base = base;
602 type->regions[0].size = size;
603 type->regions[0].flags = flags;
604 memblock_set_region_node(&type->regions[0], nid);
605 type->total_size = size;
606 return 0;
607 }
608 repeat:
609 /*
610 * The following is executed twice. Once with %false @insert and
611 * then with %true. The first counts the number of regions needed
612 * to accommodate the new area. The second actually inserts them.
613 */
614 base = obase;
615 nr_new = 0;
616
617 for_each_memblock_type(idx, type, rgn) {
618 phys_addr_t rbase = rgn->base;
619 phys_addr_t rend = rbase + rgn->size;
620
621 if (rbase >= end)
622 break;
623 if (rend <= base)
624 continue;
625 /*
626 * @rgn overlaps. If it separates the lower part of new
627 * area, insert that portion.
628 */
629 if (rbase > base) {
630 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
631 WARN_ON(nid != memblock_get_region_node(rgn));
632 #endif
633 WARN_ON(flags != rgn->flags);
634 nr_new++;
635 if (insert)
636 memblock_insert_region(type, idx++, base,
637 rbase - base, nid,
638 flags);
639 }
640 /* area below @rend is dealt with, forget about it */
641 base = min(rend, end);
642 }
643
644 /* insert the remaining portion */
645 if (base < end) {
646 nr_new++;
647 if (insert)
648 memblock_insert_region(type, idx, base, end - base,
649 nid, flags);
650 }
651
652 if (!nr_new)
653 return 0;
654
655 /*
656 * If this was the first round, resize array and repeat for actual
657 * insertions; otherwise, merge and return.
658 */
659 if (!insert) {
660 while (type->cnt + nr_new > type->max)
661 if (memblock_double_array(type, obase, size) < 0)
662 return -ENOMEM;
663 insert = true;
664 goto repeat;
665 } else {
666 memblock_merge_regions(type);
667 return 0;
668 }
669 }
670
671 /**
672 * memblock_add_node - add new memblock region within a NUMA node
673 * @base: base address of the new region
674 * @size: size of the new region
675 * @nid: nid of the new region
676 *
677 * Add new memblock region [@base, @base + @size) to the "memory"
678 * type. See memblock_add_range() description for mode details
679 *
680 * Return:
681 * 0 on success, -errno on failure.
682 */
683 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
684 int nid)
685 {
686 return memblock_add_range(&memblock.memory, base, size, nid, 0);
687 }
688
689 /**
690 * memblock_add - add new memblock region
691 * @base: base address of the new region
692 * @size: size of the new region
693 *
694 * Add new memblock region [@base, @base + @size) to the "memory"
695 * type. See memblock_add_range() description for mode details
696 *
697 * Return:
698 * 0 on success, -errno on failure.
699 */
700 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
701 {
702 phys_addr_t end = base + size - 1;
703
704 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
705 &base, &end, (void *)_RET_IP_);
706
707 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
708 }
709
710 /**
711 * memblock_isolate_range - isolate given range into disjoint memblocks
712 * @type: memblock type to isolate range for
713 * @base: base of range to isolate
714 * @size: size of range to isolate
715 * @start_rgn: out parameter for the start of isolated region
716 * @end_rgn: out parameter for the end of isolated region
717 *
718 * Walk @type and ensure that regions don't cross the boundaries defined by
719 * [@base, @base + @size). Crossing regions are split at the boundaries,
720 * which may create at most two more regions. The index of the first
721 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
722 *
723 * Return:
724 * 0 on success, -errno on failure.
725 */
726 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
727 phys_addr_t base, phys_addr_t size,
728 int *start_rgn, int *end_rgn)
729 {
730 phys_addr_t end = base + memblock_cap_size(base, &size);
731 int idx;
732 struct memblock_region *rgn;
733
734 *start_rgn = *end_rgn = 0;
735
736 if (!size)
737 return 0;
738
739 /* we'll create at most two more regions */
740 while (type->cnt + 2 > type->max)
741 if (memblock_double_array(type, base, size) < 0)
742 return -ENOMEM;
743
744 for_each_memblock_type(idx, type, rgn) {
745 phys_addr_t rbase = rgn->base;
746 phys_addr_t rend = rbase + rgn->size;
747
748 if (rbase >= end)
749 break;
750 if (rend <= base)
751 continue;
752
753 if (rbase < base) {
754 /*
755 * @rgn intersects from below. Split and continue
756 * to process the next region - the new top half.
757 */
758 rgn->base = base;
759 rgn->size -= base - rbase;
760 type->total_size -= base - rbase;
761 memblock_insert_region(type, idx, rbase, base - rbase,
762 memblock_get_region_node(rgn),
763 rgn->flags);
764 } else if (rend > end) {
765 /*
766 * @rgn intersects from above. Split and redo the
767 * current region - the new bottom half.
768 */
769 rgn->base = end;
770 rgn->size -= end - rbase;
771 type->total_size -= end - rbase;
772 memblock_insert_region(type, idx--, rbase, end - rbase,
773 memblock_get_region_node(rgn),
774 rgn->flags);
775 } else {
776 /* @rgn is fully contained, record it */
777 if (!*end_rgn)
778 *start_rgn = idx;
779 *end_rgn = idx + 1;
780 }
781 }
782
783 return 0;
784 }
785
786 static int __init_memblock memblock_remove_range(struct memblock_type *type,
787 phys_addr_t base, phys_addr_t size)
788 {
789 int start_rgn, end_rgn;
790 int i, ret;
791
792 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
793 if (ret)
794 return ret;
795
796 for (i = end_rgn - 1; i >= start_rgn; i--)
797 memblock_remove_region(type, i);
798 return 0;
799 }
800
801 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
802 {
803 phys_addr_t end = base + size - 1;
804
805 memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
806 &base, &end, (void *)_RET_IP_);
807
808 return memblock_remove_range(&memblock.memory, base, size);
809 }
810
811 /**
812 * memblock_free - free boot memory block
813 * @base: phys starting address of the boot memory block
814 * @size: size of the boot memory block in bytes
815 *
816 * Free boot memory block previously allocated by memblock_alloc_xx() API.
817 * The freeing memory will not be released to the buddy allocator.
818 */
819 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
820 {
821 phys_addr_t end = base + size - 1;
822
823 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
824 &base, &end, (void *)_RET_IP_);
825
826 kmemleak_free_part_phys(base, size);
827 return memblock_remove_range(&memblock.reserved, base, size);
828 }
829
830 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
831 {
832 phys_addr_t end = base + size - 1;
833
834 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
835 &base, &end, (void *)_RET_IP_);
836
837 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
838 }
839
840 /**
841 * memblock_setclr_flag - set or clear flag for a memory region
842 * @base: base address of the region
843 * @size: size of the region
844 * @set: set or clear the flag
845 * @flag: the flag to udpate
846 *
847 * This function isolates region [@base, @base + @size), and sets/clears flag
848 *
849 * Return: 0 on success, -errno on failure.
850 */
851 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
852 phys_addr_t size, int set, int flag)
853 {
854 struct memblock_type *type = &memblock.memory;
855 int i, ret, start_rgn, end_rgn;
856
857 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
858 if (ret)
859 return ret;
860
861 for (i = start_rgn; i < end_rgn; i++)
862 if (set)
863 memblock_set_region_flags(&type->regions[i], flag);
864 else
865 memblock_clear_region_flags(&type->regions[i], flag);
866
867 memblock_merge_regions(type);
868 return 0;
869 }
870
871 /**
872 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
873 * @base: the base phys addr of the region
874 * @size: the size of the region
875 *
876 * Return: 0 on success, -errno on failure.
877 */
878 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
879 {
880 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
881 }
882
883 /**
884 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
885 * @base: the base phys addr of the region
886 * @size: the size of the region
887 *
888 * Return: 0 on success, -errno on failure.
889 */
890 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
891 {
892 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
893 }
894
895 /**
896 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
897 * @base: the base phys addr of the region
898 * @size: the size of the region
899 *
900 * Return: 0 on success, -errno on failure.
901 */
902 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
903 {
904 system_has_some_mirror = true;
905
906 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
907 }
908
909 /**
910 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
911 * @base: the base phys addr of the region
912 * @size: the size of the region
913 *
914 * Return: 0 on success, -errno on failure.
915 */
916 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
917 {
918 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
919 }
920
921 /**
922 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
923 * @base: the base phys addr of the region
924 * @size: the size of the region
925 *
926 * Return: 0 on success, -errno on failure.
927 */
928 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
929 {
930 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
931 }
932
933 /**
934 * __next_reserved_mem_region - next function for for_each_reserved_region()
935 * @idx: pointer to u64 loop variable
936 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
937 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
938 *
939 * Iterate over all reserved memory regions.
940 */
941 void __init_memblock __next_reserved_mem_region(u64 *idx,
942 phys_addr_t *out_start,
943 phys_addr_t *out_end)
944 {
945 struct memblock_type *type = &memblock.reserved;
946
947 if (*idx < type->cnt) {
948 struct memblock_region *r = &type->regions[*idx];
949 phys_addr_t base = r->base;
950 phys_addr_t size = r->size;
951
952 if (out_start)
953 *out_start = base;
954 if (out_end)
955 *out_end = base + size - 1;
956
957 *idx += 1;
958 return;
959 }
960
961 /* signal end of iteration */
962 *idx = ULLONG_MAX;
963 }
964
965 /**
966 * __next__mem_range - next function for for_each_free_mem_range() etc.
967 * @idx: pointer to u64 loop variable
968 * @nid: node selector, %NUMA_NO_NODE for all nodes
969 * @flags: pick from blocks based on memory attributes
970 * @type_a: pointer to memblock_type from where the range is taken
971 * @type_b: pointer to memblock_type which excludes memory from being taken
972 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
973 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
974 * @out_nid: ptr to int for nid of the range, can be %NULL
975 *
976 * Find the first area from *@idx which matches @nid, fill the out
977 * parameters, and update *@idx for the next iteration. The lower 32bit of
978 * *@idx contains index into type_a and the upper 32bit indexes the
979 * areas before each region in type_b. For example, if type_b regions
980 * look like the following,
981 *
982 * 0:[0-16), 1:[32-48), 2:[128-130)
983 *
984 * The upper 32bit indexes the following regions.
985 *
986 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
987 *
988 * As both region arrays are sorted, the function advances the two indices
989 * in lockstep and returns each intersection.
990 */
991 void __init_memblock __next_mem_range(u64 *idx, int nid,
992 enum memblock_flags flags,
993 struct memblock_type *type_a,
994 struct memblock_type *type_b,
995 phys_addr_t *out_start,
996 phys_addr_t *out_end, int *out_nid)
997 {
998 int idx_a = *idx & 0xffffffff;
999 int idx_b = *idx >> 32;
1000
1001 if (WARN_ONCE(nid == MAX_NUMNODES,
1002 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1003 nid = NUMA_NO_NODE;
1004
1005 for (; idx_a < type_a->cnt; idx_a++) {
1006 struct memblock_region *m = &type_a->regions[idx_a];
1007
1008 phys_addr_t m_start = m->base;
1009 phys_addr_t m_end = m->base + m->size;
1010 int m_nid = memblock_get_region_node(m);
1011
1012 /* only memory regions are associated with nodes, check it */
1013 if (nid != NUMA_NO_NODE && nid != m_nid)
1014 continue;
1015
1016 /* skip hotpluggable memory regions if needed */
1017 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1018 continue;
1019
1020 /* if we want mirror memory skip non-mirror memory regions */
1021 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1022 continue;
1023
1024 /* skip nomap memory unless we were asked for it explicitly */
1025 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1026 continue;
1027
1028 if (!type_b) {
1029 if (out_start)
1030 *out_start = m_start;
1031 if (out_end)
1032 *out_end = m_end;
1033 if (out_nid)
1034 *out_nid = m_nid;
1035 idx_a++;
1036 *idx = (u32)idx_a | (u64)idx_b << 32;
1037 return;
1038 }
1039
1040 /* scan areas before each reservation */
1041 for (; idx_b < type_b->cnt + 1; idx_b++) {
1042 struct memblock_region *r;
1043 phys_addr_t r_start;
1044 phys_addr_t r_end;
1045
1046 r = &type_b->regions[idx_b];
1047 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1048 r_end = idx_b < type_b->cnt ?
1049 r->base : PHYS_ADDR_MAX;
1050
1051 /*
1052 * if idx_b advanced past idx_a,
1053 * break out to advance idx_a
1054 */
1055 if (r_start >= m_end)
1056 break;
1057 /* if the two regions intersect, we're done */
1058 if (m_start < r_end) {
1059 if (out_start)
1060 *out_start =
1061 max(m_start, r_start);
1062 if (out_end)
1063 *out_end = min(m_end, r_end);
1064 if (out_nid)
1065 *out_nid = m_nid;
1066 /*
1067 * The region which ends first is
1068 * advanced for the next iteration.
1069 */
1070 if (m_end <= r_end)
1071 idx_a++;
1072 else
1073 idx_b++;
1074 *idx = (u32)idx_a | (u64)idx_b << 32;
1075 return;
1076 }
1077 }
1078 }
1079
1080 /* signal end of iteration */
1081 *idx = ULLONG_MAX;
1082 }
1083
1084 /**
1085 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1086 *
1087 * @idx: pointer to u64 loop variable
1088 * @nid: node selector, %NUMA_NO_NODE for all nodes
1089 * @flags: pick from blocks based on memory attributes
1090 * @type_a: pointer to memblock_type from where the range is taken
1091 * @type_b: pointer to memblock_type which excludes memory from being taken
1092 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1093 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1094 * @out_nid: ptr to int for nid of the range, can be %NULL
1095 *
1096 * Finds the next range from type_a which is not marked as unsuitable
1097 * in type_b.
1098 *
1099 * Reverse of __next_mem_range().
1100 */
1101 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1102 enum memblock_flags flags,
1103 struct memblock_type *type_a,
1104 struct memblock_type *type_b,
1105 phys_addr_t *out_start,
1106 phys_addr_t *out_end, int *out_nid)
1107 {
1108 int idx_a = *idx & 0xffffffff;
1109 int idx_b = *idx >> 32;
1110
1111 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1112 nid = NUMA_NO_NODE;
1113
1114 if (*idx == (u64)ULLONG_MAX) {
1115 idx_a = type_a->cnt - 1;
1116 if (type_b != NULL)
1117 idx_b = type_b->cnt;
1118 else
1119 idx_b = 0;
1120 }
1121
1122 for (; idx_a >= 0; idx_a--) {
1123 struct memblock_region *m = &type_a->regions[idx_a];
1124
1125 phys_addr_t m_start = m->base;
1126 phys_addr_t m_end = m->base + m->size;
1127 int m_nid = memblock_get_region_node(m);
1128
1129 /* only memory regions are associated with nodes, check it */
1130 if (nid != NUMA_NO_NODE && nid != m_nid)
1131 continue;
1132
1133 /* skip hotpluggable memory regions if needed */
1134 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1135 continue;
1136
1137 /* if we want mirror memory skip non-mirror memory regions */
1138 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1139 continue;
1140
1141 /* skip nomap memory unless we were asked for it explicitly */
1142 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1143 continue;
1144
1145 if (!type_b) {
1146 if (out_start)
1147 *out_start = m_start;
1148 if (out_end)
1149 *out_end = m_end;
1150 if (out_nid)
1151 *out_nid = m_nid;
1152 idx_a--;
1153 *idx = (u32)idx_a | (u64)idx_b << 32;
1154 return;
1155 }
1156
1157 /* scan areas before each reservation */
1158 for (; idx_b >= 0; idx_b--) {
1159 struct memblock_region *r;
1160 phys_addr_t r_start;
1161 phys_addr_t r_end;
1162
1163 r = &type_b->regions[idx_b];
1164 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1165 r_end = idx_b < type_b->cnt ?
1166 r->base : PHYS_ADDR_MAX;
1167 /*
1168 * if idx_b advanced past idx_a,
1169 * break out to advance idx_a
1170 */
1171
1172 if (r_end <= m_start)
1173 break;
1174 /* if the two regions intersect, we're done */
1175 if (m_end > r_start) {
1176 if (out_start)
1177 *out_start = max(m_start, r_start);
1178 if (out_end)
1179 *out_end = min(m_end, r_end);
1180 if (out_nid)
1181 *out_nid = m_nid;
1182 if (m_start >= r_start)
1183 idx_a--;
1184 else
1185 idx_b--;
1186 *idx = (u32)idx_a | (u64)idx_b << 32;
1187 return;
1188 }
1189 }
1190 }
1191 /* signal end of iteration */
1192 *idx = ULLONG_MAX;
1193 }
1194
1195 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1196 /*
1197 * Common iterator interface used to define for_each_mem_pfn_range().
1198 */
1199 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1200 unsigned long *out_start_pfn,
1201 unsigned long *out_end_pfn, int *out_nid)
1202 {
1203 struct memblock_type *type = &memblock.memory;
1204 struct memblock_region *r;
1205
1206 while (++*idx < type->cnt) {
1207 r = &type->regions[*idx];
1208
1209 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1210 continue;
1211 if (nid == MAX_NUMNODES || nid == r->nid)
1212 break;
1213 }
1214 if (*idx >= type->cnt) {
1215 *idx = -1;
1216 return;
1217 }
1218
1219 if (out_start_pfn)
1220 *out_start_pfn = PFN_UP(r->base);
1221 if (out_end_pfn)
1222 *out_end_pfn = PFN_DOWN(r->base + r->size);
1223 if (out_nid)
1224 *out_nid = r->nid;
1225 }
1226
1227 /**
1228 * memblock_set_node - set node ID on memblock regions
1229 * @base: base of area to set node ID for
1230 * @size: size of area to set node ID for
1231 * @type: memblock type to set node ID for
1232 * @nid: node ID to set
1233 *
1234 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1235 * Regions which cross the area boundaries are split as necessary.
1236 *
1237 * Return:
1238 * 0 on success, -errno on failure.
1239 */
1240 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1241 struct memblock_type *type, int nid)
1242 {
1243 int start_rgn, end_rgn;
1244 int i, ret;
1245
1246 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1247 if (ret)
1248 return ret;
1249
1250 for (i = start_rgn; i < end_rgn; i++)
1251 memblock_set_region_node(&type->regions[i], nid);
1252
1253 memblock_merge_regions(type);
1254 return 0;
1255 }
1256 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1257
1258 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1259 phys_addr_t align, phys_addr_t start,
1260 phys_addr_t end, int nid,
1261 enum memblock_flags flags)
1262 {
1263 phys_addr_t found;
1264
1265 if (!align) {
1266 /* Can't use WARNs this early in boot on powerpc */
1267 dump_stack();
1268 align = SMP_CACHE_BYTES;
1269 }
1270
1271 found = memblock_find_in_range_node(size, align, start, end, nid,
1272 flags);
1273 if (found && !memblock_reserve(found, size)) {
1274 /*
1275 * The min_count is set to 0 so that memblock allocations are
1276 * never reported as leaks.
1277 */
1278 kmemleak_alloc_phys(found, size, 0, 0);
1279 return found;
1280 }
1281 return 0;
1282 }
1283
1284 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1285 phys_addr_t start, phys_addr_t end,
1286 enum memblock_flags flags)
1287 {
1288 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1289 flags);
1290 }
1291
1292 phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1293 phys_addr_t align, phys_addr_t max_addr,
1294 int nid, enum memblock_flags flags)
1295 {
1296 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1297 }
1298
1299 phys_addr_t __init memblock_phys_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1300 {
1301 enum memblock_flags flags = choose_memblock_flags();
1302 phys_addr_t ret;
1303
1304 again:
1305 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1306 nid, flags);
1307
1308 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1309 flags &= ~MEMBLOCK_MIRROR;
1310 goto again;
1311 }
1312 return ret;
1313 }
1314
1315 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1316 {
1317 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1318 MEMBLOCK_NONE);
1319 }
1320
1321 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1322 {
1323 phys_addr_t alloc;
1324
1325 alloc = __memblock_alloc_base(size, align, max_addr);
1326
1327 if (alloc == 0)
1328 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1329 &size, &max_addr);
1330
1331 return alloc;
1332 }
1333
1334 phys_addr_t __init memblock_phys_alloc(phys_addr_t size, phys_addr_t align)
1335 {
1336 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1337 }
1338
1339 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1340 {
1341 phys_addr_t res = memblock_phys_alloc_nid(size, align, nid);
1342
1343 if (res)
1344 return res;
1345 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1346 }
1347
1348 /**
1349 * memblock_alloc_internal - allocate boot memory block
1350 * @size: size of memory block to be allocated in bytes
1351 * @align: alignment of the region and block's size
1352 * @min_addr: the lower bound of the memory region to allocate (phys address)
1353 * @max_addr: the upper bound of the memory region to allocate (phys address)
1354 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1355 *
1356 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1357 * will fall back to memory below @min_addr. Also, allocation may fall back
1358 * to any node in the system if the specified node can not
1359 * hold the requested memory.
1360 *
1361 * The allocation is performed from memory region limited by
1362 * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE.
1363 *
1364 * The phys address of allocated boot memory block is converted to virtual and
1365 * allocated memory is reset to 0.
1366 *
1367 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1368 * allocated boot memory block, so that it is never reported as leaks.
1369 *
1370 * Return:
1371 * Virtual address of allocated memory block on success, NULL on failure.
1372 */
1373 static void * __init memblock_alloc_internal(
1374 phys_addr_t size, phys_addr_t align,
1375 phys_addr_t min_addr, phys_addr_t max_addr,
1376 int nid)
1377 {
1378 phys_addr_t alloc;
1379 void *ptr;
1380 enum memblock_flags flags = choose_memblock_flags();
1381
1382 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1383 nid = NUMA_NO_NODE;
1384
1385 /*
1386 * Detect any accidental use of these APIs after slab is ready, as at
1387 * this moment memblock may be deinitialized already and its
1388 * internal data may be destroyed (after execution of memblock_free_all)
1389 */
1390 if (WARN_ON_ONCE(slab_is_available()))
1391 return kzalloc_node(size, GFP_NOWAIT, nid);
1392
1393 if (!align) {
1394 dump_stack();
1395 align = SMP_CACHE_BYTES;
1396 }
1397
1398 if (max_addr > memblock.current_limit)
1399 max_addr = memblock.current_limit;
1400 again:
1401 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1402 nid, flags);
1403 if (alloc && !memblock_reserve(alloc, size))
1404 goto done;
1405
1406 if (nid != NUMA_NO_NODE) {
1407 alloc = memblock_find_in_range_node(size, align, min_addr,
1408 max_addr, NUMA_NO_NODE,
1409 flags);
1410 if (alloc && !memblock_reserve(alloc, size))
1411 goto done;
1412 }
1413
1414 if (min_addr) {
1415 min_addr = 0;
1416 goto again;
1417 }
1418
1419 if (flags & MEMBLOCK_MIRROR) {
1420 flags &= ~MEMBLOCK_MIRROR;
1421 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1422 &size);
1423 goto again;
1424 }
1425
1426 return NULL;
1427 done:
1428 ptr = phys_to_virt(alloc);
1429
1430 /* Skip kmemleak for kasan_init() due to high volume. */
1431 if (max_addr != MEMBLOCK_ALLOC_KASAN)
1432 /*
1433 * The min_count is set to 0 so that bootmem allocated
1434 * blocks are never reported as leaks. This is because many
1435 * of these blocks are only referred via the physical
1436 * address which is not looked up by kmemleak.
1437 */
1438 kmemleak_alloc(ptr, size, 0, 0);
1439
1440 return ptr;
1441 }
1442
1443 /**
1444 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1445 * memory and without panicking
1446 * @size: size of memory block to be allocated in bytes
1447 * @align: alignment of the region and block's size
1448 * @min_addr: the lower bound of the memory region from where the allocation
1449 * is preferred (phys address)
1450 * @max_addr: the upper bound of the memory region from where the allocation
1451 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1452 * allocate only from memory limited by memblock.current_limit value
1453 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1454 *
1455 * Public function, provides additional debug information (including caller
1456 * info), if enabled. Does not zero allocated memory, does not panic if request
1457 * cannot be satisfied.
1458 *
1459 * Return:
1460 * Virtual address of allocated memory block on success, NULL on failure.
1461 */
1462 void * __init memblock_alloc_try_nid_raw(
1463 phys_addr_t size, phys_addr_t align,
1464 phys_addr_t min_addr, phys_addr_t max_addr,
1465 int nid)
1466 {
1467 void *ptr;
1468
1469 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1470 __func__, (u64)size, (u64)align, nid, &min_addr,
1471 &max_addr, (void *)_RET_IP_);
1472
1473 ptr = memblock_alloc_internal(size, align,
1474 min_addr, max_addr, nid);
1475 if (ptr && size > 0)
1476 page_init_poison(ptr, size);
1477
1478 return ptr;
1479 }
1480
1481 /**
1482 * memblock_alloc_try_nid_nopanic - allocate boot memory block
1483 * @size: size of memory block to be allocated in bytes
1484 * @align: alignment of the region and block's size
1485 * @min_addr: the lower bound of the memory region from where the allocation
1486 * is preferred (phys address)
1487 * @max_addr: the upper bound of the memory region from where the allocation
1488 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1489 * allocate only from memory limited by memblock.current_limit value
1490 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1491 *
1492 * Public function, provides additional debug information (including caller
1493 * info), if enabled. This function zeroes the allocated memory.
1494 *
1495 * Return:
1496 * Virtual address of allocated memory block on success, NULL on failure.
1497 */
1498 void * __init memblock_alloc_try_nid_nopanic(
1499 phys_addr_t size, phys_addr_t align,
1500 phys_addr_t min_addr, phys_addr_t max_addr,
1501 int nid)
1502 {
1503 void *ptr;
1504
1505 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1506 __func__, (u64)size, (u64)align, nid, &min_addr,
1507 &max_addr, (void *)_RET_IP_);
1508
1509 ptr = memblock_alloc_internal(size, align,
1510 min_addr, max_addr, nid);
1511 if (ptr)
1512 memset(ptr, 0, size);
1513 return ptr;
1514 }
1515
1516 /**
1517 * memblock_alloc_try_nid - allocate boot memory block with panicking
1518 * @size: size of memory block to be allocated in bytes
1519 * @align: alignment of the region and block's size
1520 * @min_addr: the lower bound of the memory region from where the allocation
1521 * is preferred (phys address)
1522 * @max_addr: the upper bound of the memory region from where the allocation
1523 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1524 * allocate only from memory limited by memblock.current_limit value
1525 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1526 *
1527 * Public panicking version of memblock_alloc_try_nid_nopanic()
1528 * which provides debug information (including caller info), if enabled,
1529 * and panics if the request can not be satisfied.
1530 *
1531 * Return:
1532 * Virtual address of allocated memory block on success, NULL on failure.
1533 */
1534 void * __init memblock_alloc_try_nid(
1535 phys_addr_t size, phys_addr_t align,
1536 phys_addr_t min_addr, phys_addr_t max_addr,
1537 int nid)
1538 {
1539 void *ptr;
1540
1541 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1542 __func__, (u64)size, (u64)align, nid, &min_addr,
1543 &max_addr, (void *)_RET_IP_);
1544 ptr = memblock_alloc_internal(size, align,
1545 min_addr, max_addr, nid);
1546 if (ptr) {
1547 memset(ptr, 0, size);
1548 return ptr;
1549 }
1550
1551 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa\n",
1552 __func__, (u64)size, (u64)align, nid, &min_addr, &max_addr);
1553 return NULL;
1554 }
1555
1556 /**
1557 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1558 * @base: phys starting address of the boot memory block
1559 * @size: size of the boot memory block in bytes
1560 *
1561 * This is only useful when the bootmem allocator has already been torn
1562 * down, but we are still initializing the system. Pages are released directly
1563 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1564 */
1565 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1566 {
1567 phys_addr_t cursor, end;
1568
1569 end = base + size - 1;
1570 memblock_dbg("%s: [%pa-%pa] %pF\n",
1571 __func__, &base, &end, (void *)_RET_IP_);
1572 kmemleak_free_part_phys(base, size);
1573 cursor = PFN_UP(base);
1574 end = PFN_DOWN(base + size);
1575
1576 for (; cursor < end; cursor++) {
1577 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1578 totalram_pages_inc();
1579 }
1580 }
1581
1582 /*
1583 * Remaining API functions
1584 */
1585
1586 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1587 {
1588 return memblock.memory.total_size;
1589 }
1590
1591 phys_addr_t __init_memblock memblock_reserved_size(void)
1592 {
1593 return memblock.reserved.total_size;
1594 }
1595
1596 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1597 {
1598 unsigned long pages = 0;
1599 struct memblock_region *r;
1600 unsigned long start_pfn, end_pfn;
1601
1602 for_each_memblock(memory, r) {
1603 start_pfn = memblock_region_memory_base_pfn(r);
1604 end_pfn = memblock_region_memory_end_pfn(r);
1605 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1606 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1607 pages += end_pfn - start_pfn;
1608 }
1609
1610 return PFN_PHYS(pages);
1611 }
1612
1613 /* lowest address */
1614 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1615 {
1616 return memblock.memory.regions[0].base;
1617 }
1618
1619 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1620 {
1621 int idx = memblock.memory.cnt - 1;
1622
1623 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1624 }
1625
1626 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1627 {
1628 phys_addr_t max_addr = PHYS_ADDR_MAX;
1629 struct memblock_region *r;
1630
1631 /*
1632 * translate the memory @limit size into the max address within one of
1633 * the memory memblock regions, if the @limit exceeds the total size
1634 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1635 */
1636 for_each_memblock(memory, r) {
1637 if (limit <= r->size) {
1638 max_addr = r->base + limit;
1639 break;
1640 }
1641 limit -= r->size;
1642 }
1643
1644 return max_addr;
1645 }
1646
1647 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1648 {
1649 phys_addr_t max_addr = PHYS_ADDR_MAX;
1650
1651 if (!limit)
1652 return;
1653
1654 max_addr = __find_max_addr(limit);
1655
1656 /* @limit exceeds the total size of the memory, do nothing */
1657 if (max_addr == PHYS_ADDR_MAX)
1658 return;
1659
1660 /* truncate both memory and reserved regions */
1661 memblock_remove_range(&memblock.memory, max_addr,
1662 PHYS_ADDR_MAX);
1663 memblock_remove_range(&memblock.reserved, max_addr,
1664 PHYS_ADDR_MAX);
1665 }
1666
1667 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1668 {
1669 int start_rgn, end_rgn;
1670 int i, ret;
1671
1672 if (!size)
1673 return;
1674
1675 ret = memblock_isolate_range(&memblock.memory, base, size,
1676 &start_rgn, &end_rgn);
1677 if (ret)
1678 return;
1679
1680 /* remove all the MAP regions */
1681 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1682 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1683 memblock_remove_region(&memblock.memory, i);
1684
1685 for (i = start_rgn - 1; i >= 0; i--)
1686 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1687 memblock_remove_region(&memblock.memory, i);
1688
1689 /* truncate the reserved regions */
1690 memblock_remove_range(&memblock.reserved, 0, base);
1691 memblock_remove_range(&memblock.reserved,
1692 base + size, PHYS_ADDR_MAX);
1693 }
1694
1695 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1696 {
1697 phys_addr_t max_addr;
1698
1699 if (!limit)
1700 return;
1701
1702 max_addr = __find_max_addr(limit);
1703
1704 /* @limit exceeds the total size of the memory, do nothing */
1705 if (max_addr == PHYS_ADDR_MAX)
1706 return;
1707
1708 memblock_cap_memory_range(0, max_addr);
1709 }
1710
1711 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1712 {
1713 unsigned int left = 0, right = type->cnt;
1714
1715 do {
1716 unsigned int mid = (right + left) / 2;
1717
1718 if (addr < type->regions[mid].base)
1719 right = mid;
1720 else if (addr >= (type->regions[mid].base +
1721 type->regions[mid].size))
1722 left = mid + 1;
1723 else
1724 return mid;
1725 } while (left < right);
1726 return -1;
1727 }
1728
1729 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1730 {
1731 return memblock_search(&memblock.reserved, addr) != -1;
1732 }
1733
1734 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1735 {
1736 return memblock_search(&memblock.memory, addr) != -1;
1737 }
1738
1739 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1740 {
1741 int i = memblock_search(&memblock.memory, addr);
1742
1743 if (i == -1)
1744 return false;
1745 return !memblock_is_nomap(&memblock.memory.regions[i]);
1746 }
1747
1748 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1749 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1750 unsigned long *start_pfn, unsigned long *end_pfn)
1751 {
1752 struct memblock_type *type = &memblock.memory;
1753 int mid = memblock_search(type, PFN_PHYS(pfn));
1754
1755 if (mid == -1)
1756 return -1;
1757
1758 *start_pfn = PFN_DOWN(type->regions[mid].base);
1759 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1760
1761 return type->regions[mid].nid;
1762 }
1763 #endif
1764
1765 /**
1766 * memblock_is_region_memory - check if a region is a subset of memory
1767 * @base: base of region to check
1768 * @size: size of region to check
1769 *
1770 * Check if the region [@base, @base + @size) is a subset of a memory block.
1771 *
1772 * Return:
1773 * 0 if false, non-zero if true
1774 */
1775 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1776 {
1777 int idx = memblock_search(&memblock.memory, base);
1778 phys_addr_t end = base + memblock_cap_size(base, &size);
1779
1780 if (idx == -1)
1781 return false;
1782 return (memblock.memory.regions[idx].base +
1783 memblock.memory.regions[idx].size) >= end;
1784 }
1785
1786 /**
1787 * memblock_is_region_reserved - check if a region intersects reserved memory
1788 * @base: base of region to check
1789 * @size: size of region to check
1790 *
1791 * Check if the region [@base, @base + @size) intersects a reserved
1792 * memory block.
1793 *
1794 * Return:
1795 * True if they intersect, false if not.
1796 */
1797 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1798 {
1799 memblock_cap_size(base, &size);
1800 return memblock_overlaps_region(&memblock.reserved, base, size);
1801 }
1802
1803 void __init_memblock memblock_trim_memory(phys_addr_t align)
1804 {
1805 phys_addr_t start, end, orig_start, orig_end;
1806 struct memblock_region *r;
1807
1808 for_each_memblock(memory, r) {
1809 orig_start = r->base;
1810 orig_end = r->base + r->size;
1811 start = round_up(orig_start, align);
1812 end = round_down(orig_end, align);
1813
1814 if (start == orig_start && end == orig_end)
1815 continue;
1816
1817 if (start < end) {
1818 r->base = start;
1819 r->size = end - start;
1820 } else {
1821 memblock_remove_region(&memblock.memory,
1822 r - memblock.memory.regions);
1823 r--;
1824 }
1825 }
1826 }
1827
1828 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1829 {
1830 memblock.current_limit = limit;
1831 }
1832
1833 phys_addr_t __init_memblock memblock_get_current_limit(void)
1834 {
1835 return memblock.current_limit;
1836 }
1837
1838 static void __init_memblock memblock_dump(struct memblock_type *type)
1839 {
1840 phys_addr_t base, end, size;
1841 enum memblock_flags flags;
1842 int idx;
1843 struct memblock_region *rgn;
1844
1845 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1846
1847 for_each_memblock_type(idx, type, rgn) {
1848 char nid_buf[32] = "";
1849
1850 base = rgn->base;
1851 size = rgn->size;
1852 end = base + size - 1;
1853 flags = rgn->flags;
1854 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1855 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1856 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1857 memblock_get_region_node(rgn));
1858 #endif
1859 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1860 type->name, idx, &base, &end, &size, nid_buf, flags);
1861 }
1862 }
1863
1864 void __init_memblock __memblock_dump_all(void)
1865 {
1866 pr_info("MEMBLOCK configuration:\n");
1867 pr_info(" memory size = %pa reserved size = %pa\n",
1868 &memblock.memory.total_size,
1869 &memblock.reserved.total_size);
1870
1871 memblock_dump(&memblock.memory);
1872 memblock_dump(&memblock.reserved);
1873 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1874 memblock_dump(&memblock.physmem);
1875 #endif
1876 }
1877
1878 void __init memblock_allow_resize(void)
1879 {
1880 memblock_can_resize = 1;
1881 }
1882
1883 static int __init early_memblock(char *p)
1884 {
1885 if (p && strstr(p, "debug"))
1886 memblock_debug = 1;
1887 return 0;
1888 }
1889 early_param("memblock", early_memblock);
1890
1891 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1892 {
1893 int order;
1894
1895 while (start < end) {
1896 order = min(MAX_ORDER - 1UL, __ffs(start));
1897
1898 while (start + (1UL << order) > end)
1899 order--;
1900
1901 memblock_free_pages(pfn_to_page(start), start, order);
1902
1903 start += (1UL << order);
1904 }
1905 }
1906
1907 static unsigned long __init __free_memory_core(phys_addr_t start,
1908 phys_addr_t end)
1909 {
1910 unsigned long start_pfn = PFN_UP(start);
1911 unsigned long end_pfn = min_t(unsigned long,
1912 PFN_DOWN(end), max_low_pfn);
1913
1914 if (start_pfn >= end_pfn)
1915 return 0;
1916
1917 __free_pages_memory(start_pfn, end_pfn);
1918
1919 return end_pfn - start_pfn;
1920 }
1921
1922 static unsigned long __init free_low_memory_core_early(void)
1923 {
1924 unsigned long count = 0;
1925 phys_addr_t start, end;
1926 u64 i;
1927
1928 memblock_clear_hotplug(0, -1);
1929
1930 for_each_reserved_mem_region(i, &start, &end)
1931 reserve_bootmem_region(start, end);
1932
1933 /*
1934 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1935 * because in some case like Node0 doesn't have RAM installed
1936 * low ram will be on Node1
1937 */
1938 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1939 NULL)
1940 count += __free_memory_core(start, end);
1941
1942 return count;
1943 }
1944
1945 static int reset_managed_pages_done __initdata;
1946
1947 void reset_node_managed_pages(pg_data_t *pgdat)
1948 {
1949 struct zone *z;
1950
1951 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1952 atomic_long_set(&z->managed_pages, 0);
1953 }
1954
1955 void __init reset_all_zones_managed_pages(void)
1956 {
1957 struct pglist_data *pgdat;
1958
1959 if (reset_managed_pages_done)
1960 return;
1961
1962 for_each_online_pgdat(pgdat)
1963 reset_node_managed_pages(pgdat);
1964
1965 reset_managed_pages_done = 1;
1966 }
1967
1968 /**
1969 * memblock_free_all - release free pages to the buddy allocator
1970 *
1971 * Return: the number of pages actually released.
1972 */
1973 unsigned long __init memblock_free_all(void)
1974 {
1975 unsigned long pages;
1976
1977 reset_all_zones_managed_pages();
1978
1979 pages = free_low_memory_core_early();
1980 totalram_pages_add(pages);
1981
1982 return pages;
1983 }
1984
1985 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1986
1987 static int memblock_debug_show(struct seq_file *m, void *private)
1988 {
1989 struct memblock_type *type = m->private;
1990 struct memblock_region *reg;
1991 int i;
1992 phys_addr_t end;
1993
1994 for (i = 0; i < type->cnt; i++) {
1995 reg = &type->regions[i];
1996 end = reg->base + reg->size - 1;
1997
1998 seq_printf(m, "%4d: ", i);
1999 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2000 }
2001 return 0;
2002 }
2003 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2004
2005 static int __init memblock_init_debugfs(void)
2006 {
2007 struct dentry *root = debugfs_create_dir("memblock", NULL);
2008 if (!root)
2009 return -ENXIO;
2010 debugfs_create_file("memory", 0444, root,
2011 &memblock.memory, &memblock_debug_fops);
2012 debugfs_create_file("reserved", 0444, root,
2013 &memblock.reserved, &memblock_debug_fops);
2014 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2015 debugfs_create_file("physmem", 0444, root,
2016 &memblock.physmem, &memblock_debug_fops);
2017 #endif
2018
2019 return 0;
2020 }
2021 __initcall(memblock_init_debugfs);
2022
2023 #endif /* CONFIG_DEBUG_FS */