]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page_alloc.c
vhost: correctly check the return value of translate_desc() in log_used()
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <xen/xen.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76
77 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
78 static DEFINE_MUTEX(pcp_batch_high_lock);
79 #define MIN_PERCPU_PAGELIST_FRACTION (8)
80
81 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
82 DEFINE_PER_CPU(int, numa_node);
83 EXPORT_PER_CPU_SYMBOL(numa_node);
84 #endif
85
86 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
87
88 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
89 /*
90 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
91 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
92 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
93 * defined in <linux/topology.h>.
94 */
95 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
96 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
97 int _node_numa_mem_[MAX_NUMNODES];
98 #endif
99
100 /* work_structs for global per-cpu drains */
101 DEFINE_MUTEX(pcpu_drain_mutex);
102 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
103
104 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
105 volatile unsigned long latent_entropy __latent_entropy;
106 EXPORT_SYMBOL(latent_entropy);
107 #endif
108
109 /*
110 * Array of node states.
111 */
112 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
113 [N_POSSIBLE] = NODE_MASK_ALL,
114 [N_ONLINE] = { { [0] = 1UL } },
115 #ifndef CONFIG_NUMA
116 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
117 #ifdef CONFIG_HIGHMEM
118 [N_HIGH_MEMORY] = { { [0] = 1UL } },
119 #endif
120 [N_MEMORY] = { { [0] = 1UL } },
121 [N_CPU] = { { [0] = 1UL } },
122 #endif /* NUMA */
123 };
124 EXPORT_SYMBOL(node_states);
125
126 /* Protect totalram_pages and zone->managed_pages */
127 static DEFINE_SPINLOCK(managed_page_count_lock);
128
129 unsigned long totalram_pages __read_mostly;
130 unsigned long totalreserve_pages __read_mostly;
131 unsigned long totalcma_pages __read_mostly;
132
133 int percpu_pagelist_fraction;
134 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
135
136 /*
137 * A cached value of the page's pageblock's migratetype, used when the page is
138 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
139 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
140 * Also the migratetype set in the page does not necessarily match the pcplist
141 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
142 * other index - this ensures that it will be put on the correct CMA freelist.
143 */
144 static inline int get_pcppage_migratetype(struct page *page)
145 {
146 return page->index;
147 }
148
149 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
150 {
151 page->index = migratetype;
152 }
153
154 #ifdef CONFIG_PM_SLEEP
155 /*
156 * The following functions are used by the suspend/hibernate code to temporarily
157 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
158 * while devices are suspended. To avoid races with the suspend/hibernate code,
159 * they should always be called with pm_mutex held (gfp_allowed_mask also should
160 * only be modified with pm_mutex held, unless the suspend/hibernate code is
161 * guaranteed not to run in parallel with that modification).
162 */
163
164 static gfp_t saved_gfp_mask;
165
166 void pm_restore_gfp_mask(void)
167 {
168 WARN_ON(!mutex_is_locked(&pm_mutex));
169 if (saved_gfp_mask) {
170 gfp_allowed_mask = saved_gfp_mask;
171 saved_gfp_mask = 0;
172 }
173 }
174
175 void pm_restrict_gfp_mask(void)
176 {
177 WARN_ON(!mutex_is_locked(&pm_mutex));
178 WARN_ON(saved_gfp_mask);
179 saved_gfp_mask = gfp_allowed_mask;
180 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181 }
182
183 bool pm_suspended_storage(void)
184 {
185 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
186 return false;
187 return true;
188 }
189 #endif /* CONFIG_PM_SLEEP */
190
191 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192 unsigned int pageblock_order __read_mostly;
193 #endif
194
195 static void __free_pages_ok(struct page *page, unsigned int order);
196
197 /*
198 * results with 256, 32 in the lowmem_reserve sysctl:
199 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
200 * 1G machine -> (16M dma, 784M normal, 224M high)
201 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
202 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
203 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204 *
205 * TBD: should special case ZONE_DMA32 machines here - in those we normally
206 * don't need any ZONE_NORMAL reservation
207 */
208 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
209 #ifdef CONFIG_ZONE_DMA
210 256,
211 #endif
212 #ifdef CONFIG_ZONE_DMA32
213 256,
214 #endif
215 #ifdef CONFIG_HIGHMEM
216 32,
217 #endif
218 32,
219 };
220
221 EXPORT_SYMBOL(totalram_pages);
222
223 static char * const zone_names[MAX_NR_ZONES] = {
224 #ifdef CONFIG_ZONE_DMA
225 "DMA",
226 #endif
227 #ifdef CONFIG_ZONE_DMA32
228 "DMA32",
229 #endif
230 "Normal",
231 #ifdef CONFIG_HIGHMEM
232 "HighMem",
233 #endif
234 "Movable",
235 #ifdef CONFIG_ZONE_DEVICE
236 "Device",
237 #endif
238 };
239
240 char * const migratetype_names[MIGRATE_TYPES] = {
241 "Unmovable",
242 "Movable",
243 "Reclaimable",
244 "HighAtomic",
245 #ifdef CONFIG_CMA
246 "CMA",
247 #endif
248 #ifdef CONFIG_MEMORY_ISOLATION
249 "Isolate",
250 #endif
251 };
252
253 compound_page_dtor * const compound_page_dtors[] = {
254 NULL,
255 free_compound_page,
256 #ifdef CONFIG_HUGETLB_PAGE
257 free_huge_page,
258 #endif
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 free_transhuge_page,
261 #endif
262 };
263
264 int min_free_kbytes = 1024;
265 int user_min_free_kbytes = -1;
266 int watermark_scale_factor = 10;
267
268 static unsigned long __meminitdata nr_kernel_pages;
269 static unsigned long __meminitdata nr_all_pages;
270 static unsigned long __meminitdata dma_reserve;
271
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
274 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
275 static unsigned long __initdata required_kernelcore;
276 static unsigned long __initdata required_movablecore;
277 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
278 static bool mirrored_kernelcore;
279
280 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
281 int movable_zone;
282 EXPORT_SYMBOL(movable_zone);
283 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
284
285 #if MAX_NUMNODES > 1
286 int nr_node_ids __read_mostly = MAX_NUMNODES;
287 int nr_online_nodes __read_mostly = 1;
288 EXPORT_SYMBOL(nr_node_ids);
289 EXPORT_SYMBOL(nr_online_nodes);
290 #endif
291
292 int page_group_by_mobility_disabled __read_mostly;
293
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
295
296 /*
297 * Determine how many pages need to be initialized durig early boot
298 * (non-deferred initialization).
299 * The value of first_deferred_pfn will be set later, once non-deferred pages
300 * are initialized, but for now set it ULONG_MAX.
301 */
302 static inline void reset_deferred_meminit(pg_data_t *pgdat)
303 {
304 phys_addr_t start_addr, end_addr;
305 unsigned long max_pgcnt;
306 unsigned long reserved;
307
308 /*
309 * Initialise at least 2G of a node but also take into account that
310 * two large system hashes that can take up 1GB for 0.25TB/node.
311 */
312 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
313 (pgdat->node_spanned_pages >> 8));
314
315 /*
316 * Compensate the all the memblock reservations (e.g. crash kernel)
317 * from the initial estimation to make sure we will initialize enough
318 * memory to boot.
319 */
320 start_addr = PFN_PHYS(pgdat->node_start_pfn);
321 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
322 reserved = memblock_reserved_memory_within(start_addr, end_addr);
323 max_pgcnt += PHYS_PFN(reserved);
324
325 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
326 pgdat->first_deferred_pfn = ULONG_MAX;
327 }
328
329 /* Returns true if the struct page for the pfn is uninitialised */
330 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
331 {
332 int nid = early_pfn_to_nid(pfn);
333
334 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
335 return true;
336
337 return false;
338 }
339
340 /*
341 * Returns false when the remaining initialisation should be deferred until
342 * later in the boot cycle when it can be parallelised.
343 */
344 static inline bool update_defer_init(pg_data_t *pgdat,
345 unsigned long pfn, unsigned long zone_end,
346 unsigned long *nr_initialised)
347 {
348 /* Always populate low zones for address-contrained allocations */
349 if (zone_end < pgdat_end_pfn(pgdat))
350 return true;
351 /* Xen PV domains need page structures early */
352 if (xen_pv_domain())
353 return true;
354 (*nr_initialised)++;
355 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
356 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
357 pgdat->first_deferred_pfn = pfn;
358 return false;
359 }
360
361 return true;
362 }
363 #else
364 static inline void reset_deferred_meminit(pg_data_t *pgdat)
365 {
366 }
367
368 static inline bool early_page_uninitialised(unsigned long pfn)
369 {
370 return false;
371 }
372
373 static inline bool update_defer_init(pg_data_t *pgdat,
374 unsigned long pfn, unsigned long zone_end,
375 unsigned long *nr_initialised)
376 {
377 return true;
378 }
379 #endif
380
381 /* Return a pointer to the bitmap storing bits affecting a block of pages */
382 static inline unsigned long *get_pageblock_bitmap(struct page *page,
383 unsigned long pfn)
384 {
385 #ifdef CONFIG_SPARSEMEM
386 return __pfn_to_section(pfn)->pageblock_flags;
387 #else
388 return page_zone(page)->pageblock_flags;
389 #endif /* CONFIG_SPARSEMEM */
390 }
391
392 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
393 {
394 #ifdef CONFIG_SPARSEMEM
395 pfn &= (PAGES_PER_SECTION-1);
396 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
397 #else
398 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
399 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
400 #endif /* CONFIG_SPARSEMEM */
401 }
402
403 /**
404 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
405 * @page: The page within the block of interest
406 * @pfn: The target page frame number
407 * @end_bitidx: The last bit of interest to retrieve
408 * @mask: mask of bits that the caller is interested in
409 *
410 * Return: pageblock_bits flags
411 */
412 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
413 unsigned long pfn,
414 unsigned long end_bitidx,
415 unsigned long mask)
416 {
417 unsigned long *bitmap;
418 unsigned long bitidx, word_bitidx;
419 unsigned long word;
420
421 bitmap = get_pageblock_bitmap(page, pfn);
422 bitidx = pfn_to_bitidx(page, pfn);
423 word_bitidx = bitidx / BITS_PER_LONG;
424 bitidx &= (BITS_PER_LONG-1);
425
426 word = bitmap[word_bitidx];
427 bitidx += end_bitidx;
428 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
429 }
430
431 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
432 unsigned long end_bitidx,
433 unsigned long mask)
434 {
435 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
436 }
437
438 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
439 {
440 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
441 }
442
443 /**
444 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
445 * @page: The page within the block of interest
446 * @flags: The flags to set
447 * @pfn: The target page frame number
448 * @end_bitidx: The last bit of interest
449 * @mask: mask of bits that the caller is interested in
450 */
451 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
452 unsigned long pfn,
453 unsigned long end_bitidx,
454 unsigned long mask)
455 {
456 unsigned long *bitmap;
457 unsigned long bitidx, word_bitidx;
458 unsigned long old_word, word;
459
460 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
461
462 bitmap = get_pageblock_bitmap(page, pfn);
463 bitidx = pfn_to_bitidx(page, pfn);
464 word_bitidx = bitidx / BITS_PER_LONG;
465 bitidx &= (BITS_PER_LONG-1);
466
467 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
468
469 bitidx += end_bitidx;
470 mask <<= (BITS_PER_LONG - bitidx - 1);
471 flags <<= (BITS_PER_LONG - bitidx - 1);
472
473 word = READ_ONCE(bitmap[word_bitidx]);
474 for (;;) {
475 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
476 if (word == old_word)
477 break;
478 word = old_word;
479 }
480 }
481
482 void set_pageblock_migratetype(struct page *page, int migratetype)
483 {
484 if (unlikely(page_group_by_mobility_disabled &&
485 migratetype < MIGRATE_PCPTYPES))
486 migratetype = MIGRATE_UNMOVABLE;
487
488 set_pageblock_flags_group(page, (unsigned long)migratetype,
489 PB_migrate, PB_migrate_end);
490 }
491
492 #ifdef CONFIG_DEBUG_VM
493 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
494 {
495 int ret = 0;
496 unsigned seq;
497 unsigned long pfn = page_to_pfn(page);
498 unsigned long sp, start_pfn;
499
500 do {
501 seq = zone_span_seqbegin(zone);
502 start_pfn = zone->zone_start_pfn;
503 sp = zone->spanned_pages;
504 if (!zone_spans_pfn(zone, pfn))
505 ret = 1;
506 } while (zone_span_seqretry(zone, seq));
507
508 if (ret)
509 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
510 pfn, zone_to_nid(zone), zone->name,
511 start_pfn, start_pfn + sp);
512
513 return ret;
514 }
515
516 static int page_is_consistent(struct zone *zone, struct page *page)
517 {
518 if (!pfn_valid_within(page_to_pfn(page)))
519 return 0;
520 if (zone != page_zone(page))
521 return 0;
522
523 return 1;
524 }
525 /*
526 * Temporary debugging check for pages not lying within a given zone.
527 */
528 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
529 {
530 if (page_outside_zone_boundaries(zone, page))
531 return 1;
532 if (!page_is_consistent(zone, page))
533 return 1;
534
535 return 0;
536 }
537 #else
538 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
539 {
540 return 0;
541 }
542 #endif
543
544 static void bad_page(struct page *page, const char *reason,
545 unsigned long bad_flags)
546 {
547 static unsigned long resume;
548 static unsigned long nr_shown;
549 static unsigned long nr_unshown;
550
551 /*
552 * Allow a burst of 60 reports, then keep quiet for that minute;
553 * or allow a steady drip of one report per second.
554 */
555 if (nr_shown == 60) {
556 if (time_before(jiffies, resume)) {
557 nr_unshown++;
558 goto out;
559 }
560 if (nr_unshown) {
561 pr_alert(
562 "BUG: Bad page state: %lu messages suppressed\n",
563 nr_unshown);
564 nr_unshown = 0;
565 }
566 nr_shown = 0;
567 }
568 if (nr_shown++ == 0)
569 resume = jiffies + 60 * HZ;
570
571 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
572 current->comm, page_to_pfn(page));
573 __dump_page(page, reason);
574 bad_flags &= page->flags;
575 if (bad_flags)
576 pr_alert("bad because of flags: %#lx(%pGp)\n",
577 bad_flags, &bad_flags);
578 dump_page_owner(page);
579
580 print_modules();
581 dump_stack();
582 out:
583 /* Leave bad fields for debug, except PageBuddy could make trouble */
584 page_mapcount_reset(page); /* remove PageBuddy */
585 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
586 }
587
588 /*
589 * Higher-order pages are called "compound pages". They are structured thusly:
590 *
591 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
592 *
593 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
594 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
595 *
596 * The first tail page's ->compound_dtor holds the offset in array of compound
597 * page destructors. See compound_page_dtors.
598 *
599 * The first tail page's ->compound_order holds the order of allocation.
600 * This usage means that zero-order pages may not be compound.
601 */
602
603 void free_compound_page(struct page *page)
604 {
605 __free_pages_ok(page, compound_order(page));
606 }
607
608 void prep_compound_page(struct page *page, unsigned int order)
609 {
610 int i;
611 int nr_pages = 1 << order;
612
613 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
614 set_compound_order(page, order);
615 __SetPageHead(page);
616 for (i = 1; i < nr_pages; i++) {
617 struct page *p = page + i;
618 set_page_count(p, 0);
619 p->mapping = TAIL_MAPPING;
620 set_compound_head(p, page);
621 }
622 atomic_set(compound_mapcount_ptr(page), -1);
623 }
624
625 #ifdef CONFIG_DEBUG_PAGEALLOC
626 unsigned int _debug_guardpage_minorder;
627 bool _debug_pagealloc_enabled __read_mostly
628 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
629 EXPORT_SYMBOL(_debug_pagealloc_enabled);
630 bool _debug_guardpage_enabled __read_mostly;
631
632 static int __init early_debug_pagealloc(char *buf)
633 {
634 if (!buf)
635 return -EINVAL;
636 return kstrtobool(buf, &_debug_pagealloc_enabled);
637 }
638 early_param("debug_pagealloc", early_debug_pagealloc);
639
640 static bool need_debug_guardpage(void)
641 {
642 /* If we don't use debug_pagealloc, we don't need guard page */
643 if (!debug_pagealloc_enabled())
644 return false;
645
646 if (!debug_guardpage_minorder())
647 return false;
648
649 return true;
650 }
651
652 static void init_debug_guardpage(void)
653 {
654 if (!debug_pagealloc_enabled())
655 return;
656
657 if (!debug_guardpage_minorder())
658 return;
659
660 _debug_guardpage_enabled = true;
661 }
662
663 struct page_ext_operations debug_guardpage_ops = {
664 .need = need_debug_guardpage,
665 .init = init_debug_guardpage,
666 };
667
668 static int __init debug_guardpage_minorder_setup(char *buf)
669 {
670 unsigned long res;
671
672 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
673 pr_err("Bad debug_guardpage_minorder value\n");
674 return 0;
675 }
676 _debug_guardpage_minorder = res;
677 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
678 return 0;
679 }
680 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
681
682 static inline bool set_page_guard(struct zone *zone, struct page *page,
683 unsigned int order, int migratetype)
684 {
685 struct page_ext *page_ext;
686
687 if (!debug_guardpage_enabled())
688 return false;
689
690 if (order >= debug_guardpage_minorder())
691 return false;
692
693 page_ext = lookup_page_ext(page);
694 if (unlikely(!page_ext))
695 return false;
696
697 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
698
699 INIT_LIST_HEAD(&page->lru);
700 set_page_private(page, order);
701 /* Guard pages are not available for any usage */
702 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
703
704 return true;
705 }
706
707 static inline void clear_page_guard(struct zone *zone, struct page *page,
708 unsigned int order, int migratetype)
709 {
710 struct page_ext *page_ext;
711
712 if (!debug_guardpage_enabled())
713 return;
714
715 page_ext = lookup_page_ext(page);
716 if (unlikely(!page_ext))
717 return;
718
719 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
720
721 set_page_private(page, 0);
722 if (!is_migrate_isolate(migratetype))
723 __mod_zone_freepage_state(zone, (1 << order), migratetype);
724 }
725 #else
726 struct page_ext_operations debug_guardpage_ops;
727 static inline bool set_page_guard(struct zone *zone, struct page *page,
728 unsigned int order, int migratetype) { return false; }
729 static inline void clear_page_guard(struct zone *zone, struct page *page,
730 unsigned int order, int migratetype) {}
731 #endif
732
733 static inline void set_page_order(struct page *page, unsigned int order)
734 {
735 set_page_private(page, order);
736 __SetPageBuddy(page);
737 }
738
739 static inline void rmv_page_order(struct page *page)
740 {
741 __ClearPageBuddy(page);
742 set_page_private(page, 0);
743 }
744
745 /*
746 * This function checks whether a page is free && is the buddy
747 * we can do coalesce a page and its buddy if
748 * (a) the buddy is not in a hole (check before calling!) &&
749 * (b) the buddy is in the buddy system &&
750 * (c) a page and its buddy have the same order &&
751 * (d) a page and its buddy are in the same zone.
752 *
753 * For recording whether a page is in the buddy system, we set ->_mapcount
754 * PAGE_BUDDY_MAPCOUNT_VALUE.
755 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
756 * serialized by zone->lock.
757 *
758 * For recording page's order, we use page_private(page).
759 */
760 static inline int page_is_buddy(struct page *page, struct page *buddy,
761 unsigned int order)
762 {
763 if (page_is_guard(buddy) && page_order(buddy) == order) {
764 if (page_zone_id(page) != page_zone_id(buddy))
765 return 0;
766
767 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
768
769 return 1;
770 }
771
772 if (PageBuddy(buddy) && page_order(buddy) == order) {
773 /*
774 * zone check is done late to avoid uselessly
775 * calculating zone/node ids for pages that could
776 * never merge.
777 */
778 if (page_zone_id(page) != page_zone_id(buddy))
779 return 0;
780
781 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
782
783 return 1;
784 }
785 return 0;
786 }
787
788 /*
789 * Freeing function for a buddy system allocator.
790 *
791 * The concept of a buddy system is to maintain direct-mapped table
792 * (containing bit values) for memory blocks of various "orders".
793 * The bottom level table contains the map for the smallest allocatable
794 * units of memory (here, pages), and each level above it describes
795 * pairs of units from the levels below, hence, "buddies".
796 * At a high level, all that happens here is marking the table entry
797 * at the bottom level available, and propagating the changes upward
798 * as necessary, plus some accounting needed to play nicely with other
799 * parts of the VM system.
800 * At each level, we keep a list of pages, which are heads of continuous
801 * free pages of length of (1 << order) and marked with _mapcount
802 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
803 * field.
804 * So when we are allocating or freeing one, we can derive the state of the
805 * other. That is, if we allocate a small block, and both were
806 * free, the remainder of the region must be split into blocks.
807 * If a block is freed, and its buddy is also free, then this
808 * triggers coalescing into a block of larger size.
809 *
810 * -- nyc
811 */
812
813 static inline void __free_one_page(struct page *page,
814 unsigned long pfn,
815 struct zone *zone, unsigned int order,
816 int migratetype)
817 {
818 unsigned long combined_pfn;
819 unsigned long uninitialized_var(buddy_pfn);
820 struct page *buddy;
821 unsigned int max_order;
822
823 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
824
825 VM_BUG_ON(!zone_is_initialized(zone));
826 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
827
828 VM_BUG_ON(migratetype == -1);
829 if (likely(!is_migrate_isolate(migratetype)))
830 __mod_zone_freepage_state(zone, 1 << order, migratetype);
831
832 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
833 VM_BUG_ON_PAGE(bad_range(zone, page), page);
834
835 continue_merging:
836 while (order < max_order - 1) {
837 buddy_pfn = __find_buddy_pfn(pfn, order);
838 buddy = page + (buddy_pfn - pfn);
839
840 if (!pfn_valid_within(buddy_pfn))
841 goto done_merging;
842 if (!page_is_buddy(page, buddy, order))
843 goto done_merging;
844 /*
845 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
846 * merge with it and move up one order.
847 */
848 if (page_is_guard(buddy)) {
849 clear_page_guard(zone, buddy, order, migratetype);
850 } else {
851 list_del(&buddy->lru);
852 zone->free_area[order].nr_free--;
853 rmv_page_order(buddy);
854 }
855 combined_pfn = buddy_pfn & pfn;
856 page = page + (combined_pfn - pfn);
857 pfn = combined_pfn;
858 order++;
859 }
860 if (max_order < MAX_ORDER) {
861 /* If we are here, it means order is >= pageblock_order.
862 * We want to prevent merge between freepages on isolate
863 * pageblock and normal pageblock. Without this, pageblock
864 * isolation could cause incorrect freepage or CMA accounting.
865 *
866 * We don't want to hit this code for the more frequent
867 * low-order merging.
868 */
869 if (unlikely(has_isolate_pageblock(zone))) {
870 int buddy_mt;
871
872 buddy_pfn = __find_buddy_pfn(pfn, order);
873 buddy = page + (buddy_pfn - pfn);
874 buddy_mt = get_pageblock_migratetype(buddy);
875
876 if (migratetype != buddy_mt
877 && (is_migrate_isolate(migratetype) ||
878 is_migrate_isolate(buddy_mt)))
879 goto done_merging;
880 }
881 max_order++;
882 goto continue_merging;
883 }
884
885 done_merging:
886 set_page_order(page, order);
887
888 /*
889 * If this is not the largest possible page, check if the buddy
890 * of the next-highest order is free. If it is, it's possible
891 * that pages are being freed that will coalesce soon. In case,
892 * that is happening, add the free page to the tail of the list
893 * so it's less likely to be used soon and more likely to be merged
894 * as a higher order page
895 */
896 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
897 struct page *higher_page, *higher_buddy;
898 combined_pfn = buddy_pfn & pfn;
899 higher_page = page + (combined_pfn - pfn);
900 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
901 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
902 if (pfn_valid_within(buddy_pfn) &&
903 page_is_buddy(higher_page, higher_buddy, order + 1)) {
904 list_add_tail(&page->lru,
905 &zone->free_area[order].free_list[migratetype]);
906 goto out;
907 }
908 }
909
910 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
911 out:
912 zone->free_area[order].nr_free++;
913 }
914
915 /*
916 * A bad page could be due to a number of fields. Instead of multiple branches,
917 * try and check multiple fields with one check. The caller must do a detailed
918 * check if necessary.
919 */
920 static inline bool page_expected_state(struct page *page,
921 unsigned long check_flags)
922 {
923 if (unlikely(atomic_read(&page->_mapcount) != -1))
924 return false;
925
926 if (unlikely((unsigned long)page->mapping |
927 page_ref_count(page) |
928 #ifdef CONFIG_MEMCG
929 (unsigned long)page->mem_cgroup |
930 #endif
931 (page->flags & check_flags)))
932 return false;
933
934 return true;
935 }
936
937 static void free_pages_check_bad(struct page *page)
938 {
939 const char *bad_reason;
940 unsigned long bad_flags;
941
942 bad_reason = NULL;
943 bad_flags = 0;
944
945 if (unlikely(atomic_read(&page->_mapcount) != -1))
946 bad_reason = "nonzero mapcount";
947 if (unlikely(page->mapping != NULL))
948 bad_reason = "non-NULL mapping";
949 if (unlikely(page_ref_count(page) != 0))
950 bad_reason = "nonzero _refcount";
951 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
952 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
953 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
954 }
955 #ifdef CONFIG_MEMCG
956 if (unlikely(page->mem_cgroup))
957 bad_reason = "page still charged to cgroup";
958 #endif
959 bad_page(page, bad_reason, bad_flags);
960 }
961
962 static inline int free_pages_check(struct page *page)
963 {
964 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
965 return 0;
966
967 /* Something has gone sideways, find it */
968 free_pages_check_bad(page);
969 return 1;
970 }
971
972 static int free_tail_pages_check(struct page *head_page, struct page *page)
973 {
974 int ret = 1;
975
976 /*
977 * We rely page->lru.next never has bit 0 set, unless the page
978 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
979 */
980 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
981
982 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
983 ret = 0;
984 goto out;
985 }
986 switch (page - head_page) {
987 case 1:
988 /* the first tail page: ->mapping is compound_mapcount() */
989 if (unlikely(compound_mapcount(page))) {
990 bad_page(page, "nonzero compound_mapcount", 0);
991 goto out;
992 }
993 break;
994 case 2:
995 /*
996 * the second tail page: ->mapping is
997 * page_deferred_list().next -- ignore value.
998 */
999 break;
1000 default:
1001 if (page->mapping != TAIL_MAPPING) {
1002 bad_page(page, "corrupted mapping in tail page", 0);
1003 goto out;
1004 }
1005 break;
1006 }
1007 if (unlikely(!PageTail(page))) {
1008 bad_page(page, "PageTail not set", 0);
1009 goto out;
1010 }
1011 if (unlikely(compound_head(page) != head_page)) {
1012 bad_page(page, "compound_head not consistent", 0);
1013 goto out;
1014 }
1015 ret = 0;
1016 out:
1017 page->mapping = NULL;
1018 clear_compound_head(page);
1019 return ret;
1020 }
1021
1022 static __always_inline bool free_pages_prepare(struct page *page,
1023 unsigned int order, bool check_free)
1024 {
1025 int bad = 0;
1026
1027 VM_BUG_ON_PAGE(PageTail(page), page);
1028
1029 trace_mm_page_free(page, order);
1030
1031 /*
1032 * Check tail pages before head page information is cleared to
1033 * avoid checking PageCompound for order-0 pages.
1034 */
1035 if (unlikely(order)) {
1036 bool compound = PageCompound(page);
1037 int i;
1038
1039 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1040
1041 if (compound)
1042 ClearPageDoubleMap(page);
1043 for (i = 1; i < (1 << order); i++) {
1044 if (compound)
1045 bad += free_tail_pages_check(page, page + i);
1046 if (unlikely(free_pages_check(page + i))) {
1047 bad++;
1048 continue;
1049 }
1050 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1051 }
1052 }
1053 if (PageMappingFlags(page))
1054 page->mapping = NULL;
1055 if (memcg_kmem_enabled() && PageKmemcg(page))
1056 memcg_kmem_uncharge(page, order);
1057 if (check_free)
1058 bad += free_pages_check(page);
1059 if (bad)
1060 return false;
1061
1062 page_cpupid_reset_last(page);
1063 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1064 reset_page_owner(page, order);
1065
1066 if (!PageHighMem(page)) {
1067 debug_check_no_locks_freed(page_address(page),
1068 PAGE_SIZE << order);
1069 debug_check_no_obj_freed(page_address(page),
1070 PAGE_SIZE << order);
1071 }
1072 arch_free_page(page, order);
1073 kernel_poison_pages(page, 1 << order, 0);
1074 kernel_map_pages(page, 1 << order, 0);
1075 kasan_free_pages(page, order);
1076
1077 return true;
1078 }
1079
1080 #ifdef CONFIG_DEBUG_VM
1081 static inline bool free_pcp_prepare(struct page *page)
1082 {
1083 return free_pages_prepare(page, 0, true);
1084 }
1085
1086 static inline bool bulkfree_pcp_prepare(struct page *page)
1087 {
1088 return false;
1089 }
1090 #else
1091 static bool free_pcp_prepare(struct page *page)
1092 {
1093 return free_pages_prepare(page, 0, false);
1094 }
1095
1096 static bool bulkfree_pcp_prepare(struct page *page)
1097 {
1098 return free_pages_check(page);
1099 }
1100 #endif /* CONFIG_DEBUG_VM */
1101
1102 /*
1103 * Frees a number of pages from the PCP lists
1104 * Assumes all pages on list are in same zone, and of same order.
1105 * count is the number of pages to free.
1106 *
1107 * If the zone was previously in an "all pages pinned" state then look to
1108 * see if this freeing clears that state.
1109 *
1110 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1111 * pinned" detection logic.
1112 */
1113 static void free_pcppages_bulk(struct zone *zone, int count,
1114 struct per_cpu_pages *pcp)
1115 {
1116 int migratetype = 0;
1117 int batch_free = 0;
1118 bool isolated_pageblocks;
1119
1120 spin_lock(&zone->lock);
1121 isolated_pageblocks = has_isolate_pageblock(zone);
1122
1123 while (count) {
1124 struct page *page;
1125 struct list_head *list;
1126
1127 /*
1128 * Remove pages from lists in a round-robin fashion. A
1129 * batch_free count is maintained that is incremented when an
1130 * empty list is encountered. This is so more pages are freed
1131 * off fuller lists instead of spinning excessively around empty
1132 * lists
1133 */
1134 do {
1135 batch_free++;
1136 if (++migratetype == MIGRATE_PCPTYPES)
1137 migratetype = 0;
1138 list = &pcp->lists[migratetype];
1139 } while (list_empty(list));
1140
1141 /* This is the only non-empty list. Free them all. */
1142 if (batch_free == MIGRATE_PCPTYPES)
1143 batch_free = count;
1144
1145 do {
1146 int mt; /* migratetype of the to-be-freed page */
1147
1148 page = list_last_entry(list, struct page, lru);
1149 /* must delete as __free_one_page list manipulates */
1150 list_del(&page->lru);
1151
1152 mt = get_pcppage_migratetype(page);
1153 /* MIGRATE_ISOLATE page should not go to pcplists */
1154 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1155 /* Pageblock could have been isolated meanwhile */
1156 if (unlikely(isolated_pageblocks))
1157 mt = get_pageblock_migratetype(page);
1158
1159 if (bulkfree_pcp_prepare(page))
1160 continue;
1161
1162 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1163 trace_mm_page_pcpu_drain(page, 0, mt);
1164 } while (--count && --batch_free && !list_empty(list));
1165 }
1166 spin_unlock(&zone->lock);
1167 }
1168
1169 static void free_one_page(struct zone *zone,
1170 struct page *page, unsigned long pfn,
1171 unsigned int order,
1172 int migratetype)
1173 {
1174 spin_lock(&zone->lock);
1175 if (unlikely(has_isolate_pageblock(zone) ||
1176 is_migrate_isolate(migratetype))) {
1177 migratetype = get_pfnblock_migratetype(page, pfn);
1178 }
1179 __free_one_page(page, pfn, zone, order, migratetype);
1180 spin_unlock(&zone->lock);
1181 }
1182
1183 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1184 unsigned long zone, int nid, bool zero)
1185 {
1186 if (zero)
1187 mm_zero_struct_page(page);
1188 set_page_links(page, zone, nid, pfn);
1189 init_page_count(page);
1190 page_mapcount_reset(page);
1191 page_cpupid_reset_last(page);
1192
1193 INIT_LIST_HEAD(&page->lru);
1194 #ifdef WANT_PAGE_VIRTUAL
1195 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1196 if (!is_highmem_idx(zone))
1197 set_page_address(page, __va(pfn << PAGE_SHIFT));
1198 #endif
1199 }
1200
1201 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1202 int nid, bool zero)
1203 {
1204 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid, zero);
1205 }
1206
1207 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1208 static void __meminit init_reserved_page(unsigned long pfn)
1209 {
1210 pg_data_t *pgdat;
1211 int nid, zid;
1212
1213 if (!early_page_uninitialised(pfn))
1214 return;
1215
1216 nid = early_pfn_to_nid(pfn);
1217 pgdat = NODE_DATA(nid);
1218
1219 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1220 struct zone *zone = &pgdat->node_zones[zid];
1221
1222 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1223 break;
1224 }
1225 __init_single_pfn(pfn, zid, nid, true);
1226 }
1227 #else
1228 static inline void init_reserved_page(unsigned long pfn)
1229 {
1230 }
1231 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1232
1233 /*
1234 * Initialised pages do not have PageReserved set. This function is
1235 * called for each range allocated by the bootmem allocator and
1236 * marks the pages PageReserved. The remaining valid pages are later
1237 * sent to the buddy page allocator.
1238 */
1239 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1240 {
1241 unsigned long start_pfn = PFN_DOWN(start);
1242 unsigned long end_pfn = PFN_UP(end);
1243
1244 for (; start_pfn < end_pfn; start_pfn++) {
1245 if (pfn_valid(start_pfn)) {
1246 struct page *page = pfn_to_page(start_pfn);
1247
1248 init_reserved_page(start_pfn);
1249
1250 /* Avoid false-positive PageTail() */
1251 INIT_LIST_HEAD(&page->lru);
1252
1253 SetPageReserved(page);
1254 }
1255 }
1256 }
1257
1258 static void __free_pages_ok(struct page *page, unsigned int order)
1259 {
1260 unsigned long flags;
1261 int migratetype;
1262 unsigned long pfn = page_to_pfn(page);
1263
1264 if (!free_pages_prepare(page, order, true))
1265 return;
1266
1267 migratetype = get_pfnblock_migratetype(page, pfn);
1268 local_irq_save(flags);
1269 __count_vm_events(PGFREE, 1 << order);
1270 free_one_page(page_zone(page), page, pfn, order, migratetype);
1271 local_irq_restore(flags);
1272 }
1273
1274 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1275 {
1276 unsigned int nr_pages = 1 << order;
1277 struct page *p = page;
1278 unsigned int loop;
1279
1280 prefetchw(p);
1281 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1282 prefetchw(p + 1);
1283 __ClearPageReserved(p);
1284 set_page_count(p, 0);
1285 }
1286 __ClearPageReserved(p);
1287 set_page_count(p, 0);
1288
1289 page_zone(page)->managed_pages += nr_pages;
1290 set_page_refcounted(page);
1291 __free_pages(page, order);
1292 }
1293
1294 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1295 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1296
1297 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1298
1299 int __meminit early_pfn_to_nid(unsigned long pfn)
1300 {
1301 static DEFINE_SPINLOCK(early_pfn_lock);
1302 int nid;
1303
1304 spin_lock(&early_pfn_lock);
1305 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1306 if (nid < 0)
1307 nid = first_online_node;
1308 spin_unlock(&early_pfn_lock);
1309
1310 return nid;
1311 }
1312 #endif
1313
1314 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1315 static inline bool __meminit __maybe_unused
1316 meminit_pfn_in_nid(unsigned long pfn, int node,
1317 struct mminit_pfnnid_cache *state)
1318 {
1319 int nid;
1320
1321 nid = __early_pfn_to_nid(pfn, state);
1322 if (nid >= 0 && nid != node)
1323 return false;
1324 return true;
1325 }
1326
1327 /* Only safe to use early in boot when initialisation is single-threaded */
1328 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1329 {
1330 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1331 }
1332
1333 #else
1334
1335 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1336 {
1337 return true;
1338 }
1339 static inline bool __meminit __maybe_unused
1340 meminit_pfn_in_nid(unsigned long pfn, int node,
1341 struct mminit_pfnnid_cache *state)
1342 {
1343 return true;
1344 }
1345 #endif
1346
1347
1348 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1349 unsigned int order)
1350 {
1351 if (early_page_uninitialised(pfn))
1352 return;
1353 return __free_pages_boot_core(page, order);
1354 }
1355
1356 /*
1357 * Check that the whole (or subset of) a pageblock given by the interval of
1358 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1359 * with the migration of free compaction scanner. The scanners then need to
1360 * use only pfn_valid_within() check for arches that allow holes within
1361 * pageblocks.
1362 *
1363 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1364 *
1365 * It's possible on some configurations to have a setup like node0 node1 node0
1366 * i.e. it's possible that all pages within a zones range of pages do not
1367 * belong to a single zone. We assume that a border between node0 and node1
1368 * can occur within a single pageblock, but not a node0 node1 node0
1369 * interleaving within a single pageblock. It is therefore sufficient to check
1370 * the first and last page of a pageblock and avoid checking each individual
1371 * page in a pageblock.
1372 */
1373 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1374 unsigned long end_pfn, struct zone *zone)
1375 {
1376 struct page *start_page;
1377 struct page *end_page;
1378
1379 /* end_pfn is one past the range we are checking */
1380 end_pfn--;
1381
1382 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1383 return NULL;
1384
1385 start_page = pfn_to_online_page(start_pfn);
1386 if (!start_page)
1387 return NULL;
1388
1389 if (page_zone(start_page) != zone)
1390 return NULL;
1391
1392 end_page = pfn_to_page(end_pfn);
1393
1394 /* This gives a shorter code than deriving page_zone(end_page) */
1395 if (page_zone_id(start_page) != page_zone_id(end_page))
1396 return NULL;
1397
1398 return start_page;
1399 }
1400
1401 void set_zone_contiguous(struct zone *zone)
1402 {
1403 unsigned long block_start_pfn = zone->zone_start_pfn;
1404 unsigned long block_end_pfn;
1405
1406 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1407 for (; block_start_pfn < zone_end_pfn(zone);
1408 block_start_pfn = block_end_pfn,
1409 block_end_pfn += pageblock_nr_pages) {
1410
1411 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1412
1413 if (!__pageblock_pfn_to_page(block_start_pfn,
1414 block_end_pfn, zone))
1415 return;
1416 }
1417
1418 /* We confirm that there is no hole */
1419 zone->contiguous = true;
1420 }
1421
1422 void clear_zone_contiguous(struct zone *zone)
1423 {
1424 zone->contiguous = false;
1425 }
1426
1427 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1428 static void __init deferred_free_range(unsigned long pfn,
1429 unsigned long nr_pages)
1430 {
1431 struct page *page;
1432 unsigned long i;
1433
1434 if (!nr_pages)
1435 return;
1436
1437 page = pfn_to_page(pfn);
1438
1439 /* Free a large naturally-aligned chunk if possible */
1440 if (nr_pages == pageblock_nr_pages &&
1441 (pfn & (pageblock_nr_pages - 1)) == 0) {
1442 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1443 __free_pages_boot_core(page, pageblock_order);
1444 return;
1445 }
1446
1447 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1448 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1449 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1450 __free_pages_boot_core(page, 0);
1451 }
1452 }
1453
1454 /* Completion tracking for deferred_init_memmap() threads */
1455 static atomic_t pgdat_init_n_undone __initdata;
1456 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1457
1458 static inline void __init pgdat_init_report_one_done(void)
1459 {
1460 if (atomic_dec_and_test(&pgdat_init_n_undone))
1461 complete(&pgdat_init_all_done_comp);
1462 }
1463
1464 /*
1465 * Helper for deferred_init_range, free the given range, reset the counters, and
1466 * return number of pages freed.
1467 */
1468 static inline unsigned long __init __def_free(unsigned long *nr_free,
1469 unsigned long *free_base_pfn,
1470 struct page **page)
1471 {
1472 unsigned long nr = *nr_free;
1473
1474 deferred_free_range(*free_base_pfn, nr);
1475 *free_base_pfn = 0;
1476 *nr_free = 0;
1477 *page = NULL;
1478
1479 return nr;
1480 }
1481
1482 static unsigned long __init deferred_init_range(int nid, int zid,
1483 unsigned long start_pfn,
1484 unsigned long end_pfn)
1485 {
1486 struct mminit_pfnnid_cache nid_init_state = { };
1487 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1488 unsigned long free_base_pfn = 0;
1489 unsigned long nr_pages = 0;
1490 unsigned long nr_free = 0;
1491 struct page *page = NULL;
1492 unsigned long pfn;
1493
1494 /*
1495 * First we check if pfn is valid on architectures where it is possible
1496 * to have holes within pageblock_nr_pages. On systems where it is not
1497 * possible, this function is optimized out.
1498 *
1499 * Then, we check if a current large page is valid by only checking the
1500 * validity of the head pfn.
1501 *
1502 * meminit_pfn_in_nid is checked on systems where pfns can interleave
1503 * within a node: a pfn is between start and end of a node, but does not
1504 * belong to this memory node.
1505 *
1506 * Finally, we minimize pfn page lookups and scheduler checks by
1507 * performing it only once every pageblock_nr_pages.
1508 *
1509 * We do it in two loops: first we initialize struct page, than free to
1510 * buddy allocator, becuse while we are freeing pages we can access
1511 * pages that are ahead (computing buddy page in __free_one_page()).
1512 */
1513 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1514 if (!pfn_valid_within(pfn))
1515 continue;
1516 if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
1517 if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1518 if (page && (pfn & nr_pgmask))
1519 page++;
1520 else
1521 page = pfn_to_page(pfn);
1522 __init_single_page(page, pfn, zid, nid, true);
1523 cond_resched();
1524 }
1525 }
1526 }
1527
1528 page = NULL;
1529 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1530 if (!pfn_valid_within(pfn)) {
1531 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1532 } else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
1533 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1534 } else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1535 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1536 } else if (page && (pfn & nr_pgmask)) {
1537 page++;
1538 nr_free++;
1539 } else {
1540 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1541 page = pfn_to_page(pfn);
1542 free_base_pfn = pfn;
1543 nr_free = 1;
1544 cond_resched();
1545 }
1546 }
1547 /* Free the last block of pages to allocator */
1548 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1549
1550 return nr_pages;
1551 }
1552
1553 /* Initialise remaining memory on a node */
1554 static int __init deferred_init_memmap(void *data)
1555 {
1556 pg_data_t *pgdat = data;
1557 int nid = pgdat->node_id;
1558 unsigned long start = jiffies;
1559 unsigned long nr_pages = 0;
1560 unsigned long spfn, epfn;
1561 phys_addr_t spa, epa;
1562 int zid;
1563 struct zone *zone;
1564 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1565 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1566 u64 i;
1567
1568 if (first_init_pfn == ULONG_MAX) {
1569 pgdat_init_report_one_done();
1570 return 0;
1571 }
1572
1573 /* Bind memory initialisation thread to a local node if possible */
1574 if (!cpumask_empty(cpumask))
1575 set_cpus_allowed_ptr(current, cpumask);
1576
1577 /* Sanity check boundaries */
1578 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1579 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1580 pgdat->first_deferred_pfn = ULONG_MAX;
1581
1582 /* Only the highest zone is deferred so find it */
1583 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1584 zone = pgdat->node_zones + zid;
1585 if (first_init_pfn < zone_end_pfn(zone))
1586 break;
1587 }
1588 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1589
1590 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1591 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1592 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1593 nr_pages += deferred_init_range(nid, zid, spfn, epfn);
1594 }
1595
1596 /* Sanity check that the next zone really is unpopulated */
1597 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1598
1599 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1600 jiffies_to_msecs(jiffies - start));
1601
1602 pgdat_init_report_one_done();
1603 return 0;
1604 }
1605 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1606
1607 void __init page_alloc_init_late(void)
1608 {
1609 struct zone *zone;
1610
1611 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1612 int nid;
1613
1614 /* There will be num_node_state(N_MEMORY) threads */
1615 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1616 for_each_node_state(nid, N_MEMORY) {
1617 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1618 }
1619
1620 /* Block until all are initialised */
1621 wait_for_completion(&pgdat_init_all_done_comp);
1622
1623 /* Reinit limits that are based on free pages after the kernel is up */
1624 files_maxfiles_init();
1625 #endif
1626 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1627 /* Discard memblock private memory */
1628 memblock_discard();
1629 #endif
1630
1631 for_each_populated_zone(zone)
1632 set_zone_contiguous(zone);
1633 }
1634
1635 #ifdef CONFIG_CMA
1636 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1637 void __init init_cma_reserved_pageblock(struct page *page)
1638 {
1639 unsigned i = pageblock_nr_pages;
1640 struct page *p = page;
1641
1642 do {
1643 __ClearPageReserved(p);
1644 set_page_count(p, 0);
1645 } while (++p, --i);
1646
1647 set_pageblock_migratetype(page, MIGRATE_CMA);
1648
1649 if (pageblock_order >= MAX_ORDER) {
1650 i = pageblock_nr_pages;
1651 p = page;
1652 do {
1653 set_page_refcounted(p);
1654 __free_pages(p, MAX_ORDER - 1);
1655 p += MAX_ORDER_NR_PAGES;
1656 } while (i -= MAX_ORDER_NR_PAGES);
1657 } else {
1658 set_page_refcounted(page);
1659 __free_pages(page, pageblock_order);
1660 }
1661
1662 adjust_managed_page_count(page, pageblock_nr_pages);
1663 }
1664 #endif
1665
1666 /*
1667 * The order of subdivision here is critical for the IO subsystem.
1668 * Please do not alter this order without good reasons and regression
1669 * testing. Specifically, as large blocks of memory are subdivided,
1670 * the order in which smaller blocks are delivered depends on the order
1671 * they're subdivided in this function. This is the primary factor
1672 * influencing the order in which pages are delivered to the IO
1673 * subsystem according to empirical testing, and this is also justified
1674 * by considering the behavior of a buddy system containing a single
1675 * large block of memory acted on by a series of small allocations.
1676 * This behavior is a critical factor in sglist merging's success.
1677 *
1678 * -- nyc
1679 */
1680 static inline void expand(struct zone *zone, struct page *page,
1681 int low, int high, struct free_area *area,
1682 int migratetype)
1683 {
1684 unsigned long size = 1 << high;
1685
1686 while (high > low) {
1687 area--;
1688 high--;
1689 size >>= 1;
1690 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1691
1692 /*
1693 * Mark as guard pages (or page), that will allow to
1694 * merge back to allocator when buddy will be freed.
1695 * Corresponding page table entries will not be touched,
1696 * pages will stay not present in virtual address space
1697 */
1698 if (set_page_guard(zone, &page[size], high, migratetype))
1699 continue;
1700
1701 list_add(&page[size].lru, &area->free_list[migratetype]);
1702 area->nr_free++;
1703 set_page_order(&page[size], high);
1704 }
1705 }
1706
1707 static void check_new_page_bad(struct page *page)
1708 {
1709 const char *bad_reason = NULL;
1710 unsigned long bad_flags = 0;
1711
1712 if (unlikely(atomic_read(&page->_mapcount) != -1))
1713 bad_reason = "nonzero mapcount";
1714 if (unlikely(page->mapping != NULL))
1715 bad_reason = "non-NULL mapping";
1716 if (unlikely(page_ref_count(page) != 0))
1717 bad_reason = "nonzero _count";
1718 if (unlikely(page->flags & __PG_HWPOISON)) {
1719 bad_reason = "HWPoisoned (hardware-corrupted)";
1720 bad_flags = __PG_HWPOISON;
1721 /* Don't complain about hwpoisoned pages */
1722 page_mapcount_reset(page); /* remove PageBuddy */
1723 return;
1724 }
1725 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1726 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1727 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1728 }
1729 #ifdef CONFIG_MEMCG
1730 if (unlikely(page->mem_cgroup))
1731 bad_reason = "page still charged to cgroup";
1732 #endif
1733 bad_page(page, bad_reason, bad_flags);
1734 }
1735
1736 /*
1737 * This page is about to be returned from the page allocator
1738 */
1739 static inline int check_new_page(struct page *page)
1740 {
1741 if (likely(page_expected_state(page,
1742 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1743 return 0;
1744
1745 check_new_page_bad(page);
1746 return 1;
1747 }
1748
1749 static inline bool free_pages_prezeroed(void)
1750 {
1751 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1752 page_poisoning_enabled();
1753 }
1754
1755 #ifdef CONFIG_DEBUG_VM
1756 static bool check_pcp_refill(struct page *page)
1757 {
1758 return false;
1759 }
1760
1761 static bool check_new_pcp(struct page *page)
1762 {
1763 return check_new_page(page);
1764 }
1765 #else
1766 static bool check_pcp_refill(struct page *page)
1767 {
1768 return check_new_page(page);
1769 }
1770 static bool check_new_pcp(struct page *page)
1771 {
1772 return false;
1773 }
1774 #endif /* CONFIG_DEBUG_VM */
1775
1776 static bool check_new_pages(struct page *page, unsigned int order)
1777 {
1778 int i;
1779 for (i = 0; i < (1 << order); i++) {
1780 struct page *p = page + i;
1781
1782 if (unlikely(check_new_page(p)))
1783 return true;
1784 }
1785
1786 return false;
1787 }
1788
1789 inline void post_alloc_hook(struct page *page, unsigned int order,
1790 gfp_t gfp_flags)
1791 {
1792 set_page_private(page, 0);
1793 set_page_refcounted(page);
1794
1795 arch_alloc_page(page, order);
1796 kernel_map_pages(page, 1 << order, 1);
1797 kernel_poison_pages(page, 1 << order, 1);
1798 kasan_alloc_pages(page, order);
1799 set_page_owner(page, order, gfp_flags);
1800 }
1801
1802 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1803 unsigned int alloc_flags)
1804 {
1805 int i;
1806
1807 post_alloc_hook(page, order, gfp_flags);
1808
1809 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1810 for (i = 0; i < (1 << order); i++)
1811 clear_highpage(page + i);
1812
1813 if (order && (gfp_flags & __GFP_COMP))
1814 prep_compound_page(page, order);
1815
1816 /*
1817 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1818 * allocate the page. The expectation is that the caller is taking
1819 * steps that will free more memory. The caller should avoid the page
1820 * being used for !PFMEMALLOC purposes.
1821 */
1822 if (alloc_flags & ALLOC_NO_WATERMARKS)
1823 set_page_pfmemalloc(page);
1824 else
1825 clear_page_pfmemalloc(page);
1826 }
1827
1828 /*
1829 * Go through the free lists for the given migratetype and remove
1830 * the smallest available page from the freelists
1831 */
1832 static __always_inline
1833 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1834 int migratetype)
1835 {
1836 unsigned int current_order;
1837 struct free_area *area;
1838 struct page *page;
1839
1840 /* Find a page of the appropriate size in the preferred list */
1841 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1842 area = &(zone->free_area[current_order]);
1843 page = list_first_entry_or_null(&area->free_list[migratetype],
1844 struct page, lru);
1845 if (!page)
1846 continue;
1847 list_del(&page->lru);
1848 rmv_page_order(page);
1849 area->nr_free--;
1850 expand(zone, page, order, current_order, area, migratetype);
1851 set_pcppage_migratetype(page, migratetype);
1852 return page;
1853 }
1854
1855 return NULL;
1856 }
1857
1858
1859 /*
1860 * This array describes the order lists are fallen back to when
1861 * the free lists for the desirable migrate type are depleted
1862 */
1863 static int fallbacks[MIGRATE_TYPES][4] = {
1864 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1865 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1866 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1867 #ifdef CONFIG_CMA
1868 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1869 #endif
1870 #ifdef CONFIG_MEMORY_ISOLATION
1871 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1872 #endif
1873 };
1874
1875 #ifdef CONFIG_CMA
1876 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1877 unsigned int order)
1878 {
1879 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1880 }
1881 #else
1882 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1883 unsigned int order) { return NULL; }
1884 #endif
1885
1886 /*
1887 * Move the free pages in a range to the free lists of the requested type.
1888 * Note that start_page and end_pages are not aligned on a pageblock
1889 * boundary. If alignment is required, use move_freepages_block()
1890 */
1891 static int move_freepages(struct zone *zone,
1892 struct page *start_page, struct page *end_page,
1893 int migratetype, int *num_movable)
1894 {
1895 struct page *page;
1896 unsigned int order;
1897 int pages_moved = 0;
1898
1899 #ifndef CONFIG_HOLES_IN_ZONE
1900 /*
1901 * page_zone is not safe to call in this context when
1902 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1903 * anyway as we check zone boundaries in move_freepages_block().
1904 * Remove at a later date when no bug reports exist related to
1905 * grouping pages by mobility
1906 */
1907 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1908 #endif
1909
1910 if (num_movable)
1911 *num_movable = 0;
1912
1913 for (page = start_page; page <= end_page;) {
1914 if (!pfn_valid_within(page_to_pfn(page))) {
1915 page++;
1916 continue;
1917 }
1918
1919 /* Make sure we are not inadvertently changing nodes */
1920 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1921
1922 if (!PageBuddy(page)) {
1923 /*
1924 * We assume that pages that could be isolated for
1925 * migration are movable. But we don't actually try
1926 * isolating, as that would be expensive.
1927 */
1928 if (num_movable &&
1929 (PageLRU(page) || __PageMovable(page)))
1930 (*num_movable)++;
1931
1932 page++;
1933 continue;
1934 }
1935
1936 order = page_order(page);
1937 list_move(&page->lru,
1938 &zone->free_area[order].free_list[migratetype]);
1939 page += 1 << order;
1940 pages_moved += 1 << order;
1941 }
1942
1943 return pages_moved;
1944 }
1945
1946 int move_freepages_block(struct zone *zone, struct page *page,
1947 int migratetype, int *num_movable)
1948 {
1949 unsigned long start_pfn, end_pfn;
1950 struct page *start_page, *end_page;
1951
1952 start_pfn = page_to_pfn(page);
1953 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1954 start_page = pfn_to_page(start_pfn);
1955 end_page = start_page + pageblock_nr_pages - 1;
1956 end_pfn = start_pfn + pageblock_nr_pages - 1;
1957
1958 /* Do not cross zone boundaries */
1959 if (!zone_spans_pfn(zone, start_pfn))
1960 start_page = page;
1961 if (!zone_spans_pfn(zone, end_pfn))
1962 return 0;
1963
1964 return move_freepages(zone, start_page, end_page, migratetype,
1965 num_movable);
1966 }
1967
1968 static void change_pageblock_range(struct page *pageblock_page,
1969 int start_order, int migratetype)
1970 {
1971 int nr_pageblocks = 1 << (start_order - pageblock_order);
1972
1973 while (nr_pageblocks--) {
1974 set_pageblock_migratetype(pageblock_page, migratetype);
1975 pageblock_page += pageblock_nr_pages;
1976 }
1977 }
1978
1979 /*
1980 * When we are falling back to another migratetype during allocation, try to
1981 * steal extra free pages from the same pageblocks to satisfy further
1982 * allocations, instead of polluting multiple pageblocks.
1983 *
1984 * If we are stealing a relatively large buddy page, it is likely there will
1985 * be more free pages in the pageblock, so try to steal them all. For
1986 * reclaimable and unmovable allocations, we steal regardless of page size,
1987 * as fragmentation caused by those allocations polluting movable pageblocks
1988 * is worse than movable allocations stealing from unmovable and reclaimable
1989 * pageblocks.
1990 */
1991 static bool can_steal_fallback(unsigned int order, int start_mt)
1992 {
1993 /*
1994 * Leaving this order check is intended, although there is
1995 * relaxed order check in next check. The reason is that
1996 * we can actually steal whole pageblock if this condition met,
1997 * but, below check doesn't guarantee it and that is just heuristic
1998 * so could be changed anytime.
1999 */
2000 if (order >= pageblock_order)
2001 return true;
2002
2003 if (order >= pageblock_order / 2 ||
2004 start_mt == MIGRATE_RECLAIMABLE ||
2005 start_mt == MIGRATE_UNMOVABLE ||
2006 page_group_by_mobility_disabled)
2007 return true;
2008
2009 return false;
2010 }
2011
2012 /*
2013 * This function implements actual steal behaviour. If order is large enough,
2014 * we can steal whole pageblock. If not, we first move freepages in this
2015 * pageblock to our migratetype and determine how many already-allocated pages
2016 * are there in the pageblock with a compatible migratetype. If at least half
2017 * of pages are free or compatible, we can change migratetype of the pageblock
2018 * itself, so pages freed in the future will be put on the correct free list.
2019 */
2020 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2021 int start_type, bool whole_block)
2022 {
2023 unsigned int current_order = page_order(page);
2024 struct free_area *area;
2025 int free_pages, movable_pages, alike_pages;
2026 int old_block_type;
2027
2028 old_block_type = get_pageblock_migratetype(page);
2029
2030 /*
2031 * This can happen due to races and we want to prevent broken
2032 * highatomic accounting.
2033 */
2034 if (is_migrate_highatomic(old_block_type))
2035 goto single_page;
2036
2037 /* Take ownership for orders >= pageblock_order */
2038 if (current_order >= pageblock_order) {
2039 change_pageblock_range(page, current_order, start_type);
2040 goto single_page;
2041 }
2042
2043 /* We are not allowed to try stealing from the whole block */
2044 if (!whole_block)
2045 goto single_page;
2046
2047 free_pages = move_freepages_block(zone, page, start_type,
2048 &movable_pages);
2049 /*
2050 * Determine how many pages are compatible with our allocation.
2051 * For movable allocation, it's the number of movable pages which
2052 * we just obtained. For other types it's a bit more tricky.
2053 */
2054 if (start_type == MIGRATE_MOVABLE) {
2055 alike_pages = movable_pages;
2056 } else {
2057 /*
2058 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2059 * to MOVABLE pageblock, consider all non-movable pages as
2060 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2061 * vice versa, be conservative since we can't distinguish the
2062 * exact migratetype of non-movable pages.
2063 */
2064 if (old_block_type == MIGRATE_MOVABLE)
2065 alike_pages = pageblock_nr_pages
2066 - (free_pages + movable_pages);
2067 else
2068 alike_pages = 0;
2069 }
2070
2071 /* moving whole block can fail due to zone boundary conditions */
2072 if (!free_pages)
2073 goto single_page;
2074
2075 /*
2076 * If a sufficient number of pages in the block are either free or of
2077 * comparable migratability as our allocation, claim the whole block.
2078 */
2079 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2080 page_group_by_mobility_disabled)
2081 set_pageblock_migratetype(page, start_type);
2082
2083 return;
2084
2085 single_page:
2086 area = &zone->free_area[current_order];
2087 list_move(&page->lru, &area->free_list[start_type]);
2088 }
2089
2090 /*
2091 * Check whether there is a suitable fallback freepage with requested order.
2092 * If only_stealable is true, this function returns fallback_mt only if
2093 * we can steal other freepages all together. This would help to reduce
2094 * fragmentation due to mixed migratetype pages in one pageblock.
2095 */
2096 int find_suitable_fallback(struct free_area *area, unsigned int order,
2097 int migratetype, bool only_stealable, bool *can_steal)
2098 {
2099 int i;
2100 int fallback_mt;
2101
2102 if (area->nr_free == 0)
2103 return -1;
2104
2105 *can_steal = false;
2106 for (i = 0;; i++) {
2107 fallback_mt = fallbacks[migratetype][i];
2108 if (fallback_mt == MIGRATE_TYPES)
2109 break;
2110
2111 if (list_empty(&area->free_list[fallback_mt]))
2112 continue;
2113
2114 if (can_steal_fallback(order, migratetype))
2115 *can_steal = true;
2116
2117 if (!only_stealable)
2118 return fallback_mt;
2119
2120 if (*can_steal)
2121 return fallback_mt;
2122 }
2123
2124 return -1;
2125 }
2126
2127 /*
2128 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2129 * there are no empty page blocks that contain a page with a suitable order
2130 */
2131 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2132 unsigned int alloc_order)
2133 {
2134 int mt;
2135 unsigned long max_managed, flags;
2136
2137 /*
2138 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2139 * Check is race-prone but harmless.
2140 */
2141 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2142 if (zone->nr_reserved_highatomic >= max_managed)
2143 return;
2144
2145 spin_lock_irqsave(&zone->lock, flags);
2146
2147 /* Recheck the nr_reserved_highatomic limit under the lock */
2148 if (zone->nr_reserved_highatomic >= max_managed)
2149 goto out_unlock;
2150
2151 /* Yoink! */
2152 mt = get_pageblock_migratetype(page);
2153 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2154 && !is_migrate_cma(mt)) {
2155 zone->nr_reserved_highatomic += pageblock_nr_pages;
2156 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2157 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2158 }
2159
2160 out_unlock:
2161 spin_unlock_irqrestore(&zone->lock, flags);
2162 }
2163
2164 /*
2165 * Used when an allocation is about to fail under memory pressure. This
2166 * potentially hurts the reliability of high-order allocations when under
2167 * intense memory pressure but failed atomic allocations should be easier
2168 * to recover from than an OOM.
2169 *
2170 * If @force is true, try to unreserve a pageblock even though highatomic
2171 * pageblock is exhausted.
2172 */
2173 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2174 bool force)
2175 {
2176 struct zonelist *zonelist = ac->zonelist;
2177 unsigned long flags;
2178 struct zoneref *z;
2179 struct zone *zone;
2180 struct page *page;
2181 int order;
2182 bool ret;
2183
2184 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2185 ac->nodemask) {
2186 /*
2187 * Preserve at least one pageblock unless memory pressure
2188 * is really high.
2189 */
2190 if (!force && zone->nr_reserved_highatomic <=
2191 pageblock_nr_pages)
2192 continue;
2193
2194 spin_lock_irqsave(&zone->lock, flags);
2195 for (order = 0; order < MAX_ORDER; order++) {
2196 struct free_area *area = &(zone->free_area[order]);
2197
2198 page = list_first_entry_or_null(
2199 &area->free_list[MIGRATE_HIGHATOMIC],
2200 struct page, lru);
2201 if (!page)
2202 continue;
2203
2204 /*
2205 * In page freeing path, migratetype change is racy so
2206 * we can counter several free pages in a pageblock
2207 * in this loop althoug we changed the pageblock type
2208 * from highatomic to ac->migratetype. So we should
2209 * adjust the count once.
2210 */
2211 if (is_migrate_highatomic_page(page)) {
2212 /*
2213 * It should never happen but changes to
2214 * locking could inadvertently allow a per-cpu
2215 * drain to add pages to MIGRATE_HIGHATOMIC
2216 * while unreserving so be safe and watch for
2217 * underflows.
2218 */
2219 zone->nr_reserved_highatomic -= min(
2220 pageblock_nr_pages,
2221 zone->nr_reserved_highatomic);
2222 }
2223
2224 /*
2225 * Convert to ac->migratetype and avoid the normal
2226 * pageblock stealing heuristics. Minimally, the caller
2227 * is doing the work and needs the pages. More
2228 * importantly, if the block was always converted to
2229 * MIGRATE_UNMOVABLE or another type then the number
2230 * of pageblocks that cannot be completely freed
2231 * may increase.
2232 */
2233 set_pageblock_migratetype(page, ac->migratetype);
2234 ret = move_freepages_block(zone, page, ac->migratetype,
2235 NULL);
2236 if (ret) {
2237 spin_unlock_irqrestore(&zone->lock, flags);
2238 return ret;
2239 }
2240 }
2241 spin_unlock_irqrestore(&zone->lock, flags);
2242 }
2243
2244 return false;
2245 }
2246
2247 /*
2248 * Try finding a free buddy page on the fallback list and put it on the free
2249 * list of requested migratetype, possibly along with other pages from the same
2250 * block, depending on fragmentation avoidance heuristics. Returns true if
2251 * fallback was found so that __rmqueue_smallest() can grab it.
2252 *
2253 * The use of signed ints for order and current_order is a deliberate
2254 * deviation from the rest of this file, to make the for loop
2255 * condition simpler.
2256 */
2257 static __always_inline bool
2258 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2259 {
2260 struct free_area *area;
2261 int current_order;
2262 struct page *page;
2263 int fallback_mt;
2264 bool can_steal;
2265
2266 /*
2267 * Find the largest available free page in the other list. This roughly
2268 * approximates finding the pageblock with the most free pages, which
2269 * would be too costly to do exactly.
2270 */
2271 for (current_order = MAX_ORDER - 1; current_order >= order;
2272 --current_order) {
2273 area = &(zone->free_area[current_order]);
2274 fallback_mt = find_suitable_fallback(area, current_order,
2275 start_migratetype, false, &can_steal);
2276 if (fallback_mt == -1)
2277 continue;
2278
2279 /*
2280 * We cannot steal all free pages from the pageblock and the
2281 * requested migratetype is movable. In that case it's better to
2282 * steal and split the smallest available page instead of the
2283 * largest available page, because even if the next movable
2284 * allocation falls back into a different pageblock than this
2285 * one, it won't cause permanent fragmentation.
2286 */
2287 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2288 && current_order > order)
2289 goto find_smallest;
2290
2291 goto do_steal;
2292 }
2293
2294 return false;
2295
2296 find_smallest:
2297 for (current_order = order; current_order < MAX_ORDER;
2298 current_order++) {
2299 area = &(zone->free_area[current_order]);
2300 fallback_mt = find_suitable_fallback(area, current_order,
2301 start_migratetype, false, &can_steal);
2302 if (fallback_mt != -1)
2303 break;
2304 }
2305
2306 /*
2307 * This should not happen - we already found a suitable fallback
2308 * when looking for the largest page.
2309 */
2310 VM_BUG_ON(current_order == MAX_ORDER);
2311
2312 do_steal:
2313 page = list_first_entry(&area->free_list[fallback_mt],
2314 struct page, lru);
2315
2316 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2317
2318 trace_mm_page_alloc_extfrag(page, order, current_order,
2319 start_migratetype, fallback_mt);
2320
2321 return true;
2322
2323 }
2324
2325 /*
2326 * Do the hard work of removing an element from the buddy allocator.
2327 * Call me with the zone->lock already held.
2328 */
2329 static __always_inline struct page *
2330 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2331 {
2332 struct page *page;
2333
2334 retry:
2335 page = __rmqueue_smallest(zone, order, migratetype);
2336 if (unlikely(!page)) {
2337 if (migratetype == MIGRATE_MOVABLE)
2338 page = __rmqueue_cma_fallback(zone, order);
2339
2340 if (!page && __rmqueue_fallback(zone, order, migratetype))
2341 goto retry;
2342 }
2343
2344 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2345 return page;
2346 }
2347
2348 /*
2349 * Obtain a specified number of elements from the buddy allocator, all under
2350 * a single hold of the lock, for efficiency. Add them to the supplied list.
2351 * Returns the number of new pages which were placed at *list.
2352 */
2353 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2354 unsigned long count, struct list_head *list,
2355 int migratetype)
2356 {
2357 int i, alloced = 0;
2358
2359 spin_lock(&zone->lock);
2360 for (i = 0; i < count; ++i) {
2361 struct page *page = __rmqueue(zone, order, migratetype);
2362 if (unlikely(page == NULL))
2363 break;
2364
2365 if (unlikely(check_pcp_refill(page)))
2366 continue;
2367
2368 /*
2369 * Split buddy pages returned by expand() are received here in
2370 * physical page order. The page is added to the tail of
2371 * caller's list. From the callers perspective, the linked list
2372 * is ordered by page number under some conditions. This is
2373 * useful for IO devices that can forward direction from the
2374 * head, thus also in the physical page order. This is useful
2375 * for IO devices that can merge IO requests if the physical
2376 * pages are ordered properly.
2377 */
2378 list_add_tail(&page->lru, list);
2379 alloced++;
2380 if (is_migrate_cma(get_pcppage_migratetype(page)))
2381 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2382 -(1 << order));
2383 }
2384
2385 /*
2386 * i pages were removed from the buddy list even if some leak due
2387 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2388 * on i. Do not confuse with 'alloced' which is the number of
2389 * pages added to the pcp list.
2390 */
2391 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2392 spin_unlock(&zone->lock);
2393 return alloced;
2394 }
2395
2396 #ifdef CONFIG_NUMA
2397 /*
2398 * Called from the vmstat counter updater to drain pagesets of this
2399 * currently executing processor on remote nodes after they have
2400 * expired.
2401 *
2402 * Note that this function must be called with the thread pinned to
2403 * a single processor.
2404 */
2405 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2406 {
2407 unsigned long flags;
2408 int to_drain, batch;
2409
2410 local_irq_save(flags);
2411 batch = READ_ONCE(pcp->batch);
2412 to_drain = min(pcp->count, batch);
2413 if (to_drain > 0) {
2414 free_pcppages_bulk(zone, to_drain, pcp);
2415 pcp->count -= to_drain;
2416 }
2417 local_irq_restore(flags);
2418 }
2419 #endif
2420
2421 /*
2422 * Drain pcplists of the indicated processor and zone.
2423 *
2424 * The processor must either be the current processor and the
2425 * thread pinned to the current processor or a processor that
2426 * is not online.
2427 */
2428 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2429 {
2430 unsigned long flags;
2431 struct per_cpu_pageset *pset;
2432 struct per_cpu_pages *pcp;
2433
2434 local_irq_save(flags);
2435 pset = per_cpu_ptr(zone->pageset, cpu);
2436
2437 pcp = &pset->pcp;
2438 if (pcp->count) {
2439 free_pcppages_bulk(zone, pcp->count, pcp);
2440 pcp->count = 0;
2441 }
2442 local_irq_restore(flags);
2443 }
2444
2445 /*
2446 * Drain pcplists of all zones on the indicated processor.
2447 *
2448 * The processor must either be the current processor and the
2449 * thread pinned to the current processor or a processor that
2450 * is not online.
2451 */
2452 static void drain_pages(unsigned int cpu)
2453 {
2454 struct zone *zone;
2455
2456 for_each_populated_zone(zone) {
2457 drain_pages_zone(cpu, zone);
2458 }
2459 }
2460
2461 /*
2462 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2463 *
2464 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2465 * the single zone's pages.
2466 */
2467 void drain_local_pages(struct zone *zone)
2468 {
2469 int cpu = smp_processor_id();
2470
2471 if (zone)
2472 drain_pages_zone(cpu, zone);
2473 else
2474 drain_pages(cpu);
2475 }
2476
2477 static void drain_local_pages_wq(struct work_struct *work)
2478 {
2479 /*
2480 * drain_all_pages doesn't use proper cpu hotplug protection so
2481 * we can race with cpu offline when the WQ can move this from
2482 * a cpu pinned worker to an unbound one. We can operate on a different
2483 * cpu which is allright but we also have to make sure to not move to
2484 * a different one.
2485 */
2486 preempt_disable();
2487 drain_local_pages(NULL);
2488 preempt_enable();
2489 }
2490
2491 /*
2492 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2493 *
2494 * When zone parameter is non-NULL, spill just the single zone's pages.
2495 *
2496 * Note that this can be extremely slow as the draining happens in a workqueue.
2497 */
2498 void drain_all_pages(struct zone *zone)
2499 {
2500 int cpu;
2501
2502 /*
2503 * Allocate in the BSS so we wont require allocation in
2504 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2505 */
2506 static cpumask_t cpus_with_pcps;
2507
2508 /*
2509 * Make sure nobody triggers this path before mm_percpu_wq is fully
2510 * initialized.
2511 */
2512 if (WARN_ON_ONCE(!mm_percpu_wq))
2513 return;
2514
2515 /*
2516 * Do not drain if one is already in progress unless it's specific to
2517 * a zone. Such callers are primarily CMA and memory hotplug and need
2518 * the drain to be complete when the call returns.
2519 */
2520 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2521 if (!zone)
2522 return;
2523 mutex_lock(&pcpu_drain_mutex);
2524 }
2525
2526 /*
2527 * We don't care about racing with CPU hotplug event
2528 * as offline notification will cause the notified
2529 * cpu to drain that CPU pcps and on_each_cpu_mask
2530 * disables preemption as part of its processing
2531 */
2532 for_each_online_cpu(cpu) {
2533 struct per_cpu_pageset *pcp;
2534 struct zone *z;
2535 bool has_pcps = false;
2536
2537 if (zone) {
2538 pcp = per_cpu_ptr(zone->pageset, cpu);
2539 if (pcp->pcp.count)
2540 has_pcps = true;
2541 } else {
2542 for_each_populated_zone(z) {
2543 pcp = per_cpu_ptr(z->pageset, cpu);
2544 if (pcp->pcp.count) {
2545 has_pcps = true;
2546 break;
2547 }
2548 }
2549 }
2550
2551 if (has_pcps)
2552 cpumask_set_cpu(cpu, &cpus_with_pcps);
2553 else
2554 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2555 }
2556
2557 for_each_cpu(cpu, &cpus_with_pcps) {
2558 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2559 INIT_WORK(work, drain_local_pages_wq);
2560 queue_work_on(cpu, mm_percpu_wq, work);
2561 }
2562 for_each_cpu(cpu, &cpus_with_pcps)
2563 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2564
2565 mutex_unlock(&pcpu_drain_mutex);
2566 }
2567
2568 #ifdef CONFIG_HIBERNATION
2569
2570 /*
2571 * Touch the watchdog for every WD_PAGE_COUNT pages.
2572 */
2573 #define WD_PAGE_COUNT (128*1024)
2574
2575 void mark_free_pages(struct zone *zone)
2576 {
2577 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2578 unsigned long flags;
2579 unsigned int order, t;
2580 struct page *page;
2581
2582 if (zone_is_empty(zone))
2583 return;
2584
2585 spin_lock_irqsave(&zone->lock, flags);
2586
2587 max_zone_pfn = zone_end_pfn(zone);
2588 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2589 if (pfn_valid(pfn)) {
2590 page = pfn_to_page(pfn);
2591
2592 if (!--page_count) {
2593 touch_nmi_watchdog();
2594 page_count = WD_PAGE_COUNT;
2595 }
2596
2597 if (page_zone(page) != zone)
2598 continue;
2599
2600 if (!swsusp_page_is_forbidden(page))
2601 swsusp_unset_page_free(page);
2602 }
2603
2604 for_each_migratetype_order(order, t) {
2605 list_for_each_entry(page,
2606 &zone->free_area[order].free_list[t], lru) {
2607 unsigned long i;
2608
2609 pfn = page_to_pfn(page);
2610 for (i = 0; i < (1UL << order); i++) {
2611 if (!--page_count) {
2612 touch_nmi_watchdog();
2613 page_count = WD_PAGE_COUNT;
2614 }
2615 swsusp_set_page_free(pfn_to_page(pfn + i));
2616 }
2617 }
2618 }
2619 spin_unlock_irqrestore(&zone->lock, flags);
2620 }
2621 #endif /* CONFIG_PM */
2622
2623 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2624 {
2625 int migratetype;
2626
2627 if (!free_pcp_prepare(page))
2628 return false;
2629
2630 migratetype = get_pfnblock_migratetype(page, pfn);
2631 set_pcppage_migratetype(page, migratetype);
2632 return true;
2633 }
2634
2635 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2636 {
2637 struct zone *zone = page_zone(page);
2638 struct per_cpu_pages *pcp;
2639 int migratetype;
2640
2641 migratetype = get_pcppage_migratetype(page);
2642 __count_vm_event(PGFREE);
2643
2644 /*
2645 * We only track unmovable, reclaimable and movable on pcp lists.
2646 * Free ISOLATE pages back to the allocator because they are being
2647 * offlined but treat HIGHATOMIC as movable pages so we can get those
2648 * areas back if necessary. Otherwise, we may have to free
2649 * excessively into the page allocator
2650 */
2651 if (migratetype >= MIGRATE_PCPTYPES) {
2652 if (unlikely(is_migrate_isolate(migratetype))) {
2653 free_one_page(zone, page, pfn, 0, migratetype);
2654 return;
2655 }
2656 migratetype = MIGRATE_MOVABLE;
2657 }
2658
2659 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2660 list_add(&page->lru, &pcp->lists[migratetype]);
2661 pcp->count++;
2662 if (pcp->count >= pcp->high) {
2663 unsigned long batch = READ_ONCE(pcp->batch);
2664 free_pcppages_bulk(zone, batch, pcp);
2665 pcp->count -= batch;
2666 }
2667 }
2668
2669 /*
2670 * Free a 0-order page
2671 */
2672 void free_unref_page(struct page *page)
2673 {
2674 unsigned long flags;
2675 unsigned long pfn = page_to_pfn(page);
2676
2677 if (!free_unref_page_prepare(page, pfn))
2678 return;
2679
2680 local_irq_save(flags);
2681 free_unref_page_commit(page, pfn);
2682 local_irq_restore(flags);
2683 }
2684
2685 /*
2686 * Free a list of 0-order pages
2687 */
2688 void free_unref_page_list(struct list_head *list)
2689 {
2690 struct page *page, *next;
2691 unsigned long flags, pfn;
2692 int batch_count = 0;
2693
2694 /* Prepare pages for freeing */
2695 list_for_each_entry_safe(page, next, list, lru) {
2696 pfn = page_to_pfn(page);
2697 if (!free_unref_page_prepare(page, pfn))
2698 list_del(&page->lru);
2699 set_page_private(page, pfn);
2700 }
2701
2702 local_irq_save(flags);
2703 list_for_each_entry_safe(page, next, list, lru) {
2704 unsigned long pfn = page_private(page);
2705
2706 set_page_private(page, 0);
2707 trace_mm_page_free_batched(page);
2708 free_unref_page_commit(page, pfn);
2709
2710 /*
2711 * Guard against excessive IRQ disabled times when we get
2712 * a large list of pages to free.
2713 */
2714 if (++batch_count == SWAP_CLUSTER_MAX) {
2715 local_irq_restore(flags);
2716 batch_count = 0;
2717 local_irq_save(flags);
2718 }
2719 }
2720 local_irq_restore(flags);
2721 }
2722
2723 /*
2724 * split_page takes a non-compound higher-order page, and splits it into
2725 * n (1<<order) sub-pages: page[0..n]
2726 * Each sub-page must be freed individually.
2727 *
2728 * Note: this is probably too low level an operation for use in drivers.
2729 * Please consult with lkml before using this in your driver.
2730 */
2731 void split_page(struct page *page, unsigned int order)
2732 {
2733 int i;
2734
2735 VM_BUG_ON_PAGE(PageCompound(page), page);
2736 VM_BUG_ON_PAGE(!page_count(page), page);
2737
2738 for (i = 1; i < (1 << order); i++)
2739 set_page_refcounted(page + i);
2740 split_page_owner(page, order);
2741 }
2742 EXPORT_SYMBOL_GPL(split_page);
2743
2744 int __isolate_free_page(struct page *page, unsigned int order)
2745 {
2746 unsigned long watermark;
2747 struct zone *zone;
2748 int mt;
2749
2750 BUG_ON(!PageBuddy(page));
2751
2752 zone = page_zone(page);
2753 mt = get_pageblock_migratetype(page);
2754
2755 if (!is_migrate_isolate(mt)) {
2756 /*
2757 * Obey watermarks as if the page was being allocated. We can
2758 * emulate a high-order watermark check with a raised order-0
2759 * watermark, because we already know our high-order page
2760 * exists.
2761 */
2762 watermark = min_wmark_pages(zone) + (1UL << order);
2763 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2764 return 0;
2765
2766 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2767 }
2768
2769 /* Remove page from free list */
2770 list_del(&page->lru);
2771 zone->free_area[order].nr_free--;
2772 rmv_page_order(page);
2773
2774 /*
2775 * Set the pageblock if the isolated page is at least half of a
2776 * pageblock
2777 */
2778 if (order >= pageblock_order - 1) {
2779 struct page *endpage = page + (1 << order) - 1;
2780 for (; page < endpage; page += pageblock_nr_pages) {
2781 int mt = get_pageblock_migratetype(page);
2782 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2783 && !is_migrate_highatomic(mt))
2784 set_pageblock_migratetype(page,
2785 MIGRATE_MOVABLE);
2786 }
2787 }
2788
2789
2790 return 1UL << order;
2791 }
2792
2793 /*
2794 * Update NUMA hit/miss statistics
2795 *
2796 * Must be called with interrupts disabled.
2797 */
2798 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2799 {
2800 #ifdef CONFIG_NUMA
2801 enum numa_stat_item local_stat = NUMA_LOCAL;
2802
2803 /* skip numa counters update if numa stats is disabled */
2804 if (!static_branch_likely(&vm_numa_stat_key))
2805 return;
2806
2807 if (z->node != numa_node_id())
2808 local_stat = NUMA_OTHER;
2809
2810 if (z->node == preferred_zone->node)
2811 __inc_numa_state(z, NUMA_HIT);
2812 else {
2813 __inc_numa_state(z, NUMA_MISS);
2814 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2815 }
2816 __inc_numa_state(z, local_stat);
2817 #endif
2818 }
2819
2820 /* Remove page from the per-cpu list, caller must protect the list */
2821 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2822 struct per_cpu_pages *pcp,
2823 struct list_head *list)
2824 {
2825 struct page *page;
2826
2827 do {
2828 if (list_empty(list)) {
2829 pcp->count += rmqueue_bulk(zone, 0,
2830 pcp->batch, list,
2831 migratetype);
2832 if (unlikely(list_empty(list)))
2833 return NULL;
2834 }
2835
2836 page = list_first_entry(list, struct page, lru);
2837 list_del(&page->lru);
2838 pcp->count--;
2839 } while (check_new_pcp(page));
2840
2841 return page;
2842 }
2843
2844 /* Lock and remove page from the per-cpu list */
2845 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2846 struct zone *zone, unsigned int order,
2847 gfp_t gfp_flags, int migratetype)
2848 {
2849 struct per_cpu_pages *pcp;
2850 struct list_head *list;
2851 struct page *page;
2852 unsigned long flags;
2853
2854 local_irq_save(flags);
2855 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2856 list = &pcp->lists[migratetype];
2857 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
2858 if (page) {
2859 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2860 zone_statistics(preferred_zone, zone);
2861 }
2862 local_irq_restore(flags);
2863 return page;
2864 }
2865
2866 /*
2867 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2868 */
2869 static inline
2870 struct page *rmqueue(struct zone *preferred_zone,
2871 struct zone *zone, unsigned int order,
2872 gfp_t gfp_flags, unsigned int alloc_flags,
2873 int migratetype)
2874 {
2875 unsigned long flags;
2876 struct page *page;
2877
2878 if (likely(order == 0)) {
2879 page = rmqueue_pcplist(preferred_zone, zone, order,
2880 gfp_flags, migratetype);
2881 goto out;
2882 }
2883
2884 /*
2885 * We most definitely don't want callers attempting to
2886 * allocate greater than order-1 page units with __GFP_NOFAIL.
2887 */
2888 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2889 spin_lock_irqsave(&zone->lock, flags);
2890
2891 do {
2892 page = NULL;
2893 if (alloc_flags & ALLOC_HARDER) {
2894 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2895 if (page)
2896 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2897 }
2898 if (!page)
2899 page = __rmqueue(zone, order, migratetype);
2900 } while (page && check_new_pages(page, order));
2901 spin_unlock(&zone->lock);
2902 if (!page)
2903 goto failed;
2904 __mod_zone_freepage_state(zone, -(1 << order),
2905 get_pcppage_migratetype(page));
2906
2907 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2908 zone_statistics(preferred_zone, zone);
2909 local_irq_restore(flags);
2910
2911 out:
2912 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2913 return page;
2914
2915 failed:
2916 local_irq_restore(flags);
2917 return NULL;
2918 }
2919
2920 #ifdef CONFIG_FAIL_PAGE_ALLOC
2921
2922 static struct {
2923 struct fault_attr attr;
2924
2925 bool ignore_gfp_highmem;
2926 bool ignore_gfp_reclaim;
2927 u32 min_order;
2928 } fail_page_alloc = {
2929 .attr = FAULT_ATTR_INITIALIZER,
2930 .ignore_gfp_reclaim = true,
2931 .ignore_gfp_highmem = true,
2932 .min_order = 1,
2933 };
2934
2935 static int __init setup_fail_page_alloc(char *str)
2936 {
2937 return setup_fault_attr(&fail_page_alloc.attr, str);
2938 }
2939 __setup("fail_page_alloc=", setup_fail_page_alloc);
2940
2941 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2942 {
2943 if (order < fail_page_alloc.min_order)
2944 return false;
2945 if (gfp_mask & __GFP_NOFAIL)
2946 return false;
2947 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2948 return false;
2949 if (fail_page_alloc.ignore_gfp_reclaim &&
2950 (gfp_mask & __GFP_DIRECT_RECLAIM))
2951 return false;
2952
2953 return should_fail(&fail_page_alloc.attr, 1 << order);
2954 }
2955
2956 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2957
2958 static int __init fail_page_alloc_debugfs(void)
2959 {
2960 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2961 struct dentry *dir;
2962
2963 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2964 &fail_page_alloc.attr);
2965 if (IS_ERR(dir))
2966 return PTR_ERR(dir);
2967
2968 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2969 &fail_page_alloc.ignore_gfp_reclaim))
2970 goto fail;
2971 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2972 &fail_page_alloc.ignore_gfp_highmem))
2973 goto fail;
2974 if (!debugfs_create_u32("min-order", mode, dir,
2975 &fail_page_alloc.min_order))
2976 goto fail;
2977
2978 return 0;
2979 fail:
2980 debugfs_remove_recursive(dir);
2981
2982 return -ENOMEM;
2983 }
2984
2985 late_initcall(fail_page_alloc_debugfs);
2986
2987 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2988
2989 #else /* CONFIG_FAIL_PAGE_ALLOC */
2990
2991 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2992 {
2993 return false;
2994 }
2995
2996 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2997
2998 /*
2999 * Return true if free base pages are above 'mark'. For high-order checks it
3000 * will return true of the order-0 watermark is reached and there is at least
3001 * one free page of a suitable size. Checking now avoids taking the zone lock
3002 * to check in the allocation paths if no pages are free.
3003 */
3004 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3005 int classzone_idx, unsigned int alloc_flags,
3006 long free_pages)
3007 {
3008 long min = mark;
3009 int o;
3010 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3011
3012 /* free_pages may go negative - that's OK */
3013 free_pages -= (1 << order) - 1;
3014
3015 if (alloc_flags & ALLOC_HIGH)
3016 min -= min / 2;
3017
3018 /*
3019 * If the caller does not have rights to ALLOC_HARDER then subtract
3020 * the high-atomic reserves. This will over-estimate the size of the
3021 * atomic reserve but it avoids a search.
3022 */
3023 if (likely(!alloc_harder)) {
3024 free_pages -= z->nr_reserved_highatomic;
3025 } else {
3026 /*
3027 * OOM victims can try even harder than normal ALLOC_HARDER
3028 * users on the grounds that it's definitely going to be in
3029 * the exit path shortly and free memory. Any allocation it
3030 * makes during the free path will be small and short-lived.
3031 */
3032 if (alloc_flags & ALLOC_OOM)
3033 min -= min / 2;
3034 else
3035 min -= min / 4;
3036 }
3037
3038
3039 #ifdef CONFIG_CMA
3040 /* If allocation can't use CMA areas don't use free CMA pages */
3041 if (!(alloc_flags & ALLOC_CMA))
3042 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3043 #endif
3044
3045 /*
3046 * Check watermarks for an order-0 allocation request. If these
3047 * are not met, then a high-order request also cannot go ahead
3048 * even if a suitable page happened to be free.
3049 */
3050 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3051 return false;
3052
3053 /* If this is an order-0 request then the watermark is fine */
3054 if (!order)
3055 return true;
3056
3057 /* For a high-order request, check at least one suitable page is free */
3058 for (o = order; o < MAX_ORDER; o++) {
3059 struct free_area *area = &z->free_area[o];
3060 int mt;
3061
3062 if (!area->nr_free)
3063 continue;
3064
3065 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3066 if (!list_empty(&area->free_list[mt]))
3067 return true;
3068 }
3069
3070 #ifdef CONFIG_CMA
3071 if ((alloc_flags & ALLOC_CMA) &&
3072 !list_empty(&area->free_list[MIGRATE_CMA])) {
3073 return true;
3074 }
3075 #endif
3076 if (alloc_harder &&
3077 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3078 return true;
3079 }
3080 return false;
3081 }
3082
3083 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3084 int classzone_idx, unsigned int alloc_flags)
3085 {
3086 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3087 zone_page_state(z, NR_FREE_PAGES));
3088 }
3089
3090 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3091 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3092 {
3093 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3094 long cma_pages = 0;
3095
3096 #ifdef CONFIG_CMA
3097 /* If allocation can't use CMA areas don't use free CMA pages */
3098 if (!(alloc_flags & ALLOC_CMA))
3099 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3100 #endif
3101
3102 /*
3103 * Fast check for order-0 only. If this fails then the reserves
3104 * need to be calculated. There is a corner case where the check
3105 * passes but only the high-order atomic reserve are free. If
3106 * the caller is !atomic then it'll uselessly search the free
3107 * list. That corner case is then slower but it is harmless.
3108 */
3109 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3110 return true;
3111
3112 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3113 free_pages);
3114 }
3115
3116 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3117 unsigned long mark, int classzone_idx)
3118 {
3119 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3120
3121 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3122 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3123
3124 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3125 free_pages);
3126 }
3127
3128 #ifdef CONFIG_NUMA
3129 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3130 {
3131 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3132 RECLAIM_DISTANCE;
3133 }
3134 #else /* CONFIG_NUMA */
3135 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3136 {
3137 return true;
3138 }
3139 #endif /* CONFIG_NUMA */
3140
3141 /*
3142 * get_page_from_freelist goes through the zonelist trying to allocate
3143 * a page.
3144 */
3145 static struct page *
3146 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3147 const struct alloc_context *ac)
3148 {
3149 struct zoneref *z = ac->preferred_zoneref;
3150 struct zone *zone;
3151 struct pglist_data *last_pgdat_dirty_limit = NULL;
3152
3153 /*
3154 * Scan zonelist, looking for a zone with enough free.
3155 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3156 */
3157 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3158 ac->nodemask) {
3159 struct page *page;
3160 unsigned long mark;
3161
3162 if (cpusets_enabled() &&
3163 (alloc_flags & ALLOC_CPUSET) &&
3164 !__cpuset_zone_allowed(zone, gfp_mask))
3165 continue;
3166 /*
3167 * When allocating a page cache page for writing, we
3168 * want to get it from a node that is within its dirty
3169 * limit, such that no single node holds more than its
3170 * proportional share of globally allowed dirty pages.
3171 * The dirty limits take into account the node's
3172 * lowmem reserves and high watermark so that kswapd
3173 * should be able to balance it without having to
3174 * write pages from its LRU list.
3175 *
3176 * XXX: For now, allow allocations to potentially
3177 * exceed the per-node dirty limit in the slowpath
3178 * (spread_dirty_pages unset) before going into reclaim,
3179 * which is important when on a NUMA setup the allowed
3180 * nodes are together not big enough to reach the
3181 * global limit. The proper fix for these situations
3182 * will require awareness of nodes in the
3183 * dirty-throttling and the flusher threads.
3184 */
3185 if (ac->spread_dirty_pages) {
3186 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3187 continue;
3188
3189 if (!node_dirty_ok(zone->zone_pgdat)) {
3190 last_pgdat_dirty_limit = zone->zone_pgdat;
3191 continue;
3192 }
3193 }
3194
3195 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3196 if (!zone_watermark_fast(zone, order, mark,
3197 ac_classzone_idx(ac), alloc_flags)) {
3198 int ret;
3199
3200 /* Checked here to keep the fast path fast */
3201 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3202 if (alloc_flags & ALLOC_NO_WATERMARKS)
3203 goto try_this_zone;
3204
3205 if (node_reclaim_mode == 0 ||
3206 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3207 continue;
3208
3209 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3210 switch (ret) {
3211 case NODE_RECLAIM_NOSCAN:
3212 /* did not scan */
3213 continue;
3214 case NODE_RECLAIM_FULL:
3215 /* scanned but unreclaimable */
3216 continue;
3217 default:
3218 /* did we reclaim enough */
3219 if (zone_watermark_ok(zone, order, mark,
3220 ac_classzone_idx(ac), alloc_flags))
3221 goto try_this_zone;
3222
3223 continue;
3224 }
3225 }
3226
3227 try_this_zone:
3228 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3229 gfp_mask, alloc_flags, ac->migratetype);
3230 if (page) {
3231 prep_new_page(page, order, gfp_mask, alloc_flags);
3232
3233 /*
3234 * If this is a high-order atomic allocation then check
3235 * if the pageblock should be reserved for the future
3236 */
3237 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3238 reserve_highatomic_pageblock(page, zone, order);
3239
3240 return page;
3241 }
3242 }
3243
3244 return NULL;
3245 }
3246
3247 /*
3248 * Large machines with many possible nodes should not always dump per-node
3249 * meminfo in irq context.
3250 */
3251 static inline bool should_suppress_show_mem(void)
3252 {
3253 bool ret = false;
3254
3255 #if NODES_SHIFT > 8
3256 ret = in_interrupt();
3257 #endif
3258 return ret;
3259 }
3260
3261 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3262 {
3263 unsigned int filter = SHOW_MEM_FILTER_NODES;
3264 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3265
3266 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3267 return;
3268
3269 /*
3270 * This documents exceptions given to allocations in certain
3271 * contexts that are allowed to allocate outside current's set
3272 * of allowed nodes.
3273 */
3274 if (!(gfp_mask & __GFP_NOMEMALLOC))
3275 if (tsk_is_oom_victim(current) ||
3276 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3277 filter &= ~SHOW_MEM_FILTER_NODES;
3278 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3279 filter &= ~SHOW_MEM_FILTER_NODES;
3280
3281 show_mem(filter, nodemask);
3282 }
3283
3284 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3285 {
3286 struct va_format vaf;
3287 va_list args;
3288 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3289 DEFAULT_RATELIMIT_BURST);
3290
3291 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3292 return;
3293
3294 va_start(args, fmt);
3295 vaf.fmt = fmt;
3296 vaf.va = &args;
3297 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3298 current->comm, &vaf, gfp_mask, &gfp_mask,
3299 nodemask_pr_args(nodemask));
3300 va_end(args);
3301
3302 cpuset_print_current_mems_allowed();
3303
3304 dump_stack();
3305 warn_alloc_show_mem(gfp_mask, nodemask);
3306 }
3307
3308 static inline struct page *
3309 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3310 unsigned int alloc_flags,
3311 const struct alloc_context *ac)
3312 {
3313 struct page *page;
3314
3315 page = get_page_from_freelist(gfp_mask, order,
3316 alloc_flags|ALLOC_CPUSET, ac);
3317 /*
3318 * fallback to ignore cpuset restriction if our nodes
3319 * are depleted
3320 */
3321 if (!page)
3322 page = get_page_from_freelist(gfp_mask, order,
3323 alloc_flags, ac);
3324
3325 return page;
3326 }
3327
3328 static inline struct page *
3329 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3330 const struct alloc_context *ac, unsigned long *did_some_progress)
3331 {
3332 struct oom_control oc = {
3333 .zonelist = ac->zonelist,
3334 .nodemask = ac->nodemask,
3335 .memcg = NULL,
3336 .gfp_mask = gfp_mask,
3337 .order = order,
3338 };
3339 struct page *page;
3340
3341 *did_some_progress = 0;
3342
3343 /*
3344 * Acquire the oom lock. If that fails, somebody else is
3345 * making progress for us.
3346 */
3347 if (!mutex_trylock(&oom_lock)) {
3348 *did_some_progress = 1;
3349 schedule_timeout_uninterruptible(1);
3350 return NULL;
3351 }
3352
3353 /*
3354 * Go through the zonelist yet one more time, keep very high watermark
3355 * here, this is only to catch a parallel oom killing, we must fail if
3356 * we're still under heavy pressure. But make sure that this reclaim
3357 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3358 * allocation which will never fail due to oom_lock already held.
3359 */
3360 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3361 ~__GFP_DIRECT_RECLAIM, order,
3362 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3363 if (page)
3364 goto out;
3365
3366 /* Coredumps can quickly deplete all memory reserves */
3367 if (current->flags & PF_DUMPCORE)
3368 goto out;
3369 /* The OOM killer will not help higher order allocs */
3370 if (order > PAGE_ALLOC_COSTLY_ORDER)
3371 goto out;
3372 /*
3373 * We have already exhausted all our reclaim opportunities without any
3374 * success so it is time to admit defeat. We will skip the OOM killer
3375 * because it is very likely that the caller has a more reasonable
3376 * fallback than shooting a random task.
3377 */
3378 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3379 goto out;
3380 /* The OOM killer does not needlessly kill tasks for lowmem */
3381 if (ac->high_zoneidx < ZONE_NORMAL)
3382 goto out;
3383 if (pm_suspended_storage())
3384 goto out;
3385 /*
3386 * XXX: GFP_NOFS allocations should rather fail than rely on
3387 * other request to make a forward progress.
3388 * We are in an unfortunate situation where out_of_memory cannot
3389 * do much for this context but let's try it to at least get
3390 * access to memory reserved if the current task is killed (see
3391 * out_of_memory). Once filesystems are ready to handle allocation
3392 * failures more gracefully we should just bail out here.
3393 */
3394
3395 /* The OOM killer may not free memory on a specific node */
3396 if (gfp_mask & __GFP_THISNODE)
3397 goto out;
3398
3399 /* Exhausted what can be done so it's blamo time */
3400 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3401 *did_some_progress = 1;
3402
3403 /*
3404 * Help non-failing allocations by giving them access to memory
3405 * reserves
3406 */
3407 if (gfp_mask & __GFP_NOFAIL)
3408 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3409 ALLOC_NO_WATERMARKS, ac);
3410 }
3411 out:
3412 mutex_unlock(&oom_lock);
3413 return page;
3414 }
3415
3416 /*
3417 * Maximum number of compaction retries wit a progress before OOM
3418 * killer is consider as the only way to move forward.
3419 */
3420 #define MAX_COMPACT_RETRIES 16
3421
3422 #ifdef CONFIG_COMPACTION
3423 /* Try memory compaction for high-order allocations before reclaim */
3424 static struct page *
3425 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3426 unsigned int alloc_flags, const struct alloc_context *ac,
3427 enum compact_priority prio, enum compact_result *compact_result)
3428 {
3429 struct page *page;
3430 unsigned int noreclaim_flag;
3431
3432 if (!order)
3433 return NULL;
3434
3435 noreclaim_flag = memalloc_noreclaim_save();
3436 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3437 prio);
3438 memalloc_noreclaim_restore(noreclaim_flag);
3439
3440 if (*compact_result <= COMPACT_INACTIVE)
3441 return NULL;
3442
3443 /*
3444 * At least in one zone compaction wasn't deferred or skipped, so let's
3445 * count a compaction stall
3446 */
3447 count_vm_event(COMPACTSTALL);
3448
3449 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3450
3451 if (page) {
3452 struct zone *zone = page_zone(page);
3453
3454 zone->compact_blockskip_flush = false;
3455 compaction_defer_reset(zone, order, true);
3456 count_vm_event(COMPACTSUCCESS);
3457 return page;
3458 }
3459
3460 /*
3461 * It's bad if compaction run occurs and fails. The most likely reason
3462 * is that pages exist, but not enough to satisfy watermarks.
3463 */
3464 count_vm_event(COMPACTFAIL);
3465
3466 cond_resched();
3467
3468 return NULL;
3469 }
3470
3471 static inline bool
3472 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3473 enum compact_result compact_result,
3474 enum compact_priority *compact_priority,
3475 int *compaction_retries)
3476 {
3477 int max_retries = MAX_COMPACT_RETRIES;
3478 int min_priority;
3479 bool ret = false;
3480 int retries = *compaction_retries;
3481 enum compact_priority priority = *compact_priority;
3482
3483 if (!order)
3484 return false;
3485
3486 if (compaction_made_progress(compact_result))
3487 (*compaction_retries)++;
3488
3489 /*
3490 * compaction considers all the zone as desperately out of memory
3491 * so it doesn't really make much sense to retry except when the
3492 * failure could be caused by insufficient priority
3493 */
3494 if (compaction_failed(compact_result))
3495 goto check_priority;
3496
3497 /*
3498 * make sure the compaction wasn't deferred or didn't bail out early
3499 * due to locks contention before we declare that we should give up.
3500 * But do not retry if the given zonelist is not suitable for
3501 * compaction.
3502 */
3503 if (compaction_withdrawn(compact_result)) {
3504 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3505 goto out;
3506 }
3507
3508 /*
3509 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3510 * costly ones because they are de facto nofail and invoke OOM
3511 * killer to move on while costly can fail and users are ready
3512 * to cope with that. 1/4 retries is rather arbitrary but we
3513 * would need much more detailed feedback from compaction to
3514 * make a better decision.
3515 */
3516 if (order > PAGE_ALLOC_COSTLY_ORDER)
3517 max_retries /= 4;
3518 if (*compaction_retries <= max_retries) {
3519 ret = true;
3520 goto out;
3521 }
3522
3523 /*
3524 * Make sure there are attempts at the highest priority if we exhausted
3525 * all retries or failed at the lower priorities.
3526 */
3527 check_priority:
3528 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3529 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3530
3531 if (*compact_priority > min_priority) {
3532 (*compact_priority)--;
3533 *compaction_retries = 0;
3534 ret = true;
3535 }
3536 out:
3537 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3538 return ret;
3539 }
3540 #else
3541 static inline struct page *
3542 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3543 unsigned int alloc_flags, const struct alloc_context *ac,
3544 enum compact_priority prio, enum compact_result *compact_result)
3545 {
3546 *compact_result = COMPACT_SKIPPED;
3547 return NULL;
3548 }
3549
3550 static inline bool
3551 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3552 enum compact_result compact_result,
3553 enum compact_priority *compact_priority,
3554 int *compaction_retries)
3555 {
3556 struct zone *zone;
3557 struct zoneref *z;
3558
3559 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3560 return false;
3561
3562 /*
3563 * There are setups with compaction disabled which would prefer to loop
3564 * inside the allocator rather than hit the oom killer prematurely.
3565 * Let's give them a good hope and keep retrying while the order-0
3566 * watermarks are OK.
3567 */
3568 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3569 ac->nodemask) {
3570 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3571 ac_classzone_idx(ac), alloc_flags))
3572 return true;
3573 }
3574 return false;
3575 }
3576 #endif /* CONFIG_COMPACTION */
3577
3578 #ifdef CONFIG_LOCKDEP
3579 struct lockdep_map __fs_reclaim_map =
3580 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3581
3582 static bool __need_fs_reclaim(gfp_t gfp_mask)
3583 {
3584 gfp_mask = current_gfp_context(gfp_mask);
3585
3586 /* no reclaim without waiting on it */
3587 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3588 return false;
3589
3590 /* this guy won't enter reclaim */
3591 if (current->flags & PF_MEMALLOC)
3592 return false;
3593
3594 /* We're only interested __GFP_FS allocations for now */
3595 if (!(gfp_mask & __GFP_FS))
3596 return false;
3597
3598 if (gfp_mask & __GFP_NOLOCKDEP)
3599 return false;
3600
3601 return true;
3602 }
3603
3604 void fs_reclaim_acquire(gfp_t gfp_mask)
3605 {
3606 if (__need_fs_reclaim(gfp_mask))
3607 lock_map_acquire(&__fs_reclaim_map);
3608 }
3609 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3610
3611 void fs_reclaim_release(gfp_t gfp_mask)
3612 {
3613 if (__need_fs_reclaim(gfp_mask))
3614 lock_map_release(&__fs_reclaim_map);
3615 }
3616 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3617 #endif
3618
3619 /* Perform direct synchronous page reclaim */
3620 static int
3621 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3622 const struct alloc_context *ac)
3623 {
3624 struct reclaim_state reclaim_state;
3625 int progress;
3626 unsigned int noreclaim_flag;
3627
3628 cond_resched();
3629
3630 /* We now go into synchronous reclaim */
3631 cpuset_memory_pressure_bump();
3632 noreclaim_flag = memalloc_noreclaim_save();
3633 fs_reclaim_acquire(gfp_mask);
3634 reclaim_state.reclaimed_slab = 0;
3635 current->reclaim_state = &reclaim_state;
3636
3637 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3638 ac->nodemask);
3639
3640 current->reclaim_state = NULL;
3641 fs_reclaim_release(gfp_mask);
3642 memalloc_noreclaim_restore(noreclaim_flag);
3643
3644 cond_resched();
3645
3646 return progress;
3647 }
3648
3649 /* The really slow allocator path where we enter direct reclaim */
3650 static inline struct page *
3651 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3652 unsigned int alloc_flags, const struct alloc_context *ac,
3653 unsigned long *did_some_progress)
3654 {
3655 struct page *page = NULL;
3656 bool drained = false;
3657
3658 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3659 if (unlikely(!(*did_some_progress)))
3660 return NULL;
3661
3662 retry:
3663 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3664
3665 /*
3666 * If an allocation failed after direct reclaim, it could be because
3667 * pages are pinned on the per-cpu lists or in high alloc reserves.
3668 * Shrink them them and try again
3669 */
3670 if (!page && !drained) {
3671 unreserve_highatomic_pageblock(ac, false);
3672 drain_all_pages(NULL);
3673 drained = true;
3674 goto retry;
3675 }
3676
3677 return page;
3678 }
3679
3680 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3681 {
3682 struct zoneref *z;
3683 struct zone *zone;
3684 pg_data_t *last_pgdat = NULL;
3685
3686 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3687 ac->high_zoneidx, ac->nodemask) {
3688 if (last_pgdat != zone->zone_pgdat)
3689 wakeup_kswapd(zone, order, ac->high_zoneidx);
3690 last_pgdat = zone->zone_pgdat;
3691 }
3692 }
3693
3694 static inline unsigned int
3695 gfp_to_alloc_flags(gfp_t gfp_mask)
3696 {
3697 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3698
3699 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3700 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3701
3702 /*
3703 * The caller may dip into page reserves a bit more if the caller
3704 * cannot run direct reclaim, or if the caller has realtime scheduling
3705 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3706 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3707 */
3708 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3709
3710 if (gfp_mask & __GFP_ATOMIC) {
3711 /*
3712 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3713 * if it can't schedule.
3714 */
3715 if (!(gfp_mask & __GFP_NOMEMALLOC))
3716 alloc_flags |= ALLOC_HARDER;
3717 /*
3718 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3719 * comment for __cpuset_node_allowed().
3720 */
3721 alloc_flags &= ~ALLOC_CPUSET;
3722 } else if (unlikely(rt_task(current)) && !in_interrupt())
3723 alloc_flags |= ALLOC_HARDER;
3724
3725 #ifdef CONFIG_CMA
3726 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3727 alloc_flags |= ALLOC_CMA;
3728 #endif
3729 return alloc_flags;
3730 }
3731
3732 static bool oom_reserves_allowed(struct task_struct *tsk)
3733 {
3734 if (!tsk_is_oom_victim(tsk))
3735 return false;
3736
3737 /*
3738 * !MMU doesn't have oom reaper so give access to memory reserves
3739 * only to the thread with TIF_MEMDIE set
3740 */
3741 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3742 return false;
3743
3744 return true;
3745 }
3746
3747 /*
3748 * Distinguish requests which really need access to full memory
3749 * reserves from oom victims which can live with a portion of it
3750 */
3751 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3752 {
3753 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3754 return 0;
3755 if (gfp_mask & __GFP_MEMALLOC)
3756 return ALLOC_NO_WATERMARKS;
3757 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3758 return ALLOC_NO_WATERMARKS;
3759 if (!in_interrupt()) {
3760 if (current->flags & PF_MEMALLOC)
3761 return ALLOC_NO_WATERMARKS;
3762 else if (oom_reserves_allowed(current))
3763 return ALLOC_OOM;
3764 }
3765
3766 return 0;
3767 }
3768
3769 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3770 {
3771 return !!__gfp_pfmemalloc_flags(gfp_mask);
3772 }
3773
3774 /*
3775 * Checks whether it makes sense to retry the reclaim to make a forward progress
3776 * for the given allocation request.
3777 *
3778 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3779 * without success, or when we couldn't even meet the watermark if we
3780 * reclaimed all remaining pages on the LRU lists.
3781 *
3782 * Returns true if a retry is viable or false to enter the oom path.
3783 */
3784 static inline bool
3785 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3786 struct alloc_context *ac, int alloc_flags,
3787 bool did_some_progress, int *no_progress_loops)
3788 {
3789 struct zone *zone;
3790 struct zoneref *z;
3791
3792 /*
3793 * Costly allocations might have made a progress but this doesn't mean
3794 * their order will become available due to high fragmentation so
3795 * always increment the no progress counter for them
3796 */
3797 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3798 *no_progress_loops = 0;
3799 else
3800 (*no_progress_loops)++;
3801
3802 /*
3803 * Make sure we converge to OOM if we cannot make any progress
3804 * several times in the row.
3805 */
3806 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3807 /* Before OOM, exhaust highatomic_reserve */
3808 return unreserve_highatomic_pageblock(ac, true);
3809 }
3810
3811 /*
3812 * Keep reclaiming pages while there is a chance this will lead
3813 * somewhere. If none of the target zones can satisfy our allocation
3814 * request even if all reclaimable pages are considered then we are
3815 * screwed and have to go OOM.
3816 */
3817 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3818 ac->nodemask) {
3819 unsigned long available;
3820 unsigned long reclaimable;
3821 unsigned long min_wmark = min_wmark_pages(zone);
3822 bool wmark;
3823
3824 available = reclaimable = zone_reclaimable_pages(zone);
3825 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3826
3827 /*
3828 * Would the allocation succeed if we reclaimed all
3829 * reclaimable pages?
3830 */
3831 wmark = __zone_watermark_ok(zone, order, min_wmark,
3832 ac_classzone_idx(ac), alloc_flags, available);
3833 trace_reclaim_retry_zone(z, order, reclaimable,
3834 available, min_wmark, *no_progress_loops, wmark);
3835 if (wmark) {
3836 /*
3837 * If we didn't make any progress and have a lot of
3838 * dirty + writeback pages then we should wait for
3839 * an IO to complete to slow down the reclaim and
3840 * prevent from pre mature OOM
3841 */
3842 if (!did_some_progress) {
3843 unsigned long write_pending;
3844
3845 write_pending = zone_page_state_snapshot(zone,
3846 NR_ZONE_WRITE_PENDING);
3847
3848 if (2 * write_pending > reclaimable) {
3849 congestion_wait(BLK_RW_ASYNC, HZ/10);
3850 return true;
3851 }
3852 }
3853
3854 /*
3855 * Memory allocation/reclaim might be called from a WQ
3856 * context and the current implementation of the WQ
3857 * concurrency control doesn't recognize that
3858 * a particular WQ is congested if the worker thread is
3859 * looping without ever sleeping. Therefore we have to
3860 * do a short sleep here rather than calling
3861 * cond_resched().
3862 */
3863 if (current->flags & PF_WQ_WORKER)
3864 schedule_timeout_uninterruptible(1);
3865 else
3866 cond_resched();
3867
3868 return true;
3869 }
3870 }
3871
3872 return false;
3873 }
3874
3875 static inline bool
3876 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3877 {
3878 /*
3879 * It's possible that cpuset's mems_allowed and the nodemask from
3880 * mempolicy don't intersect. This should be normally dealt with by
3881 * policy_nodemask(), but it's possible to race with cpuset update in
3882 * such a way the check therein was true, and then it became false
3883 * before we got our cpuset_mems_cookie here.
3884 * This assumes that for all allocations, ac->nodemask can come only
3885 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3886 * when it does not intersect with the cpuset restrictions) or the
3887 * caller can deal with a violated nodemask.
3888 */
3889 if (cpusets_enabled() && ac->nodemask &&
3890 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3891 ac->nodemask = NULL;
3892 return true;
3893 }
3894
3895 /*
3896 * When updating a task's mems_allowed or mempolicy nodemask, it is
3897 * possible to race with parallel threads in such a way that our
3898 * allocation can fail while the mask is being updated. If we are about
3899 * to fail, check if the cpuset changed during allocation and if so,
3900 * retry.
3901 */
3902 if (read_mems_allowed_retry(cpuset_mems_cookie))
3903 return true;
3904
3905 return false;
3906 }
3907
3908 static inline struct page *
3909 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3910 struct alloc_context *ac)
3911 {
3912 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3913 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3914 struct page *page = NULL;
3915 unsigned int alloc_flags;
3916 unsigned long did_some_progress;
3917 enum compact_priority compact_priority;
3918 enum compact_result compact_result;
3919 int compaction_retries;
3920 int no_progress_loops;
3921 unsigned int cpuset_mems_cookie;
3922 int reserve_flags;
3923
3924 /*
3925 * We also sanity check to catch abuse of atomic reserves being used by
3926 * callers that are not in atomic context.
3927 */
3928 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3929 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3930 gfp_mask &= ~__GFP_ATOMIC;
3931
3932 retry_cpuset:
3933 compaction_retries = 0;
3934 no_progress_loops = 0;
3935 compact_priority = DEF_COMPACT_PRIORITY;
3936 cpuset_mems_cookie = read_mems_allowed_begin();
3937
3938 /*
3939 * The fast path uses conservative alloc_flags to succeed only until
3940 * kswapd needs to be woken up, and to avoid the cost of setting up
3941 * alloc_flags precisely. So we do that now.
3942 */
3943 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3944
3945 /*
3946 * We need to recalculate the starting point for the zonelist iterator
3947 * because we might have used different nodemask in the fast path, or
3948 * there was a cpuset modification and we are retrying - otherwise we
3949 * could end up iterating over non-eligible zones endlessly.
3950 */
3951 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3952 ac->high_zoneidx, ac->nodemask);
3953 if (!ac->preferred_zoneref->zone)
3954 goto nopage;
3955
3956 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3957 wake_all_kswapds(order, ac);
3958
3959 /*
3960 * The adjusted alloc_flags might result in immediate success, so try
3961 * that first
3962 */
3963 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3964 if (page)
3965 goto got_pg;
3966
3967 /*
3968 * For costly allocations, try direct compaction first, as it's likely
3969 * that we have enough base pages and don't need to reclaim. For non-
3970 * movable high-order allocations, do that as well, as compaction will
3971 * try prevent permanent fragmentation by migrating from blocks of the
3972 * same migratetype.
3973 * Don't try this for allocations that are allowed to ignore
3974 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3975 */
3976 if (can_direct_reclaim &&
3977 (costly_order ||
3978 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3979 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3980 page = __alloc_pages_direct_compact(gfp_mask, order,
3981 alloc_flags, ac,
3982 INIT_COMPACT_PRIORITY,
3983 &compact_result);
3984 if (page)
3985 goto got_pg;
3986
3987 /*
3988 * Checks for costly allocations with __GFP_NORETRY, which
3989 * includes THP page fault allocations
3990 */
3991 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3992 /*
3993 * If compaction is deferred for high-order allocations,
3994 * it is because sync compaction recently failed. If
3995 * this is the case and the caller requested a THP
3996 * allocation, we do not want to heavily disrupt the
3997 * system, so we fail the allocation instead of entering
3998 * direct reclaim.
3999 */
4000 if (compact_result == COMPACT_DEFERRED)
4001 goto nopage;
4002
4003 /*
4004 * Looks like reclaim/compaction is worth trying, but
4005 * sync compaction could be very expensive, so keep
4006 * using async compaction.
4007 */
4008 compact_priority = INIT_COMPACT_PRIORITY;
4009 }
4010 }
4011
4012 retry:
4013 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4014 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4015 wake_all_kswapds(order, ac);
4016
4017 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4018 if (reserve_flags)
4019 alloc_flags = reserve_flags;
4020
4021 /*
4022 * Reset the zonelist iterators if memory policies can be ignored.
4023 * These allocations are high priority and system rather than user
4024 * orientated.
4025 */
4026 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4027 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4028 ac->high_zoneidx, ac->nodemask);
4029 }
4030
4031 /* Attempt with potentially adjusted zonelist and alloc_flags */
4032 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4033 if (page)
4034 goto got_pg;
4035
4036 /* Caller is not willing to reclaim, we can't balance anything */
4037 if (!can_direct_reclaim)
4038 goto nopage;
4039
4040 /* Avoid recursion of direct reclaim */
4041 if (current->flags & PF_MEMALLOC)
4042 goto nopage;
4043
4044 /* Try direct reclaim and then allocating */
4045 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4046 &did_some_progress);
4047 if (page)
4048 goto got_pg;
4049
4050 /* Try direct compaction and then allocating */
4051 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4052 compact_priority, &compact_result);
4053 if (page)
4054 goto got_pg;
4055
4056 /* Do not loop if specifically requested */
4057 if (gfp_mask & __GFP_NORETRY)
4058 goto nopage;
4059
4060 /*
4061 * Do not retry costly high order allocations unless they are
4062 * __GFP_RETRY_MAYFAIL
4063 */
4064 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4065 goto nopage;
4066
4067 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4068 did_some_progress > 0, &no_progress_loops))
4069 goto retry;
4070
4071 /*
4072 * It doesn't make any sense to retry for the compaction if the order-0
4073 * reclaim is not able to make any progress because the current
4074 * implementation of the compaction depends on the sufficient amount
4075 * of free memory (see __compaction_suitable)
4076 */
4077 if (did_some_progress > 0 &&
4078 should_compact_retry(ac, order, alloc_flags,
4079 compact_result, &compact_priority,
4080 &compaction_retries))
4081 goto retry;
4082
4083
4084 /* Deal with possible cpuset update races before we start OOM killing */
4085 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4086 goto retry_cpuset;
4087
4088 /* Reclaim has failed us, start killing things */
4089 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4090 if (page)
4091 goto got_pg;
4092
4093 /* Avoid allocations with no watermarks from looping endlessly */
4094 if (tsk_is_oom_victim(current) &&
4095 (alloc_flags == ALLOC_OOM ||
4096 (gfp_mask & __GFP_NOMEMALLOC)))
4097 goto nopage;
4098
4099 /* Retry as long as the OOM killer is making progress */
4100 if (did_some_progress) {
4101 no_progress_loops = 0;
4102 goto retry;
4103 }
4104
4105 nopage:
4106 /* Deal with possible cpuset update races before we fail */
4107 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4108 goto retry_cpuset;
4109
4110 /*
4111 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4112 * we always retry
4113 */
4114 if (gfp_mask & __GFP_NOFAIL) {
4115 /*
4116 * All existing users of the __GFP_NOFAIL are blockable, so warn
4117 * of any new users that actually require GFP_NOWAIT
4118 */
4119 if (WARN_ON_ONCE(!can_direct_reclaim))
4120 goto fail;
4121
4122 /*
4123 * PF_MEMALLOC request from this context is rather bizarre
4124 * because we cannot reclaim anything and only can loop waiting
4125 * for somebody to do a work for us
4126 */
4127 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4128
4129 /*
4130 * non failing costly orders are a hard requirement which we
4131 * are not prepared for much so let's warn about these users
4132 * so that we can identify them and convert them to something
4133 * else.
4134 */
4135 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4136
4137 /*
4138 * Help non-failing allocations by giving them access to memory
4139 * reserves but do not use ALLOC_NO_WATERMARKS because this
4140 * could deplete whole memory reserves which would just make
4141 * the situation worse
4142 */
4143 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4144 if (page)
4145 goto got_pg;
4146
4147 cond_resched();
4148 goto retry;
4149 }
4150 fail:
4151 warn_alloc(gfp_mask, ac->nodemask,
4152 "page allocation failure: order:%u", order);
4153 got_pg:
4154 return page;
4155 }
4156
4157 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4158 int preferred_nid, nodemask_t *nodemask,
4159 struct alloc_context *ac, gfp_t *alloc_mask,
4160 unsigned int *alloc_flags)
4161 {
4162 ac->high_zoneidx = gfp_zone(gfp_mask);
4163 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4164 ac->nodemask = nodemask;
4165 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4166
4167 if (cpusets_enabled()) {
4168 *alloc_mask |= __GFP_HARDWALL;
4169 if (!ac->nodemask)
4170 ac->nodemask = &cpuset_current_mems_allowed;
4171 else
4172 *alloc_flags |= ALLOC_CPUSET;
4173 }
4174
4175 fs_reclaim_acquire(gfp_mask);
4176 fs_reclaim_release(gfp_mask);
4177
4178 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4179
4180 if (should_fail_alloc_page(gfp_mask, order))
4181 return false;
4182
4183 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4184 *alloc_flags |= ALLOC_CMA;
4185
4186 return true;
4187 }
4188
4189 /* Determine whether to spread dirty pages and what the first usable zone */
4190 static inline void finalise_ac(gfp_t gfp_mask,
4191 unsigned int order, struct alloc_context *ac)
4192 {
4193 /* Dirty zone balancing only done in the fast path */
4194 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4195
4196 /*
4197 * The preferred zone is used for statistics but crucially it is
4198 * also used as the starting point for the zonelist iterator. It
4199 * may get reset for allocations that ignore memory policies.
4200 */
4201 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4202 ac->high_zoneidx, ac->nodemask);
4203 }
4204
4205 /*
4206 * This is the 'heart' of the zoned buddy allocator.
4207 */
4208 struct page *
4209 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4210 nodemask_t *nodemask)
4211 {
4212 struct page *page;
4213 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4214 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4215 struct alloc_context ac = { };
4216
4217 /*
4218 * There are several places where we assume that the order value is sane
4219 * so bail out early if the request is out of bound.
4220 */
4221 if (unlikely(order >= MAX_ORDER)) {
4222 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4223 return NULL;
4224 }
4225
4226 gfp_mask &= gfp_allowed_mask;
4227 alloc_mask = gfp_mask;
4228 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4229 return NULL;
4230
4231 finalise_ac(gfp_mask, order, &ac);
4232
4233 /* First allocation attempt */
4234 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4235 if (likely(page))
4236 goto out;
4237
4238 /*
4239 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4240 * resp. GFP_NOIO which has to be inherited for all allocation requests
4241 * from a particular context which has been marked by
4242 * memalloc_no{fs,io}_{save,restore}.
4243 */
4244 alloc_mask = current_gfp_context(gfp_mask);
4245 ac.spread_dirty_pages = false;
4246
4247 /*
4248 * Restore the original nodemask if it was potentially replaced with
4249 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4250 */
4251 if (unlikely(ac.nodemask != nodemask))
4252 ac.nodemask = nodemask;
4253
4254 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4255
4256 out:
4257 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4258 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4259 __free_pages(page, order);
4260 page = NULL;
4261 }
4262
4263 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4264
4265 return page;
4266 }
4267 EXPORT_SYMBOL(__alloc_pages_nodemask);
4268
4269 /*
4270 * Common helper functions.
4271 */
4272 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4273 {
4274 struct page *page;
4275
4276 /*
4277 * __get_free_pages() returns a 32-bit address, which cannot represent
4278 * a highmem page
4279 */
4280 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4281
4282 page = alloc_pages(gfp_mask, order);
4283 if (!page)
4284 return 0;
4285 return (unsigned long) page_address(page);
4286 }
4287 EXPORT_SYMBOL(__get_free_pages);
4288
4289 unsigned long get_zeroed_page(gfp_t gfp_mask)
4290 {
4291 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4292 }
4293 EXPORT_SYMBOL(get_zeroed_page);
4294
4295 void __free_pages(struct page *page, unsigned int order)
4296 {
4297 if (put_page_testzero(page)) {
4298 if (order == 0)
4299 free_unref_page(page);
4300 else
4301 __free_pages_ok(page, order);
4302 }
4303 }
4304
4305 EXPORT_SYMBOL(__free_pages);
4306
4307 void free_pages(unsigned long addr, unsigned int order)
4308 {
4309 if (addr != 0) {
4310 VM_BUG_ON(!virt_addr_valid((void *)addr));
4311 __free_pages(virt_to_page((void *)addr), order);
4312 }
4313 }
4314
4315 EXPORT_SYMBOL(free_pages);
4316
4317 /*
4318 * Page Fragment:
4319 * An arbitrary-length arbitrary-offset area of memory which resides
4320 * within a 0 or higher order page. Multiple fragments within that page
4321 * are individually refcounted, in the page's reference counter.
4322 *
4323 * The page_frag functions below provide a simple allocation framework for
4324 * page fragments. This is used by the network stack and network device
4325 * drivers to provide a backing region of memory for use as either an
4326 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4327 */
4328 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4329 gfp_t gfp_mask)
4330 {
4331 struct page *page = NULL;
4332 gfp_t gfp = gfp_mask;
4333
4334 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4335 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4336 __GFP_NOMEMALLOC;
4337 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4338 PAGE_FRAG_CACHE_MAX_ORDER);
4339 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4340 #endif
4341 if (unlikely(!page))
4342 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4343
4344 nc->va = page ? page_address(page) : NULL;
4345
4346 return page;
4347 }
4348
4349 void __page_frag_cache_drain(struct page *page, unsigned int count)
4350 {
4351 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4352
4353 if (page_ref_sub_and_test(page, count)) {
4354 unsigned int order = compound_order(page);
4355
4356 if (order == 0)
4357 free_unref_page(page);
4358 else
4359 __free_pages_ok(page, order);
4360 }
4361 }
4362 EXPORT_SYMBOL(__page_frag_cache_drain);
4363
4364 void *page_frag_alloc(struct page_frag_cache *nc,
4365 unsigned int fragsz, gfp_t gfp_mask)
4366 {
4367 unsigned int size = PAGE_SIZE;
4368 struct page *page;
4369 int offset;
4370
4371 if (unlikely(!nc->va)) {
4372 refill:
4373 page = __page_frag_cache_refill(nc, gfp_mask);
4374 if (!page)
4375 return NULL;
4376
4377 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4378 /* if size can vary use size else just use PAGE_SIZE */
4379 size = nc->size;
4380 #endif
4381 /* Even if we own the page, we do not use atomic_set().
4382 * This would break get_page_unless_zero() users.
4383 */
4384 page_ref_add(page, size - 1);
4385
4386 /* reset page count bias and offset to start of new frag */
4387 nc->pfmemalloc = page_is_pfmemalloc(page);
4388 nc->pagecnt_bias = size;
4389 nc->offset = size;
4390 }
4391
4392 offset = nc->offset - fragsz;
4393 if (unlikely(offset < 0)) {
4394 page = virt_to_page(nc->va);
4395
4396 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4397 goto refill;
4398
4399 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4400 /* if size can vary use size else just use PAGE_SIZE */
4401 size = nc->size;
4402 #endif
4403 /* OK, page count is 0, we can safely set it */
4404 set_page_count(page, size);
4405
4406 /* reset page count bias and offset to start of new frag */
4407 nc->pagecnt_bias = size;
4408 offset = size - fragsz;
4409 }
4410
4411 nc->pagecnt_bias--;
4412 nc->offset = offset;
4413
4414 return nc->va + offset;
4415 }
4416 EXPORT_SYMBOL(page_frag_alloc);
4417
4418 /*
4419 * Frees a page fragment allocated out of either a compound or order 0 page.
4420 */
4421 void page_frag_free(void *addr)
4422 {
4423 struct page *page = virt_to_head_page(addr);
4424
4425 if (unlikely(put_page_testzero(page)))
4426 __free_pages_ok(page, compound_order(page));
4427 }
4428 EXPORT_SYMBOL(page_frag_free);
4429
4430 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4431 size_t size)
4432 {
4433 if (addr) {
4434 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4435 unsigned long used = addr + PAGE_ALIGN(size);
4436
4437 split_page(virt_to_page((void *)addr), order);
4438 while (used < alloc_end) {
4439 free_page(used);
4440 used += PAGE_SIZE;
4441 }
4442 }
4443 return (void *)addr;
4444 }
4445
4446 /**
4447 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4448 * @size: the number of bytes to allocate
4449 * @gfp_mask: GFP flags for the allocation
4450 *
4451 * This function is similar to alloc_pages(), except that it allocates the
4452 * minimum number of pages to satisfy the request. alloc_pages() can only
4453 * allocate memory in power-of-two pages.
4454 *
4455 * This function is also limited by MAX_ORDER.
4456 *
4457 * Memory allocated by this function must be released by free_pages_exact().
4458 */
4459 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4460 {
4461 unsigned int order = get_order(size);
4462 unsigned long addr;
4463
4464 addr = __get_free_pages(gfp_mask, order);
4465 return make_alloc_exact(addr, order, size);
4466 }
4467 EXPORT_SYMBOL(alloc_pages_exact);
4468
4469 /**
4470 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4471 * pages on a node.
4472 * @nid: the preferred node ID where memory should be allocated
4473 * @size: the number of bytes to allocate
4474 * @gfp_mask: GFP flags for the allocation
4475 *
4476 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4477 * back.
4478 */
4479 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4480 {
4481 unsigned int order = get_order(size);
4482 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4483 if (!p)
4484 return NULL;
4485 return make_alloc_exact((unsigned long)page_address(p), order, size);
4486 }
4487
4488 /**
4489 * free_pages_exact - release memory allocated via alloc_pages_exact()
4490 * @virt: the value returned by alloc_pages_exact.
4491 * @size: size of allocation, same value as passed to alloc_pages_exact().
4492 *
4493 * Release the memory allocated by a previous call to alloc_pages_exact.
4494 */
4495 void free_pages_exact(void *virt, size_t size)
4496 {
4497 unsigned long addr = (unsigned long)virt;
4498 unsigned long end = addr + PAGE_ALIGN(size);
4499
4500 while (addr < end) {
4501 free_page(addr);
4502 addr += PAGE_SIZE;
4503 }
4504 }
4505 EXPORT_SYMBOL(free_pages_exact);
4506
4507 /**
4508 * nr_free_zone_pages - count number of pages beyond high watermark
4509 * @offset: The zone index of the highest zone
4510 *
4511 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4512 * high watermark within all zones at or below a given zone index. For each
4513 * zone, the number of pages is calculated as:
4514 *
4515 * nr_free_zone_pages = managed_pages - high_pages
4516 */
4517 static unsigned long nr_free_zone_pages(int offset)
4518 {
4519 struct zoneref *z;
4520 struct zone *zone;
4521
4522 /* Just pick one node, since fallback list is circular */
4523 unsigned long sum = 0;
4524
4525 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4526
4527 for_each_zone_zonelist(zone, z, zonelist, offset) {
4528 unsigned long size = zone->managed_pages;
4529 unsigned long high = high_wmark_pages(zone);
4530 if (size > high)
4531 sum += size - high;
4532 }
4533
4534 return sum;
4535 }
4536
4537 /**
4538 * nr_free_buffer_pages - count number of pages beyond high watermark
4539 *
4540 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4541 * watermark within ZONE_DMA and ZONE_NORMAL.
4542 */
4543 unsigned long nr_free_buffer_pages(void)
4544 {
4545 return nr_free_zone_pages(gfp_zone(GFP_USER));
4546 }
4547 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4548
4549 /**
4550 * nr_free_pagecache_pages - count number of pages beyond high watermark
4551 *
4552 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4553 * high watermark within all zones.
4554 */
4555 unsigned long nr_free_pagecache_pages(void)
4556 {
4557 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4558 }
4559
4560 static inline void show_node(struct zone *zone)
4561 {
4562 if (IS_ENABLED(CONFIG_NUMA))
4563 printk("Node %d ", zone_to_nid(zone));
4564 }
4565
4566 long si_mem_available(void)
4567 {
4568 long available;
4569 unsigned long pagecache;
4570 unsigned long wmark_low = 0;
4571 unsigned long pages[NR_LRU_LISTS];
4572 struct zone *zone;
4573 int lru;
4574
4575 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4576 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4577
4578 for_each_zone(zone)
4579 wmark_low += zone->watermark[WMARK_LOW];
4580
4581 /*
4582 * Estimate the amount of memory available for userspace allocations,
4583 * without causing swapping.
4584 */
4585 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4586
4587 /*
4588 * Not all the page cache can be freed, otherwise the system will
4589 * start swapping. Assume at least half of the page cache, or the
4590 * low watermark worth of cache, needs to stay.
4591 */
4592 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4593 pagecache -= min(pagecache / 2, wmark_low);
4594 available += pagecache;
4595
4596 /*
4597 * Part of the reclaimable slab consists of items that are in use,
4598 * and cannot be freed. Cap this estimate at the low watermark.
4599 */
4600 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4601 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4602 wmark_low);
4603
4604 /*
4605 * Part of the kernel memory, which can be released under memory
4606 * pressure.
4607 */
4608 available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4609 PAGE_SHIFT;
4610
4611 if (available < 0)
4612 available = 0;
4613 return available;
4614 }
4615 EXPORT_SYMBOL_GPL(si_mem_available);
4616
4617 void si_meminfo(struct sysinfo *val)
4618 {
4619 val->totalram = totalram_pages;
4620 val->sharedram = global_node_page_state(NR_SHMEM);
4621 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4622 val->bufferram = nr_blockdev_pages();
4623 val->totalhigh = totalhigh_pages;
4624 val->freehigh = nr_free_highpages();
4625 val->mem_unit = PAGE_SIZE;
4626 }
4627
4628 EXPORT_SYMBOL(si_meminfo);
4629
4630 #ifdef CONFIG_NUMA
4631 void si_meminfo_node(struct sysinfo *val, int nid)
4632 {
4633 int zone_type; /* needs to be signed */
4634 unsigned long managed_pages = 0;
4635 unsigned long managed_highpages = 0;
4636 unsigned long free_highpages = 0;
4637 pg_data_t *pgdat = NODE_DATA(nid);
4638
4639 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4640 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4641 val->totalram = managed_pages;
4642 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4643 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4644 #ifdef CONFIG_HIGHMEM
4645 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4646 struct zone *zone = &pgdat->node_zones[zone_type];
4647
4648 if (is_highmem(zone)) {
4649 managed_highpages += zone->managed_pages;
4650 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4651 }
4652 }
4653 val->totalhigh = managed_highpages;
4654 val->freehigh = free_highpages;
4655 #else
4656 val->totalhigh = managed_highpages;
4657 val->freehigh = free_highpages;
4658 #endif
4659 val->mem_unit = PAGE_SIZE;
4660 }
4661 #endif
4662
4663 /*
4664 * Determine whether the node should be displayed or not, depending on whether
4665 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4666 */
4667 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4668 {
4669 if (!(flags & SHOW_MEM_FILTER_NODES))
4670 return false;
4671
4672 /*
4673 * no node mask - aka implicit memory numa policy. Do not bother with
4674 * the synchronization - read_mems_allowed_begin - because we do not
4675 * have to be precise here.
4676 */
4677 if (!nodemask)
4678 nodemask = &cpuset_current_mems_allowed;
4679
4680 return !node_isset(nid, *nodemask);
4681 }
4682
4683 #define K(x) ((x) << (PAGE_SHIFT-10))
4684
4685 static void show_migration_types(unsigned char type)
4686 {
4687 static const char types[MIGRATE_TYPES] = {
4688 [MIGRATE_UNMOVABLE] = 'U',
4689 [MIGRATE_MOVABLE] = 'M',
4690 [MIGRATE_RECLAIMABLE] = 'E',
4691 [MIGRATE_HIGHATOMIC] = 'H',
4692 #ifdef CONFIG_CMA
4693 [MIGRATE_CMA] = 'C',
4694 #endif
4695 #ifdef CONFIG_MEMORY_ISOLATION
4696 [MIGRATE_ISOLATE] = 'I',
4697 #endif
4698 };
4699 char tmp[MIGRATE_TYPES + 1];
4700 char *p = tmp;
4701 int i;
4702
4703 for (i = 0; i < MIGRATE_TYPES; i++) {
4704 if (type & (1 << i))
4705 *p++ = types[i];
4706 }
4707
4708 *p = '\0';
4709 printk(KERN_CONT "(%s) ", tmp);
4710 }
4711
4712 /*
4713 * Show free area list (used inside shift_scroll-lock stuff)
4714 * We also calculate the percentage fragmentation. We do this by counting the
4715 * memory on each free list with the exception of the first item on the list.
4716 *
4717 * Bits in @filter:
4718 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4719 * cpuset.
4720 */
4721 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4722 {
4723 unsigned long free_pcp = 0;
4724 int cpu;
4725 struct zone *zone;
4726 pg_data_t *pgdat;
4727
4728 for_each_populated_zone(zone) {
4729 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4730 continue;
4731
4732 for_each_online_cpu(cpu)
4733 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4734 }
4735
4736 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4737 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4738 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4739 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4740 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4741 " free:%lu free_pcp:%lu free_cma:%lu\n",
4742 global_node_page_state(NR_ACTIVE_ANON),
4743 global_node_page_state(NR_INACTIVE_ANON),
4744 global_node_page_state(NR_ISOLATED_ANON),
4745 global_node_page_state(NR_ACTIVE_FILE),
4746 global_node_page_state(NR_INACTIVE_FILE),
4747 global_node_page_state(NR_ISOLATED_FILE),
4748 global_node_page_state(NR_UNEVICTABLE),
4749 global_node_page_state(NR_FILE_DIRTY),
4750 global_node_page_state(NR_WRITEBACK),
4751 global_node_page_state(NR_UNSTABLE_NFS),
4752 global_node_page_state(NR_SLAB_RECLAIMABLE),
4753 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4754 global_node_page_state(NR_FILE_MAPPED),
4755 global_node_page_state(NR_SHMEM),
4756 global_zone_page_state(NR_PAGETABLE),
4757 global_zone_page_state(NR_BOUNCE),
4758 global_zone_page_state(NR_FREE_PAGES),
4759 free_pcp,
4760 global_zone_page_state(NR_FREE_CMA_PAGES));
4761
4762 for_each_online_pgdat(pgdat) {
4763 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4764 continue;
4765
4766 printk("Node %d"
4767 " active_anon:%lukB"
4768 " inactive_anon:%lukB"
4769 " active_file:%lukB"
4770 " inactive_file:%lukB"
4771 " unevictable:%lukB"
4772 " isolated(anon):%lukB"
4773 " isolated(file):%lukB"
4774 " mapped:%lukB"
4775 " dirty:%lukB"
4776 " writeback:%lukB"
4777 " shmem:%lukB"
4778 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4779 " shmem_thp: %lukB"
4780 " shmem_pmdmapped: %lukB"
4781 " anon_thp: %lukB"
4782 #endif
4783 " writeback_tmp:%lukB"
4784 " unstable:%lukB"
4785 " all_unreclaimable? %s"
4786 "\n",
4787 pgdat->node_id,
4788 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4789 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4790 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4791 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4792 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4793 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4794 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4795 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4796 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4797 K(node_page_state(pgdat, NR_WRITEBACK)),
4798 K(node_page_state(pgdat, NR_SHMEM)),
4799 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4800 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4801 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4802 * HPAGE_PMD_NR),
4803 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4804 #endif
4805 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4806 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4807 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4808 "yes" : "no");
4809 }
4810
4811 for_each_populated_zone(zone) {
4812 int i;
4813
4814 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4815 continue;
4816
4817 free_pcp = 0;
4818 for_each_online_cpu(cpu)
4819 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4820
4821 show_node(zone);
4822 printk(KERN_CONT
4823 "%s"
4824 " free:%lukB"
4825 " min:%lukB"
4826 " low:%lukB"
4827 " high:%lukB"
4828 " active_anon:%lukB"
4829 " inactive_anon:%lukB"
4830 " active_file:%lukB"
4831 " inactive_file:%lukB"
4832 " unevictable:%lukB"
4833 " writepending:%lukB"
4834 " present:%lukB"
4835 " managed:%lukB"
4836 " mlocked:%lukB"
4837 " kernel_stack:%lukB"
4838 " pagetables:%lukB"
4839 " bounce:%lukB"
4840 " free_pcp:%lukB"
4841 " local_pcp:%ukB"
4842 " free_cma:%lukB"
4843 "\n",
4844 zone->name,
4845 K(zone_page_state(zone, NR_FREE_PAGES)),
4846 K(min_wmark_pages(zone)),
4847 K(low_wmark_pages(zone)),
4848 K(high_wmark_pages(zone)),
4849 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4850 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4851 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4852 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4853 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4854 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4855 K(zone->present_pages),
4856 K(zone->managed_pages),
4857 K(zone_page_state(zone, NR_MLOCK)),
4858 zone_page_state(zone, NR_KERNEL_STACK_KB),
4859 K(zone_page_state(zone, NR_PAGETABLE)),
4860 K(zone_page_state(zone, NR_BOUNCE)),
4861 K(free_pcp),
4862 K(this_cpu_read(zone->pageset->pcp.count)),
4863 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4864 printk("lowmem_reserve[]:");
4865 for (i = 0; i < MAX_NR_ZONES; i++)
4866 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4867 printk(KERN_CONT "\n");
4868 }
4869
4870 for_each_populated_zone(zone) {
4871 unsigned int order;
4872 unsigned long nr[MAX_ORDER], flags, total = 0;
4873 unsigned char types[MAX_ORDER];
4874
4875 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4876 continue;
4877 show_node(zone);
4878 printk(KERN_CONT "%s: ", zone->name);
4879
4880 spin_lock_irqsave(&zone->lock, flags);
4881 for (order = 0; order < MAX_ORDER; order++) {
4882 struct free_area *area = &zone->free_area[order];
4883 int type;
4884
4885 nr[order] = area->nr_free;
4886 total += nr[order] << order;
4887
4888 types[order] = 0;
4889 for (type = 0; type < MIGRATE_TYPES; type++) {
4890 if (!list_empty(&area->free_list[type]))
4891 types[order] |= 1 << type;
4892 }
4893 }
4894 spin_unlock_irqrestore(&zone->lock, flags);
4895 for (order = 0; order < MAX_ORDER; order++) {
4896 printk(KERN_CONT "%lu*%lukB ",
4897 nr[order], K(1UL) << order);
4898 if (nr[order])
4899 show_migration_types(types[order]);
4900 }
4901 printk(KERN_CONT "= %lukB\n", K(total));
4902 }
4903
4904 hugetlb_show_meminfo();
4905
4906 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4907
4908 show_swap_cache_info();
4909 }
4910
4911 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4912 {
4913 zoneref->zone = zone;
4914 zoneref->zone_idx = zone_idx(zone);
4915 }
4916
4917 /*
4918 * Builds allocation fallback zone lists.
4919 *
4920 * Add all populated zones of a node to the zonelist.
4921 */
4922 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4923 {
4924 struct zone *zone;
4925 enum zone_type zone_type = MAX_NR_ZONES;
4926 int nr_zones = 0;
4927
4928 do {
4929 zone_type--;
4930 zone = pgdat->node_zones + zone_type;
4931 if (managed_zone(zone)) {
4932 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4933 check_highest_zone(zone_type);
4934 }
4935 } while (zone_type);
4936
4937 return nr_zones;
4938 }
4939
4940 #ifdef CONFIG_NUMA
4941
4942 static int __parse_numa_zonelist_order(char *s)
4943 {
4944 /*
4945 * We used to support different zonlists modes but they turned
4946 * out to be just not useful. Let's keep the warning in place
4947 * if somebody still use the cmd line parameter so that we do
4948 * not fail it silently
4949 */
4950 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4951 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4952 return -EINVAL;
4953 }
4954 return 0;
4955 }
4956
4957 static __init int setup_numa_zonelist_order(char *s)
4958 {
4959 if (!s)
4960 return 0;
4961
4962 return __parse_numa_zonelist_order(s);
4963 }
4964 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4965
4966 char numa_zonelist_order[] = "Node";
4967
4968 /*
4969 * sysctl handler for numa_zonelist_order
4970 */
4971 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4972 void __user *buffer, size_t *length,
4973 loff_t *ppos)
4974 {
4975 char *str;
4976 int ret;
4977
4978 if (!write)
4979 return proc_dostring(table, write, buffer, length, ppos);
4980 str = memdup_user_nul(buffer, 16);
4981 if (IS_ERR(str))
4982 return PTR_ERR(str);
4983
4984 ret = __parse_numa_zonelist_order(str);
4985 kfree(str);
4986 return ret;
4987 }
4988
4989
4990 #define MAX_NODE_LOAD (nr_online_nodes)
4991 static int node_load[MAX_NUMNODES];
4992
4993 /**
4994 * find_next_best_node - find the next node that should appear in a given node's fallback list
4995 * @node: node whose fallback list we're appending
4996 * @used_node_mask: nodemask_t of already used nodes
4997 *
4998 * We use a number of factors to determine which is the next node that should
4999 * appear on a given node's fallback list. The node should not have appeared
5000 * already in @node's fallback list, and it should be the next closest node
5001 * according to the distance array (which contains arbitrary distance values
5002 * from each node to each node in the system), and should also prefer nodes
5003 * with no CPUs, since presumably they'll have very little allocation pressure
5004 * on them otherwise.
5005 * It returns -1 if no node is found.
5006 */
5007 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5008 {
5009 int n, val;
5010 int min_val = INT_MAX;
5011 int best_node = NUMA_NO_NODE;
5012 const struct cpumask *tmp = cpumask_of_node(0);
5013
5014 /* Use the local node if we haven't already */
5015 if (!node_isset(node, *used_node_mask)) {
5016 node_set(node, *used_node_mask);
5017 return node;
5018 }
5019
5020 for_each_node_state(n, N_MEMORY) {
5021
5022 /* Don't want a node to appear more than once */
5023 if (node_isset(n, *used_node_mask))
5024 continue;
5025
5026 /* Use the distance array to find the distance */
5027 val = node_distance(node, n);
5028
5029 /* Penalize nodes under us ("prefer the next node") */
5030 val += (n < node);
5031
5032 /* Give preference to headless and unused nodes */
5033 tmp = cpumask_of_node(n);
5034 if (!cpumask_empty(tmp))
5035 val += PENALTY_FOR_NODE_WITH_CPUS;
5036
5037 /* Slight preference for less loaded node */
5038 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5039 val += node_load[n];
5040
5041 if (val < min_val) {
5042 min_val = val;
5043 best_node = n;
5044 }
5045 }
5046
5047 if (best_node >= 0)
5048 node_set(best_node, *used_node_mask);
5049
5050 return best_node;
5051 }
5052
5053
5054 /*
5055 * Build zonelists ordered by node and zones within node.
5056 * This results in maximum locality--normal zone overflows into local
5057 * DMA zone, if any--but risks exhausting DMA zone.
5058 */
5059 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5060 unsigned nr_nodes)
5061 {
5062 struct zoneref *zonerefs;
5063 int i;
5064
5065 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5066
5067 for (i = 0; i < nr_nodes; i++) {
5068 int nr_zones;
5069
5070 pg_data_t *node = NODE_DATA(node_order[i]);
5071
5072 nr_zones = build_zonerefs_node(node, zonerefs);
5073 zonerefs += nr_zones;
5074 }
5075 zonerefs->zone = NULL;
5076 zonerefs->zone_idx = 0;
5077 }
5078
5079 /*
5080 * Build gfp_thisnode zonelists
5081 */
5082 static void build_thisnode_zonelists(pg_data_t *pgdat)
5083 {
5084 struct zoneref *zonerefs;
5085 int nr_zones;
5086
5087 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5088 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5089 zonerefs += nr_zones;
5090 zonerefs->zone = NULL;
5091 zonerefs->zone_idx = 0;
5092 }
5093
5094 /*
5095 * Build zonelists ordered by zone and nodes within zones.
5096 * This results in conserving DMA zone[s] until all Normal memory is
5097 * exhausted, but results in overflowing to remote node while memory
5098 * may still exist in local DMA zone.
5099 */
5100
5101 static void build_zonelists(pg_data_t *pgdat)
5102 {
5103 static int node_order[MAX_NUMNODES];
5104 int node, load, nr_nodes = 0;
5105 nodemask_t used_mask;
5106 int local_node, prev_node;
5107
5108 /* NUMA-aware ordering of nodes */
5109 local_node = pgdat->node_id;
5110 load = nr_online_nodes;
5111 prev_node = local_node;
5112 nodes_clear(used_mask);
5113
5114 memset(node_order, 0, sizeof(node_order));
5115 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5116 /*
5117 * We don't want to pressure a particular node.
5118 * So adding penalty to the first node in same
5119 * distance group to make it round-robin.
5120 */
5121 if (node_distance(local_node, node) !=
5122 node_distance(local_node, prev_node))
5123 node_load[node] = load;
5124
5125 node_order[nr_nodes++] = node;
5126 prev_node = node;
5127 load--;
5128 }
5129
5130 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5131 build_thisnode_zonelists(pgdat);
5132 }
5133
5134 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5135 /*
5136 * Return node id of node used for "local" allocations.
5137 * I.e., first node id of first zone in arg node's generic zonelist.
5138 * Used for initializing percpu 'numa_mem', which is used primarily
5139 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5140 */
5141 int local_memory_node(int node)
5142 {
5143 struct zoneref *z;
5144
5145 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5146 gfp_zone(GFP_KERNEL),
5147 NULL);
5148 return z->zone->node;
5149 }
5150 #endif
5151
5152 static void setup_min_unmapped_ratio(void);
5153 static void setup_min_slab_ratio(void);
5154 #else /* CONFIG_NUMA */
5155
5156 static void build_zonelists(pg_data_t *pgdat)
5157 {
5158 int node, local_node;
5159 struct zoneref *zonerefs;
5160 int nr_zones;
5161
5162 local_node = pgdat->node_id;
5163
5164 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5165 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5166 zonerefs += nr_zones;
5167
5168 /*
5169 * Now we build the zonelist so that it contains the zones
5170 * of all the other nodes.
5171 * We don't want to pressure a particular node, so when
5172 * building the zones for node N, we make sure that the
5173 * zones coming right after the local ones are those from
5174 * node N+1 (modulo N)
5175 */
5176 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5177 if (!node_online(node))
5178 continue;
5179 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5180 zonerefs += nr_zones;
5181 }
5182 for (node = 0; node < local_node; node++) {
5183 if (!node_online(node))
5184 continue;
5185 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5186 zonerefs += nr_zones;
5187 }
5188
5189 zonerefs->zone = NULL;
5190 zonerefs->zone_idx = 0;
5191 }
5192
5193 #endif /* CONFIG_NUMA */
5194
5195 /*
5196 * Boot pageset table. One per cpu which is going to be used for all
5197 * zones and all nodes. The parameters will be set in such a way
5198 * that an item put on a list will immediately be handed over to
5199 * the buddy list. This is safe since pageset manipulation is done
5200 * with interrupts disabled.
5201 *
5202 * The boot_pagesets must be kept even after bootup is complete for
5203 * unused processors and/or zones. They do play a role for bootstrapping
5204 * hotplugged processors.
5205 *
5206 * zoneinfo_show() and maybe other functions do
5207 * not check if the processor is online before following the pageset pointer.
5208 * Other parts of the kernel may not check if the zone is available.
5209 */
5210 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5211 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5212 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5213
5214 static void __build_all_zonelists(void *data)
5215 {
5216 int nid;
5217 int __maybe_unused cpu;
5218 pg_data_t *self = data;
5219 static DEFINE_SPINLOCK(lock);
5220
5221 spin_lock(&lock);
5222
5223 #ifdef CONFIG_NUMA
5224 memset(node_load, 0, sizeof(node_load));
5225 #endif
5226
5227 /*
5228 * This node is hotadded and no memory is yet present. So just
5229 * building zonelists is fine - no need to touch other nodes.
5230 */
5231 if (self && !node_online(self->node_id)) {
5232 build_zonelists(self);
5233 } else {
5234 for_each_online_node(nid) {
5235 pg_data_t *pgdat = NODE_DATA(nid);
5236
5237 build_zonelists(pgdat);
5238 }
5239
5240 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5241 /*
5242 * We now know the "local memory node" for each node--
5243 * i.e., the node of the first zone in the generic zonelist.
5244 * Set up numa_mem percpu variable for on-line cpus. During
5245 * boot, only the boot cpu should be on-line; we'll init the
5246 * secondary cpus' numa_mem as they come on-line. During
5247 * node/memory hotplug, we'll fixup all on-line cpus.
5248 */
5249 for_each_online_cpu(cpu)
5250 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5251 #endif
5252 }
5253
5254 spin_unlock(&lock);
5255 }
5256
5257 static noinline void __init
5258 build_all_zonelists_init(void)
5259 {
5260 int cpu;
5261
5262 __build_all_zonelists(NULL);
5263
5264 /*
5265 * Initialize the boot_pagesets that are going to be used
5266 * for bootstrapping processors. The real pagesets for
5267 * each zone will be allocated later when the per cpu
5268 * allocator is available.
5269 *
5270 * boot_pagesets are used also for bootstrapping offline
5271 * cpus if the system is already booted because the pagesets
5272 * are needed to initialize allocators on a specific cpu too.
5273 * F.e. the percpu allocator needs the page allocator which
5274 * needs the percpu allocator in order to allocate its pagesets
5275 * (a chicken-egg dilemma).
5276 */
5277 for_each_possible_cpu(cpu)
5278 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5279
5280 mminit_verify_zonelist();
5281 cpuset_init_current_mems_allowed();
5282 }
5283
5284 /*
5285 * unless system_state == SYSTEM_BOOTING.
5286 *
5287 * __ref due to call of __init annotated helper build_all_zonelists_init
5288 * [protected by SYSTEM_BOOTING].
5289 */
5290 void __ref build_all_zonelists(pg_data_t *pgdat)
5291 {
5292 if (system_state == SYSTEM_BOOTING) {
5293 build_all_zonelists_init();
5294 } else {
5295 __build_all_zonelists(pgdat);
5296 /* cpuset refresh routine should be here */
5297 }
5298 vm_total_pages = nr_free_pagecache_pages();
5299 /*
5300 * Disable grouping by mobility if the number of pages in the
5301 * system is too low to allow the mechanism to work. It would be
5302 * more accurate, but expensive to check per-zone. This check is
5303 * made on memory-hotadd so a system can start with mobility
5304 * disabled and enable it later
5305 */
5306 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5307 page_group_by_mobility_disabled = 1;
5308 else
5309 page_group_by_mobility_disabled = 0;
5310
5311 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5312 nr_online_nodes,
5313 page_group_by_mobility_disabled ? "off" : "on",
5314 vm_total_pages);
5315 #ifdef CONFIG_NUMA
5316 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5317 #endif
5318 }
5319
5320 /*
5321 * Initially all pages are reserved - free ones are freed
5322 * up by free_all_bootmem() once the early boot process is
5323 * done. Non-atomic initialization, single-pass.
5324 */
5325 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5326 unsigned long start_pfn, enum memmap_context context)
5327 {
5328 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5329 unsigned long end_pfn = start_pfn + size;
5330 pg_data_t *pgdat = NODE_DATA(nid);
5331 unsigned long pfn;
5332 unsigned long nr_initialised = 0;
5333 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5334 struct memblock_region *r = NULL, *tmp;
5335 #endif
5336
5337 if (highest_memmap_pfn < end_pfn - 1)
5338 highest_memmap_pfn = end_pfn - 1;
5339
5340 /*
5341 * Honor reservation requested by the driver for this ZONE_DEVICE
5342 * memory
5343 */
5344 if (altmap && start_pfn == altmap->base_pfn)
5345 start_pfn += altmap->reserve;
5346
5347 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5348 /*
5349 * There can be holes in boot-time mem_map[]s handed to this
5350 * function. They do not exist on hotplugged memory.
5351 */
5352 if (context != MEMMAP_EARLY)
5353 goto not_early;
5354
5355 if (!early_pfn_valid(pfn))
5356 continue;
5357 if (!early_pfn_in_nid(pfn, nid))
5358 continue;
5359 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5360 break;
5361
5362 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5363 /*
5364 * Check given memblock attribute by firmware which can affect
5365 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5366 * mirrored, it's an overlapped memmap init. skip it.
5367 */
5368 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5369 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5370 for_each_memblock(memory, tmp)
5371 if (pfn < memblock_region_memory_end_pfn(tmp))
5372 break;
5373 r = tmp;
5374 }
5375 if (pfn >= memblock_region_memory_base_pfn(r) &&
5376 memblock_is_mirror(r)) {
5377 /* already initialized as NORMAL */
5378 pfn = memblock_region_memory_end_pfn(r);
5379 continue;
5380 }
5381 }
5382 #endif
5383
5384 not_early:
5385 /*
5386 * Mark the block movable so that blocks are reserved for
5387 * movable at startup. This will force kernel allocations
5388 * to reserve their blocks rather than leaking throughout
5389 * the address space during boot when many long-lived
5390 * kernel allocations are made.
5391 *
5392 * bitmap is created for zone's valid pfn range. but memmap
5393 * can be created for invalid pages (for alignment)
5394 * check here not to call set_pageblock_migratetype() against
5395 * pfn out of zone.
5396 *
5397 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5398 * because this is done early in sparse_add_one_section
5399 */
5400 if (!(pfn & (pageblock_nr_pages - 1))) {
5401 struct page *page = pfn_to_page(pfn);
5402
5403 __init_single_page(page, pfn, zone, nid,
5404 context != MEMMAP_HOTPLUG);
5405 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5406 cond_resched();
5407 } else {
5408 __init_single_pfn(pfn, zone, nid,
5409 context != MEMMAP_HOTPLUG);
5410 }
5411 }
5412 }
5413
5414 static void __meminit zone_init_free_lists(struct zone *zone)
5415 {
5416 unsigned int order, t;
5417 for_each_migratetype_order(order, t) {
5418 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5419 zone->free_area[order].nr_free = 0;
5420 }
5421 }
5422
5423 #ifndef __HAVE_ARCH_MEMMAP_INIT
5424 #define memmap_init(size, nid, zone, start_pfn) \
5425 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5426 #endif
5427
5428 static int zone_batchsize(struct zone *zone)
5429 {
5430 #ifdef CONFIG_MMU
5431 int batch;
5432
5433 /*
5434 * The per-cpu-pages pools are set to around 1000th of the
5435 * size of the zone. But no more than 1/2 of a meg.
5436 *
5437 * OK, so we don't know how big the cache is. So guess.
5438 */
5439 batch = zone->managed_pages / 1024;
5440 if (batch * PAGE_SIZE > 512 * 1024)
5441 batch = (512 * 1024) / PAGE_SIZE;
5442 batch /= 4; /* We effectively *= 4 below */
5443 if (batch < 1)
5444 batch = 1;
5445
5446 /*
5447 * Clamp the batch to a 2^n - 1 value. Having a power
5448 * of 2 value was found to be more likely to have
5449 * suboptimal cache aliasing properties in some cases.
5450 *
5451 * For example if 2 tasks are alternately allocating
5452 * batches of pages, one task can end up with a lot
5453 * of pages of one half of the possible page colors
5454 * and the other with pages of the other colors.
5455 */
5456 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5457
5458 return batch;
5459
5460 #else
5461 /* The deferral and batching of frees should be suppressed under NOMMU
5462 * conditions.
5463 *
5464 * The problem is that NOMMU needs to be able to allocate large chunks
5465 * of contiguous memory as there's no hardware page translation to
5466 * assemble apparent contiguous memory from discontiguous pages.
5467 *
5468 * Queueing large contiguous runs of pages for batching, however,
5469 * causes the pages to actually be freed in smaller chunks. As there
5470 * can be a significant delay between the individual batches being
5471 * recycled, this leads to the once large chunks of space being
5472 * fragmented and becoming unavailable for high-order allocations.
5473 */
5474 return 0;
5475 #endif
5476 }
5477
5478 /*
5479 * pcp->high and pcp->batch values are related and dependent on one another:
5480 * ->batch must never be higher then ->high.
5481 * The following function updates them in a safe manner without read side
5482 * locking.
5483 *
5484 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5485 * those fields changing asynchronously (acording the the above rule).
5486 *
5487 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5488 * outside of boot time (or some other assurance that no concurrent updaters
5489 * exist).
5490 */
5491 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5492 unsigned long batch)
5493 {
5494 /* start with a fail safe value for batch */
5495 pcp->batch = 1;
5496 smp_wmb();
5497
5498 /* Update high, then batch, in order */
5499 pcp->high = high;
5500 smp_wmb();
5501
5502 pcp->batch = batch;
5503 }
5504
5505 /* a companion to pageset_set_high() */
5506 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5507 {
5508 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5509 }
5510
5511 static void pageset_init(struct per_cpu_pageset *p)
5512 {
5513 struct per_cpu_pages *pcp;
5514 int migratetype;
5515
5516 memset(p, 0, sizeof(*p));
5517
5518 pcp = &p->pcp;
5519 pcp->count = 0;
5520 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5521 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5522 }
5523
5524 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5525 {
5526 pageset_init(p);
5527 pageset_set_batch(p, batch);
5528 }
5529
5530 /*
5531 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5532 * to the value high for the pageset p.
5533 */
5534 static void pageset_set_high(struct per_cpu_pageset *p,
5535 unsigned long high)
5536 {
5537 unsigned long batch = max(1UL, high / 4);
5538 if ((high / 4) > (PAGE_SHIFT * 8))
5539 batch = PAGE_SHIFT * 8;
5540
5541 pageset_update(&p->pcp, high, batch);
5542 }
5543
5544 static void pageset_set_high_and_batch(struct zone *zone,
5545 struct per_cpu_pageset *pcp)
5546 {
5547 if (percpu_pagelist_fraction)
5548 pageset_set_high(pcp,
5549 (zone->managed_pages /
5550 percpu_pagelist_fraction));
5551 else
5552 pageset_set_batch(pcp, zone_batchsize(zone));
5553 }
5554
5555 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5556 {
5557 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5558
5559 pageset_init(pcp);
5560 pageset_set_high_and_batch(zone, pcp);
5561 }
5562
5563 void __meminit setup_zone_pageset(struct zone *zone)
5564 {
5565 int cpu;
5566 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5567 for_each_possible_cpu(cpu)
5568 zone_pageset_init(zone, cpu);
5569 }
5570
5571 /*
5572 * Allocate per cpu pagesets and initialize them.
5573 * Before this call only boot pagesets were available.
5574 */
5575 void __init setup_per_cpu_pageset(void)
5576 {
5577 struct pglist_data *pgdat;
5578 struct zone *zone;
5579
5580 for_each_populated_zone(zone)
5581 setup_zone_pageset(zone);
5582
5583 for_each_online_pgdat(pgdat)
5584 pgdat->per_cpu_nodestats =
5585 alloc_percpu(struct per_cpu_nodestat);
5586 }
5587
5588 static __meminit void zone_pcp_init(struct zone *zone)
5589 {
5590 /*
5591 * per cpu subsystem is not up at this point. The following code
5592 * relies on the ability of the linker to provide the
5593 * offset of a (static) per cpu variable into the per cpu area.
5594 */
5595 zone->pageset = &boot_pageset;
5596
5597 if (populated_zone(zone))
5598 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5599 zone->name, zone->present_pages,
5600 zone_batchsize(zone));
5601 }
5602
5603 void __meminit init_currently_empty_zone(struct zone *zone,
5604 unsigned long zone_start_pfn,
5605 unsigned long size)
5606 {
5607 struct pglist_data *pgdat = zone->zone_pgdat;
5608 int zone_idx = zone_idx(zone) + 1;
5609
5610 if (zone_idx > pgdat->nr_zones)
5611 pgdat->nr_zones = zone_idx;
5612
5613 zone->zone_start_pfn = zone_start_pfn;
5614
5615 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5616 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5617 pgdat->node_id,
5618 (unsigned long)zone_idx(zone),
5619 zone_start_pfn, (zone_start_pfn + size));
5620
5621 zone_init_free_lists(zone);
5622 zone->initialized = 1;
5623 }
5624
5625 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5626 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5627
5628 /*
5629 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5630 */
5631 int __meminit __early_pfn_to_nid(unsigned long pfn,
5632 struct mminit_pfnnid_cache *state)
5633 {
5634 unsigned long start_pfn, end_pfn;
5635 int nid;
5636
5637 if (state->last_start <= pfn && pfn < state->last_end)
5638 return state->last_nid;
5639
5640 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5641 if (nid != -1) {
5642 state->last_start = start_pfn;
5643 state->last_end = end_pfn;
5644 state->last_nid = nid;
5645 }
5646
5647 return nid;
5648 }
5649 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5650
5651 /**
5652 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5653 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5654 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5655 *
5656 * If an architecture guarantees that all ranges registered contain no holes
5657 * and may be freed, this this function may be used instead of calling
5658 * memblock_free_early_nid() manually.
5659 */
5660 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5661 {
5662 unsigned long start_pfn, end_pfn;
5663 int i, this_nid;
5664
5665 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5666 start_pfn = min(start_pfn, max_low_pfn);
5667 end_pfn = min(end_pfn, max_low_pfn);
5668
5669 if (start_pfn < end_pfn)
5670 memblock_free_early_nid(PFN_PHYS(start_pfn),
5671 (end_pfn - start_pfn) << PAGE_SHIFT,
5672 this_nid);
5673 }
5674 }
5675
5676 /**
5677 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5678 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5679 *
5680 * If an architecture guarantees that all ranges registered contain no holes and may
5681 * be freed, this function may be used instead of calling memory_present() manually.
5682 */
5683 void __init sparse_memory_present_with_active_regions(int nid)
5684 {
5685 unsigned long start_pfn, end_pfn;
5686 int i, this_nid;
5687
5688 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5689 memory_present(this_nid, start_pfn, end_pfn);
5690 }
5691
5692 /**
5693 * get_pfn_range_for_nid - Return the start and end page frames for a node
5694 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5695 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5696 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5697 *
5698 * It returns the start and end page frame of a node based on information
5699 * provided by memblock_set_node(). If called for a node
5700 * with no available memory, a warning is printed and the start and end
5701 * PFNs will be 0.
5702 */
5703 void __meminit get_pfn_range_for_nid(unsigned int nid,
5704 unsigned long *start_pfn, unsigned long *end_pfn)
5705 {
5706 unsigned long this_start_pfn, this_end_pfn;
5707 int i;
5708
5709 *start_pfn = -1UL;
5710 *end_pfn = 0;
5711
5712 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5713 *start_pfn = min(*start_pfn, this_start_pfn);
5714 *end_pfn = max(*end_pfn, this_end_pfn);
5715 }
5716
5717 if (*start_pfn == -1UL)
5718 *start_pfn = 0;
5719 }
5720
5721 /*
5722 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5723 * assumption is made that zones within a node are ordered in monotonic
5724 * increasing memory addresses so that the "highest" populated zone is used
5725 */
5726 static void __init find_usable_zone_for_movable(void)
5727 {
5728 int zone_index;
5729 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5730 if (zone_index == ZONE_MOVABLE)
5731 continue;
5732
5733 if (arch_zone_highest_possible_pfn[zone_index] >
5734 arch_zone_lowest_possible_pfn[zone_index])
5735 break;
5736 }
5737
5738 VM_BUG_ON(zone_index == -1);
5739 movable_zone = zone_index;
5740 }
5741
5742 /*
5743 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5744 * because it is sized independent of architecture. Unlike the other zones,
5745 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5746 * in each node depending on the size of each node and how evenly kernelcore
5747 * is distributed. This helper function adjusts the zone ranges
5748 * provided by the architecture for a given node by using the end of the
5749 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5750 * zones within a node are in order of monotonic increases memory addresses
5751 */
5752 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5753 unsigned long zone_type,
5754 unsigned long node_start_pfn,
5755 unsigned long node_end_pfn,
5756 unsigned long *zone_start_pfn,
5757 unsigned long *zone_end_pfn)
5758 {
5759 /* Only adjust if ZONE_MOVABLE is on this node */
5760 if (zone_movable_pfn[nid]) {
5761 /* Size ZONE_MOVABLE */
5762 if (zone_type == ZONE_MOVABLE) {
5763 *zone_start_pfn = zone_movable_pfn[nid];
5764 *zone_end_pfn = min(node_end_pfn,
5765 arch_zone_highest_possible_pfn[movable_zone]);
5766
5767 /* Adjust for ZONE_MOVABLE starting within this range */
5768 } else if (!mirrored_kernelcore &&
5769 *zone_start_pfn < zone_movable_pfn[nid] &&
5770 *zone_end_pfn > zone_movable_pfn[nid]) {
5771 *zone_end_pfn = zone_movable_pfn[nid];
5772
5773 /* Check if this whole range is within ZONE_MOVABLE */
5774 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5775 *zone_start_pfn = *zone_end_pfn;
5776 }
5777 }
5778
5779 /*
5780 * Return the number of pages a zone spans in a node, including holes
5781 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5782 */
5783 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5784 unsigned long zone_type,
5785 unsigned long node_start_pfn,
5786 unsigned long node_end_pfn,
5787 unsigned long *zone_start_pfn,
5788 unsigned long *zone_end_pfn,
5789 unsigned long *ignored)
5790 {
5791 /* When hotadd a new node from cpu_up(), the node should be empty */
5792 if (!node_start_pfn && !node_end_pfn)
5793 return 0;
5794
5795 /* Get the start and end of the zone */
5796 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5797 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5798 adjust_zone_range_for_zone_movable(nid, zone_type,
5799 node_start_pfn, node_end_pfn,
5800 zone_start_pfn, zone_end_pfn);
5801
5802 /* Check that this node has pages within the zone's required range */
5803 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5804 return 0;
5805
5806 /* Move the zone boundaries inside the node if necessary */
5807 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5808 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5809
5810 /* Return the spanned pages */
5811 return *zone_end_pfn - *zone_start_pfn;
5812 }
5813
5814 /*
5815 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5816 * then all holes in the requested range will be accounted for.
5817 */
5818 unsigned long __meminit __absent_pages_in_range(int nid,
5819 unsigned long range_start_pfn,
5820 unsigned long range_end_pfn)
5821 {
5822 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5823 unsigned long start_pfn, end_pfn;
5824 int i;
5825
5826 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5827 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5828 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5829 nr_absent -= end_pfn - start_pfn;
5830 }
5831 return nr_absent;
5832 }
5833
5834 /**
5835 * absent_pages_in_range - Return number of page frames in holes within a range
5836 * @start_pfn: The start PFN to start searching for holes
5837 * @end_pfn: The end PFN to stop searching for holes
5838 *
5839 * It returns the number of pages frames in memory holes within a range.
5840 */
5841 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5842 unsigned long end_pfn)
5843 {
5844 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5845 }
5846
5847 /* Return the number of page frames in holes in a zone on a node */
5848 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5849 unsigned long zone_type,
5850 unsigned long node_start_pfn,
5851 unsigned long node_end_pfn,
5852 unsigned long *ignored)
5853 {
5854 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5855 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5856 unsigned long zone_start_pfn, zone_end_pfn;
5857 unsigned long nr_absent;
5858
5859 /* When hotadd a new node from cpu_up(), the node should be empty */
5860 if (!node_start_pfn && !node_end_pfn)
5861 return 0;
5862
5863 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5864 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5865
5866 adjust_zone_range_for_zone_movable(nid, zone_type,
5867 node_start_pfn, node_end_pfn,
5868 &zone_start_pfn, &zone_end_pfn);
5869 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5870
5871 /*
5872 * ZONE_MOVABLE handling.
5873 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5874 * and vice versa.
5875 */
5876 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5877 unsigned long start_pfn, end_pfn;
5878 struct memblock_region *r;
5879
5880 for_each_memblock(memory, r) {
5881 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5882 zone_start_pfn, zone_end_pfn);
5883 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5884 zone_start_pfn, zone_end_pfn);
5885
5886 if (zone_type == ZONE_MOVABLE &&
5887 memblock_is_mirror(r))
5888 nr_absent += end_pfn - start_pfn;
5889
5890 if (zone_type == ZONE_NORMAL &&
5891 !memblock_is_mirror(r))
5892 nr_absent += end_pfn - start_pfn;
5893 }
5894 }
5895
5896 return nr_absent;
5897 }
5898
5899 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5900 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5901 unsigned long zone_type,
5902 unsigned long node_start_pfn,
5903 unsigned long node_end_pfn,
5904 unsigned long *zone_start_pfn,
5905 unsigned long *zone_end_pfn,
5906 unsigned long *zones_size)
5907 {
5908 unsigned int zone;
5909
5910 *zone_start_pfn = node_start_pfn;
5911 for (zone = 0; zone < zone_type; zone++)
5912 *zone_start_pfn += zones_size[zone];
5913
5914 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5915
5916 return zones_size[zone_type];
5917 }
5918
5919 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5920 unsigned long zone_type,
5921 unsigned long node_start_pfn,
5922 unsigned long node_end_pfn,
5923 unsigned long *zholes_size)
5924 {
5925 if (!zholes_size)
5926 return 0;
5927
5928 return zholes_size[zone_type];
5929 }
5930
5931 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5932
5933 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5934 unsigned long node_start_pfn,
5935 unsigned long node_end_pfn,
5936 unsigned long *zones_size,
5937 unsigned long *zholes_size)
5938 {
5939 unsigned long realtotalpages = 0, totalpages = 0;
5940 enum zone_type i;
5941
5942 for (i = 0; i < MAX_NR_ZONES; i++) {
5943 struct zone *zone = pgdat->node_zones + i;
5944 unsigned long zone_start_pfn, zone_end_pfn;
5945 unsigned long size, real_size;
5946
5947 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5948 node_start_pfn,
5949 node_end_pfn,
5950 &zone_start_pfn,
5951 &zone_end_pfn,
5952 zones_size);
5953 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5954 node_start_pfn, node_end_pfn,
5955 zholes_size);
5956 if (size)
5957 zone->zone_start_pfn = zone_start_pfn;
5958 else
5959 zone->zone_start_pfn = 0;
5960 zone->spanned_pages = size;
5961 zone->present_pages = real_size;
5962
5963 totalpages += size;
5964 realtotalpages += real_size;
5965 }
5966
5967 pgdat->node_spanned_pages = totalpages;
5968 pgdat->node_present_pages = realtotalpages;
5969 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5970 realtotalpages);
5971 }
5972
5973 #ifndef CONFIG_SPARSEMEM
5974 /*
5975 * Calculate the size of the zone->blockflags rounded to an unsigned long
5976 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5977 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5978 * round what is now in bits to nearest long in bits, then return it in
5979 * bytes.
5980 */
5981 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5982 {
5983 unsigned long usemapsize;
5984
5985 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5986 usemapsize = roundup(zonesize, pageblock_nr_pages);
5987 usemapsize = usemapsize >> pageblock_order;
5988 usemapsize *= NR_PAGEBLOCK_BITS;
5989 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5990
5991 return usemapsize / 8;
5992 }
5993
5994 static void __init setup_usemap(struct pglist_data *pgdat,
5995 struct zone *zone,
5996 unsigned long zone_start_pfn,
5997 unsigned long zonesize)
5998 {
5999 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6000 zone->pageblock_flags = NULL;
6001 if (usemapsize)
6002 zone->pageblock_flags =
6003 memblock_virt_alloc_node_nopanic(usemapsize,
6004 pgdat->node_id);
6005 }
6006 #else
6007 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6008 unsigned long zone_start_pfn, unsigned long zonesize) {}
6009 #endif /* CONFIG_SPARSEMEM */
6010
6011 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6012
6013 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6014 void __paginginit set_pageblock_order(void)
6015 {
6016 unsigned int order;
6017
6018 /* Check that pageblock_nr_pages has not already been setup */
6019 if (pageblock_order)
6020 return;
6021
6022 if (HPAGE_SHIFT > PAGE_SHIFT)
6023 order = HUGETLB_PAGE_ORDER;
6024 else
6025 order = MAX_ORDER - 1;
6026
6027 /*
6028 * Assume the largest contiguous order of interest is a huge page.
6029 * This value may be variable depending on boot parameters on IA64 and
6030 * powerpc.
6031 */
6032 pageblock_order = order;
6033 }
6034 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6035
6036 /*
6037 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6038 * is unused as pageblock_order is set at compile-time. See
6039 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6040 * the kernel config
6041 */
6042 void __paginginit set_pageblock_order(void)
6043 {
6044 }
6045
6046 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6047
6048 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6049 unsigned long present_pages)
6050 {
6051 unsigned long pages = spanned_pages;
6052
6053 /*
6054 * Provide a more accurate estimation if there are holes within
6055 * the zone and SPARSEMEM is in use. If there are holes within the
6056 * zone, each populated memory region may cost us one or two extra
6057 * memmap pages due to alignment because memmap pages for each
6058 * populated regions may not be naturally aligned on page boundary.
6059 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6060 */
6061 if (spanned_pages > present_pages + (present_pages >> 4) &&
6062 IS_ENABLED(CONFIG_SPARSEMEM))
6063 pages = present_pages;
6064
6065 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6066 }
6067
6068 /*
6069 * Set up the zone data structures:
6070 * - mark all pages reserved
6071 * - mark all memory queues empty
6072 * - clear the memory bitmaps
6073 *
6074 * NOTE: pgdat should get zeroed by caller.
6075 */
6076 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6077 {
6078 enum zone_type j;
6079 int nid = pgdat->node_id;
6080
6081 pgdat_resize_init(pgdat);
6082 #ifdef CONFIG_NUMA_BALANCING
6083 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6084 pgdat->numabalancing_migrate_nr_pages = 0;
6085 pgdat->numabalancing_migrate_next_window = jiffies;
6086 #endif
6087 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6088 spin_lock_init(&pgdat->split_queue_lock);
6089 INIT_LIST_HEAD(&pgdat->split_queue);
6090 pgdat->split_queue_len = 0;
6091 #endif
6092 init_waitqueue_head(&pgdat->kswapd_wait);
6093 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6094 #ifdef CONFIG_COMPACTION
6095 init_waitqueue_head(&pgdat->kcompactd_wait);
6096 #endif
6097 pgdat_page_ext_init(pgdat);
6098 spin_lock_init(&pgdat->lru_lock);
6099 lruvec_init(node_lruvec(pgdat));
6100
6101 pgdat->per_cpu_nodestats = &boot_nodestats;
6102
6103 for (j = 0; j < MAX_NR_ZONES; j++) {
6104 struct zone *zone = pgdat->node_zones + j;
6105 unsigned long size, realsize, freesize, memmap_pages;
6106 unsigned long zone_start_pfn = zone->zone_start_pfn;
6107
6108 size = zone->spanned_pages;
6109 realsize = freesize = zone->present_pages;
6110
6111 /*
6112 * Adjust freesize so that it accounts for how much memory
6113 * is used by this zone for memmap. This affects the watermark
6114 * and per-cpu initialisations
6115 */
6116 memmap_pages = calc_memmap_size(size, realsize);
6117 if (!is_highmem_idx(j)) {
6118 if (freesize >= memmap_pages) {
6119 freesize -= memmap_pages;
6120 if (memmap_pages)
6121 printk(KERN_DEBUG
6122 " %s zone: %lu pages used for memmap\n",
6123 zone_names[j], memmap_pages);
6124 } else
6125 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6126 zone_names[j], memmap_pages, freesize);
6127 }
6128
6129 /* Account for reserved pages */
6130 if (j == 0 && freesize > dma_reserve) {
6131 freesize -= dma_reserve;
6132 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6133 zone_names[0], dma_reserve);
6134 }
6135
6136 if (!is_highmem_idx(j))
6137 nr_kernel_pages += freesize;
6138 /* Charge for highmem memmap if there are enough kernel pages */
6139 else if (nr_kernel_pages > memmap_pages * 2)
6140 nr_kernel_pages -= memmap_pages;
6141 nr_all_pages += freesize;
6142
6143 /*
6144 * Set an approximate value for lowmem here, it will be adjusted
6145 * when the bootmem allocator frees pages into the buddy system.
6146 * And all highmem pages will be managed by the buddy system.
6147 */
6148 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6149 #ifdef CONFIG_NUMA
6150 zone->node = nid;
6151 #endif
6152 zone->name = zone_names[j];
6153 zone->zone_pgdat = pgdat;
6154 spin_lock_init(&zone->lock);
6155 zone_seqlock_init(zone);
6156 zone_pcp_init(zone);
6157
6158 if (!size)
6159 continue;
6160
6161 set_pageblock_order();
6162 setup_usemap(pgdat, zone, zone_start_pfn, size);
6163 init_currently_empty_zone(zone, zone_start_pfn, size);
6164 memmap_init(size, nid, j, zone_start_pfn);
6165 }
6166 }
6167
6168 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6169 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6170 {
6171 unsigned long __maybe_unused start = 0;
6172 unsigned long __maybe_unused offset = 0;
6173
6174 /* Skip empty nodes */
6175 if (!pgdat->node_spanned_pages)
6176 return;
6177
6178 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6179 offset = pgdat->node_start_pfn - start;
6180 /* ia64 gets its own node_mem_map, before this, without bootmem */
6181 if (!pgdat->node_mem_map) {
6182 unsigned long size, end;
6183 struct page *map;
6184
6185 /*
6186 * The zone's endpoints aren't required to be MAX_ORDER
6187 * aligned but the node_mem_map endpoints must be in order
6188 * for the buddy allocator to function correctly.
6189 */
6190 end = pgdat_end_pfn(pgdat);
6191 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6192 size = (end - start) * sizeof(struct page);
6193 map = alloc_remap(pgdat->node_id, size);
6194 if (!map)
6195 map = memblock_virt_alloc_node_nopanic(size,
6196 pgdat->node_id);
6197 pgdat->node_mem_map = map + offset;
6198 }
6199 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6200 __func__, pgdat->node_id, (unsigned long)pgdat,
6201 (unsigned long)pgdat->node_mem_map);
6202 #ifndef CONFIG_NEED_MULTIPLE_NODES
6203 /*
6204 * With no DISCONTIG, the global mem_map is just set as node 0's
6205 */
6206 if (pgdat == NODE_DATA(0)) {
6207 mem_map = NODE_DATA(0)->node_mem_map;
6208 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6209 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6210 mem_map -= offset;
6211 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6212 }
6213 #endif
6214 }
6215 #else
6216 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6217 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6218
6219 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6220 unsigned long node_start_pfn, unsigned long *zholes_size)
6221 {
6222 pg_data_t *pgdat = NODE_DATA(nid);
6223 unsigned long start_pfn = 0;
6224 unsigned long end_pfn = 0;
6225
6226 /* pg_data_t should be reset to zero when it's allocated */
6227 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6228
6229 pgdat->node_id = nid;
6230 pgdat->node_start_pfn = node_start_pfn;
6231 pgdat->per_cpu_nodestats = NULL;
6232 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6233 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6234 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6235 (u64)start_pfn << PAGE_SHIFT,
6236 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6237 #else
6238 start_pfn = node_start_pfn;
6239 #endif
6240 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6241 zones_size, zholes_size);
6242
6243 alloc_node_mem_map(pgdat);
6244
6245 reset_deferred_meminit(pgdat);
6246 free_area_init_core(pgdat);
6247 }
6248
6249 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6250 /*
6251 * Only struct pages that are backed by physical memory are zeroed and
6252 * initialized by going through __init_single_page(). But, there are some
6253 * struct pages which are reserved in memblock allocator and their fields
6254 * may be accessed (for example page_to_pfn() on some configuration accesses
6255 * flags). We must explicitly zero those struct pages.
6256 */
6257 void __paginginit zero_resv_unavail(void)
6258 {
6259 phys_addr_t start, end;
6260 unsigned long pfn;
6261 u64 i, pgcnt;
6262
6263 /*
6264 * Loop through ranges that are reserved, but do not have reported
6265 * physical memory backing.
6266 */
6267 pgcnt = 0;
6268 for_each_resv_unavail_range(i, &start, &end) {
6269 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6270 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6271 continue;
6272 mm_zero_struct_page(pfn_to_page(pfn));
6273 pgcnt++;
6274 }
6275 }
6276
6277 /*
6278 * Struct pages that do not have backing memory. This could be because
6279 * firmware is using some of this memory, or for some other reasons.
6280 * Once memblock is changed so such behaviour is not allowed: i.e.
6281 * list of "reserved" memory must be a subset of list of "memory", then
6282 * this code can be removed.
6283 */
6284 if (pgcnt)
6285 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6286 }
6287 #endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6288
6289 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6290
6291 #if MAX_NUMNODES > 1
6292 /*
6293 * Figure out the number of possible node ids.
6294 */
6295 void __init setup_nr_node_ids(void)
6296 {
6297 unsigned int highest;
6298
6299 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6300 nr_node_ids = highest + 1;
6301 }
6302 #endif
6303
6304 /**
6305 * node_map_pfn_alignment - determine the maximum internode alignment
6306 *
6307 * This function should be called after node map is populated and sorted.
6308 * It calculates the maximum power of two alignment which can distinguish
6309 * all the nodes.
6310 *
6311 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6312 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6313 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6314 * shifted, 1GiB is enough and this function will indicate so.
6315 *
6316 * This is used to test whether pfn -> nid mapping of the chosen memory
6317 * model has fine enough granularity to avoid incorrect mapping for the
6318 * populated node map.
6319 *
6320 * Returns the determined alignment in pfn's. 0 if there is no alignment
6321 * requirement (single node).
6322 */
6323 unsigned long __init node_map_pfn_alignment(void)
6324 {
6325 unsigned long accl_mask = 0, last_end = 0;
6326 unsigned long start, end, mask;
6327 int last_nid = -1;
6328 int i, nid;
6329
6330 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6331 if (!start || last_nid < 0 || last_nid == nid) {
6332 last_nid = nid;
6333 last_end = end;
6334 continue;
6335 }
6336
6337 /*
6338 * Start with a mask granular enough to pin-point to the
6339 * start pfn and tick off bits one-by-one until it becomes
6340 * too coarse to separate the current node from the last.
6341 */
6342 mask = ~((1 << __ffs(start)) - 1);
6343 while (mask && last_end <= (start & (mask << 1)))
6344 mask <<= 1;
6345
6346 /* accumulate all internode masks */
6347 accl_mask |= mask;
6348 }
6349
6350 /* convert mask to number of pages */
6351 return ~accl_mask + 1;
6352 }
6353
6354 /* Find the lowest pfn for a node */
6355 static unsigned long __init find_min_pfn_for_node(int nid)
6356 {
6357 unsigned long min_pfn = ULONG_MAX;
6358 unsigned long start_pfn;
6359 int i;
6360
6361 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6362 min_pfn = min(min_pfn, start_pfn);
6363
6364 if (min_pfn == ULONG_MAX) {
6365 pr_warn("Could not find start_pfn for node %d\n", nid);
6366 return 0;
6367 }
6368
6369 return min_pfn;
6370 }
6371
6372 /**
6373 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6374 *
6375 * It returns the minimum PFN based on information provided via
6376 * memblock_set_node().
6377 */
6378 unsigned long __init find_min_pfn_with_active_regions(void)
6379 {
6380 return find_min_pfn_for_node(MAX_NUMNODES);
6381 }
6382
6383 /*
6384 * early_calculate_totalpages()
6385 * Sum pages in active regions for movable zone.
6386 * Populate N_MEMORY for calculating usable_nodes.
6387 */
6388 static unsigned long __init early_calculate_totalpages(void)
6389 {
6390 unsigned long totalpages = 0;
6391 unsigned long start_pfn, end_pfn;
6392 int i, nid;
6393
6394 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6395 unsigned long pages = end_pfn - start_pfn;
6396
6397 totalpages += pages;
6398 if (pages)
6399 node_set_state(nid, N_MEMORY);
6400 }
6401 return totalpages;
6402 }
6403
6404 /*
6405 * Find the PFN the Movable zone begins in each node. Kernel memory
6406 * is spread evenly between nodes as long as the nodes have enough
6407 * memory. When they don't, some nodes will have more kernelcore than
6408 * others
6409 */
6410 static void __init find_zone_movable_pfns_for_nodes(void)
6411 {
6412 int i, nid;
6413 unsigned long usable_startpfn;
6414 unsigned long kernelcore_node, kernelcore_remaining;
6415 /* save the state before borrow the nodemask */
6416 nodemask_t saved_node_state = node_states[N_MEMORY];
6417 unsigned long totalpages = early_calculate_totalpages();
6418 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6419 struct memblock_region *r;
6420
6421 /* Need to find movable_zone earlier when movable_node is specified. */
6422 find_usable_zone_for_movable();
6423
6424 /*
6425 * If movable_node is specified, ignore kernelcore and movablecore
6426 * options.
6427 */
6428 if (movable_node_is_enabled()) {
6429 for_each_memblock(memory, r) {
6430 if (!memblock_is_hotpluggable(r))
6431 continue;
6432
6433 nid = r->nid;
6434
6435 usable_startpfn = PFN_DOWN(r->base);
6436 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6437 min(usable_startpfn, zone_movable_pfn[nid]) :
6438 usable_startpfn;
6439 }
6440
6441 goto out2;
6442 }
6443
6444 /*
6445 * If kernelcore=mirror is specified, ignore movablecore option
6446 */
6447 if (mirrored_kernelcore) {
6448 bool mem_below_4gb_not_mirrored = false;
6449
6450 for_each_memblock(memory, r) {
6451 if (memblock_is_mirror(r))
6452 continue;
6453
6454 nid = r->nid;
6455
6456 usable_startpfn = memblock_region_memory_base_pfn(r);
6457
6458 if (usable_startpfn < 0x100000) {
6459 mem_below_4gb_not_mirrored = true;
6460 continue;
6461 }
6462
6463 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6464 min(usable_startpfn, zone_movable_pfn[nid]) :
6465 usable_startpfn;
6466 }
6467
6468 if (mem_below_4gb_not_mirrored)
6469 pr_warn("This configuration results in unmirrored kernel memory.");
6470
6471 goto out2;
6472 }
6473
6474 /*
6475 * If movablecore=nn[KMG] was specified, calculate what size of
6476 * kernelcore that corresponds so that memory usable for
6477 * any allocation type is evenly spread. If both kernelcore
6478 * and movablecore are specified, then the value of kernelcore
6479 * will be used for required_kernelcore if it's greater than
6480 * what movablecore would have allowed.
6481 */
6482 if (required_movablecore) {
6483 unsigned long corepages;
6484
6485 /*
6486 * Round-up so that ZONE_MOVABLE is at least as large as what
6487 * was requested by the user
6488 */
6489 required_movablecore =
6490 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6491 required_movablecore = min(totalpages, required_movablecore);
6492 corepages = totalpages - required_movablecore;
6493
6494 required_kernelcore = max(required_kernelcore, corepages);
6495 }
6496
6497 /*
6498 * If kernelcore was not specified or kernelcore size is larger
6499 * than totalpages, there is no ZONE_MOVABLE.
6500 */
6501 if (!required_kernelcore || required_kernelcore >= totalpages)
6502 goto out;
6503
6504 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6505 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6506
6507 restart:
6508 /* Spread kernelcore memory as evenly as possible throughout nodes */
6509 kernelcore_node = required_kernelcore / usable_nodes;
6510 for_each_node_state(nid, N_MEMORY) {
6511 unsigned long start_pfn, end_pfn;
6512
6513 /*
6514 * Recalculate kernelcore_node if the division per node
6515 * now exceeds what is necessary to satisfy the requested
6516 * amount of memory for the kernel
6517 */
6518 if (required_kernelcore < kernelcore_node)
6519 kernelcore_node = required_kernelcore / usable_nodes;
6520
6521 /*
6522 * As the map is walked, we track how much memory is usable
6523 * by the kernel using kernelcore_remaining. When it is
6524 * 0, the rest of the node is usable by ZONE_MOVABLE
6525 */
6526 kernelcore_remaining = kernelcore_node;
6527
6528 /* Go through each range of PFNs within this node */
6529 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6530 unsigned long size_pages;
6531
6532 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6533 if (start_pfn >= end_pfn)
6534 continue;
6535
6536 /* Account for what is only usable for kernelcore */
6537 if (start_pfn < usable_startpfn) {
6538 unsigned long kernel_pages;
6539 kernel_pages = min(end_pfn, usable_startpfn)
6540 - start_pfn;
6541
6542 kernelcore_remaining -= min(kernel_pages,
6543 kernelcore_remaining);
6544 required_kernelcore -= min(kernel_pages,
6545 required_kernelcore);
6546
6547 /* Continue if range is now fully accounted */
6548 if (end_pfn <= usable_startpfn) {
6549
6550 /*
6551 * Push zone_movable_pfn to the end so
6552 * that if we have to rebalance
6553 * kernelcore across nodes, we will
6554 * not double account here
6555 */
6556 zone_movable_pfn[nid] = end_pfn;
6557 continue;
6558 }
6559 start_pfn = usable_startpfn;
6560 }
6561
6562 /*
6563 * The usable PFN range for ZONE_MOVABLE is from
6564 * start_pfn->end_pfn. Calculate size_pages as the
6565 * number of pages used as kernelcore
6566 */
6567 size_pages = end_pfn - start_pfn;
6568 if (size_pages > kernelcore_remaining)
6569 size_pages = kernelcore_remaining;
6570 zone_movable_pfn[nid] = start_pfn + size_pages;
6571
6572 /*
6573 * Some kernelcore has been met, update counts and
6574 * break if the kernelcore for this node has been
6575 * satisfied
6576 */
6577 required_kernelcore -= min(required_kernelcore,
6578 size_pages);
6579 kernelcore_remaining -= size_pages;
6580 if (!kernelcore_remaining)
6581 break;
6582 }
6583 }
6584
6585 /*
6586 * If there is still required_kernelcore, we do another pass with one
6587 * less node in the count. This will push zone_movable_pfn[nid] further
6588 * along on the nodes that still have memory until kernelcore is
6589 * satisfied
6590 */
6591 usable_nodes--;
6592 if (usable_nodes && required_kernelcore > usable_nodes)
6593 goto restart;
6594
6595 out2:
6596 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6597 for (nid = 0; nid < MAX_NUMNODES; nid++)
6598 zone_movable_pfn[nid] =
6599 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6600
6601 out:
6602 /* restore the node_state */
6603 node_states[N_MEMORY] = saved_node_state;
6604 }
6605
6606 /* Any regular or high memory on that node ? */
6607 static void check_for_memory(pg_data_t *pgdat, int nid)
6608 {
6609 enum zone_type zone_type;
6610
6611 if (N_MEMORY == N_NORMAL_MEMORY)
6612 return;
6613
6614 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6615 struct zone *zone = &pgdat->node_zones[zone_type];
6616 if (populated_zone(zone)) {
6617 node_set_state(nid, N_HIGH_MEMORY);
6618 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6619 zone_type <= ZONE_NORMAL)
6620 node_set_state(nid, N_NORMAL_MEMORY);
6621 break;
6622 }
6623 }
6624 }
6625
6626 /**
6627 * free_area_init_nodes - Initialise all pg_data_t and zone data
6628 * @max_zone_pfn: an array of max PFNs for each zone
6629 *
6630 * This will call free_area_init_node() for each active node in the system.
6631 * Using the page ranges provided by memblock_set_node(), the size of each
6632 * zone in each node and their holes is calculated. If the maximum PFN
6633 * between two adjacent zones match, it is assumed that the zone is empty.
6634 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6635 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6636 * starts where the previous one ended. For example, ZONE_DMA32 starts
6637 * at arch_max_dma_pfn.
6638 */
6639 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6640 {
6641 unsigned long start_pfn, end_pfn;
6642 int i, nid;
6643
6644 /* Record where the zone boundaries are */
6645 memset(arch_zone_lowest_possible_pfn, 0,
6646 sizeof(arch_zone_lowest_possible_pfn));
6647 memset(arch_zone_highest_possible_pfn, 0,
6648 sizeof(arch_zone_highest_possible_pfn));
6649
6650 start_pfn = find_min_pfn_with_active_regions();
6651
6652 for (i = 0; i < MAX_NR_ZONES; i++) {
6653 if (i == ZONE_MOVABLE)
6654 continue;
6655
6656 end_pfn = max(max_zone_pfn[i], start_pfn);
6657 arch_zone_lowest_possible_pfn[i] = start_pfn;
6658 arch_zone_highest_possible_pfn[i] = end_pfn;
6659
6660 start_pfn = end_pfn;
6661 }
6662
6663 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6664 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6665 find_zone_movable_pfns_for_nodes();
6666
6667 /* Print out the zone ranges */
6668 pr_info("Zone ranges:\n");
6669 for (i = 0; i < MAX_NR_ZONES; i++) {
6670 if (i == ZONE_MOVABLE)
6671 continue;
6672 pr_info(" %-8s ", zone_names[i]);
6673 if (arch_zone_lowest_possible_pfn[i] ==
6674 arch_zone_highest_possible_pfn[i])
6675 pr_cont("empty\n");
6676 else
6677 pr_cont("[mem %#018Lx-%#018Lx]\n",
6678 (u64)arch_zone_lowest_possible_pfn[i]
6679 << PAGE_SHIFT,
6680 ((u64)arch_zone_highest_possible_pfn[i]
6681 << PAGE_SHIFT) - 1);
6682 }
6683
6684 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6685 pr_info("Movable zone start for each node\n");
6686 for (i = 0; i < MAX_NUMNODES; i++) {
6687 if (zone_movable_pfn[i])
6688 pr_info(" Node %d: %#018Lx\n", i,
6689 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6690 }
6691
6692 /* Print out the early node map */
6693 pr_info("Early memory node ranges\n");
6694 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6695 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6696 (u64)start_pfn << PAGE_SHIFT,
6697 ((u64)end_pfn << PAGE_SHIFT) - 1);
6698
6699 /* Initialise every node */
6700 mminit_verify_pageflags_layout();
6701 setup_nr_node_ids();
6702 zero_resv_unavail();
6703 for_each_online_node(nid) {
6704 pg_data_t *pgdat = NODE_DATA(nid);
6705 free_area_init_node(nid, NULL,
6706 find_min_pfn_for_node(nid), NULL);
6707
6708 /* Any memory on that node */
6709 if (pgdat->node_present_pages)
6710 node_set_state(nid, N_MEMORY);
6711 check_for_memory(pgdat, nid);
6712 }
6713 }
6714
6715 static int __init cmdline_parse_core(char *p, unsigned long *core)
6716 {
6717 unsigned long long coremem;
6718 if (!p)
6719 return -EINVAL;
6720
6721 coremem = memparse(p, &p);
6722 *core = coremem >> PAGE_SHIFT;
6723
6724 /* Paranoid check that UL is enough for the coremem value */
6725 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6726
6727 return 0;
6728 }
6729
6730 /*
6731 * kernelcore=size sets the amount of memory for use for allocations that
6732 * cannot be reclaimed or migrated.
6733 */
6734 static int __init cmdline_parse_kernelcore(char *p)
6735 {
6736 /* parse kernelcore=mirror */
6737 if (parse_option_str(p, "mirror")) {
6738 mirrored_kernelcore = true;
6739 return 0;
6740 }
6741
6742 return cmdline_parse_core(p, &required_kernelcore);
6743 }
6744
6745 /*
6746 * movablecore=size sets the amount of memory for use for allocations that
6747 * can be reclaimed or migrated.
6748 */
6749 static int __init cmdline_parse_movablecore(char *p)
6750 {
6751 return cmdline_parse_core(p, &required_movablecore);
6752 }
6753
6754 early_param("kernelcore", cmdline_parse_kernelcore);
6755 early_param("movablecore", cmdline_parse_movablecore);
6756
6757 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6758
6759 void adjust_managed_page_count(struct page *page, long count)
6760 {
6761 spin_lock(&managed_page_count_lock);
6762 page_zone(page)->managed_pages += count;
6763 totalram_pages += count;
6764 #ifdef CONFIG_HIGHMEM
6765 if (PageHighMem(page))
6766 totalhigh_pages += count;
6767 #endif
6768 spin_unlock(&managed_page_count_lock);
6769 }
6770 EXPORT_SYMBOL(adjust_managed_page_count);
6771
6772 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6773 {
6774 void *pos;
6775 unsigned long pages = 0;
6776
6777 start = (void *)PAGE_ALIGN((unsigned long)start);
6778 end = (void *)((unsigned long)end & PAGE_MASK);
6779 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6780 struct page *page = virt_to_page(pos);
6781 void *direct_map_addr;
6782
6783 /*
6784 * 'direct_map_addr' might be different from 'pos'
6785 * because some architectures' virt_to_page()
6786 * work with aliases. Getting the direct map
6787 * address ensures that we get a _writeable_
6788 * alias for the memset().
6789 */
6790 direct_map_addr = page_address(page);
6791 if ((unsigned int)poison <= 0xFF)
6792 memset(direct_map_addr, poison, PAGE_SIZE);
6793
6794 free_reserved_page(page);
6795 }
6796
6797 if (pages && s)
6798 pr_info("Freeing %s memory: %ldK\n",
6799 s, pages << (PAGE_SHIFT - 10));
6800
6801 return pages;
6802 }
6803 EXPORT_SYMBOL(free_reserved_area);
6804
6805 #ifdef CONFIG_HIGHMEM
6806 void free_highmem_page(struct page *page)
6807 {
6808 __free_reserved_page(page);
6809 totalram_pages++;
6810 page_zone(page)->managed_pages++;
6811 totalhigh_pages++;
6812 }
6813 #endif
6814
6815
6816 void __init mem_init_print_info(const char *str)
6817 {
6818 unsigned long physpages, codesize, datasize, rosize, bss_size;
6819 unsigned long init_code_size, init_data_size;
6820
6821 physpages = get_num_physpages();
6822 codesize = _etext - _stext;
6823 datasize = _edata - _sdata;
6824 rosize = __end_rodata - __start_rodata;
6825 bss_size = __bss_stop - __bss_start;
6826 init_data_size = __init_end - __init_begin;
6827 init_code_size = _einittext - _sinittext;
6828
6829 /*
6830 * Detect special cases and adjust section sizes accordingly:
6831 * 1) .init.* may be embedded into .data sections
6832 * 2) .init.text.* may be out of [__init_begin, __init_end],
6833 * please refer to arch/tile/kernel/vmlinux.lds.S.
6834 * 3) .rodata.* may be embedded into .text or .data sections.
6835 */
6836 #define adj_init_size(start, end, size, pos, adj) \
6837 do { \
6838 if (start <= pos && pos < end && size > adj) \
6839 size -= adj; \
6840 } while (0)
6841
6842 adj_init_size(__init_begin, __init_end, init_data_size,
6843 _sinittext, init_code_size);
6844 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6845 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6846 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6847 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6848
6849 #undef adj_init_size
6850
6851 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6852 #ifdef CONFIG_HIGHMEM
6853 ", %luK highmem"
6854 #endif
6855 "%s%s)\n",
6856 nr_free_pages() << (PAGE_SHIFT - 10),
6857 physpages << (PAGE_SHIFT - 10),
6858 codesize >> 10, datasize >> 10, rosize >> 10,
6859 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6860 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6861 totalcma_pages << (PAGE_SHIFT - 10),
6862 #ifdef CONFIG_HIGHMEM
6863 totalhigh_pages << (PAGE_SHIFT - 10),
6864 #endif
6865 str ? ", " : "", str ? str : "");
6866 }
6867
6868 /**
6869 * set_dma_reserve - set the specified number of pages reserved in the first zone
6870 * @new_dma_reserve: The number of pages to mark reserved
6871 *
6872 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6873 * In the DMA zone, a significant percentage may be consumed by kernel image
6874 * and other unfreeable allocations which can skew the watermarks badly. This
6875 * function may optionally be used to account for unfreeable pages in the
6876 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6877 * smaller per-cpu batchsize.
6878 */
6879 void __init set_dma_reserve(unsigned long new_dma_reserve)
6880 {
6881 dma_reserve = new_dma_reserve;
6882 }
6883
6884 void __init free_area_init(unsigned long *zones_size)
6885 {
6886 zero_resv_unavail();
6887 free_area_init_node(0, zones_size,
6888 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6889 }
6890
6891 static int page_alloc_cpu_dead(unsigned int cpu)
6892 {
6893
6894 lru_add_drain_cpu(cpu);
6895 drain_pages(cpu);
6896
6897 /*
6898 * Spill the event counters of the dead processor
6899 * into the current processors event counters.
6900 * This artificially elevates the count of the current
6901 * processor.
6902 */
6903 vm_events_fold_cpu(cpu);
6904
6905 /*
6906 * Zero the differential counters of the dead processor
6907 * so that the vm statistics are consistent.
6908 *
6909 * This is only okay since the processor is dead and cannot
6910 * race with what we are doing.
6911 */
6912 cpu_vm_stats_fold(cpu);
6913 return 0;
6914 }
6915
6916 void __init page_alloc_init(void)
6917 {
6918 int ret;
6919
6920 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6921 "mm/page_alloc:dead", NULL,
6922 page_alloc_cpu_dead);
6923 WARN_ON(ret < 0);
6924 }
6925
6926 /*
6927 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6928 * or min_free_kbytes changes.
6929 */
6930 static void calculate_totalreserve_pages(void)
6931 {
6932 struct pglist_data *pgdat;
6933 unsigned long reserve_pages = 0;
6934 enum zone_type i, j;
6935
6936 for_each_online_pgdat(pgdat) {
6937
6938 pgdat->totalreserve_pages = 0;
6939
6940 for (i = 0; i < MAX_NR_ZONES; i++) {
6941 struct zone *zone = pgdat->node_zones + i;
6942 long max = 0;
6943
6944 /* Find valid and maximum lowmem_reserve in the zone */
6945 for (j = i; j < MAX_NR_ZONES; j++) {
6946 if (zone->lowmem_reserve[j] > max)
6947 max = zone->lowmem_reserve[j];
6948 }
6949
6950 /* we treat the high watermark as reserved pages. */
6951 max += high_wmark_pages(zone);
6952
6953 if (max > zone->managed_pages)
6954 max = zone->managed_pages;
6955
6956 pgdat->totalreserve_pages += max;
6957
6958 reserve_pages += max;
6959 }
6960 }
6961 totalreserve_pages = reserve_pages;
6962 }
6963
6964 /*
6965 * setup_per_zone_lowmem_reserve - called whenever
6966 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6967 * has a correct pages reserved value, so an adequate number of
6968 * pages are left in the zone after a successful __alloc_pages().
6969 */
6970 static void setup_per_zone_lowmem_reserve(void)
6971 {
6972 struct pglist_data *pgdat;
6973 enum zone_type j, idx;
6974
6975 for_each_online_pgdat(pgdat) {
6976 for (j = 0; j < MAX_NR_ZONES; j++) {
6977 struct zone *zone = pgdat->node_zones + j;
6978 unsigned long managed_pages = zone->managed_pages;
6979
6980 zone->lowmem_reserve[j] = 0;
6981
6982 idx = j;
6983 while (idx) {
6984 struct zone *lower_zone;
6985
6986 idx--;
6987
6988 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6989 sysctl_lowmem_reserve_ratio[idx] = 1;
6990
6991 lower_zone = pgdat->node_zones + idx;
6992 lower_zone->lowmem_reserve[j] = managed_pages /
6993 sysctl_lowmem_reserve_ratio[idx];
6994 managed_pages += lower_zone->managed_pages;
6995 }
6996 }
6997 }
6998
6999 /* update totalreserve_pages */
7000 calculate_totalreserve_pages();
7001 }
7002
7003 static void __setup_per_zone_wmarks(void)
7004 {
7005 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7006 unsigned long lowmem_pages = 0;
7007 struct zone *zone;
7008 unsigned long flags;
7009
7010 /* Calculate total number of !ZONE_HIGHMEM pages */
7011 for_each_zone(zone) {
7012 if (!is_highmem(zone))
7013 lowmem_pages += zone->managed_pages;
7014 }
7015
7016 for_each_zone(zone) {
7017 u64 tmp;
7018
7019 spin_lock_irqsave(&zone->lock, flags);
7020 tmp = (u64)pages_min * zone->managed_pages;
7021 do_div(tmp, lowmem_pages);
7022 if (is_highmem(zone)) {
7023 /*
7024 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7025 * need highmem pages, so cap pages_min to a small
7026 * value here.
7027 *
7028 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7029 * deltas control asynch page reclaim, and so should
7030 * not be capped for highmem.
7031 */
7032 unsigned long min_pages;
7033
7034 min_pages = zone->managed_pages / 1024;
7035 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7036 zone->watermark[WMARK_MIN] = min_pages;
7037 } else {
7038 /*
7039 * If it's a lowmem zone, reserve a number of pages
7040 * proportionate to the zone's size.
7041 */
7042 zone->watermark[WMARK_MIN] = tmp;
7043 }
7044
7045 /*
7046 * Set the kswapd watermarks distance according to the
7047 * scale factor in proportion to available memory, but
7048 * ensure a minimum size on small systems.
7049 */
7050 tmp = max_t(u64, tmp >> 2,
7051 mult_frac(zone->managed_pages,
7052 watermark_scale_factor, 10000));
7053
7054 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7055 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7056
7057 spin_unlock_irqrestore(&zone->lock, flags);
7058 }
7059
7060 /* update totalreserve_pages */
7061 calculate_totalreserve_pages();
7062 }
7063
7064 /**
7065 * setup_per_zone_wmarks - called when min_free_kbytes changes
7066 * or when memory is hot-{added|removed}
7067 *
7068 * Ensures that the watermark[min,low,high] values for each zone are set
7069 * correctly with respect to min_free_kbytes.
7070 */
7071 void setup_per_zone_wmarks(void)
7072 {
7073 static DEFINE_SPINLOCK(lock);
7074
7075 spin_lock(&lock);
7076 __setup_per_zone_wmarks();
7077 spin_unlock(&lock);
7078 }
7079
7080 /*
7081 * Initialise min_free_kbytes.
7082 *
7083 * For small machines we want it small (128k min). For large machines
7084 * we want it large (64MB max). But it is not linear, because network
7085 * bandwidth does not increase linearly with machine size. We use
7086 *
7087 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7088 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7089 *
7090 * which yields
7091 *
7092 * 16MB: 512k
7093 * 32MB: 724k
7094 * 64MB: 1024k
7095 * 128MB: 1448k
7096 * 256MB: 2048k
7097 * 512MB: 2896k
7098 * 1024MB: 4096k
7099 * 2048MB: 5792k
7100 * 4096MB: 8192k
7101 * 8192MB: 11584k
7102 * 16384MB: 16384k
7103 */
7104 int __meminit init_per_zone_wmark_min(void)
7105 {
7106 unsigned long lowmem_kbytes;
7107 int new_min_free_kbytes;
7108
7109 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7110 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7111
7112 if (new_min_free_kbytes > user_min_free_kbytes) {
7113 min_free_kbytes = new_min_free_kbytes;
7114 if (min_free_kbytes < 128)
7115 min_free_kbytes = 128;
7116 if (min_free_kbytes > 65536)
7117 min_free_kbytes = 65536;
7118 } else {
7119 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7120 new_min_free_kbytes, user_min_free_kbytes);
7121 }
7122 setup_per_zone_wmarks();
7123 refresh_zone_stat_thresholds();
7124 setup_per_zone_lowmem_reserve();
7125
7126 #ifdef CONFIG_NUMA
7127 setup_min_unmapped_ratio();
7128 setup_min_slab_ratio();
7129 #endif
7130
7131 return 0;
7132 }
7133 core_initcall(init_per_zone_wmark_min)
7134
7135 /*
7136 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7137 * that we can call two helper functions whenever min_free_kbytes
7138 * changes.
7139 */
7140 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7141 void __user *buffer, size_t *length, loff_t *ppos)
7142 {
7143 int rc;
7144
7145 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7146 if (rc)
7147 return rc;
7148
7149 if (write) {
7150 user_min_free_kbytes = min_free_kbytes;
7151 setup_per_zone_wmarks();
7152 }
7153 return 0;
7154 }
7155
7156 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7157 void __user *buffer, size_t *length, loff_t *ppos)
7158 {
7159 int rc;
7160
7161 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7162 if (rc)
7163 return rc;
7164
7165 if (write)
7166 setup_per_zone_wmarks();
7167
7168 return 0;
7169 }
7170
7171 #ifdef CONFIG_NUMA
7172 static void setup_min_unmapped_ratio(void)
7173 {
7174 pg_data_t *pgdat;
7175 struct zone *zone;
7176
7177 for_each_online_pgdat(pgdat)
7178 pgdat->min_unmapped_pages = 0;
7179
7180 for_each_zone(zone)
7181 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7182 sysctl_min_unmapped_ratio) / 100;
7183 }
7184
7185
7186 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7187 void __user *buffer, size_t *length, loff_t *ppos)
7188 {
7189 int rc;
7190
7191 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7192 if (rc)
7193 return rc;
7194
7195 setup_min_unmapped_ratio();
7196
7197 return 0;
7198 }
7199
7200 static void setup_min_slab_ratio(void)
7201 {
7202 pg_data_t *pgdat;
7203 struct zone *zone;
7204
7205 for_each_online_pgdat(pgdat)
7206 pgdat->min_slab_pages = 0;
7207
7208 for_each_zone(zone)
7209 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7210 sysctl_min_slab_ratio) / 100;
7211 }
7212
7213 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7214 void __user *buffer, size_t *length, loff_t *ppos)
7215 {
7216 int rc;
7217
7218 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7219 if (rc)
7220 return rc;
7221
7222 setup_min_slab_ratio();
7223
7224 return 0;
7225 }
7226 #endif
7227
7228 /*
7229 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7230 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7231 * whenever sysctl_lowmem_reserve_ratio changes.
7232 *
7233 * The reserve ratio obviously has absolutely no relation with the
7234 * minimum watermarks. The lowmem reserve ratio can only make sense
7235 * if in function of the boot time zone sizes.
7236 */
7237 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7238 void __user *buffer, size_t *length, loff_t *ppos)
7239 {
7240 proc_dointvec_minmax(table, write, buffer, length, ppos);
7241 setup_per_zone_lowmem_reserve();
7242 return 0;
7243 }
7244
7245 /*
7246 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7247 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7248 * pagelist can have before it gets flushed back to buddy allocator.
7249 */
7250 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7251 void __user *buffer, size_t *length, loff_t *ppos)
7252 {
7253 struct zone *zone;
7254 int old_percpu_pagelist_fraction;
7255 int ret;
7256
7257 mutex_lock(&pcp_batch_high_lock);
7258 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7259
7260 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7261 if (!write || ret < 0)
7262 goto out;
7263
7264 /* Sanity checking to avoid pcp imbalance */
7265 if (percpu_pagelist_fraction &&
7266 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7267 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7268 ret = -EINVAL;
7269 goto out;
7270 }
7271
7272 /* No change? */
7273 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7274 goto out;
7275
7276 for_each_populated_zone(zone) {
7277 unsigned int cpu;
7278
7279 for_each_possible_cpu(cpu)
7280 pageset_set_high_and_batch(zone,
7281 per_cpu_ptr(zone->pageset, cpu));
7282 }
7283 out:
7284 mutex_unlock(&pcp_batch_high_lock);
7285 return ret;
7286 }
7287
7288 #ifdef CONFIG_NUMA
7289 int hashdist = HASHDIST_DEFAULT;
7290
7291 static int __init set_hashdist(char *str)
7292 {
7293 if (!str)
7294 return 0;
7295 hashdist = simple_strtoul(str, &str, 0);
7296 return 1;
7297 }
7298 __setup("hashdist=", set_hashdist);
7299 #endif
7300
7301 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7302 /*
7303 * Returns the number of pages that arch has reserved but
7304 * is not known to alloc_large_system_hash().
7305 */
7306 static unsigned long __init arch_reserved_kernel_pages(void)
7307 {
7308 return 0;
7309 }
7310 #endif
7311
7312 /*
7313 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7314 * machines. As memory size is increased the scale is also increased but at
7315 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7316 * quadruples the scale is increased by one, which means the size of hash table
7317 * only doubles, instead of quadrupling as well.
7318 * Because 32-bit systems cannot have large physical memory, where this scaling
7319 * makes sense, it is disabled on such platforms.
7320 */
7321 #if __BITS_PER_LONG > 32
7322 #define ADAPT_SCALE_BASE (64ul << 30)
7323 #define ADAPT_SCALE_SHIFT 2
7324 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7325 #endif
7326
7327 /*
7328 * allocate a large system hash table from bootmem
7329 * - it is assumed that the hash table must contain an exact power-of-2
7330 * quantity of entries
7331 * - limit is the number of hash buckets, not the total allocation size
7332 */
7333 void *__init alloc_large_system_hash(const char *tablename,
7334 unsigned long bucketsize,
7335 unsigned long numentries,
7336 int scale,
7337 int flags,
7338 unsigned int *_hash_shift,
7339 unsigned int *_hash_mask,
7340 unsigned long low_limit,
7341 unsigned long high_limit)
7342 {
7343 unsigned long long max = high_limit;
7344 unsigned long log2qty, size;
7345 void *table = NULL;
7346 gfp_t gfp_flags;
7347
7348 /* allow the kernel cmdline to have a say */
7349 if (!numentries) {
7350 /* round applicable memory size up to nearest megabyte */
7351 numentries = nr_kernel_pages;
7352 numentries -= arch_reserved_kernel_pages();
7353
7354 /* It isn't necessary when PAGE_SIZE >= 1MB */
7355 if (PAGE_SHIFT < 20)
7356 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7357
7358 #if __BITS_PER_LONG > 32
7359 if (!high_limit) {
7360 unsigned long adapt;
7361
7362 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7363 adapt <<= ADAPT_SCALE_SHIFT)
7364 scale++;
7365 }
7366 #endif
7367
7368 /* limit to 1 bucket per 2^scale bytes of low memory */
7369 if (scale > PAGE_SHIFT)
7370 numentries >>= (scale - PAGE_SHIFT);
7371 else
7372 numentries <<= (PAGE_SHIFT - scale);
7373
7374 /* Make sure we've got at least a 0-order allocation.. */
7375 if (unlikely(flags & HASH_SMALL)) {
7376 /* Makes no sense without HASH_EARLY */
7377 WARN_ON(!(flags & HASH_EARLY));
7378 if (!(numentries >> *_hash_shift)) {
7379 numentries = 1UL << *_hash_shift;
7380 BUG_ON(!numentries);
7381 }
7382 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7383 numentries = PAGE_SIZE / bucketsize;
7384 }
7385 numentries = roundup_pow_of_two(numentries);
7386
7387 /* limit allocation size to 1/16 total memory by default */
7388 if (max == 0) {
7389 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7390 do_div(max, bucketsize);
7391 }
7392 max = min(max, 0x80000000ULL);
7393
7394 if (numentries < low_limit)
7395 numentries = low_limit;
7396 if (numentries > max)
7397 numentries = max;
7398
7399 log2qty = ilog2(numentries);
7400
7401 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7402 do {
7403 size = bucketsize << log2qty;
7404 if (flags & HASH_EARLY) {
7405 if (flags & HASH_ZERO)
7406 table = memblock_virt_alloc_nopanic(size, 0);
7407 else
7408 table = memblock_virt_alloc_raw(size, 0);
7409 } else if (hashdist) {
7410 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7411 } else {
7412 /*
7413 * If bucketsize is not a power-of-two, we may free
7414 * some pages at the end of hash table which
7415 * alloc_pages_exact() automatically does
7416 */
7417 if (get_order(size) < MAX_ORDER) {
7418 table = alloc_pages_exact(size, gfp_flags);
7419 kmemleak_alloc(table, size, 1, gfp_flags);
7420 }
7421 }
7422 } while (!table && size > PAGE_SIZE && --log2qty);
7423
7424 if (!table)
7425 panic("Failed to allocate %s hash table\n", tablename);
7426
7427 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7428 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7429
7430 if (_hash_shift)
7431 *_hash_shift = log2qty;
7432 if (_hash_mask)
7433 *_hash_mask = (1 << log2qty) - 1;
7434
7435 return table;
7436 }
7437
7438 /*
7439 * This function checks whether pageblock includes unmovable pages or not.
7440 * If @count is not zero, it is okay to include less @count unmovable pages
7441 *
7442 * PageLRU check without isolation or lru_lock could race so that
7443 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7444 * check without lock_page also may miss some movable non-lru pages at
7445 * race condition. So you can't expect this function should be exact.
7446 */
7447 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7448 int migratetype,
7449 bool skip_hwpoisoned_pages)
7450 {
7451 unsigned long pfn, iter, found;
7452
7453 /*
7454 * For avoiding noise data, lru_add_drain_all() should be called
7455 * If ZONE_MOVABLE, the zone never contains unmovable pages
7456 */
7457 if (zone_idx(zone) == ZONE_MOVABLE)
7458 return false;
7459
7460 /*
7461 * CMA allocations (alloc_contig_range) really need to mark isolate
7462 * CMA pageblocks even when they are not movable in fact so consider
7463 * them movable here.
7464 */
7465 if (is_migrate_cma(migratetype) &&
7466 is_migrate_cma(get_pageblock_migratetype(page)))
7467 return false;
7468
7469 pfn = page_to_pfn(page);
7470 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7471 unsigned long check = pfn + iter;
7472
7473 if (!pfn_valid_within(check))
7474 continue;
7475
7476 page = pfn_to_page(check);
7477
7478 if (PageReserved(page))
7479 return true;
7480
7481 /*
7482 * Hugepages are not in LRU lists, but they're movable.
7483 * We need not scan over tail pages bacause we don't
7484 * handle each tail page individually in migration.
7485 */
7486 if (PageHuge(page)) {
7487 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7488 continue;
7489 }
7490
7491 /*
7492 * We can't use page_count without pin a page
7493 * because another CPU can free compound page.
7494 * This check already skips compound tails of THP
7495 * because their page->_refcount is zero at all time.
7496 */
7497 if (!page_ref_count(page)) {
7498 if (PageBuddy(page))
7499 iter += (1 << page_order(page)) - 1;
7500 continue;
7501 }
7502
7503 /*
7504 * The HWPoisoned page may be not in buddy system, and
7505 * page_count() is not 0.
7506 */
7507 if (skip_hwpoisoned_pages && PageHWPoison(page))
7508 continue;
7509
7510 if (__PageMovable(page))
7511 continue;
7512
7513 if (!PageLRU(page))
7514 found++;
7515 /*
7516 * If there are RECLAIMABLE pages, we need to check
7517 * it. But now, memory offline itself doesn't call
7518 * shrink_node_slabs() and it still to be fixed.
7519 */
7520 /*
7521 * If the page is not RAM, page_count()should be 0.
7522 * we don't need more check. This is an _used_ not-movable page.
7523 *
7524 * The problematic thing here is PG_reserved pages. PG_reserved
7525 * is set to both of a memory hole page and a _used_ kernel
7526 * page at boot.
7527 */
7528 if (found > count)
7529 return true;
7530 }
7531 return false;
7532 }
7533
7534 bool is_pageblock_removable_nolock(struct page *page)
7535 {
7536 struct zone *zone;
7537 unsigned long pfn;
7538
7539 /*
7540 * We have to be careful here because we are iterating over memory
7541 * sections which are not zone aware so we might end up outside of
7542 * the zone but still within the section.
7543 * We have to take care about the node as well. If the node is offline
7544 * its NODE_DATA will be NULL - see page_zone.
7545 */
7546 if (!node_online(page_to_nid(page)))
7547 return false;
7548
7549 zone = page_zone(page);
7550 pfn = page_to_pfn(page);
7551 if (!zone_spans_pfn(zone, pfn))
7552 return false;
7553
7554 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7555 }
7556
7557 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7558
7559 static unsigned long pfn_max_align_down(unsigned long pfn)
7560 {
7561 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7562 pageblock_nr_pages) - 1);
7563 }
7564
7565 static unsigned long pfn_max_align_up(unsigned long pfn)
7566 {
7567 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7568 pageblock_nr_pages));
7569 }
7570
7571 /* [start, end) must belong to a single zone. */
7572 static int __alloc_contig_migrate_range(struct compact_control *cc,
7573 unsigned long start, unsigned long end)
7574 {
7575 /* This function is based on compact_zone() from compaction.c. */
7576 unsigned long nr_reclaimed;
7577 unsigned long pfn = start;
7578 unsigned int tries = 0;
7579 int ret = 0;
7580
7581 migrate_prep();
7582
7583 while (pfn < end || !list_empty(&cc->migratepages)) {
7584 if (fatal_signal_pending(current)) {
7585 ret = -EINTR;
7586 break;
7587 }
7588
7589 if (list_empty(&cc->migratepages)) {
7590 cc->nr_migratepages = 0;
7591 pfn = isolate_migratepages_range(cc, pfn, end);
7592 if (!pfn) {
7593 ret = -EINTR;
7594 break;
7595 }
7596 tries = 0;
7597 } else if (++tries == 5) {
7598 ret = ret < 0 ? ret : -EBUSY;
7599 break;
7600 }
7601
7602 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7603 &cc->migratepages);
7604 cc->nr_migratepages -= nr_reclaimed;
7605
7606 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7607 NULL, 0, cc->mode, MR_CMA);
7608 }
7609 if (ret < 0) {
7610 putback_movable_pages(&cc->migratepages);
7611 return ret;
7612 }
7613 return 0;
7614 }
7615
7616 /**
7617 * alloc_contig_range() -- tries to allocate given range of pages
7618 * @start: start PFN to allocate
7619 * @end: one-past-the-last PFN to allocate
7620 * @migratetype: migratetype of the underlaying pageblocks (either
7621 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7622 * in range must have the same migratetype and it must
7623 * be either of the two.
7624 * @gfp_mask: GFP mask to use during compaction
7625 *
7626 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7627 * aligned, however it's the caller's responsibility to guarantee that
7628 * we are the only thread that changes migrate type of pageblocks the
7629 * pages fall in.
7630 *
7631 * The PFN range must belong to a single zone.
7632 *
7633 * Returns zero on success or negative error code. On success all
7634 * pages which PFN is in [start, end) are allocated for the caller and
7635 * need to be freed with free_contig_range().
7636 */
7637 int alloc_contig_range(unsigned long start, unsigned long end,
7638 unsigned migratetype, gfp_t gfp_mask)
7639 {
7640 unsigned long outer_start, outer_end;
7641 unsigned int order;
7642 int ret = 0;
7643
7644 struct compact_control cc = {
7645 .nr_migratepages = 0,
7646 .order = -1,
7647 .zone = page_zone(pfn_to_page(start)),
7648 .mode = MIGRATE_SYNC,
7649 .ignore_skip_hint = true,
7650 .no_set_skip_hint = true,
7651 .gfp_mask = current_gfp_context(gfp_mask),
7652 };
7653 INIT_LIST_HEAD(&cc.migratepages);
7654
7655 /*
7656 * What we do here is we mark all pageblocks in range as
7657 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7658 * have different sizes, and due to the way page allocator
7659 * work, we align the range to biggest of the two pages so
7660 * that page allocator won't try to merge buddies from
7661 * different pageblocks and change MIGRATE_ISOLATE to some
7662 * other migration type.
7663 *
7664 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7665 * migrate the pages from an unaligned range (ie. pages that
7666 * we are interested in). This will put all the pages in
7667 * range back to page allocator as MIGRATE_ISOLATE.
7668 *
7669 * When this is done, we take the pages in range from page
7670 * allocator removing them from the buddy system. This way
7671 * page allocator will never consider using them.
7672 *
7673 * This lets us mark the pageblocks back as
7674 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7675 * aligned range but not in the unaligned, original range are
7676 * put back to page allocator so that buddy can use them.
7677 */
7678
7679 ret = start_isolate_page_range(pfn_max_align_down(start),
7680 pfn_max_align_up(end), migratetype,
7681 false);
7682 if (ret)
7683 return ret;
7684
7685 /*
7686 * In case of -EBUSY, we'd like to know which page causes problem.
7687 * So, just fall through. test_pages_isolated() has a tracepoint
7688 * which will report the busy page.
7689 *
7690 * It is possible that busy pages could become available before
7691 * the call to test_pages_isolated, and the range will actually be
7692 * allocated. So, if we fall through be sure to clear ret so that
7693 * -EBUSY is not accidentally used or returned to caller.
7694 */
7695 ret = __alloc_contig_migrate_range(&cc, start, end);
7696 if (ret && ret != -EBUSY)
7697 goto done;
7698 ret =0;
7699
7700 /*
7701 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7702 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7703 * more, all pages in [start, end) are free in page allocator.
7704 * What we are going to do is to allocate all pages from
7705 * [start, end) (that is remove them from page allocator).
7706 *
7707 * The only problem is that pages at the beginning and at the
7708 * end of interesting range may be not aligned with pages that
7709 * page allocator holds, ie. they can be part of higher order
7710 * pages. Because of this, we reserve the bigger range and
7711 * once this is done free the pages we are not interested in.
7712 *
7713 * We don't have to hold zone->lock here because the pages are
7714 * isolated thus they won't get removed from buddy.
7715 */
7716
7717 lru_add_drain_all();
7718 drain_all_pages(cc.zone);
7719
7720 order = 0;
7721 outer_start = start;
7722 while (!PageBuddy(pfn_to_page(outer_start))) {
7723 if (++order >= MAX_ORDER) {
7724 outer_start = start;
7725 break;
7726 }
7727 outer_start &= ~0UL << order;
7728 }
7729
7730 if (outer_start != start) {
7731 order = page_order(pfn_to_page(outer_start));
7732
7733 /*
7734 * outer_start page could be small order buddy page and
7735 * it doesn't include start page. Adjust outer_start
7736 * in this case to report failed page properly
7737 * on tracepoint in test_pages_isolated()
7738 */
7739 if (outer_start + (1UL << order) <= start)
7740 outer_start = start;
7741 }
7742
7743 /* Make sure the range is really isolated. */
7744 if (test_pages_isolated(outer_start, end, false)) {
7745 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7746 __func__, outer_start, end);
7747 ret = -EBUSY;
7748 goto done;
7749 }
7750
7751 /* Grab isolated pages from freelists. */
7752 outer_end = isolate_freepages_range(&cc, outer_start, end);
7753 if (!outer_end) {
7754 ret = -EBUSY;
7755 goto done;
7756 }
7757
7758 /* Free head and tail (if any) */
7759 if (start != outer_start)
7760 free_contig_range(outer_start, start - outer_start);
7761 if (end != outer_end)
7762 free_contig_range(end, outer_end - end);
7763
7764 done:
7765 undo_isolate_page_range(pfn_max_align_down(start),
7766 pfn_max_align_up(end), migratetype);
7767 return ret;
7768 }
7769
7770 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7771 {
7772 unsigned int count = 0;
7773
7774 for (; nr_pages--; pfn++) {
7775 struct page *page = pfn_to_page(pfn);
7776
7777 count += page_count(page) != 1;
7778 __free_page(page);
7779 }
7780 WARN(count != 0, "%d pages are still in use!\n", count);
7781 }
7782 #endif
7783
7784 #ifdef CONFIG_MEMORY_HOTPLUG
7785 /*
7786 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7787 * page high values need to be recalulated.
7788 */
7789 void __meminit zone_pcp_update(struct zone *zone)
7790 {
7791 unsigned cpu;
7792 mutex_lock(&pcp_batch_high_lock);
7793 for_each_possible_cpu(cpu)
7794 pageset_set_high_and_batch(zone,
7795 per_cpu_ptr(zone->pageset, cpu));
7796 mutex_unlock(&pcp_batch_high_lock);
7797 }
7798 #endif
7799
7800 void zone_pcp_reset(struct zone *zone)
7801 {
7802 unsigned long flags;
7803 int cpu;
7804 struct per_cpu_pageset *pset;
7805
7806 /* avoid races with drain_pages() */
7807 local_irq_save(flags);
7808 if (zone->pageset != &boot_pageset) {
7809 for_each_online_cpu(cpu) {
7810 pset = per_cpu_ptr(zone->pageset, cpu);
7811 drain_zonestat(zone, pset);
7812 }
7813 free_percpu(zone->pageset);
7814 zone->pageset = &boot_pageset;
7815 }
7816 local_irq_restore(flags);
7817 }
7818
7819 #ifdef CONFIG_MEMORY_HOTREMOVE
7820 /*
7821 * All pages in the range must be in a single zone and isolated
7822 * before calling this.
7823 */
7824 void
7825 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7826 {
7827 struct page *page;
7828 struct zone *zone;
7829 unsigned int order, i;
7830 unsigned long pfn;
7831 unsigned long flags;
7832 /* find the first valid pfn */
7833 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7834 if (pfn_valid(pfn))
7835 break;
7836 if (pfn == end_pfn)
7837 return;
7838 offline_mem_sections(pfn, end_pfn);
7839 zone = page_zone(pfn_to_page(pfn));
7840 spin_lock_irqsave(&zone->lock, flags);
7841 pfn = start_pfn;
7842 while (pfn < end_pfn) {
7843 if (!pfn_valid(pfn)) {
7844 pfn++;
7845 continue;
7846 }
7847 page = pfn_to_page(pfn);
7848 /*
7849 * The HWPoisoned page may be not in buddy system, and
7850 * page_count() is not 0.
7851 */
7852 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7853 pfn++;
7854 SetPageReserved(page);
7855 continue;
7856 }
7857
7858 BUG_ON(page_count(page));
7859 BUG_ON(!PageBuddy(page));
7860 order = page_order(page);
7861 #ifdef CONFIG_DEBUG_VM
7862 pr_info("remove from free list %lx %d %lx\n",
7863 pfn, 1 << order, end_pfn);
7864 #endif
7865 list_del(&page->lru);
7866 rmv_page_order(page);
7867 zone->free_area[order].nr_free--;
7868 for (i = 0; i < (1 << order); i++)
7869 SetPageReserved((page+i));
7870 pfn += (1 << order);
7871 }
7872 spin_unlock_irqrestore(&zone->lock, flags);
7873 }
7874 #endif
7875
7876 bool is_free_buddy_page(struct page *page)
7877 {
7878 struct zone *zone = page_zone(page);
7879 unsigned long pfn = page_to_pfn(page);
7880 unsigned long flags;
7881 unsigned int order;
7882
7883 spin_lock_irqsave(&zone->lock, flags);
7884 for (order = 0; order < MAX_ORDER; order++) {
7885 struct page *page_head = page - (pfn & ((1 << order) - 1));
7886
7887 if (PageBuddy(page_head) && page_order(page_head) >= order)
7888 break;
7889 }
7890 spin_unlock_irqrestore(&zone->lock, flags);
7891
7892 return order < MAX_ORDER;
7893 }