]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/page_alloc.c
mm: microoptimize zonelist operations
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/page_ext.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/page_owner.h>
63
64 #include <asm/sections.h>
65 #include <asm/tlbflush.h>
66 #include <asm/div64.h>
67 #include "internal.h"
68
69 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70 static DEFINE_MUTEX(pcp_batch_high_lock);
71 #define MIN_PERCPU_PAGELIST_FRACTION (8)
72
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 int _node_numa_mem_[MAX_NUMNODES];
88 #endif
89
90 /*
91 * Array of node states.
92 */
93 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
94 [N_POSSIBLE] = NODE_MASK_ALL,
95 [N_ONLINE] = { { [0] = 1UL } },
96 #ifndef CONFIG_NUMA
97 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
98 #ifdef CONFIG_HIGHMEM
99 [N_HIGH_MEMORY] = { { [0] = 1UL } },
100 #endif
101 #ifdef CONFIG_MOVABLE_NODE
102 [N_MEMORY] = { { [0] = 1UL } },
103 #endif
104 [N_CPU] = { { [0] = 1UL } },
105 #endif /* NUMA */
106 };
107 EXPORT_SYMBOL(node_states);
108
109 /* Protect totalram_pages and zone->managed_pages */
110 static DEFINE_SPINLOCK(managed_page_count_lock);
111
112 unsigned long totalram_pages __read_mostly;
113 unsigned long totalreserve_pages __read_mostly;
114 unsigned long totalcma_pages __read_mostly;
115 /*
116 * When calculating the number of globally allowed dirty pages, there
117 * is a certain number of per-zone reserves that should not be
118 * considered dirtyable memory. This is the sum of those reserves
119 * over all existing zones that contribute dirtyable memory.
120 */
121 unsigned long dirty_balance_reserve __read_mostly;
122
123 int percpu_pagelist_fraction;
124 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
125
126 #ifdef CONFIG_PM_SLEEP
127 /*
128 * The following functions are used by the suspend/hibernate code to temporarily
129 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
130 * while devices are suspended. To avoid races with the suspend/hibernate code,
131 * they should always be called with pm_mutex held (gfp_allowed_mask also should
132 * only be modified with pm_mutex held, unless the suspend/hibernate code is
133 * guaranteed not to run in parallel with that modification).
134 */
135
136 static gfp_t saved_gfp_mask;
137
138 void pm_restore_gfp_mask(void)
139 {
140 WARN_ON(!mutex_is_locked(&pm_mutex));
141 if (saved_gfp_mask) {
142 gfp_allowed_mask = saved_gfp_mask;
143 saved_gfp_mask = 0;
144 }
145 }
146
147 void pm_restrict_gfp_mask(void)
148 {
149 WARN_ON(!mutex_is_locked(&pm_mutex));
150 WARN_ON(saved_gfp_mask);
151 saved_gfp_mask = gfp_allowed_mask;
152 gfp_allowed_mask &= ~GFP_IOFS;
153 }
154
155 bool pm_suspended_storage(void)
156 {
157 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
158 return false;
159 return true;
160 }
161 #endif /* CONFIG_PM_SLEEP */
162
163 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
164 int pageblock_order __read_mostly;
165 #endif
166
167 static void __free_pages_ok(struct page *page, unsigned int order);
168
169 /*
170 * results with 256, 32 in the lowmem_reserve sysctl:
171 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
172 * 1G machine -> (16M dma, 784M normal, 224M high)
173 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
174 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
175 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
176 *
177 * TBD: should special case ZONE_DMA32 machines here - in those we normally
178 * don't need any ZONE_NORMAL reservation
179 */
180 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
181 #ifdef CONFIG_ZONE_DMA
182 256,
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 256,
186 #endif
187 #ifdef CONFIG_HIGHMEM
188 32,
189 #endif
190 32,
191 };
192
193 EXPORT_SYMBOL(totalram_pages);
194
195 static char * const zone_names[MAX_NR_ZONES] = {
196 #ifdef CONFIG_ZONE_DMA
197 "DMA",
198 #endif
199 #ifdef CONFIG_ZONE_DMA32
200 "DMA32",
201 #endif
202 "Normal",
203 #ifdef CONFIG_HIGHMEM
204 "HighMem",
205 #endif
206 "Movable",
207 };
208
209 int min_free_kbytes = 1024;
210 int user_min_free_kbytes = -1;
211
212 static unsigned long __meminitdata nr_kernel_pages;
213 static unsigned long __meminitdata nr_all_pages;
214 static unsigned long __meminitdata dma_reserve;
215
216 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
217 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
218 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __initdata required_kernelcore;
220 static unsigned long __initdata required_movablecore;
221 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
222
223 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
224 int movable_zone;
225 EXPORT_SYMBOL(movable_zone);
226 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
227
228 #if MAX_NUMNODES > 1
229 int nr_node_ids __read_mostly = MAX_NUMNODES;
230 int nr_online_nodes __read_mostly = 1;
231 EXPORT_SYMBOL(nr_node_ids);
232 EXPORT_SYMBOL(nr_online_nodes);
233 #endif
234
235 int page_group_by_mobility_disabled __read_mostly;
236
237 void set_pageblock_migratetype(struct page *page, int migratetype)
238 {
239 if (unlikely(page_group_by_mobility_disabled &&
240 migratetype < MIGRATE_PCPTYPES))
241 migratetype = MIGRATE_UNMOVABLE;
242
243 set_pageblock_flags_group(page, (unsigned long)migratetype,
244 PB_migrate, PB_migrate_end);
245 }
246
247 bool oom_killer_disabled __read_mostly;
248
249 #ifdef CONFIG_DEBUG_VM
250 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
251 {
252 int ret = 0;
253 unsigned seq;
254 unsigned long pfn = page_to_pfn(page);
255 unsigned long sp, start_pfn;
256
257 do {
258 seq = zone_span_seqbegin(zone);
259 start_pfn = zone->zone_start_pfn;
260 sp = zone->spanned_pages;
261 if (!zone_spans_pfn(zone, pfn))
262 ret = 1;
263 } while (zone_span_seqretry(zone, seq));
264
265 if (ret)
266 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
267 pfn, zone_to_nid(zone), zone->name,
268 start_pfn, start_pfn + sp);
269
270 return ret;
271 }
272
273 static int page_is_consistent(struct zone *zone, struct page *page)
274 {
275 if (!pfn_valid_within(page_to_pfn(page)))
276 return 0;
277 if (zone != page_zone(page))
278 return 0;
279
280 return 1;
281 }
282 /*
283 * Temporary debugging check for pages not lying within a given zone.
284 */
285 static int bad_range(struct zone *zone, struct page *page)
286 {
287 if (page_outside_zone_boundaries(zone, page))
288 return 1;
289 if (!page_is_consistent(zone, page))
290 return 1;
291
292 return 0;
293 }
294 #else
295 static inline int bad_range(struct zone *zone, struct page *page)
296 {
297 return 0;
298 }
299 #endif
300
301 static void bad_page(struct page *page, const char *reason,
302 unsigned long bad_flags)
303 {
304 static unsigned long resume;
305 static unsigned long nr_shown;
306 static unsigned long nr_unshown;
307
308 /* Don't complain about poisoned pages */
309 if (PageHWPoison(page)) {
310 page_mapcount_reset(page); /* remove PageBuddy */
311 return;
312 }
313
314 /*
315 * Allow a burst of 60 reports, then keep quiet for that minute;
316 * or allow a steady drip of one report per second.
317 */
318 if (nr_shown == 60) {
319 if (time_before(jiffies, resume)) {
320 nr_unshown++;
321 goto out;
322 }
323 if (nr_unshown) {
324 printk(KERN_ALERT
325 "BUG: Bad page state: %lu messages suppressed\n",
326 nr_unshown);
327 nr_unshown = 0;
328 }
329 nr_shown = 0;
330 }
331 if (nr_shown++ == 0)
332 resume = jiffies + 60 * HZ;
333
334 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
335 current->comm, page_to_pfn(page));
336 dump_page_badflags(page, reason, bad_flags);
337
338 print_modules();
339 dump_stack();
340 out:
341 /* Leave bad fields for debug, except PageBuddy could make trouble */
342 page_mapcount_reset(page); /* remove PageBuddy */
343 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
344 }
345
346 /*
347 * Higher-order pages are called "compound pages". They are structured thusly:
348 *
349 * The first PAGE_SIZE page is called the "head page".
350 *
351 * The remaining PAGE_SIZE pages are called "tail pages".
352 *
353 * All pages have PG_compound set. All tail pages have their ->first_page
354 * pointing at the head page.
355 *
356 * The first tail page's ->lru.next holds the address of the compound page's
357 * put_page() function. Its ->lru.prev holds the order of allocation.
358 * This usage means that zero-order pages may not be compound.
359 */
360
361 static void free_compound_page(struct page *page)
362 {
363 __free_pages_ok(page, compound_order(page));
364 }
365
366 void prep_compound_page(struct page *page, unsigned long order)
367 {
368 int i;
369 int nr_pages = 1 << order;
370
371 set_compound_page_dtor(page, free_compound_page);
372 set_compound_order(page, order);
373 __SetPageHead(page);
374 for (i = 1; i < nr_pages; i++) {
375 struct page *p = page + i;
376 set_page_count(p, 0);
377 p->first_page = page;
378 /* Make sure p->first_page is always valid for PageTail() */
379 smp_wmb();
380 __SetPageTail(p);
381 }
382 }
383
384 /* update __split_huge_page_refcount if you change this function */
385 static int destroy_compound_page(struct page *page, unsigned long order)
386 {
387 int i;
388 int nr_pages = 1 << order;
389 int bad = 0;
390
391 if (unlikely(compound_order(page) != order)) {
392 bad_page(page, "wrong compound order", 0);
393 bad++;
394 }
395
396 __ClearPageHead(page);
397
398 for (i = 1; i < nr_pages; i++) {
399 struct page *p = page + i;
400
401 if (unlikely(!PageTail(p))) {
402 bad_page(page, "PageTail not set", 0);
403 bad++;
404 } else if (unlikely(p->first_page != page)) {
405 bad_page(page, "first_page not consistent", 0);
406 bad++;
407 }
408 __ClearPageTail(p);
409 }
410
411 return bad;
412 }
413
414 static inline void prep_zero_page(struct page *page, unsigned int order,
415 gfp_t gfp_flags)
416 {
417 int i;
418
419 /*
420 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
421 * and __GFP_HIGHMEM from hard or soft interrupt context.
422 */
423 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
424 for (i = 0; i < (1 << order); i++)
425 clear_highpage(page + i);
426 }
427
428 #ifdef CONFIG_DEBUG_PAGEALLOC
429 unsigned int _debug_guardpage_minorder;
430 bool _debug_pagealloc_enabled __read_mostly;
431 bool _debug_guardpage_enabled __read_mostly;
432
433 static int __init early_debug_pagealloc(char *buf)
434 {
435 if (!buf)
436 return -EINVAL;
437
438 if (strcmp(buf, "on") == 0)
439 _debug_pagealloc_enabled = true;
440
441 return 0;
442 }
443 early_param("debug_pagealloc", early_debug_pagealloc);
444
445 static bool need_debug_guardpage(void)
446 {
447 /* If we don't use debug_pagealloc, we don't need guard page */
448 if (!debug_pagealloc_enabled())
449 return false;
450
451 return true;
452 }
453
454 static void init_debug_guardpage(void)
455 {
456 if (!debug_pagealloc_enabled())
457 return;
458
459 _debug_guardpage_enabled = true;
460 }
461
462 struct page_ext_operations debug_guardpage_ops = {
463 .need = need_debug_guardpage,
464 .init = init_debug_guardpage,
465 };
466
467 static int __init debug_guardpage_minorder_setup(char *buf)
468 {
469 unsigned long res;
470
471 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
472 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
473 return 0;
474 }
475 _debug_guardpage_minorder = res;
476 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
477 return 0;
478 }
479 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
480
481 static inline void set_page_guard(struct zone *zone, struct page *page,
482 unsigned int order, int migratetype)
483 {
484 struct page_ext *page_ext;
485
486 if (!debug_guardpage_enabled())
487 return;
488
489 page_ext = lookup_page_ext(page);
490 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
491
492 INIT_LIST_HEAD(&page->lru);
493 set_page_private(page, order);
494 /* Guard pages are not available for any usage */
495 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
496 }
497
498 static inline void clear_page_guard(struct zone *zone, struct page *page,
499 unsigned int order, int migratetype)
500 {
501 struct page_ext *page_ext;
502
503 if (!debug_guardpage_enabled())
504 return;
505
506 page_ext = lookup_page_ext(page);
507 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
508
509 set_page_private(page, 0);
510 if (!is_migrate_isolate(migratetype))
511 __mod_zone_freepage_state(zone, (1 << order), migratetype);
512 }
513 #else
514 struct page_ext_operations debug_guardpage_ops = { NULL, };
515 static inline void set_page_guard(struct zone *zone, struct page *page,
516 unsigned int order, int migratetype) {}
517 static inline void clear_page_guard(struct zone *zone, struct page *page,
518 unsigned int order, int migratetype) {}
519 #endif
520
521 static inline void set_page_order(struct page *page, unsigned int order)
522 {
523 set_page_private(page, order);
524 __SetPageBuddy(page);
525 }
526
527 static inline void rmv_page_order(struct page *page)
528 {
529 __ClearPageBuddy(page);
530 set_page_private(page, 0);
531 }
532
533 /*
534 * This function checks whether a page is free && is the buddy
535 * we can do coalesce a page and its buddy if
536 * (a) the buddy is not in a hole &&
537 * (b) the buddy is in the buddy system &&
538 * (c) a page and its buddy have the same order &&
539 * (d) a page and its buddy are in the same zone.
540 *
541 * For recording whether a page is in the buddy system, we set ->_mapcount
542 * PAGE_BUDDY_MAPCOUNT_VALUE.
543 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
544 * serialized by zone->lock.
545 *
546 * For recording page's order, we use page_private(page).
547 */
548 static inline int page_is_buddy(struct page *page, struct page *buddy,
549 unsigned int order)
550 {
551 if (!pfn_valid_within(page_to_pfn(buddy)))
552 return 0;
553
554 if (page_is_guard(buddy) && page_order(buddy) == order) {
555 if (page_zone_id(page) != page_zone_id(buddy))
556 return 0;
557
558 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
559
560 return 1;
561 }
562
563 if (PageBuddy(buddy) && page_order(buddy) == order) {
564 /*
565 * zone check is done late to avoid uselessly
566 * calculating zone/node ids for pages that could
567 * never merge.
568 */
569 if (page_zone_id(page) != page_zone_id(buddy))
570 return 0;
571
572 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
573
574 return 1;
575 }
576 return 0;
577 }
578
579 /*
580 * Freeing function for a buddy system allocator.
581 *
582 * The concept of a buddy system is to maintain direct-mapped table
583 * (containing bit values) for memory blocks of various "orders".
584 * The bottom level table contains the map for the smallest allocatable
585 * units of memory (here, pages), and each level above it describes
586 * pairs of units from the levels below, hence, "buddies".
587 * At a high level, all that happens here is marking the table entry
588 * at the bottom level available, and propagating the changes upward
589 * as necessary, plus some accounting needed to play nicely with other
590 * parts of the VM system.
591 * At each level, we keep a list of pages, which are heads of continuous
592 * free pages of length of (1 << order) and marked with _mapcount
593 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
594 * field.
595 * So when we are allocating or freeing one, we can derive the state of the
596 * other. That is, if we allocate a small block, and both were
597 * free, the remainder of the region must be split into blocks.
598 * If a block is freed, and its buddy is also free, then this
599 * triggers coalescing into a block of larger size.
600 *
601 * -- nyc
602 */
603
604 static inline void __free_one_page(struct page *page,
605 unsigned long pfn,
606 struct zone *zone, unsigned int order,
607 int migratetype)
608 {
609 unsigned long page_idx;
610 unsigned long combined_idx;
611 unsigned long uninitialized_var(buddy_idx);
612 struct page *buddy;
613 int max_order = MAX_ORDER;
614
615 VM_BUG_ON(!zone_is_initialized(zone));
616
617 if (unlikely(PageCompound(page)))
618 if (unlikely(destroy_compound_page(page, order)))
619 return;
620
621 VM_BUG_ON(migratetype == -1);
622 if (is_migrate_isolate(migratetype)) {
623 /*
624 * We restrict max order of merging to prevent merge
625 * between freepages on isolate pageblock and normal
626 * pageblock. Without this, pageblock isolation
627 * could cause incorrect freepage accounting.
628 */
629 max_order = min(MAX_ORDER, pageblock_order + 1);
630 } else {
631 __mod_zone_freepage_state(zone, 1 << order, migratetype);
632 }
633
634 page_idx = pfn & ((1 << max_order) - 1);
635
636 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
637 VM_BUG_ON_PAGE(bad_range(zone, page), page);
638
639 while (order < max_order - 1) {
640 buddy_idx = __find_buddy_index(page_idx, order);
641 buddy = page + (buddy_idx - page_idx);
642 if (!page_is_buddy(page, buddy, order))
643 break;
644 /*
645 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
646 * merge with it and move up one order.
647 */
648 if (page_is_guard(buddy)) {
649 clear_page_guard(zone, buddy, order, migratetype);
650 } else {
651 list_del(&buddy->lru);
652 zone->free_area[order].nr_free--;
653 rmv_page_order(buddy);
654 }
655 combined_idx = buddy_idx & page_idx;
656 page = page + (combined_idx - page_idx);
657 page_idx = combined_idx;
658 order++;
659 }
660 set_page_order(page, order);
661
662 /*
663 * If this is not the largest possible page, check if the buddy
664 * of the next-highest order is free. If it is, it's possible
665 * that pages are being freed that will coalesce soon. In case,
666 * that is happening, add the free page to the tail of the list
667 * so it's less likely to be used soon and more likely to be merged
668 * as a higher order page
669 */
670 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
671 struct page *higher_page, *higher_buddy;
672 combined_idx = buddy_idx & page_idx;
673 higher_page = page + (combined_idx - page_idx);
674 buddy_idx = __find_buddy_index(combined_idx, order + 1);
675 higher_buddy = higher_page + (buddy_idx - combined_idx);
676 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
677 list_add_tail(&page->lru,
678 &zone->free_area[order].free_list[migratetype]);
679 goto out;
680 }
681 }
682
683 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
684 out:
685 zone->free_area[order].nr_free++;
686 }
687
688 static inline int free_pages_check(struct page *page)
689 {
690 const char *bad_reason = NULL;
691 unsigned long bad_flags = 0;
692
693 if (unlikely(page_mapcount(page)))
694 bad_reason = "nonzero mapcount";
695 if (unlikely(page->mapping != NULL))
696 bad_reason = "non-NULL mapping";
697 if (unlikely(atomic_read(&page->_count) != 0))
698 bad_reason = "nonzero _count";
699 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
700 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
701 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
702 }
703 #ifdef CONFIG_MEMCG
704 if (unlikely(page->mem_cgroup))
705 bad_reason = "page still charged to cgroup";
706 #endif
707 if (unlikely(bad_reason)) {
708 bad_page(page, bad_reason, bad_flags);
709 return 1;
710 }
711 page_cpupid_reset_last(page);
712 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
713 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
714 return 0;
715 }
716
717 /*
718 * Frees a number of pages from the PCP lists
719 * Assumes all pages on list are in same zone, and of same order.
720 * count is the number of pages to free.
721 *
722 * If the zone was previously in an "all pages pinned" state then look to
723 * see if this freeing clears that state.
724 *
725 * And clear the zone's pages_scanned counter, to hold off the "all pages are
726 * pinned" detection logic.
727 */
728 static void free_pcppages_bulk(struct zone *zone, int count,
729 struct per_cpu_pages *pcp)
730 {
731 int migratetype = 0;
732 int batch_free = 0;
733 int to_free = count;
734 unsigned long nr_scanned;
735
736 spin_lock(&zone->lock);
737 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
738 if (nr_scanned)
739 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
740
741 while (to_free) {
742 struct page *page;
743 struct list_head *list;
744
745 /*
746 * Remove pages from lists in a round-robin fashion. A
747 * batch_free count is maintained that is incremented when an
748 * empty list is encountered. This is so more pages are freed
749 * off fuller lists instead of spinning excessively around empty
750 * lists
751 */
752 do {
753 batch_free++;
754 if (++migratetype == MIGRATE_PCPTYPES)
755 migratetype = 0;
756 list = &pcp->lists[migratetype];
757 } while (list_empty(list));
758
759 /* This is the only non-empty list. Free them all. */
760 if (batch_free == MIGRATE_PCPTYPES)
761 batch_free = to_free;
762
763 do {
764 int mt; /* migratetype of the to-be-freed page */
765
766 page = list_entry(list->prev, struct page, lru);
767 /* must delete as __free_one_page list manipulates */
768 list_del(&page->lru);
769 mt = get_freepage_migratetype(page);
770 if (unlikely(has_isolate_pageblock(zone)))
771 mt = get_pageblock_migratetype(page);
772
773 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
774 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
775 trace_mm_page_pcpu_drain(page, 0, mt);
776 } while (--to_free && --batch_free && !list_empty(list));
777 }
778 spin_unlock(&zone->lock);
779 }
780
781 static void free_one_page(struct zone *zone,
782 struct page *page, unsigned long pfn,
783 unsigned int order,
784 int migratetype)
785 {
786 unsigned long nr_scanned;
787 spin_lock(&zone->lock);
788 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
789 if (nr_scanned)
790 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
791
792 if (unlikely(has_isolate_pageblock(zone) ||
793 is_migrate_isolate(migratetype))) {
794 migratetype = get_pfnblock_migratetype(page, pfn);
795 }
796 __free_one_page(page, pfn, zone, order, migratetype);
797 spin_unlock(&zone->lock);
798 }
799
800 static bool free_pages_prepare(struct page *page, unsigned int order)
801 {
802 int i;
803 int bad = 0;
804
805 VM_BUG_ON_PAGE(PageTail(page), page);
806 VM_BUG_ON_PAGE(PageHead(page) && compound_order(page) != order, page);
807
808 trace_mm_page_free(page, order);
809 kmemcheck_free_shadow(page, order);
810
811 if (PageAnon(page))
812 page->mapping = NULL;
813 for (i = 0; i < (1 << order); i++)
814 bad += free_pages_check(page + i);
815 if (bad)
816 return false;
817
818 reset_page_owner(page, order);
819
820 if (!PageHighMem(page)) {
821 debug_check_no_locks_freed(page_address(page),
822 PAGE_SIZE << order);
823 debug_check_no_obj_freed(page_address(page),
824 PAGE_SIZE << order);
825 }
826 arch_free_page(page, order);
827 kernel_map_pages(page, 1 << order, 0);
828
829 return true;
830 }
831
832 static void __free_pages_ok(struct page *page, unsigned int order)
833 {
834 unsigned long flags;
835 int migratetype;
836 unsigned long pfn = page_to_pfn(page);
837
838 if (!free_pages_prepare(page, order))
839 return;
840
841 migratetype = get_pfnblock_migratetype(page, pfn);
842 local_irq_save(flags);
843 __count_vm_events(PGFREE, 1 << order);
844 set_freepage_migratetype(page, migratetype);
845 free_one_page(page_zone(page), page, pfn, order, migratetype);
846 local_irq_restore(flags);
847 }
848
849 void __init __free_pages_bootmem(struct page *page, unsigned int order)
850 {
851 unsigned int nr_pages = 1 << order;
852 struct page *p = page;
853 unsigned int loop;
854
855 prefetchw(p);
856 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
857 prefetchw(p + 1);
858 __ClearPageReserved(p);
859 set_page_count(p, 0);
860 }
861 __ClearPageReserved(p);
862 set_page_count(p, 0);
863
864 page_zone(page)->managed_pages += nr_pages;
865 set_page_refcounted(page);
866 __free_pages(page, order);
867 }
868
869 #ifdef CONFIG_CMA
870 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
871 void __init init_cma_reserved_pageblock(struct page *page)
872 {
873 unsigned i = pageblock_nr_pages;
874 struct page *p = page;
875
876 do {
877 __ClearPageReserved(p);
878 set_page_count(p, 0);
879 } while (++p, --i);
880
881 set_pageblock_migratetype(page, MIGRATE_CMA);
882
883 if (pageblock_order >= MAX_ORDER) {
884 i = pageblock_nr_pages;
885 p = page;
886 do {
887 set_page_refcounted(p);
888 __free_pages(p, MAX_ORDER - 1);
889 p += MAX_ORDER_NR_PAGES;
890 } while (i -= MAX_ORDER_NR_PAGES);
891 } else {
892 set_page_refcounted(page);
893 __free_pages(page, pageblock_order);
894 }
895
896 adjust_managed_page_count(page, pageblock_nr_pages);
897 }
898 #endif
899
900 /*
901 * The order of subdivision here is critical for the IO subsystem.
902 * Please do not alter this order without good reasons and regression
903 * testing. Specifically, as large blocks of memory are subdivided,
904 * the order in which smaller blocks are delivered depends on the order
905 * they're subdivided in this function. This is the primary factor
906 * influencing the order in which pages are delivered to the IO
907 * subsystem according to empirical testing, and this is also justified
908 * by considering the behavior of a buddy system containing a single
909 * large block of memory acted on by a series of small allocations.
910 * This behavior is a critical factor in sglist merging's success.
911 *
912 * -- nyc
913 */
914 static inline void expand(struct zone *zone, struct page *page,
915 int low, int high, struct free_area *area,
916 int migratetype)
917 {
918 unsigned long size = 1 << high;
919
920 while (high > low) {
921 area--;
922 high--;
923 size >>= 1;
924 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
925
926 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
927 debug_guardpage_enabled() &&
928 high < debug_guardpage_minorder()) {
929 /*
930 * Mark as guard pages (or page), that will allow to
931 * merge back to allocator when buddy will be freed.
932 * Corresponding page table entries will not be touched,
933 * pages will stay not present in virtual address space
934 */
935 set_page_guard(zone, &page[size], high, migratetype);
936 continue;
937 }
938 list_add(&page[size].lru, &area->free_list[migratetype]);
939 area->nr_free++;
940 set_page_order(&page[size], high);
941 }
942 }
943
944 /*
945 * This page is about to be returned from the page allocator
946 */
947 static inline int check_new_page(struct page *page)
948 {
949 const char *bad_reason = NULL;
950 unsigned long bad_flags = 0;
951
952 if (unlikely(page_mapcount(page)))
953 bad_reason = "nonzero mapcount";
954 if (unlikely(page->mapping != NULL))
955 bad_reason = "non-NULL mapping";
956 if (unlikely(atomic_read(&page->_count) != 0))
957 bad_reason = "nonzero _count";
958 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
959 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
960 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
961 }
962 #ifdef CONFIG_MEMCG
963 if (unlikely(page->mem_cgroup))
964 bad_reason = "page still charged to cgroup";
965 #endif
966 if (unlikely(bad_reason)) {
967 bad_page(page, bad_reason, bad_flags);
968 return 1;
969 }
970 return 0;
971 }
972
973 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
974 int alloc_flags)
975 {
976 int i;
977
978 for (i = 0; i < (1 << order); i++) {
979 struct page *p = page + i;
980 if (unlikely(check_new_page(p)))
981 return 1;
982 }
983
984 set_page_private(page, 0);
985 set_page_refcounted(page);
986
987 arch_alloc_page(page, order);
988 kernel_map_pages(page, 1 << order, 1);
989
990 if (gfp_flags & __GFP_ZERO)
991 prep_zero_page(page, order, gfp_flags);
992
993 if (order && (gfp_flags & __GFP_COMP))
994 prep_compound_page(page, order);
995
996 set_page_owner(page, order, gfp_flags);
997
998 /*
999 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
1000 * allocate the page. The expectation is that the caller is taking
1001 * steps that will free more memory. The caller should avoid the page
1002 * being used for !PFMEMALLOC purposes.
1003 */
1004 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1005
1006 return 0;
1007 }
1008
1009 /*
1010 * Go through the free lists for the given migratetype and remove
1011 * the smallest available page from the freelists
1012 */
1013 static inline
1014 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1015 int migratetype)
1016 {
1017 unsigned int current_order;
1018 struct free_area *area;
1019 struct page *page;
1020
1021 /* Find a page of the appropriate size in the preferred list */
1022 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1023 area = &(zone->free_area[current_order]);
1024 if (list_empty(&area->free_list[migratetype]))
1025 continue;
1026
1027 page = list_entry(area->free_list[migratetype].next,
1028 struct page, lru);
1029 list_del(&page->lru);
1030 rmv_page_order(page);
1031 area->nr_free--;
1032 expand(zone, page, order, current_order, area, migratetype);
1033 set_freepage_migratetype(page, migratetype);
1034 return page;
1035 }
1036
1037 return NULL;
1038 }
1039
1040
1041 /*
1042 * This array describes the order lists are fallen back to when
1043 * the free lists for the desirable migrate type are depleted
1044 */
1045 static int fallbacks[MIGRATE_TYPES][4] = {
1046 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1047 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1048 #ifdef CONFIG_CMA
1049 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1050 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1051 #else
1052 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1053 #endif
1054 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1055 #ifdef CONFIG_MEMORY_ISOLATION
1056 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1057 #endif
1058 };
1059
1060 /*
1061 * Move the free pages in a range to the free lists of the requested type.
1062 * Note that start_page and end_pages are not aligned on a pageblock
1063 * boundary. If alignment is required, use move_freepages_block()
1064 */
1065 int move_freepages(struct zone *zone,
1066 struct page *start_page, struct page *end_page,
1067 int migratetype)
1068 {
1069 struct page *page;
1070 unsigned long order;
1071 int pages_moved = 0;
1072
1073 #ifndef CONFIG_HOLES_IN_ZONE
1074 /*
1075 * page_zone is not safe to call in this context when
1076 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1077 * anyway as we check zone boundaries in move_freepages_block().
1078 * Remove at a later date when no bug reports exist related to
1079 * grouping pages by mobility
1080 */
1081 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1082 #endif
1083
1084 for (page = start_page; page <= end_page;) {
1085 /* Make sure we are not inadvertently changing nodes */
1086 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1087
1088 if (!pfn_valid_within(page_to_pfn(page))) {
1089 page++;
1090 continue;
1091 }
1092
1093 if (!PageBuddy(page)) {
1094 page++;
1095 continue;
1096 }
1097
1098 order = page_order(page);
1099 list_move(&page->lru,
1100 &zone->free_area[order].free_list[migratetype]);
1101 set_freepage_migratetype(page, migratetype);
1102 page += 1 << order;
1103 pages_moved += 1 << order;
1104 }
1105
1106 return pages_moved;
1107 }
1108
1109 int move_freepages_block(struct zone *zone, struct page *page,
1110 int migratetype)
1111 {
1112 unsigned long start_pfn, end_pfn;
1113 struct page *start_page, *end_page;
1114
1115 start_pfn = page_to_pfn(page);
1116 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1117 start_page = pfn_to_page(start_pfn);
1118 end_page = start_page + pageblock_nr_pages - 1;
1119 end_pfn = start_pfn + pageblock_nr_pages - 1;
1120
1121 /* Do not cross zone boundaries */
1122 if (!zone_spans_pfn(zone, start_pfn))
1123 start_page = page;
1124 if (!zone_spans_pfn(zone, end_pfn))
1125 return 0;
1126
1127 return move_freepages(zone, start_page, end_page, migratetype);
1128 }
1129
1130 static void change_pageblock_range(struct page *pageblock_page,
1131 int start_order, int migratetype)
1132 {
1133 int nr_pageblocks = 1 << (start_order - pageblock_order);
1134
1135 while (nr_pageblocks--) {
1136 set_pageblock_migratetype(pageblock_page, migratetype);
1137 pageblock_page += pageblock_nr_pages;
1138 }
1139 }
1140
1141 /*
1142 * If breaking a large block of pages, move all free pages to the preferred
1143 * allocation list. If falling back for a reclaimable kernel allocation, be
1144 * more aggressive about taking ownership of free pages.
1145 *
1146 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1147 * nor move CMA pages to different free lists. We don't want unmovable pages
1148 * to be allocated from MIGRATE_CMA areas.
1149 *
1150 * Returns the new migratetype of the pageblock (or the same old migratetype
1151 * if it was unchanged).
1152 */
1153 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1154 int start_type, int fallback_type)
1155 {
1156 int current_order = page_order(page);
1157
1158 /*
1159 * When borrowing from MIGRATE_CMA, we need to release the excess
1160 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1161 * is set to CMA so it is returned to the correct freelist in case
1162 * the page ends up being not actually allocated from the pcp lists.
1163 */
1164 if (is_migrate_cma(fallback_type))
1165 return fallback_type;
1166
1167 /* Take ownership for orders >= pageblock_order */
1168 if (current_order >= pageblock_order) {
1169 change_pageblock_range(page, current_order, start_type);
1170 return start_type;
1171 }
1172
1173 if (current_order >= pageblock_order / 2 ||
1174 start_type == MIGRATE_RECLAIMABLE ||
1175 page_group_by_mobility_disabled) {
1176 int pages;
1177
1178 pages = move_freepages_block(zone, page, start_type);
1179
1180 /* Claim the whole block if over half of it is free */
1181 if (pages >= (1 << (pageblock_order-1)) ||
1182 page_group_by_mobility_disabled) {
1183
1184 set_pageblock_migratetype(page, start_type);
1185 return start_type;
1186 }
1187
1188 }
1189
1190 return fallback_type;
1191 }
1192
1193 /* Remove an element from the buddy allocator from the fallback list */
1194 static inline struct page *
1195 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1196 {
1197 struct free_area *area;
1198 unsigned int current_order;
1199 struct page *page;
1200 int migratetype, new_type, i;
1201
1202 /* Find the largest possible block of pages in the other list */
1203 for (current_order = MAX_ORDER-1;
1204 current_order >= order && current_order <= MAX_ORDER-1;
1205 --current_order) {
1206 for (i = 0;; i++) {
1207 migratetype = fallbacks[start_migratetype][i];
1208
1209 /* MIGRATE_RESERVE handled later if necessary */
1210 if (migratetype == MIGRATE_RESERVE)
1211 break;
1212
1213 area = &(zone->free_area[current_order]);
1214 if (list_empty(&area->free_list[migratetype]))
1215 continue;
1216
1217 page = list_entry(area->free_list[migratetype].next,
1218 struct page, lru);
1219 area->nr_free--;
1220
1221 new_type = try_to_steal_freepages(zone, page,
1222 start_migratetype,
1223 migratetype);
1224
1225 /* Remove the page from the freelists */
1226 list_del(&page->lru);
1227 rmv_page_order(page);
1228
1229 expand(zone, page, order, current_order, area,
1230 new_type);
1231 /* The freepage_migratetype may differ from pageblock's
1232 * migratetype depending on the decisions in
1233 * try_to_steal_freepages. This is OK as long as it does
1234 * not differ for MIGRATE_CMA type.
1235 */
1236 set_freepage_migratetype(page, new_type);
1237
1238 trace_mm_page_alloc_extfrag(page, order, current_order,
1239 start_migratetype, migratetype, new_type);
1240
1241 return page;
1242 }
1243 }
1244
1245 return NULL;
1246 }
1247
1248 /*
1249 * Do the hard work of removing an element from the buddy allocator.
1250 * Call me with the zone->lock already held.
1251 */
1252 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1253 int migratetype)
1254 {
1255 struct page *page;
1256
1257 retry_reserve:
1258 page = __rmqueue_smallest(zone, order, migratetype);
1259
1260 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1261 page = __rmqueue_fallback(zone, order, migratetype);
1262
1263 /*
1264 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1265 * is used because __rmqueue_smallest is an inline function
1266 * and we want just one call site
1267 */
1268 if (!page) {
1269 migratetype = MIGRATE_RESERVE;
1270 goto retry_reserve;
1271 }
1272 }
1273
1274 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1275 return page;
1276 }
1277
1278 /*
1279 * Obtain a specified number of elements from the buddy allocator, all under
1280 * a single hold of the lock, for efficiency. Add them to the supplied list.
1281 * Returns the number of new pages which were placed at *list.
1282 */
1283 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1284 unsigned long count, struct list_head *list,
1285 int migratetype, bool cold)
1286 {
1287 int i;
1288
1289 spin_lock(&zone->lock);
1290 for (i = 0; i < count; ++i) {
1291 struct page *page = __rmqueue(zone, order, migratetype);
1292 if (unlikely(page == NULL))
1293 break;
1294
1295 /*
1296 * Split buddy pages returned by expand() are received here
1297 * in physical page order. The page is added to the callers and
1298 * list and the list head then moves forward. From the callers
1299 * perspective, the linked list is ordered by page number in
1300 * some conditions. This is useful for IO devices that can
1301 * merge IO requests if the physical pages are ordered
1302 * properly.
1303 */
1304 if (likely(!cold))
1305 list_add(&page->lru, list);
1306 else
1307 list_add_tail(&page->lru, list);
1308 list = &page->lru;
1309 if (is_migrate_cma(get_freepage_migratetype(page)))
1310 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1311 -(1 << order));
1312 }
1313 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1314 spin_unlock(&zone->lock);
1315 return i;
1316 }
1317
1318 #ifdef CONFIG_NUMA
1319 /*
1320 * Called from the vmstat counter updater to drain pagesets of this
1321 * currently executing processor on remote nodes after they have
1322 * expired.
1323 *
1324 * Note that this function must be called with the thread pinned to
1325 * a single processor.
1326 */
1327 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1328 {
1329 unsigned long flags;
1330 int to_drain, batch;
1331
1332 local_irq_save(flags);
1333 batch = ACCESS_ONCE(pcp->batch);
1334 to_drain = min(pcp->count, batch);
1335 if (to_drain > 0) {
1336 free_pcppages_bulk(zone, to_drain, pcp);
1337 pcp->count -= to_drain;
1338 }
1339 local_irq_restore(flags);
1340 }
1341 #endif
1342
1343 /*
1344 * Drain pcplists of the indicated processor and zone.
1345 *
1346 * The processor must either be the current processor and the
1347 * thread pinned to the current processor or a processor that
1348 * is not online.
1349 */
1350 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1351 {
1352 unsigned long flags;
1353 struct per_cpu_pageset *pset;
1354 struct per_cpu_pages *pcp;
1355
1356 local_irq_save(flags);
1357 pset = per_cpu_ptr(zone->pageset, cpu);
1358
1359 pcp = &pset->pcp;
1360 if (pcp->count) {
1361 free_pcppages_bulk(zone, pcp->count, pcp);
1362 pcp->count = 0;
1363 }
1364 local_irq_restore(flags);
1365 }
1366
1367 /*
1368 * Drain pcplists of all zones on the indicated processor.
1369 *
1370 * The processor must either be the current processor and the
1371 * thread pinned to the current processor or a processor that
1372 * is not online.
1373 */
1374 static void drain_pages(unsigned int cpu)
1375 {
1376 struct zone *zone;
1377
1378 for_each_populated_zone(zone) {
1379 drain_pages_zone(cpu, zone);
1380 }
1381 }
1382
1383 /*
1384 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1385 *
1386 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1387 * the single zone's pages.
1388 */
1389 void drain_local_pages(struct zone *zone)
1390 {
1391 int cpu = smp_processor_id();
1392
1393 if (zone)
1394 drain_pages_zone(cpu, zone);
1395 else
1396 drain_pages(cpu);
1397 }
1398
1399 /*
1400 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1401 *
1402 * When zone parameter is non-NULL, spill just the single zone's pages.
1403 *
1404 * Note that this code is protected against sending an IPI to an offline
1405 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1406 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1407 * nothing keeps CPUs from showing up after we populated the cpumask and
1408 * before the call to on_each_cpu_mask().
1409 */
1410 void drain_all_pages(struct zone *zone)
1411 {
1412 int cpu;
1413
1414 /*
1415 * Allocate in the BSS so we wont require allocation in
1416 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1417 */
1418 static cpumask_t cpus_with_pcps;
1419
1420 /*
1421 * We don't care about racing with CPU hotplug event
1422 * as offline notification will cause the notified
1423 * cpu to drain that CPU pcps and on_each_cpu_mask
1424 * disables preemption as part of its processing
1425 */
1426 for_each_online_cpu(cpu) {
1427 struct per_cpu_pageset *pcp;
1428 struct zone *z;
1429 bool has_pcps = false;
1430
1431 if (zone) {
1432 pcp = per_cpu_ptr(zone->pageset, cpu);
1433 if (pcp->pcp.count)
1434 has_pcps = true;
1435 } else {
1436 for_each_populated_zone(z) {
1437 pcp = per_cpu_ptr(z->pageset, cpu);
1438 if (pcp->pcp.count) {
1439 has_pcps = true;
1440 break;
1441 }
1442 }
1443 }
1444
1445 if (has_pcps)
1446 cpumask_set_cpu(cpu, &cpus_with_pcps);
1447 else
1448 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1449 }
1450 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1451 zone, 1);
1452 }
1453
1454 #ifdef CONFIG_HIBERNATION
1455
1456 void mark_free_pages(struct zone *zone)
1457 {
1458 unsigned long pfn, max_zone_pfn;
1459 unsigned long flags;
1460 unsigned int order, t;
1461 struct list_head *curr;
1462
1463 if (zone_is_empty(zone))
1464 return;
1465
1466 spin_lock_irqsave(&zone->lock, flags);
1467
1468 max_zone_pfn = zone_end_pfn(zone);
1469 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1470 if (pfn_valid(pfn)) {
1471 struct page *page = pfn_to_page(pfn);
1472
1473 if (!swsusp_page_is_forbidden(page))
1474 swsusp_unset_page_free(page);
1475 }
1476
1477 for_each_migratetype_order(order, t) {
1478 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1479 unsigned long i;
1480
1481 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1482 for (i = 0; i < (1UL << order); i++)
1483 swsusp_set_page_free(pfn_to_page(pfn + i));
1484 }
1485 }
1486 spin_unlock_irqrestore(&zone->lock, flags);
1487 }
1488 #endif /* CONFIG_PM */
1489
1490 /*
1491 * Free a 0-order page
1492 * cold == true ? free a cold page : free a hot page
1493 */
1494 void free_hot_cold_page(struct page *page, bool cold)
1495 {
1496 struct zone *zone = page_zone(page);
1497 struct per_cpu_pages *pcp;
1498 unsigned long flags;
1499 unsigned long pfn = page_to_pfn(page);
1500 int migratetype;
1501
1502 if (!free_pages_prepare(page, 0))
1503 return;
1504
1505 migratetype = get_pfnblock_migratetype(page, pfn);
1506 set_freepage_migratetype(page, migratetype);
1507 local_irq_save(flags);
1508 __count_vm_event(PGFREE);
1509
1510 /*
1511 * We only track unmovable, reclaimable and movable on pcp lists.
1512 * Free ISOLATE pages back to the allocator because they are being
1513 * offlined but treat RESERVE as movable pages so we can get those
1514 * areas back if necessary. Otherwise, we may have to free
1515 * excessively into the page allocator
1516 */
1517 if (migratetype >= MIGRATE_PCPTYPES) {
1518 if (unlikely(is_migrate_isolate(migratetype))) {
1519 free_one_page(zone, page, pfn, 0, migratetype);
1520 goto out;
1521 }
1522 migratetype = MIGRATE_MOVABLE;
1523 }
1524
1525 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1526 if (!cold)
1527 list_add(&page->lru, &pcp->lists[migratetype]);
1528 else
1529 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1530 pcp->count++;
1531 if (pcp->count >= pcp->high) {
1532 unsigned long batch = ACCESS_ONCE(pcp->batch);
1533 free_pcppages_bulk(zone, batch, pcp);
1534 pcp->count -= batch;
1535 }
1536
1537 out:
1538 local_irq_restore(flags);
1539 }
1540
1541 /*
1542 * Free a list of 0-order pages
1543 */
1544 void free_hot_cold_page_list(struct list_head *list, bool cold)
1545 {
1546 struct page *page, *next;
1547
1548 list_for_each_entry_safe(page, next, list, lru) {
1549 trace_mm_page_free_batched(page, cold);
1550 free_hot_cold_page(page, cold);
1551 }
1552 }
1553
1554 /*
1555 * split_page takes a non-compound higher-order page, and splits it into
1556 * n (1<<order) sub-pages: page[0..n]
1557 * Each sub-page must be freed individually.
1558 *
1559 * Note: this is probably too low level an operation for use in drivers.
1560 * Please consult with lkml before using this in your driver.
1561 */
1562 void split_page(struct page *page, unsigned int order)
1563 {
1564 int i;
1565
1566 VM_BUG_ON_PAGE(PageCompound(page), page);
1567 VM_BUG_ON_PAGE(!page_count(page), page);
1568
1569 #ifdef CONFIG_KMEMCHECK
1570 /*
1571 * Split shadow pages too, because free(page[0]) would
1572 * otherwise free the whole shadow.
1573 */
1574 if (kmemcheck_page_is_tracked(page))
1575 split_page(virt_to_page(page[0].shadow), order);
1576 #endif
1577
1578 set_page_owner(page, 0, 0);
1579 for (i = 1; i < (1 << order); i++) {
1580 set_page_refcounted(page + i);
1581 set_page_owner(page + i, 0, 0);
1582 }
1583 }
1584 EXPORT_SYMBOL_GPL(split_page);
1585
1586 int __isolate_free_page(struct page *page, unsigned int order)
1587 {
1588 unsigned long watermark;
1589 struct zone *zone;
1590 int mt;
1591
1592 BUG_ON(!PageBuddy(page));
1593
1594 zone = page_zone(page);
1595 mt = get_pageblock_migratetype(page);
1596
1597 if (!is_migrate_isolate(mt)) {
1598 /* Obey watermarks as if the page was being allocated */
1599 watermark = low_wmark_pages(zone) + (1 << order);
1600 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1601 return 0;
1602
1603 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1604 }
1605
1606 /* Remove page from free list */
1607 list_del(&page->lru);
1608 zone->free_area[order].nr_free--;
1609 rmv_page_order(page);
1610
1611 /* Set the pageblock if the isolated page is at least a pageblock */
1612 if (order >= pageblock_order - 1) {
1613 struct page *endpage = page + (1 << order) - 1;
1614 for (; page < endpage; page += pageblock_nr_pages) {
1615 int mt = get_pageblock_migratetype(page);
1616 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1617 set_pageblock_migratetype(page,
1618 MIGRATE_MOVABLE);
1619 }
1620 }
1621
1622 set_page_owner(page, order, 0);
1623 return 1UL << order;
1624 }
1625
1626 /*
1627 * Similar to split_page except the page is already free. As this is only
1628 * being used for migration, the migratetype of the block also changes.
1629 * As this is called with interrupts disabled, the caller is responsible
1630 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1631 * are enabled.
1632 *
1633 * Note: this is probably too low level an operation for use in drivers.
1634 * Please consult with lkml before using this in your driver.
1635 */
1636 int split_free_page(struct page *page)
1637 {
1638 unsigned int order;
1639 int nr_pages;
1640
1641 order = page_order(page);
1642
1643 nr_pages = __isolate_free_page(page, order);
1644 if (!nr_pages)
1645 return 0;
1646
1647 /* Split into individual pages */
1648 set_page_refcounted(page);
1649 split_page(page, order);
1650 return nr_pages;
1651 }
1652
1653 /*
1654 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1655 */
1656 static inline
1657 struct page *buffered_rmqueue(struct zone *preferred_zone,
1658 struct zone *zone, unsigned int order,
1659 gfp_t gfp_flags, int migratetype)
1660 {
1661 unsigned long flags;
1662 struct page *page;
1663 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1664
1665 if (likely(order == 0)) {
1666 struct per_cpu_pages *pcp;
1667 struct list_head *list;
1668
1669 local_irq_save(flags);
1670 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1671 list = &pcp->lists[migratetype];
1672 if (list_empty(list)) {
1673 pcp->count += rmqueue_bulk(zone, 0,
1674 pcp->batch, list,
1675 migratetype, cold);
1676 if (unlikely(list_empty(list)))
1677 goto failed;
1678 }
1679
1680 if (cold)
1681 page = list_entry(list->prev, struct page, lru);
1682 else
1683 page = list_entry(list->next, struct page, lru);
1684
1685 list_del(&page->lru);
1686 pcp->count--;
1687 } else {
1688 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1689 /*
1690 * __GFP_NOFAIL is not to be used in new code.
1691 *
1692 * All __GFP_NOFAIL callers should be fixed so that they
1693 * properly detect and handle allocation failures.
1694 *
1695 * We most definitely don't want callers attempting to
1696 * allocate greater than order-1 page units with
1697 * __GFP_NOFAIL.
1698 */
1699 WARN_ON_ONCE(order > 1);
1700 }
1701 spin_lock_irqsave(&zone->lock, flags);
1702 page = __rmqueue(zone, order, migratetype);
1703 spin_unlock(&zone->lock);
1704 if (!page)
1705 goto failed;
1706 __mod_zone_freepage_state(zone, -(1 << order),
1707 get_freepage_migratetype(page));
1708 }
1709
1710 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1711 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1712 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1713 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1714
1715 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1716 zone_statistics(preferred_zone, zone, gfp_flags);
1717 local_irq_restore(flags);
1718
1719 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1720 return page;
1721
1722 failed:
1723 local_irq_restore(flags);
1724 return NULL;
1725 }
1726
1727 #ifdef CONFIG_FAIL_PAGE_ALLOC
1728
1729 static struct {
1730 struct fault_attr attr;
1731
1732 u32 ignore_gfp_highmem;
1733 u32 ignore_gfp_wait;
1734 u32 min_order;
1735 } fail_page_alloc = {
1736 .attr = FAULT_ATTR_INITIALIZER,
1737 .ignore_gfp_wait = 1,
1738 .ignore_gfp_highmem = 1,
1739 .min_order = 1,
1740 };
1741
1742 static int __init setup_fail_page_alloc(char *str)
1743 {
1744 return setup_fault_attr(&fail_page_alloc.attr, str);
1745 }
1746 __setup("fail_page_alloc=", setup_fail_page_alloc);
1747
1748 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1749 {
1750 if (order < fail_page_alloc.min_order)
1751 return false;
1752 if (gfp_mask & __GFP_NOFAIL)
1753 return false;
1754 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1755 return false;
1756 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1757 return false;
1758
1759 return should_fail(&fail_page_alloc.attr, 1 << order);
1760 }
1761
1762 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1763
1764 static int __init fail_page_alloc_debugfs(void)
1765 {
1766 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1767 struct dentry *dir;
1768
1769 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1770 &fail_page_alloc.attr);
1771 if (IS_ERR(dir))
1772 return PTR_ERR(dir);
1773
1774 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1775 &fail_page_alloc.ignore_gfp_wait))
1776 goto fail;
1777 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1778 &fail_page_alloc.ignore_gfp_highmem))
1779 goto fail;
1780 if (!debugfs_create_u32("min-order", mode, dir,
1781 &fail_page_alloc.min_order))
1782 goto fail;
1783
1784 return 0;
1785 fail:
1786 debugfs_remove_recursive(dir);
1787
1788 return -ENOMEM;
1789 }
1790
1791 late_initcall(fail_page_alloc_debugfs);
1792
1793 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1794
1795 #else /* CONFIG_FAIL_PAGE_ALLOC */
1796
1797 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1798 {
1799 return false;
1800 }
1801
1802 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1803
1804 /*
1805 * Return true if free pages are above 'mark'. This takes into account the order
1806 * of the allocation.
1807 */
1808 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1809 unsigned long mark, int classzone_idx, int alloc_flags,
1810 long free_pages)
1811 {
1812 /* free_pages may go negative - that's OK */
1813 long min = mark;
1814 int o;
1815 long free_cma = 0;
1816
1817 free_pages -= (1 << order) - 1;
1818 if (alloc_flags & ALLOC_HIGH)
1819 min -= min / 2;
1820 if (alloc_flags & ALLOC_HARDER)
1821 min -= min / 4;
1822 #ifdef CONFIG_CMA
1823 /* If allocation can't use CMA areas don't use free CMA pages */
1824 if (!(alloc_flags & ALLOC_CMA))
1825 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1826 #endif
1827
1828 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1829 return false;
1830 for (o = 0; o < order; o++) {
1831 /* At the next order, this order's pages become unavailable */
1832 free_pages -= z->free_area[o].nr_free << o;
1833
1834 /* Require fewer higher order pages to be free */
1835 min >>= 1;
1836
1837 if (free_pages <= min)
1838 return false;
1839 }
1840 return true;
1841 }
1842
1843 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1844 int classzone_idx, int alloc_flags)
1845 {
1846 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1847 zone_page_state(z, NR_FREE_PAGES));
1848 }
1849
1850 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1851 unsigned long mark, int classzone_idx, int alloc_flags)
1852 {
1853 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1854
1855 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1856 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1857
1858 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1859 free_pages);
1860 }
1861
1862 #ifdef CONFIG_NUMA
1863 /*
1864 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1865 * skip over zones that are not allowed by the cpuset, or that have
1866 * been recently (in last second) found to be nearly full. See further
1867 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1868 * that have to skip over a lot of full or unallowed zones.
1869 *
1870 * If the zonelist cache is present in the passed zonelist, then
1871 * returns a pointer to the allowed node mask (either the current
1872 * tasks mems_allowed, or node_states[N_MEMORY].)
1873 *
1874 * If the zonelist cache is not available for this zonelist, does
1875 * nothing and returns NULL.
1876 *
1877 * If the fullzones BITMAP in the zonelist cache is stale (more than
1878 * a second since last zap'd) then we zap it out (clear its bits.)
1879 *
1880 * We hold off even calling zlc_setup, until after we've checked the
1881 * first zone in the zonelist, on the theory that most allocations will
1882 * be satisfied from that first zone, so best to examine that zone as
1883 * quickly as we can.
1884 */
1885 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1886 {
1887 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1888 nodemask_t *allowednodes; /* zonelist_cache approximation */
1889
1890 zlc = zonelist->zlcache_ptr;
1891 if (!zlc)
1892 return NULL;
1893
1894 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1895 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1896 zlc->last_full_zap = jiffies;
1897 }
1898
1899 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1900 &cpuset_current_mems_allowed :
1901 &node_states[N_MEMORY];
1902 return allowednodes;
1903 }
1904
1905 /*
1906 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1907 * if it is worth looking at further for free memory:
1908 * 1) Check that the zone isn't thought to be full (doesn't have its
1909 * bit set in the zonelist_cache fullzones BITMAP).
1910 * 2) Check that the zones node (obtained from the zonelist_cache
1911 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1912 * Return true (non-zero) if zone is worth looking at further, or
1913 * else return false (zero) if it is not.
1914 *
1915 * This check -ignores- the distinction between various watermarks,
1916 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1917 * found to be full for any variation of these watermarks, it will
1918 * be considered full for up to one second by all requests, unless
1919 * we are so low on memory on all allowed nodes that we are forced
1920 * into the second scan of the zonelist.
1921 *
1922 * In the second scan we ignore this zonelist cache and exactly
1923 * apply the watermarks to all zones, even it is slower to do so.
1924 * We are low on memory in the second scan, and should leave no stone
1925 * unturned looking for a free page.
1926 */
1927 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1928 nodemask_t *allowednodes)
1929 {
1930 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1931 int i; /* index of *z in zonelist zones */
1932 int n; /* node that zone *z is on */
1933
1934 zlc = zonelist->zlcache_ptr;
1935 if (!zlc)
1936 return 1;
1937
1938 i = z - zonelist->_zonerefs;
1939 n = zlc->z_to_n[i];
1940
1941 /* This zone is worth trying if it is allowed but not full */
1942 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1943 }
1944
1945 /*
1946 * Given 'z' scanning a zonelist, set the corresponding bit in
1947 * zlc->fullzones, so that subsequent attempts to allocate a page
1948 * from that zone don't waste time re-examining it.
1949 */
1950 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1951 {
1952 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1953 int i; /* index of *z in zonelist zones */
1954
1955 zlc = zonelist->zlcache_ptr;
1956 if (!zlc)
1957 return;
1958
1959 i = z - zonelist->_zonerefs;
1960
1961 set_bit(i, zlc->fullzones);
1962 }
1963
1964 /*
1965 * clear all zones full, called after direct reclaim makes progress so that
1966 * a zone that was recently full is not skipped over for up to a second
1967 */
1968 static void zlc_clear_zones_full(struct zonelist *zonelist)
1969 {
1970 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1971
1972 zlc = zonelist->zlcache_ptr;
1973 if (!zlc)
1974 return;
1975
1976 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1977 }
1978
1979 static bool zone_local(struct zone *local_zone, struct zone *zone)
1980 {
1981 return local_zone->node == zone->node;
1982 }
1983
1984 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1985 {
1986 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1987 RECLAIM_DISTANCE;
1988 }
1989
1990 #else /* CONFIG_NUMA */
1991
1992 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1993 {
1994 return NULL;
1995 }
1996
1997 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1998 nodemask_t *allowednodes)
1999 {
2000 return 1;
2001 }
2002
2003 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2004 {
2005 }
2006
2007 static void zlc_clear_zones_full(struct zonelist *zonelist)
2008 {
2009 }
2010
2011 static bool zone_local(struct zone *local_zone, struct zone *zone)
2012 {
2013 return true;
2014 }
2015
2016 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2017 {
2018 return true;
2019 }
2020
2021 #endif /* CONFIG_NUMA */
2022
2023 static void reset_alloc_batches(struct zone *preferred_zone)
2024 {
2025 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2026
2027 do {
2028 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2029 high_wmark_pages(zone) - low_wmark_pages(zone) -
2030 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2031 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2032 } while (zone++ != preferred_zone);
2033 }
2034
2035 /*
2036 * get_page_from_freelist goes through the zonelist trying to allocate
2037 * a page.
2038 */
2039 static struct page *
2040 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2041 const struct alloc_context *ac)
2042 {
2043 struct zonelist *zonelist = ac->zonelist;
2044 struct zoneref *z;
2045 struct page *page = NULL;
2046 struct zone *zone;
2047 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2048 int zlc_active = 0; /* set if using zonelist_cache */
2049 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2050 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2051 (gfp_mask & __GFP_WRITE);
2052 int nr_fair_skipped = 0;
2053 bool zonelist_rescan;
2054
2055 zonelist_scan:
2056 zonelist_rescan = false;
2057
2058 /*
2059 * Scan zonelist, looking for a zone with enough free.
2060 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2061 */
2062 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2063 ac->nodemask) {
2064 unsigned long mark;
2065
2066 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2067 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2068 continue;
2069 if (cpusets_enabled() &&
2070 (alloc_flags & ALLOC_CPUSET) &&
2071 !cpuset_zone_allowed(zone, gfp_mask))
2072 continue;
2073 /*
2074 * Distribute pages in proportion to the individual
2075 * zone size to ensure fair page aging. The zone a
2076 * page was allocated in should have no effect on the
2077 * time the page has in memory before being reclaimed.
2078 */
2079 if (alloc_flags & ALLOC_FAIR) {
2080 if (!zone_local(ac->preferred_zone, zone))
2081 break;
2082 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2083 nr_fair_skipped++;
2084 continue;
2085 }
2086 }
2087 /*
2088 * When allocating a page cache page for writing, we
2089 * want to get it from a zone that is within its dirty
2090 * limit, such that no single zone holds more than its
2091 * proportional share of globally allowed dirty pages.
2092 * The dirty limits take into account the zone's
2093 * lowmem reserves and high watermark so that kswapd
2094 * should be able to balance it without having to
2095 * write pages from its LRU list.
2096 *
2097 * This may look like it could increase pressure on
2098 * lower zones by failing allocations in higher zones
2099 * before they are full. But the pages that do spill
2100 * over are limited as the lower zones are protected
2101 * by this very same mechanism. It should not become
2102 * a practical burden to them.
2103 *
2104 * XXX: For now, allow allocations to potentially
2105 * exceed the per-zone dirty limit in the slowpath
2106 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2107 * which is important when on a NUMA setup the allowed
2108 * zones are together not big enough to reach the
2109 * global limit. The proper fix for these situations
2110 * will require awareness of zones in the
2111 * dirty-throttling and the flusher threads.
2112 */
2113 if (consider_zone_dirty && !zone_dirty_ok(zone))
2114 continue;
2115
2116 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2117 if (!zone_watermark_ok(zone, order, mark,
2118 ac->classzone_idx, alloc_flags)) {
2119 int ret;
2120
2121 /* Checked here to keep the fast path fast */
2122 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2123 if (alloc_flags & ALLOC_NO_WATERMARKS)
2124 goto try_this_zone;
2125
2126 if (IS_ENABLED(CONFIG_NUMA) &&
2127 !did_zlc_setup && nr_online_nodes > 1) {
2128 /*
2129 * we do zlc_setup if there are multiple nodes
2130 * and before considering the first zone allowed
2131 * by the cpuset.
2132 */
2133 allowednodes = zlc_setup(zonelist, alloc_flags);
2134 zlc_active = 1;
2135 did_zlc_setup = 1;
2136 }
2137
2138 if (zone_reclaim_mode == 0 ||
2139 !zone_allows_reclaim(ac->preferred_zone, zone))
2140 goto this_zone_full;
2141
2142 /*
2143 * As we may have just activated ZLC, check if the first
2144 * eligible zone has failed zone_reclaim recently.
2145 */
2146 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2147 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2148 continue;
2149
2150 ret = zone_reclaim(zone, gfp_mask, order);
2151 switch (ret) {
2152 case ZONE_RECLAIM_NOSCAN:
2153 /* did not scan */
2154 continue;
2155 case ZONE_RECLAIM_FULL:
2156 /* scanned but unreclaimable */
2157 continue;
2158 default:
2159 /* did we reclaim enough */
2160 if (zone_watermark_ok(zone, order, mark,
2161 ac->classzone_idx, alloc_flags))
2162 goto try_this_zone;
2163
2164 /*
2165 * Failed to reclaim enough to meet watermark.
2166 * Only mark the zone full if checking the min
2167 * watermark or if we failed to reclaim just
2168 * 1<<order pages or else the page allocator
2169 * fastpath will prematurely mark zones full
2170 * when the watermark is between the low and
2171 * min watermarks.
2172 */
2173 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2174 ret == ZONE_RECLAIM_SOME)
2175 goto this_zone_full;
2176
2177 continue;
2178 }
2179 }
2180
2181 try_this_zone:
2182 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2183 gfp_mask, ac->migratetype);
2184 if (page) {
2185 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2186 goto try_this_zone;
2187 return page;
2188 }
2189 this_zone_full:
2190 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2191 zlc_mark_zone_full(zonelist, z);
2192 }
2193
2194 /*
2195 * The first pass makes sure allocations are spread fairly within the
2196 * local node. However, the local node might have free pages left
2197 * after the fairness batches are exhausted, and remote zones haven't
2198 * even been considered yet. Try once more without fairness, and
2199 * include remote zones now, before entering the slowpath and waking
2200 * kswapd: prefer spilling to a remote zone over swapping locally.
2201 */
2202 if (alloc_flags & ALLOC_FAIR) {
2203 alloc_flags &= ~ALLOC_FAIR;
2204 if (nr_fair_skipped) {
2205 zonelist_rescan = true;
2206 reset_alloc_batches(ac->preferred_zone);
2207 }
2208 if (nr_online_nodes > 1)
2209 zonelist_rescan = true;
2210 }
2211
2212 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2213 /* Disable zlc cache for second zonelist scan */
2214 zlc_active = 0;
2215 zonelist_rescan = true;
2216 }
2217
2218 if (zonelist_rescan)
2219 goto zonelist_scan;
2220
2221 return NULL;
2222 }
2223
2224 /*
2225 * Large machines with many possible nodes should not always dump per-node
2226 * meminfo in irq context.
2227 */
2228 static inline bool should_suppress_show_mem(void)
2229 {
2230 bool ret = false;
2231
2232 #if NODES_SHIFT > 8
2233 ret = in_interrupt();
2234 #endif
2235 return ret;
2236 }
2237
2238 static DEFINE_RATELIMIT_STATE(nopage_rs,
2239 DEFAULT_RATELIMIT_INTERVAL,
2240 DEFAULT_RATELIMIT_BURST);
2241
2242 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2243 {
2244 unsigned int filter = SHOW_MEM_FILTER_NODES;
2245
2246 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2247 debug_guardpage_minorder() > 0)
2248 return;
2249
2250 /*
2251 * This documents exceptions given to allocations in certain
2252 * contexts that are allowed to allocate outside current's set
2253 * of allowed nodes.
2254 */
2255 if (!(gfp_mask & __GFP_NOMEMALLOC))
2256 if (test_thread_flag(TIF_MEMDIE) ||
2257 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2258 filter &= ~SHOW_MEM_FILTER_NODES;
2259 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2260 filter &= ~SHOW_MEM_FILTER_NODES;
2261
2262 if (fmt) {
2263 struct va_format vaf;
2264 va_list args;
2265
2266 va_start(args, fmt);
2267
2268 vaf.fmt = fmt;
2269 vaf.va = &args;
2270
2271 pr_warn("%pV", &vaf);
2272
2273 va_end(args);
2274 }
2275
2276 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2277 current->comm, order, gfp_mask);
2278
2279 dump_stack();
2280 if (!should_suppress_show_mem())
2281 show_mem(filter);
2282 }
2283
2284 static inline int
2285 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2286 unsigned long did_some_progress,
2287 unsigned long pages_reclaimed)
2288 {
2289 /* Do not loop if specifically requested */
2290 if (gfp_mask & __GFP_NORETRY)
2291 return 0;
2292
2293 /* Always retry if specifically requested */
2294 if (gfp_mask & __GFP_NOFAIL)
2295 return 1;
2296
2297 /*
2298 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2299 * making forward progress without invoking OOM. Suspend also disables
2300 * storage devices so kswapd will not help. Bail if we are suspending.
2301 */
2302 if (!did_some_progress && pm_suspended_storage())
2303 return 0;
2304
2305 /*
2306 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2307 * means __GFP_NOFAIL, but that may not be true in other
2308 * implementations.
2309 */
2310 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2311 return 1;
2312
2313 /*
2314 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2315 * specified, then we retry until we no longer reclaim any pages
2316 * (above), or we've reclaimed an order of pages at least as
2317 * large as the allocation's order. In both cases, if the
2318 * allocation still fails, we stop retrying.
2319 */
2320 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2321 return 1;
2322
2323 return 0;
2324 }
2325
2326 static inline struct page *
2327 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2328 const struct alloc_context *ac, unsigned long *did_some_progress)
2329 {
2330 struct page *page;
2331
2332 *did_some_progress = 0;
2333
2334 if (oom_killer_disabled)
2335 return NULL;
2336
2337 /*
2338 * Acquire the per-zone oom lock for each zone. If that
2339 * fails, somebody else is making progress for us.
2340 */
2341 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
2342 *did_some_progress = 1;
2343 schedule_timeout_uninterruptible(1);
2344 return NULL;
2345 }
2346
2347 /*
2348 * PM-freezer should be notified that there might be an OOM killer on
2349 * its way to kill and wake somebody up. This is too early and we might
2350 * end up not killing anything but false positives are acceptable.
2351 * See freeze_processes.
2352 */
2353 note_oom_kill();
2354
2355 /*
2356 * Go through the zonelist yet one more time, keep very high watermark
2357 * here, this is only to catch a parallel oom killing, we must fail if
2358 * we're still under heavy pressure.
2359 */
2360 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2361 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2362 if (page)
2363 goto out;
2364
2365 if (!(gfp_mask & __GFP_NOFAIL)) {
2366 /* Coredumps can quickly deplete all memory reserves */
2367 if (current->flags & PF_DUMPCORE)
2368 goto out;
2369 /* The OOM killer will not help higher order allocs */
2370 if (order > PAGE_ALLOC_COSTLY_ORDER)
2371 goto out;
2372 /* The OOM killer does not needlessly kill tasks for lowmem */
2373 if (ac->high_zoneidx < ZONE_NORMAL)
2374 goto out;
2375 /* The OOM killer does not compensate for light reclaim */
2376 if (!(gfp_mask & __GFP_FS))
2377 goto out;
2378 /*
2379 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2380 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2381 * The caller should handle page allocation failure by itself if
2382 * it specifies __GFP_THISNODE.
2383 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2384 */
2385 if (gfp_mask & __GFP_THISNODE)
2386 goto out;
2387 }
2388 /* Exhausted what can be done so it's blamo time */
2389 out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false);
2390 *did_some_progress = 1;
2391 out:
2392 oom_zonelist_unlock(ac->zonelist, gfp_mask);
2393 return page;
2394 }
2395
2396 #ifdef CONFIG_COMPACTION
2397 /* Try memory compaction for high-order allocations before reclaim */
2398 static struct page *
2399 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2400 int alloc_flags, const struct alloc_context *ac,
2401 enum migrate_mode mode, int *contended_compaction,
2402 bool *deferred_compaction)
2403 {
2404 unsigned long compact_result;
2405 struct page *page;
2406
2407 if (!order)
2408 return NULL;
2409
2410 current->flags |= PF_MEMALLOC;
2411 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2412 mode, contended_compaction);
2413 current->flags &= ~PF_MEMALLOC;
2414
2415 switch (compact_result) {
2416 case COMPACT_DEFERRED:
2417 *deferred_compaction = true;
2418 /* fall-through */
2419 case COMPACT_SKIPPED:
2420 return NULL;
2421 default:
2422 break;
2423 }
2424
2425 /*
2426 * At least in one zone compaction wasn't deferred or skipped, so let's
2427 * count a compaction stall
2428 */
2429 count_vm_event(COMPACTSTALL);
2430
2431 page = get_page_from_freelist(gfp_mask, order,
2432 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2433
2434 if (page) {
2435 struct zone *zone = page_zone(page);
2436
2437 zone->compact_blockskip_flush = false;
2438 compaction_defer_reset(zone, order, true);
2439 count_vm_event(COMPACTSUCCESS);
2440 return page;
2441 }
2442
2443 /*
2444 * It's bad if compaction run occurs and fails. The most likely reason
2445 * is that pages exist, but not enough to satisfy watermarks.
2446 */
2447 count_vm_event(COMPACTFAIL);
2448
2449 cond_resched();
2450
2451 return NULL;
2452 }
2453 #else
2454 static inline struct page *
2455 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2456 int alloc_flags, const struct alloc_context *ac,
2457 enum migrate_mode mode, int *contended_compaction,
2458 bool *deferred_compaction)
2459 {
2460 return NULL;
2461 }
2462 #endif /* CONFIG_COMPACTION */
2463
2464 /* Perform direct synchronous page reclaim */
2465 static int
2466 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2467 const struct alloc_context *ac)
2468 {
2469 struct reclaim_state reclaim_state;
2470 int progress;
2471
2472 cond_resched();
2473
2474 /* We now go into synchronous reclaim */
2475 cpuset_memory_pressure_bump();
2476 current->flags |= PF_MEMALLOC;
2477 lockdep_set_current_reclaim_state(gfp_mask);
2478 reclaim_state.reclaimed_slab = 0;
2479 current->reclaim_state = &reclaim_state;
2480
2481 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2482 ac->nodemask);
2483
2484 current->reclaim_state = NULL;
2485 lockdep_clear_current_reclaim_state();
2486 current->flags &= ~PF_MEMALLOC;
2487
2488 cond_resched();
2489
2490 return progress;
2491 }
2492
2493 /* The really slow allocator path where we enter direct reclaim */
2494 static inline struct page *
2495 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2496 int alloc_flags, const struct alloc_context *ac,
2497 unsigned long *did_some_progress)
2498 {
2499 struct page *page = NULL;
2500 bool drained = false;
2501
2502 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2503 if (unlikely(!(*did_some_progress)))
2504 return NULL;
2505
2506 /* After successful reclaim, reconsider all zones for allocation */
2507 if (IS_ENABLED(CONFIG_NUMA))
2508 zlc_clear_zones_full(ac->zonelist);
2509
2510 retry:
2511 page = get_page_from_freelist(gfp_mask, order,
2512 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2513
2514 /*
2515 * If an allocation failed after direct reclaim, it could be because
2516 * pages are pinned on the per-cpu lists. Drain them and try again
2517 */
2518 if (!page && !drained) {
2519 drain_all_pages(NULL);
2520 drained = true;
2521 goto retry;
2522 }
2523
2524 return page;
2525 }
2526
2527 /*
2528 * This is called in the allocator slow-path if the allocation request is of
2529 * sufficient urgency to ignore watermarks and take other desperate measures
2530 */
2531 static inline struct page *
2532 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2533 const struct alloc_context *ac)
2534 {
2535 struct page *page;
2536
2537 do {
2538 page = get_page_from_freelist(gfp_mask, order,
2539 ALLOC_NO_WATERMARKS, ac);
2540
2541 if (!page && gfp_mask & __GFP_NOFAIL)
2542 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2543 HZ/50);
2544 } while (!page && (gfp_mask & __GFP_NOFAIL));
2545
2546 return page;
2547 }
2548
2549 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2550 {
2551 struct zoneref *z;
2552 struct zone *zone;
2553
2554 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2555 ac->high_zoneidx, ac->nodemask)
2556 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2557 }
2558
2559 static inline int
2560 gfp_to_alloc_flags(gfp_t gfp_mask)
2561 {
2562 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2563 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2564
2565 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2566 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2567
2568 /*
2569 * The caller may dip into page reserves a bit more if the caller
2570 * cannot run direct reclaim, or if the caller has realtime scheduling
2571 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2572 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2573 */
2574 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2575
2576 if (atomic) {
2577 /*
2578 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2579 * if it can't schedule.
2580 */
2581 if (!(gfp_mask & __GFP_NOMEMALLOC))
2582 alloc_flags |= ALLOC_HARDER;
2583 /*
2584 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2585 * comment for __cpuset_node_allowed().
2586 */
2587 alloc_flags &= ~ALLOC_CPUSET;
2588 } else if (unlikely(rt_task(current)) && !in_interrupt())
2589 alloc_flags |= ALLOC_HARDER;
2590
2591 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2592 if (gfp_mask & __GFP_MEMALLOC)
2593 alloc_flags |= ALLOC_NO_WATERMARKS;
2594 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2595 alloc_flags |= ALLOC_NO_WATERMARKS;
2596 else if (!in_interrupt() &&
2597 ((current->flags & PF_MEMALLOC) ||
2598 unlikely(test_thread_flag(TIF_MEMDIE))))
2599 alloc_flags |= ALLOC_NO_WATERMARKS;
2600 }
2601 #ifdef CONFIG_CMA
2602 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2603 alloc_flags |= ALLOC_CMA;
2604 #endif
2605 return alloc_flags;
2606 }
2607
2608 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2609 {
2610 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2611 }
2612
2613 static inline struct page *
2614 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2615 struct alloc_context *ac)
2616 {
2617 const gfp_t wait = gfp_mask & __GFP_WAIT;
2618 struct page *page = NULL;
2619 int alloc_flags;
2620 unsigned long pages_reclaimed = 0;
2621 unsigned long did_some_progress;
2622 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2623 bool deferred_compaction = false;
2624 int contended_compaction = COMPACT_CONTENDED_NONE;
2625
2626 /*
2627 * In the slowpath, we sanity check order to avoid ever trying to
2628 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2629 * be using allocators in order of preference for an area that is
2630 * too large.
2631 */
2632 if (order >= MAX_ORDER) {
2633 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2634 return NULL;
2635 }
2636
2637 /*
2638 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2639 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2640 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2641 * using a larger set of nodes after it has established that the
2642 * allowed per node queues are empty and that nodes are
2643 * over allocated.
2644 */
2645 if (IS_ENABLED(CONFIG_NUMA) &&
2646 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2647 goto nopage;
2648
2649 retry:
2650 if (!(gfp_mask & __GFP_NO_KSWAPD))
2651 wake_all_kswapds(order, ac);
2652
2653 /*
2654 * OK, we're below the kswapd watermark and have kicked background
2655 * reclaim. Now things get more complex, so set up alloc_flags according
2656 * to how we want to proceed.
2657 */
2658 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2659
2660 /*
2661 * Find the true preferred zone if the allocation is unconstrained by
2662 * cpusets.
2663 */
2664 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
2665 struct zoneref *preferred_zoneref;
2666 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2667 ac->high_zoneidx, NULL, &ac->preferred_zone);
2668 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
2669 }
2670
2671 /* This is the last chance, in general, before the goto nopage. */
2672 page = get_page_from_freelist(gfp_mask, order,
2673 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2674 if (page)
2675 goto got_pg;
2676
2677 /* Allocate without watermarks if the context allows */
2678 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2679 /*
2680 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2681 * the allocation is high priority and these type of
2682 * allocations are system rather than user orientated
2683 */
2684 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2685
2686 page = __alloc_pages_high_priority(gfp_mask, order, ac);
2687
2688 if (page) {
2689 goto got_pg;
2690 }
2691 }
2692
2693 /* Atomic allocations - we can't balance anything */
2694 if (!wait) {
2695 /*
2696 * All existing users of the deprecated __GFP_NOFAIL are
2697 * blockable, so warn of any new users that actually allow this
2698 * type of allocation to fail.
2699 */
2700 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2701 goto nopage;
2702 }
2703
2704 /* Avoid recursion of direct reclaim */
2705 if (current->flags & PF_MEMALLOC)
2706 goto nopage;
2707
2708 /* Avoid allocations with no watermarks from looping endlessly */
2709 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2710 goto nopage;
2711
2712 /*
2713 * Try direct compaction. The first pass is asynchronous. Subsequent
2714 * attempts after direct reclaim are synchronous
2715 */
2716 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2717 migration_mode,
2718 &contended_compaction,
2719 &deferred_compaction);
2720 if (page)
2721 goto got_pg;
2722
2723 /* Checks for THP-specific high-order allocations */
2724 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2725 /*
2726 * If compaction is deferred for high-order allocations, it is
2727 * because sync compaction recently failed. If this is the case
2728 * and the caller requested a THP allocation, we do not want
2729 * to heavily disrupt the system, so we fail the allocation
2730 * instead of entering direct reclaim.
2731 */
2732 if (deferred_compaction)
2733 goto nopage;
2734
2735 /*
2736 * In all zones where compaction was attempted (and not
2737 * deferred or skipped), lock contention has been detected.
2738 * For THP allocation we do not want to disrupt the others
2739 * so we fallback to base pages instead.
2740 */
2741 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2742 goto nopage;
2743
2744 /*
2745 * If compaction was aborted due to need_resched(), we do not
2746 * want to further increase allocation latency, unless it is
2747 * khugepaged trying to collapse.
2748 */
2749 if (contended_compaction == COMPACT_CONTENDED_SCHED
2750 && !(current->flags & PF_KTHREAD))
2751 goto nopage;
2752 }
2753
2754 /*
2755 * It can become very expensive to allocate transparent hugepages at
2756 * fault, so use asynchronous memory compaction for THP unless it is
2757 * khugepaged trying to collapse.
2758 */
2759 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2760 (current->flags & PF_KTHREAD))
2761 migration_mode = MIGRATE_SYNC_LIGHT;
2762
2763 /* Try direct reclaim and then allocating */
2764 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2765 &did_some_progress);
2766 if (page)
2767 goto got_pg;
2768
2769 /* Check if we should retry the allocation */
2770 pages_reclaimed += did_some_progress;
2771 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2772 pages_reclaimed)) {
2773 /*
2774 * If we fail to make progress by freeing individual
2775 * pages, but the allocation wants us to keep going,
2776 * start OOM killing tasks.
2777 */
2778 if (!did_some_progress) {
2779 page = __alloc_pages_may_oom(gfp_mask, order, ac,
2780 &did_some_progress);
2781 if (page)
2782 goto got_pg;
2783 if (!did_some_progress)
2784 goto nopage;
2785 }
2786 /* Wait for some write requests to complete then retry */
2787 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
2788 goto retry;
2789 } else {
2790 /*
2791 * High-order allocations do not necessarily loop after
2792 * direct reclaim and reclaim/compaction depends on compaction
2793 * being called after reclaim so call directly if necessary
2794 */
2795 page = __alloc_pages_direct_compact(gfp_mask, order,
2796 alloc_flags, ac, migration_mode,
2797 &contended_compaction,
2798 &deferred_compaction);
2799 if (page)
2800 goto got_pg;
2801 }
2802
2803 nopage:
2804 warn_alloc_failed(gfp_mask, order, NULL);
2805 got_pg:
2806 return page;
2807 }
2808
2809 /*
2810 * This is the 'heart' of the zoned buddy allocator.
2811 */
2812 struct page *
2813 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2814 struct zonelist *zonelist, nodemask_t *nodemask)
2815 {
2816 struct zoneref *preferred_zoneref;
2817 struct page *page = NULL;
2818 unsigned int cpuset_mems_cookie;
2819 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2820 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
2821 struct alloc_context ac = {
2822 .high_zoneidx = gfp_zone(gfp_mask),
2823 .nodemask = nodemask,
2824 .migratetype = gfpflags_to_migratetype(gfp_mask),
2825 };
2826
2827 gfp_mask &= gfp_allowed_mask;
2828
2829 lockdep_trace_alloc(gfp_mask);
2830
2831 might_sleep_if(gfp_mask & __GFP_WAIT);
2832
2833 if (should_fail_alloc_page(gfp_mask, order))
2834 return NULL;
2835
2836 /*
2837 * Check the zones suitable for the gfp_mask contain at least one
2838 * valid zone. It's possible to have an empty zonelist as a result
2839 * of GFP_THISNODE and a memoryless node
2840 */
2841 if (unlikely(!zonelist->_zonerefs->zone))
2842 return NULL;
2843
2844 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
2845 alloc_flags |= ALLOC_CMA;
2846
2847 retry_cpuset:
2848 cpuset_mems_cookie = read_mems_allowed_begin();
2849
2850 /* We set it here, as __alloc_pages_slowpath might have changed it */
2851 ac.zonelist = zonelist;
2852 /* The preferred zone is used for statistics later */
2853 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2854 ac.nodemask ? : &cpuset_current_mems_allowed,
2855 &ac.preferred_zone);
2856 if (!ac.preferred_zone)
2857 goto out;
2858 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
2859
2860 /* First allocation attempt */
2861 alloc_mask = gfp_mask|__GFP_HARDWALL;
2862 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
2863 if (unlikely(!page)) {
2864 /*
2865 * Runtime PM, block IO and its error handling path
2866 * can deadlock because I/O on the device might not
2867 * complete.
2868 */
2869 alloc_mask = memalloc_noio_flags(gfp_mask);
2870
2871 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
2872 }
2873
2874 if (kmemcheck_enabled && page)
2875 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2876
2877 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
2878
2879 out:
2880 /*
2881 * When updating a task's mems_allowed, it is possible to race with
2882 * parallel threads in such a way that an allocation can fail while
2883 * the mask is being updated. If a page allocation is about to fail,
2884 * check if the cpuset changed during allocation and if so, retry.
2885 */
2886 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2887 goto retry_cpuset;
2888
2889 return page;
2890 }
2891 EXPORT_SYMBOL(__alloc_pages_nodemask);
2892
2893 /*
2894 * Common helper functions.
2895 */
2896 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2897 {
2898 struct page *page;
2899
2900 /*
2901 * __get_free_pages() returns a 32-bit address, which cannot represent
2902 * a highmem page
2903 */
2904 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2905
2906 page = alloc_pages(gfp_mask, order);
2907 if (!page)
2908 return 0;
2909 return (unsigned long) page_address(page);
2910 }
2911 EXPORT_SYMBOL(__get_free_pages);
2912
2913 unsigned long get_zeroed_page(gfp_t gfp_mask)
2914 {
2915 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2916 }
2917 EXPORT_SYMBOL(get_zeroed_page);
2918
2919 void __free_pages(struct page *page, unsigned int order)
2920 {
2921 if (put_page_testzero(page)) {
2922 if (order == 0)
2923 free_hot_cold_page(page, false);
2924 else
2925 __free_pages_ok(page, order);
2926 }
2927 }
2928
2929 EXPORT_SYMBOL(__free_pages);
2930
2931 void free_pages(unsigned long addr, unsigned int order)
2932 {
2933 if (addr != 0) {
2934 VM_BUG_ON(!virt_addr_valid((void *)addr));
2935 __free_pages(virt_to_page((void *)addr), order);
2936 }
2937 }
2938
2939 EXPORT_SYMBOL(free_pages);
2940
2941 /*
2942 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2943 * of the current memory cgroup.
2944 *
2945 * It should be used when the caller would like to use kmalloc, but since the
2946 * allocation is large, it has to fall back to the page allocator.
2947 */
2948 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2949 {
2950 struct page *page;
2951 struct mem_cgroup *memcg = NULL;
2952
2953 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2954 return NULL;
2955 page = alloc_pages(gfp_mask, order);
2956 memcg_kmem_commit_charge(page, memcg, order);
2957 return page;
2958 }
2959
2960 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2961 {
2962 struct page *page;
2963 struct mem_cgroup *memcg = NULL;
2964
2965 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2966 return NULL;
2967 page = alloc_pages_node(nid, gfp_mask, order);
2968 memcg_kmem_commit_charge(page, memcg, order);
2969 return page;
2970 }
2971
2972 /*
2973 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2974 * alloc_kmem_pages.
2975 */
2976 void __free_kmem_pages(struct page *page, unsigned int order)
2977 {
2978 memcg_kmem_uncharge_pages(page, order);
2979 __free_pages(page, order);
2980 }
2981
2982 void free_kmem_pages(unsigned long addr, unsigned int order)
2983 {
2984 if (addr != 0) {
2985 VM_BUG_ON(!virt_addr_valid((void *)addr));
2986 __free_kmem_pages(virt_to_page((void *)addr), order);
2987 }
2988 }
2989
2990 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2991 {
2992 if (addr) {
2993 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2994 unsigned long used = addr + PAGE_ALIGN(size);
2995
2996 split_page(virt_to_page((void *)addr), order);
2997 while (used < alloc_end) {
2998 free_page(used);
2999 used += PAGE_SIZE;
3000 }
3001 }
3002 return (void *)addr;
3003 }
3004
3005 /**
3006 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3007 * @size: the number of bytes to allocate
3008 * @gfp_mask: GFP flags for the allocation
3009 *
3010 * This function is similar to alloc_pages(), except that it allocates the
3011 * minimum number of pages to satisfy the request. alloc_pages() can only
3012 * allocate memory in power-of-two pages.
3013 *
3014 * This function is also limited by MAX_ORDER.
3015 *
3016 * Memory allocated by this function must be released by free_pages_exact().
3017 */
3018 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3019 {
3020 unsigned int order = get_order(size);
3021 unsigned long addr;
3022
3023 addr = __get_free_pages(gfp_mask, order);
3024 return make_alloc_exact(addr, order, size);
3025 }
3026 EXPORT_SYMBOL(alloc_pages_exact);
3027
3028 /**
3029 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3030 * pages on a node.
3031 * @nid: the preferred node ID where memory should be allocated
3032 * @size: the number of bytes to allocate
3033 * @gfp_mask: GFP flags for the allocation
3034 *
3035 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3036 * back.
3037 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3038 * but is not exact.
3039 */
3040 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3041 {
3042 unsigned order = get_order(size);
3043 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3044 if (!p)
3045 return NULL;
3046 return make_alloc_exact((unsigned long)page_address(p), order, size);
3047 }
3048
3049 /**
3050 * free_pages_exact - release memory allocated via alloc_pages_exact()
3051 * @virt: the value returned by alloc_pages_exact.
3052 * @size: size of allocation, same value as passed to alloc_pages_exact().
3053 *
3054 * Release the memory allocated by a previous call to alloc_pages_exact.
3055 */
3056 void free_pages_exact(void *virt, size_t size)
3057 {
3058 unsigned long addr = (unsigned long)virt;
3059 unsigned long end = addr + PAGE_ALIGN(size);
3060
3061 while (addr < end) {
3062 free_page(addr);
3063 addr += PAGE_SIZE;
3064 }
3065 }
3066 EXPORT_SYMBOL(free_pages_exact);
3067
3068 /**
3069 * nr_free_zone_pages - count number of pages beyond high watermark
3070 * @offset: The zone index of the highest zone
3071 *
3072 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3073 * high watermark within all zones at or below a given zone index. For each
3074 * zone, the number of pages is calculated as:
3075 * managed_pages - high_pages
3076 */
3077 static unsigned long nr_free_zone_pages(int offset)
3078 {
3079 struct zoneref *z;
3080 struct zone *zone;
3081
3082 /* Just pick one node, since fallback list is circular */
3083 unsigned long sum = 0;
3084
3085 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3086
3087 for_each_zone_zonelist(zone, z, zonelist, offset) {
3088 unsigned long size = zone->managed_pages;
3089 unsigned long high = high_wmark_pages(zone);
3090 if (size > high)
3091 sum += size - high;
3092 }
3093
3094 return sum;
3095 }
3096
3097 /**
3098 * nr_free_buffer_pages - count number of pages beyond high watermark
3099 *
3100 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3101 * watermark within ZONE_DMA and ZONE_NORMAL.
3102 */
3103 unsigned long nr_free_buffer_pages(void)
3104 {
3105 return nr_free_zone_pages(gfp_zone(GFP_USER));
3106 }
3107 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3108
3109 /**
3110 * nr_free_pagecache_pages - count number of pages beyond high watermark
3111 *
3112 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3113 * high watermark within all zones.
3114 */
3115 unsigned long nr_free_pagecache_pages(void)
3116 {
3117 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3118 }
3119
3120 static inline void show_node(struct zone *zone)
3121 {
3122 if (IS_ENABLED(CONFIG_NUMA))
3123 printk("Node %d ", zone_to_nid(zone));
3124 }
3125
3126 void si_meminfo(struct sysinfo *val)
3127 {
3128 val->totalram = totalram_pages;
3129 val->sharedram = global_page_state(NR_SHMEM);
3130 val->freeram = global_page_state(NR_FREE_PAGES);
3131 val->bufferram = nr_blockdev_pages();
3132 val->totalhigh = totalhigh_pages;
3133 val->freehigh = nr_free_highpages();
3134 val->mem_unit = PAGE_SIZE;
3135 }
3136
3137 EXPORT_SYMBOL(si_meminfo);
3138
3139 #ifdef CONFIG_NUMA
3140 void si_meminfo_node(struct sysinfo *val, int nid)
3141 {
3142 int zone_type; /* needs to be signed */
3143 unsigned long managed_pages = 0;
3144 pg_data_t *pgdat = NODE_DATA(nid);
3145
3146 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3147 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3148 val->totalram = managed_pages;
3149 val->sharedram = node_page_state(nid, NR_SHMEM);
3150 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3151 #ifdef CONFIG_HIGHMEM
3152 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3153 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3154 NR_FREE_PAGES);
3155 #else
3156 val->totalhigh = 0;
3157 val->freehigh = 0;
3158 #endif
3159 val->mem_unit = PAGE_SIZE;
3160 }
3161 #endif
3162
3163 /*
3164 * Determine whether the node should be displayed or not, depending on whether
3165 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3166 */
3167 bool skip_free_areas_node(unsigned int flags, int nid)
3168 {
3169 bool ret = false;
3170 unsigned int cpuset_mems_cookie;
3171
3172 if (!(flags & SHOW_MEM_FILTER_NODES))
3173 goto out;
3174
3175 do {
3176 cpuset_mems_cookie = read_mems_allowed_begin();
3177 ret = !node_isset(nid, cpuset_current_mems_allowed);
3178 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3179 out:
3180 return ret;
3181 }
3182
3183 #define K(x) ((x) << (PAGE_SHIFT-10))
3184
3185 static void show_migration_types(unsigned char type)
3186 {
3187 static const char types[MIGRATE_TYPES] = {
3188 [MIGRATE_UNMOVABLE] = 'U',
3189 [MIGRATE_RECLAIMABLE] = 'E',
3190 [MIGRATE_MOVABLE] = 'M',
3191 [MIGRATE_RESERVE] = 'R',
3192 #ifdef CONFIG_CMA
3193 [MIGRATE_CMA] = 'C',
3194 #endif
3195 #ifdef CONFIG_MEMORY_ISOLATION
3196 [MIGRATE_ISOLATE] = 'I',
3197 #endif
3198 };
3199 char tmp[MIGRATE_TYPES + 1];
3200 char *p = tmp;
3201 int i;
3202
3203 for (i = 0; i < MIGRATE_TYPES; i++) {
3204 if (type & (1 << i))
3205 *p++ = types[i];
3206 }
3207
3208 *p = '\0';
3209 printk("(%s) ", tmp);
3210 }
3211
3212 /*
3213 * Show free area list (used inside shift_scroll-lock stuff)
3214 * We also calculate the percentage fragmentation. We do this by counting the
3215 * memory on each free list with the exception of the first item on the list.
3216 * Suppresses nodes that are not allowed by current's cpuset if
3217 * SHOW_MEM_FILTER_NODES is passed.
3218 */
3219 void show_free_areas(unsigned int filter)
3220 {
3221 int cpu;
3222 struct zone *zone;
3223
3224 for_each_populated_zone(zone) {
3225 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3226 continue;
3227 show_node(zone);
3228 printk("%s per-cpu:\n", zone->name);
3229
3230 for_each_online_cpu(cpu) {
3231 struct per_cpu_pageset *pageset;
3232
3233 pageset = per_cpu_ptr(zone->pageset, cpu);
3234
3235 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3236 cpu, pageset->pcp.high,
3237 pageset->pcp.batch, pageset->pcp.count);
3238 }
3239 }
3240
3241 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3242 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3243 " unevictable:%lu"
3244 " dirty:%lu writeback:%lu unstable:%lu\n"
3245 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3246 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3247 " free_cma:%lu\n",
3248 global_page_state(NR_ACTIVE_ANON),
3249 global_page_state(NR_INACTIVE_ANON),
3250 global_page_state(NR_ISOLATED_ANON),
3251 global_page_state(NR_ACTIVE_FILE),
3252 global_page_state(NR_INACTIVE_FILE),
3253 global_page_state(NR_ISOLATED_FILE),
3254 global_page_state(NR_UNEVICTABLE),
3255 global_page_state(NR_FILE_DIRTY),
3256 global_page_state(NR_WRITEBACK),
3257 global_page_state(NR_UNSTABLE_NFS),
3258 global_page_state(NR_FREE_PAGES),
3259 global_page_state(NR_SLAB_RECLAIMABLE),
3260 global_page_state(NR_SLAB_UNRECLAIMABLE),
3261 global_page_state(NR_FILE_MAPPED),
3262 global_page_state(NR_SHMEM),
3263 global_page_state(NR_PAGETABLE),
3264 global_page_state(NR_BOUNCE),
3265 global_page_state(NR_FREE_CMA_PAGES));
3266
3267 for_each_populated_zone(zone) {
3268 int i;
3269
3270 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3271 continue;
3272 show_node(zone);
3273 printk("%s"
3274 " free:%lukB"
3275 " min:%lukB"
3276 " low:%lukB"
3277 " high:%lukB"
3278 " active_anon:%lukB"
3279 " inactive_anon:%lukB"
3280 " active_file:%lukB"
3281 " inactive_file:%lukB"
3282 " unevictable:%lukB"
3283 " isolated(anon):%lukB"
3284 " isolated(file):%lukB"
3285 " present:%lukB"
3286 " managed:%lukB"
3287 " mlocked:%lukB"
3288 " dirty:%lukB"
3289 " writeback:%lukB"
3290 " mapped:%lukB"
3291 " shmem:%lukB"
3292 " slab_reclaimable:%lukB"
3293 " slab_unreclaimable:%lukB"
3294 " kernel_stack:%lukB"
3295 " pagetables:%lukB"
3296 " unstable:%lukB"
3297 " bounce:%lukB"
3298 " free_cma:%lukB"
3299 " writeback_tmp:%lukB"
3300 " pages_scanned:%lu"
3301 " all_unreclaimable? %s"
3302 "\n",
3303 zone->name,
3304 K(zone_page_state(zone, NR_FREE_PAGES)),
3305 K(min_wmark_pages(zone)),
3306 K(low_wmark_pages(zone)),
3307 K(high_wmark_pages(zone)),
3308 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3309 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3310 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3311 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3312 K(zone_page_state(zone, NR_UNEVICTABLE)),
3313 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3314 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3315 K(zone->present_pages),
3316 K(zone->managed_pages),
3317 K(zone_page_state(zone, NR_MLOCK)),
3318 K(zone_page_state(zone, NR_FILE_DIRTY)),
3319 K(zone_page_state(zone, NR_WRITEBACK)),
3320 K(zone_page_state(zone, NR_FILE_MAPPED)),
3321 K(zone_page_state(zone, NR_SHMEM)),
3322 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3323 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3324 zone_page_state(zone, NR_KERNEL_STACK) *
3325 THREAD_SIZE / 1024,
3326 K(zone_page_state(zone, NR_PAGETABLE)),
3327 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3328 K(zone_page_state(zone, NR_BOUNCE)),
3329 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3330 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3331 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3332 (!zone_reclaimable(zone) ? "yes" : "no")
3333 );
3334 printk("lowmem_reserve[]:");
3335 for (i = 0; i < MAX_NR_ZONES; i++)
3336 printk(" %ld", zone->lowmem_reserve[i]);
3337 printk("\n");
3338 }
3339
3340 for_each_populated_zone(zone) {
3341 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3342 unsigned char types[MAX_ORDER];
3343
3344 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3345 continue;
3346 show_node(zone);
3347 printk("%s: ", zone->name);
3348
3349 spin_lock_irqsave(&zone->lock, flags);
3350 for (order = 0; order < MAX_ORDER; order++) {
3351 struct free_area *area = &zone->free_area[order];
3352 int type;
3353
3354 nr[order] = area->nr_free;
3355 total += nr[order] << order;
3356
3357 types[order] = 0;
3358 for (type = 0; type < MIGRATE_TYPES; type++) {
3359 if (!list_empty(&area->free_list[type]))
3360 types[order] |= 1 << type;
3361 }
3362 }
3363 spin_unlock_irqrestore(&zone->lock, flags);
3364 for (order = 0; order < MAX_ORDER; order++) {
3365 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3366 if (nr[order])
3367 show_migration_types(types[order]);
3368 }
3369 printk("= %lukB\n", K(total));
3370 }
3371
3372 hugetlb_show_meminfo();
3373
3374 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3375
3376 show_swap_cache_info();
3377 }
3378
3379 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3380 {
3381 zoneref->zone = zone;
3382 zoneref->zone_idx = zone_idx(zone);
3383 }
3384
3385 /*
3386 * Builds allocation fallback zone lists.
3387 *
3388 * Add all populated zones of a node to the zonelist.
3389 */
3390 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3391 int nr_zones)
3392 {
3393 struct zone *zone;
3394 enum zone_type zone_type = MAX_NR_ZONES;
3395
3396 do {
3397 zone_type--;
3398 zone = pgdat->node_zones + zone_type;
3399 if (populated_zone(zone)) {
3400 zoneref_set_zone(zone,
3401 &zonelist->_zonerefs[nr_zones++]);
3402 check_highest_zone(zone_type);
3403 }
3404 } while (zone_type);
3405
3406 return nr_zones;
3407 }
3408
3409
3410 /*
3411 * zonelist_order:
3412 * 0 = automatic detection of better ordering.
3413 * 1 = order by ([node] distance, -zonetype)
3414 * 2 = order by (-zonetype, [node] distance)
3415 *
3416 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3417 * the same zonelist. So only NUMA can configure this param.
3418 */
3419 #define ZONELIST_ORDER_DEFAULT 0
3420 #define ZONELIST_ORDER_NODE 1
3421 #define ZONELIST_ORDER_ZONE 2
3422
3423 /* zonelist order in the kernel.
3424 * set_zonelist_order() will set this to NODE or ZONE.
3425 */
3426 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3427 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3428
3429
3430 #ifdef CONFIG_NUMA
3431 /* The value user specified ....changed by config */
3432 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3433 /* string for sysctl */
3434 #define NUMA_ZONELIST_ORDER_LEN 16
3435 char numa_zonelist_order[16] = "default";
3436
3437 /*
3438 * interface for configure zonelist ordering.
3439 * command line option "numa_zonelist_order"
3440 * = "[dD]efault - default, automatic configuration.
3441 * = "[nN]ode - order by node locality, then by zone within node
3442 * = "[zZ]one - order by zone, then by locality within zone
3443 */
3444
3445 static int __parse_numa_zonelist_order(char *s)
3446 {
3447 if (*s == 'd' || *s == 'D') {
3448 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3449 } else if (*s == 'n' || *s == 'N') {
3450 user_zonelist_order = ZONELIST_ORDER_NODE;
3451 } else if (*s == 'z' || *s == 'Z') {
3452 user_zonelist_order = ZONELIST_ORDER_ZONE;
3453 } else {
3454 printk(KERN_WARNING
3455 "Ignoring invalid numa_zonelist_order value: "
3456 "%s\n", s);
3457 return -EINVAL;
3458 }
3459 return 0;
3460 }
3461
3462 static __init int setup_numa_zonelist_order(char *s)
3463 {
3464 int ret;
3465
3466 if (!s)
3467 return 0;
3468
3469 ret = __parse_numa_zonelist_order(s);
3470 if (ret == 0)
3471 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3472
3473 return ret;
3474 }
3475 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3476
3477 /*
3478 * sysctl handler for numa_zonelist_order
3479 */
3480 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3481 void __user *buffer, size_t *length,
3482 loff_t *ppos)
3483 {
3484 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3485 int ret;
3486 static DEFINE_MUTEX(zl_order_mutex);
3487
3488 mutex_lock(&zl_order_mutex);
3489 if (write) {
3490 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3491 ret = -EINVAL;
3492 goto out;
3493 }
3494 strcpy(saved_string, (char *)table->data);
3495 }
3496 ret = proc_dostring(table, write, buffer, length, ppos);
3497 if (ret)
3498 goto out;
3499 if (write) {
3500 int oldval = user_zonelist_order;
3501
3502 ret = __parse_numa_zonelist_order((char *)table->data);
3503 if (ret) {
3504 /*
3505 * bogus value. restore saved string
3506 */
3507 strncpy((char *)table->data, saved_string,
3508 NUMA_ZONELIST_ORDER_LEN);
3509 user_zonelist_order = oldval;
3510 } else if (oldval != user_zonelist_order) {
3511 mutex_lock(&zonelists_mutex);
3512 build_all_zonelists(NULL, NULL);
3513 mutex_unlock(&zonelists_mutex);
3514 }
3515 }
3516 out:
3517 mutex_unlock(&zl_order_mutex);
3518 return ret;
3519 }
3520
3521
3522 #define MAX_NODE_LOAD (nr_online_nodes)
3523 static int node_load[MAX_NUMNODES];
3524
3525 /**
3526 * find_next_best_node - find the next node that should appear in a given node's fallback list
3527 * @node: node whose fallback list we're appending
3528 * @used_node_mask: nodemask_t of already used nodes
3529 *
3530 * We use a number of factors to determine which is the next node that should
3531 * appear on a given node's fallback list. The node should not have appeared
3532 * already in @node's fallback list, and it should be the next closest node
3533 * according to the distance array (which contains arbitrary distance values
3534 * from each node to each node in the system), and should also prefer nodes
3535 * with no CPUs, since presumably they'll have very little allocation pressure
3536 * on them otherwise.
3537 * It returns -1 if no node is found.
3538 */
3539 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3540 {
3541 int n, val;
3542 int min_val = INT_MAX;
3543 int best_node = NUMA_NO_NODE;
3544 const struct cpumask *tmp = cpumask_of_node(0);
3545
3546 /* Use the local node if we haven't already */
3547 if (!node_isset(node, *used_node_mask)) {
3548 node_set(node, *used_node_mask);
3549 return node;
3550 }
3551
3552 for_each_node_state(n, N_MEMORY) {
3553
3554 /* Don't want a node to appear more than once */
3555 if (node_isset(n, *used_node_mask))
3556 continue;
3557
3558 /* Use the distance array to find the distance */
3559 val = node_distance(node, n);
3560
3561 /* Penalize nodes under us ("prefer the next node") */
3562 val += (n < node);
3563
3564 /* Give preference to headless and unused nodes */
3565 tmp = cpumask_of_node(n);
3566 if (!cpumask_empty(tmp))
3567 val += PENALTY_FOR_NODE_WITH_CPUS;
3568
3569 /* Slight preference for less loaded node */
3570 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3571 val += node_load[n];
3572
3573 if (val < min_val) {
3574 min_val = val;
3575 best_node = n;
3576 }
3577 }
3578
3579 if (best_node >= 0)
3580 node_set(best_node, *used_node_mask);
3581
3582 return best_node;
3583 }
3584
3585
3586 /*
3587 * Build zonelists ordered by node and zones within node.
3588 * This results in maximum locality--normal zone overflows into local
3589 * DMA zone, if any--but risks exhausting DMA zone.
3590 */
3591 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3592 {
3593 int j;
3594 struct zonelist *zonelist;
3595
3596 zonelist = &pgdat->node_zonelists[0];
3597 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3598 ;
3599 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3600 zonelist->_zonerefs[j].zone = NULL;
3601 zonelist->_zonerefs[j].zone_idx = 0;
3602 }
3603
3604 /*
3605 * Build gfp_thisnode zonelists
3606 */
3607 static void build_thisnode_zonelists(pg_data_t *pgdat)
3608 {
3609 int j;
3610 struct zonelist *zonelist;
3611
3612 zonelist = &pgdat->node_zonelists[1];
3613 j = build_zonelists_node(pgdat, zonelist, 0);
3614 zonelist->_zonerefs[j].zone = NULL;
3615 zonelist->_zonerefs[j].zone_idx = 0;
3616 }
3617
3618 /*
3619 * Build zonelists ordered by zone and nodes within zones.
3620 * This results in conserving DMA zone[s] until all Normal memory is
3621 * exhausted, but results in overflowing to remote node while memory
3622 * may still exist in local DMA zone.
3623 */
3624 static int node_order[MAX_NUMNODES];
3625
3626 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3627 {
3628 int pos, j, node;
3629 int zone_type; /* needs to be signed */
3630 struct zone *z;
3631 struct zonelist *zonelist;
3632
3633 zonelist = &pgdat->node_zonelists[0];
3634 pos = 0;
3635 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3636 for (j = 0; j < nr_nodes; j++) {
3637 node = node_order[j];
3638 z = &NODE_DATA(node)->node_zones[zone_type];
3639 if (populated_zone(z)) {
3640 zoneref_set_zone(z,
3641 &zonelist->_zonerefs[pos++]);
3642 check_highest_zone(zone_type);
3643 }
3644 }
3645 }
3646 zonelist->_zonerefs[pos].zone = NULL;
3647 zonelist->_zonerefs[pos].zone_idx = 0;
3648 }
3649
3650 #if defined(CONFIG_64BIT)
3651 /*
3652 * Devices that require DMA32/DMA are relatively rare and do not justify a
3653 * penalty to every machine in case the specialised case applies. Default
3654 * to Node-ordering on 64-bit NUMA machines
3655 */
3656 static int default_zonelist_order(void)
3657 {
3658 return ZONELIST_ORDER_NODE;
3659 }
3660 #else
3661 /*
3662 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3663 * by the kernel. If processes running on node 0 deplete the low memory zone
3664 * then reclaim will occur more frequency increasing stalls and potentially
3665 * be easier to OOM if a large percentage of the zone is under writeback or
3666 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3667 * Hence, default to zone ordering on 32-bit.
3668 */
3669 static int default_zonelist_order(void)
3670 {
3671 return ZONELIST_ORDER_ZONE;
3672 }
3673 #endif /* CONFIG_64BIT */
3674
3675 static void set_zonelist_order(void)
3676 {
3677 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3678 current_zonelist_order = default_zonelist_order();
3679 else
3680 current_zonelist_order = user_zonelist_order;
3681 }
3682
3683 static void build_zonelists(pg_data_t *pgdat)
3684 {
3685 int j, node, load;
3686 enum zone_type i;
3687 nodemask_t used_mask;
3688 int local_node, prev_node;
3689 struct zonelist *zonelist;
3690 int order = current_zonelist_order;
3691
3692 /* initialize zonelists */
3693 for (i = 0; i < MAX_ZONELISTS; i++) {
3694 zonelist = pgdat->node_zonelists + i;
3695 zonelist->_zonerefs[0].zone = NULL;
3696 zonelist->_zonerefs[0].zone_idx = 0;
3697 }
3698
3699 /* NUMA-aware ordering of nodes */
3700 local_node = pgdat->node_id;
3701 load = nr_online_nodes;
3702 prev_node = local_node;
3703 nodes_clear(used_mask);
3704
3705 memset(node_order, 0, sizeof(node_order));
3706 j = 0;
3707
3708 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3709 /*
3710 * We don't want to pressure a particular node.
3711 * So adding penalty to the first node in same
3712 * distance group to make it round-robin.
3713 */
3714 if (node_distance(local_node, node) !=
3715 node_distance(local_node, prev_node))
3716 node_load[node] = load;
3717
3718 prev_node = node;
3719 load--;
3720 if (order == ZONELIST_ORDER_NODE)
3721 build_zonelists_in_node_order(pgdat, node);
3722 else
3723 node_order[j++] = node; /* remember order */
3724 }
3725
3726 if (order == ZONELIST_ORDER_ZONE) {
3727 /* calculate node order -- i.e., DMA last! */
3728 build_zonelists_in_zone_order(pgdat, j);
3729 }
3730
3731 build_thisnode_zonelists(pgdat);
3732 }
3733
3734 /* Construct the zonelist performance cache - see further mmzone.h */
3735 static void build_zonelist_cache(pg_data_t *pgdat)
3736 {
3737 struct zonelist *zonelist;
3738 struct zonelist_cache *zlc;
3739 struct zoneref *z;
3740
3741 zonelist = &pgdat->node_zonelists[0];
3742 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3743 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3744 for (z = zonelist->_zonerefs; z->zone; z++)
3745 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3746 }
3747
3748 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3749 /*
3750 * Return node id of node used for "local" allocations.
3751 * I.e., first node id of first zone in arg node's generic zonelist.
3752 * Used for initializing percpu 'numa_mem', which is used primarily
3753 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3754 */
3755 int local_memory_node(int node)
3756 {
3757 struct zone *zone;
3758
3759 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3760 gfp_zone(GFP_KERNEL),
3761 NULL,
3762 &zone);
3763 return zone->node;
3764 }
3765 #endif
3766
3767 #else /* CONFIG_NUMA */
3768
3769 static void set_zonelist_order(void)
3770 {
3771 current_zonelist_order = ZONELIST_ORDER_ZONE;
3772 }
3773
3774 static void build_zonelists(pg_data_t *pgdat)
3775 {
3776 int node, local_node;
3777 enum zone_type j;
3778 struct zonelist *zonelist;
3779
3780 local_node = pgdat->node_id;
3781
3782 zonelist = &pgdat->node_zonelists[0];
3783 j = build_zonelists_node(pgdat, zonelist, 0);
3784
3785 /*
3786 * Now we build the zonelist so that it contains the zones
3787 * of all the other nodes.
3788 * We don't want to pressure a particular node, so when
3789 * building the zones for node N, we make sure that the
3790 * zones coming right after the local ones are those from
3791 * node N+1 (modulo N)
3792 */
3793 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3794 if (!node_online(node))
3795 continue;
3796 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3797 }
3798 for (node = 0; node < local_node; node++) {
3799 if (!node_online(node))
3800 continue;
3801 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3802 }
3803
3804 zonelist->_zonerefs[j].zone = NULL;
3805 zonelist->_zonerefs[j].zone_idx = 0;
3806 }
3807
3808 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3809 static void build_zonelist_cache(pg_data_t *pgdat)
3810 {
3811 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3812 }
3813
3814 #endif /* CONFIG_NUMA */
3815
3816 /*
3817 * Boot pageset table. One per cpu which is going to be used for all
3818 * zones and all nodes. The parameters will be set in such a way
3819 * that an item put on a list will immediately be handed over to
3820 * the buddy list. This is safe since pageset manipulation is done
3821 * with interrupts disabled.
3822 *
3823 * The boot_pagesets must be kept even after bootup is complete for
3824 * unused processors and/or zones. They do play a role for bootstrapping
3825 * hotplugged processors.
3826 *
3827 * zoneinfo_show() and maybe other functions do
3828 * not check if the processor is online before following the pageset pointer.
3829 * Other parts of the kernel may not check if the zone is available.
3830 */
3831 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3832 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3833 static void setup_zone_pageset(struct zone *zone);
3834
3835 /*
3836 * Global mutex to protect against size modification of zonelists
3837 * as well as to serialize pageset setup for the new populated zone.
3838 */
3839 DEFINE_MUTEX(zonelists_mutex);
3840
3841 /* return values int ....just for stop_machine() */
3842 static int __build_all_zonelists(void *data)
3843 {
3844 int nid;
3845 int cpu;
3846 pg_data_t *self = data;
3847
3848 #ifdef CONFIG_NUMA
3849 memset(node_load, 0, sizeof(node_load));
3850 #endif
3851
3852 if (self && !node_online(self->node_id)) {
3853 build_zonelists(self);
3854 build_zonelist_cache(self);
3855 }
3856
3857 for_each_online_node(nid) {
3858 pg_data_t *pgdat = NODE_DATA(nid);
3859
3860 build_zonelists(pgdat);
3861 build_zonelist_cache(pgdat);
3862 }
3863
3864 /*
3865 * Initialize the boot_pagesets that are going to be used
3866 * for bootstrapping processors. The real pagesets for
3867 * each zone will be allocated later when the per cpu
3868 * allocator is available.
3869 *
3870 * boot_pagesets are used also for bootstrapping offline
3871 * cpus if the system is already booted because the pagesets
3872 * are needed to initialize allocators on a specific cpu too.
3873 * F.e. the percpu allocator needs the page allocator which
3874 * needs the percpu allocator in order to allocate its pagesets
3875 * (a chicken-egg dilemma).
3876 */
3877 for_each_possible_cpu(cpu) {
3878 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3879
3880 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3881 /*
3882 * We now know the "local memory node" for each node--
3883 * i.e., the node of the first zone in the generic zonelist.
3884 * Set up numa_mem percpu variable for on-line cpus. During
3885 * boot, only the boot cpu should be on-line; we'll init the
3886 * secondary cpus' numa_mem as they come on-line. During
3887 * node/memory hotplug, we'll fixup all on-line cpus.
3888 */
3889 if (cpu_online(cpu))
3890 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3891 #endif
3892 }
3893
3894 return 0;
3895 }
3896
3897 /*
3898 * Called with zonelists_mutex held always
3899 * unless system_state == SYSTEM_BOOTING.
3900 */
3901 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3902 {
3903 set_zonelist_order();
3904
3905 if (system_state == SYSTEM_BOOTING) {
3906 __build_all_zonelists(NULL);
3907 mminit_verify_zonelist();
3908 cpuset_init_current_mems_allowed();
3909 } else {
3910 #ifdef CONFIG_MEMORY_HOTPLUG
3911 if (zone)
3912 setup_zone_pageset(zone);
3913 #endif
3914 /* we have to stop all cpus to guarantee there is no user
3915 of zonelist */
3916 stop_machine(__build_all_zonelists, pgdat, NULL);
3917 /* cpuset refresh routine should be here */
3918 }
3919 vm_total_pages = nr_free_pagecache_pages();
3920 /*
3921 * Disable grouping by mobility if the number of pages in the
3922 * system is too low to allow the mechanism to work. It would be
3923 * more accurate, but expensive to check per-zone. This check is
3924 * made on memory-hotadd so a system can start with mobility
3925 * disabled and enable it later
3926 */
3927 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3928 page_group_by_mobility_disabled = 1;
3929 else
3930 page_group_by_mobility_disabled = 0;
3931
3932 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
3933 "Total pages: %ld\n",
3934 nr_online_nodes,
3935 zonelist_order_name[current_zonelist_order],
3936 page_group_by_mobility_disabled ? "off" : "on",
3937 vm_total_pages);
3938 #ifdef CONFIG_NUMA
3939 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
3940 #endif
3941 }
3942
3943 /*
3944 * Helper functions to size the waitqueue hash table.
3945 * Essentially these want to choose hash table sizes sufficiently
3946 * large so that collisions trying to wait on pages are rare.
3947 * But in fact, the number of active page waitqueues on typical
3948 * systems is ridiculously low, less than 200. So this is even
3949 * conservative, even though it seems large.
3950 *
3951 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3952 * waitqueues, i.e. the size of the waitq table given the number of pages.
3953 */
3954 #define PAGES_PER_WAITQUEUE 256
3955
3956 #ifndef CONFIG_MEMORY_HOTPLUG
3957 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3958 {
3959 unsigned long size = 1;
3960
3961 pages /= PAGES_PER_WAITQUEUE;
3962
3963 while (size < pages)
3964 size <<= 1;
3965
3966 /*
3967 * Once we have dozens or even hundreds of threads sleeping
3968 * on IO we've got bigger problems than wait queue collision.
3969 * Limit the size of the wait table to a reasonable size.
3970 */
3971 size = min(size, 4096UL);
3972
3973 return max(size, 4UL);
3974 }
3975 #else
3976 /*
3977 * A zone's size might be changed by hot-add, so it is not possible to determine
3978 * a suitable size for its wait_table. So we use the maximum size now.
3979 *
3980 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3981 *
3982 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3983 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3984 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3985 *
3986 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3987 * or more by the traditional way. (See above). It equals:
3988 *
3989 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3990 * ia64(16K page size) : = ( 8G + 4M)byte.
3991 * powerpc (64K page size) : = (32G +16M)byte.
3992 */
3993 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3994 {
3995 return 4096UL;
3996 }
3997 #endif
3998
3999 /*
4000 * This is an integer logarithm so that shifts can be used later
4001 * to extract the more random high bits from the multiplicative
4002 * hash function before the remainder is taken.
4003 */
4004 static inline unsigned long wait_table_bits(unsigned long size)
4005 {
4006 return ffz(~size);
4007 }
4008
4009 /*
4010 * Check if a pageblock contains reserved pages
4011 */
4012 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4013 {
4014 unsigned long pfn;
4015
4016 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4017 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4018 return 1;
4019 }
4020 return 0;
4021 }
4022
4023 /*
4024 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4025 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4026 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4027 * higher will lead to a bigger reserve which will get freed as contiguous
4028 * blocks as reclaim kicks in
4029 */
4030 static void setup_zone_migrate_reserve(struct zone *zone)
4031 {
4032 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4033 struct page *page;
4034 unsigned long block_migratetype;
4035 int reserve;
4036 int old_reserve;
4037
4038 /*
4039 * Get the start pfn, end pfn and the number of blocks to reserve
4040 * We have to be careful to be aligned to pageblock_nr_pages to
4041 * make sure that we always check pfn_valid for the first page in
4042 * the block.
4043 */
4044 start_pfn = zone->zone_start_pfn;
4045 end_pfn = zone_end_pfn(zone);
4046 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4047 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4048 pageblock_order;
4049
4050 /*
4051 * Reserve blocks are generally in place to help high-order atomic
4052 * allocations that are short-lived. A min_free_kbytes value that
4053 * would result in more than 2 reserve blocks for atomic allocations
4054 * is assumed to be in place to help anti-fragmentation for the
4055 * future allocation of hugepages at runtime.
4056 */
4057 reserve = min(2, reserve);
4058 old_reserve = zone->nr_migrate_reserve_block;
4059
4060 /* When memory hot-add, we almost always need to do nothing */
4061 if (reserve == old_reserve)
4062 return;
4063 zone->nr_migrate_reserve_block = reserve;
4064
4065 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4066 if (!pfn_valid(pfn))
4067 continue;
4068 page = pfn_to_page(pfn);
4069
4070 /* Watch out for overlapping nodes */
4071 if (page_to_nid(page) != zone_to_nid(zone))
4072 continue;
4073
4074 block_migratetype = get_pageblock_migratetype(page);
4075
4076 /* Only test what is necessary when the reserves are not met */
4077 if (reserve > 0) {
4078 /*
4079 * Blocks with reserved pages will never free, skip
4080 * them.
4081 */
4082 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4083 if (pageblock_is_reserved(pfn, block_end_pfn))
4084 continue;
4085
4086 /* If this block is reserved, account for it */
4087 if (block_migratetype == MIGRATE_RESERVE) {
4088 reserve--;
4089 continue;
4090 }
4091
4092 /* Suitable for reserving if this block is movable */
4093 if (block_migratetype == MIGRATE_MOVABLE) {
4094 set_pageblock_migratetype(page,
4095 MIGRATE_RESERVE);
4096 move_freepages_block(zone, page,
4097 MIGRATE_RESERVE);
4098 reserve--;
4099 continue;
4100 }
4101 } else if (!old_reserve) {
4102 /*
4103 * At boot time we don't need to scan the whole zone
4104 * for turning off MIGRATE_RESERVE.
4105 */
4106 break;
4107 }
4108
4109 /*
4110 * If the reserve is met and this is a previous reserved block,
4111 * take it back
4112 */
4113 if (block_migratetype == MIGRATE_RESERVE) {
4114 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4115 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4116 }
4117 }
4118 }
4119
4120 /*
4121 * Initially all pages are reserved - free ones are freed
4122 * up by free_all_bootmem() once the early boot process is
4123 * done. Non-atomic initialization, single-pass.
4124 */
4125 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4126 unsigned long start_pfn, enum memmap_context context)
4127 {
4128 struct page *page;
4129 unsigned long end_pfn = start_pfn + size;
4130 unsigned long pfn;
4131 struct zone *z;
4132
4133 if (highest_memmap_pfn < end_pfn - 1)
4134 highest_memmap_pfn = end_pfn - 1;
4135
4136 z = &NODE_DATA(nid)->node_zones[zone];
4137 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4138 /*
4139 * There can be holes in boot-time mem_map[]s
4140 * handed to this function. They do not
4141 * exist on hotplugged memory.
4142 */
4143 if (context == MEMMAP_EARLY) {
4144 if (!early_pfn_valid(pfn))
4145 continue;
4146 if (!early_pfn_in_nid(pfn, nid))
4147 continue;
4148 }
4149 page = pfn_to_page(pfn);
4150 set_page_links(page, zone, nid, pfn);
4151 mminit_verify_page_links(page, zone, nid, pfn);
4152 init_page_count(page);
4153 page_mapcount_reset(page);
4154 page_cpupid_reset_last(page);
4155 SetPageReserved(page);
4156 /*
4157 * Mark the block movable so that blocks are reserved for
4158 * movable at startup. This will force kernel allocations
4159 * to reserve their blocks rather than leaking throughout
4160 * the address space during boot when many long-lived
4161 * kernel allocations are made. Later some blocks near
4162 * the start are marked MIGRATE_RESERVE by
4163 * setup_zone_migrate_reserve()
4164 *
4165 * bitmap is created for zone's valid pfn range. but memmap
4166 * can be created for invalid pages (for alignment)
4167 * check here not to call set_pageblock_migratetype() against
4168 * pfn out of zone.
4169 */
4170 if ((z->zone_start_pfn <= pfn)
4171 && (pfn < zone_end_pfn(z))
4172 && !(pfn & (pageblock_nr_pages - 1)))
4173 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4174
4175 INIT_LIST_HEAD(&page->lru);
4176 #ifdef WANT_PAGE_VIRTUAL
4177 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4178 if (!is_highmem_idx(zone))
4179 set_page_address(page, __va(pfn << PAGE_SHIFT));
4180 #endif
4181 }
4182 }
4183
4184 static void __meminit zone_init_free_lists(struct zone *zone)
4185 {
4186 unsigned int order, t;
4187 for_each_migratetype_order(order, t) {
4188 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4189 zone->free_area[order].nr_free = 0;
4190 }
4191 }
4192
4193 #ifndef __HAVE_ARCH_MEMMAP_INIT
4194 #define memmap_init(size, nid, zone, start_pfn) \
4195 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4196 #endif
4197
4198 static int zone_batchsize(struct zone *zone)
4199 {
4200 #ifdef CONFIG_MMU
4201 int batch;
4202
4203 /*
4204 * The per-cpu-pages pools are set to around 1000th of the
4205 * size of the zone. But no more than 1/2 of a meg.
4206 *
4207 * OK, so we don't know how big the cache is. So guess.
4208 */
4209 batch = zone->managed_pages / 1024;
4210 if (batch * PAGE_SIZE > 512 * 1024)
4211 batch = (512 * 1024) / PAGE_SIZE;
4212 batch /= 4; /* We effectively *= 4 below */
4213 if (batch < 1)
4214 batch = 1;
4215
4216 /*
4217 * Clamp the batch to a 2^n - 1 value. Having a power
4218 * of 2 value was found to be more likely to have
4219 * suboptimal cache aliasing properties in some cases.
4220 *
4221 * For example if 2 tasks are alternately allocating
4222 * batches of pages, one task can end up with a lot
4223 * of pages of one half of the possible page colors
4224 * and the other with pages of the other colors.
4225 */
4226 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4227
4228 return batch;
4229
4230 #else
4231 /* The deferral and batching of frees should be suppressed under NOMMU
4232 * conditions.
4233 *
4234 * The problem is that NOMMU needs to be able to allocate large chunks
4235 * of contiguous memory as there's no hardware page translation to
4236 * assemble apparent contiguous memory from discontiguous pages.
4237 *
4238 * Queueing large contiguous runs of pages for batching, however,
4239 * causes the pages to actually be freed in smaller chunks. As there
4240 * can be a significant delay between the individual batches being
4241 * recycled, this leads to the once large chunks of space being
4242 * fragmented and becoming unavailable for high-order allocations.
4243 */
4244 return 0;
4245 #endif
4246 }
4247
4248 /*
4249 * pcp->high and pcp->batch values are related and dependent on one another:
4250 * ->batch must never be higher then ->high.
4251 * The following function updates them in a safe manner without read side
4252 * locking.
4253 *
4254 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4255 * those fields changing asynchronously (acording the the above rule).
4256 *
4257 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4258 * outside of boot time (or some other assurance that no concurrent updaters
4259 * exist).
4260 */
4261 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4262 unsigned long batch)
4263 {
4264 /* start with a fail safe value for batch */
4265 pcp->batch = 1;
4266 smp_wmb();
4267
4268 /* Update high, then batch, in order */
4269 pcp->high = high;
4270 smp_wmb();
4271
4272 pcp->batch = batch;
4273 }
4274
4275 /* a companion to pageset_set_high() */
4276 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4277 {
4278 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4279 }
4280
4281 static void pageset_init(struct per_cpu_pageset *p)
4282 {
4283 struct per_cpu_pages *pcp;
4284 int migratetype;
4285
4286 memset(p, 0, sizeof(*p));
4287
4288 pcp = &p->pcp;
4289 pcp->count = 0;
4290 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4291 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4292 }
4293
4294 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4295 {
4296 pageset_init(p);
4297 pageset_set_batch(p, batch);
4298 }
4299
4300 /*
4301 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4302 * to the value high for the pageset p.
4303 */
4304 static void pageset_set_high(struct per_cpu_pageset *p,
4305 unsigned long high)
4306 {
4307 unsigned long batch = max(1UL, high / 4);
4308 if ((high / 4) > (PAGE_SHIFT * 8))
4309 batch = PAGE_SHIFT * 8;
4310
4311 pageset_update(&p->pcp, high, batch);
4312 }
4313
4314 static void pageset_set_high_and_batch(struct zone *zone,
4315 struct per_cpu_pageset *pcp)
4316 {
4317 if (percpu_pagelist_fraction)
4318 pageset_set_high(pcp,
4319 (zone->managed_pages /
4320 percpu_pagelist_fraction));
4321 else
4322 pageset_set_batch(pcp, zone_batchsize(zone));
4323 }
4324
4325 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4326 {
4327 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4328
4329 pageset_init(pcp);
4330 pageset_set_high_and_batch(zone, pcp);
4331 }
4332
4333 static void __meminit setup_zone_pageset(struct zone *zone)
4334 {
4335 int cpu;
4336 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4337 for_each_possible_cpu(cpu)
4338 zone_pageset_init(zone, cpu);
4339 }
4340
4341 /*
4342 * Allocate per cpu pagesets and initialize them.
4343 * Before this call only boot pagesets were available.
4344 */
4345 void __init setup_per_cpu_pageset(void)
4346 {
4347 struct zone *zone;
4348
4349 for_each_populated_zone(zone)
4350 setup_zone_pageset(zone);
4351 }
4352
4353 static noinline __init_refok
4354 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4355 {
4356 int i;
4357 size_t alloc_size;
4358
4359 /*
4360 * The per-page waitqueue mechanism uses hashed waitqueues
4361 * per zone.
4362 */
4363 zone->wait_table_hash_nr_entries =
4364 wait_table_hash_nr_entries(zone_size_pages);
4365 zone->wait_table_bits =
4366 wait_table_bits(zone->wait_table_hash_nr_entries);
4367 alloc_size = zone->wait_table_hash_nr_entries
4368 * sizeof(wait_queue_head_t);
4369
4370 if (!slab_is_available()) {
4371 zone->wait_table = (wait_queue_head_t *)
4372 memblock_virt_alloc_node_nopanic(
4373 alloc_size, zone->zone_pgdat->node_id);
4374 } else {
4375 /*
4376 * This case means that a zone whose size was 0 gets new memory
4377 * via memory hot-add.
4378 * But it may be the case that a new node was hot-added. In
4379 * this case vmalloc() will not be able to use this new node's
4380 * memory - this wait_table must be initialized to use this new
4381 * node itself as well.
4382 * To use this new node's memory, further consideration will be
4383 * necessary.
4384 */
4385 zone->wait_table = vmalloc(alloc_size);
4386 }
4387 if (!zone->wait_table)
4388 return -ENOMEM;
4389
4390 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4391 init_waitqueue_head(zone->wait_table + i);
4392
4393 return 0;
4394 }
4395
4396 static __meminit void zone_pcp_init(struct zone *zone)
4397 {
4398 /*
4399 * per cpu subsystem is not up at this point. The following code
4400 * relies on the ability of the linker to provide the
4401 * offset of a (static) per cpu variable into the per cpu area.
4402 */
4403 zone->pageset = &boot_pageset;
4404
4405 if (populated_zone(zone))
4406 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4407 zone->name, zone->present_pages,
4408 zone_batchsize(zone));
4409 }
4410
4411 int __meminit init_currently_empty_zone(struct zone *zone,
4412 unsigned long zone_start_pfn,
4413 unsigned long size,
4414 enum memmap_context context)
4415 {
4416 struct pglist_data *pgdat = zone->zone_pgdat;
4417 int ret;
4418 ret = zone_wait_table_init(zone, size);
4419 if (ret)
4420 return ret;
4421 pgdat->nr_zones = zone_idx(zone) + 1;
4422
4423 zone->zone_start_pfn = zone_start_pfn;
4424
4425 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4426 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4427 pgdat->node_id,
4428 (unsigned long)zone_idx(zone),
4429 zone_start_pfn, (zone_start_pfn + size));
4430
4431 zone_init_free_lists(zone);
4432
4433 return 0;
4434 }
4435
4436 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4437 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4438 /*
4439 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4440 */
4441 int __meminit __early_pfn_to_nid(unsigned long pfn)
4442 {
4443 unsigned long start_pfn, end_pfn;
4444 int nid;
4445 /*
4446 * NOTE: The following SMP-unsafe globals are only used early in boot
4447 * when the kernel is running single-threaded.
4448 */
4449 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4450 static int __meminitdata last_nid;
4451
4452 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4453 return last_nid;
4454
4455 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4456 if (nid != -1) {
4457 last_start_pfn = start_pfn;
4458 last_end_pfn = end_pfn;
4459 last_nid = nid;
4460 }
4461
4462 return nid;
4463 }
4464 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4465
4466 int __meminit early_pfn_to_nid(unsigned long pfn)
4467 {
4468 int nid;
4469
4470 nid = __early_pfn_to_nid(pfn);
4471 if (nid >= 0)
4472 return nid;
4473 /* just returns 0 */
4474 return 0;
4475 }
4476
4477 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4478 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4479 {
4480 int nid;
4481
4482 nid = __early_pfn_to_nid(pfn);
4483 if (nid >= 0 && nid != node)
4484 return false;
4485 return true;
4486 }
4487 #endif
4488
4489 /**
4490 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4491 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4492 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4493 *
4494 * If an architecture guarantees that all ranges registered contain no holes
4495 * and may be freed, this this function may be used instead of calling
4496 * memblock_free_early_nid() manually.
4497 */
4498 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4499 {
4500 unsigned long start_pfn, end_pfn;
4501 int i, this_nid;
4502
4503 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4504 start_pfn = min(start_pfn, max_low_pfn);
4505 end_pfn = min(end_pfn, max_low_pfn);
4506
4507 if (start_pfn < end_pfn)
4508 memblock_free_early_nid(PFN_PHYS(start_pfn),
4509 (end_pfn - start_pfn) << PAGE_SHIFT,
4510 this_nid);
4511 }
4512 }
4513
4514 /**
4515 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4516 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4517 *
4518 * If an architecture guarantees that all ranges registered contain no holes and may
4519 * be freed, this function may be used instead of calling memory_present() manually.
4520 */
4521 void __init sparse_memory_present_with_active_regions(int nid)
4522 {
4523 unsigned long start_pfn, end_pfn;
4524 int i, this_nid;
4525
4526 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4527 memory_present(this_nid, start_pfn, end_pfn);
4528 }
4529
4530 /**
4531 * get_pfn_range_for_nid - Return the start and end page frames for a node
4532 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4533 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4534 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4535 *
4536 * It returns the start and end page frame of a node based on information
4537 * provided by memblock_set_node(). If called for a node
4538 * with no available memory, a warning is printed and the start and end
4539 * PFNs will be 0.
4540 */
4541 void __meminit get_pfn_range_for_nid(unsigned int nid,
4542 unsigned long *start_pfn, unsigned long *end_pfn)
4543 {
4544 unsigned long this_start_pfn, this_end_pfn;
4545 int i;
4546
4547 *start_pfn = -1UL;
4548 *end_pfn = 0;
4549
4550 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4551 *start_pfn = min(*start_pfn, this_start_pfn);
4552 *end_pfn = max(*end_pfn, this_end_pfn);
4553 }
4554
4555 if (*start_pfn == -1UL)
4556 *start_pfn = 0;
4557 }
4558
4559 /*
4560 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4561 * assumption is made that zones within a node are ordered in monotonic
4562 * increasing memory addresses so that the "highest" populated zone is used
4563 */
4564 static void __init find_usable_zone_for_movable(void)
4565 {
4566 int zone_index;
4567 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4568 if (zone_index == ZONE_MOVABLE)
4569 continue;
4570
4571 if (arch_zone_highest_possible_pfn[zone_index] >
4572 arch_zone_lowest_possible_pfn[zone_index])
4573 break;
4574 }
4575
4576 VM_BUG_ON(zone_index == -1);
4577 movable_zone = zone_index;
4578 }
4579
4580 /*
4581 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4582 * because it is sized independent of architecture. Unlike the other zones,
4583 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4584 * in each node depending on the size of each node and how evenly kernelcore
4585 * is distributed. This helper function adjusts the zone ranges
4586 * provided by the architecture for a given node by using the end of the
4587 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4588 * zones within a node are in order of monotonic increases memory addresses
4589 */
4590 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4591 unsigned long zone_type,
4592 unsigned long node_start_pfn,
4593 unsigned long node_end_pfn,
4594 unsigned long *zone_start_pfn,
4595 unsigned long *zone_end_pfn)
4596 {
4597 /* Only adjust if ZONE_MOVABLE is on this node */
4598 if (zone_movable_pfn[nid]) {
4599 /* Size ZONE_MOVABLE */
4600 if (zone_type == ZONE_MOVABLE) {
4601 *zone_start_pfn = zone_movable_pfn[nid];
4602 *zone_end_pfn = min(node_end_pfn,
4603 arch_zone_highest_possible_pfn[movable_zone]);
4604
4605 /* Adjust for ZONE_MOVABLE starting within this range */
4606 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4607 *zone_end_pfn > zone_movable_pfn[nid]) {
4608 *zone_end_pfn = zone_movable_pfn[nid];
4609
4610 /* Check if this whole range is within ZONE_MOVABLE */
4611 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4612 *zone_start_pfn = *zone_end_pfn;
4613 }
4614 }
4615
4616 /*
4617 * Return the number of pages a zone spans in a node, including holes
4618 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4619 */
4620 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4621 unsigned long zone_type,
4622 unsigned long node_start_pfn,
4623 unsigned long node_end_pfn,
4624 unsigned long *ignored)
4625 {
4626 unsigned long zone_start_pfn, zone_end_pfn;
4627
4628 /* Get the start and end of the zone */
4629 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4630 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4631 adjust_zone_range_for_zone_movable(nid, zone_type,
4632 node_start_pfn, node_end_pfn,
4633 &zone_start_pfn, &zone_end_pfn);
4634
4635 /* Check that this node has pages within the zone's required range */
4636 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4637 return 0;
4638
4639 /* Move the zone boundaries inside the node if necessary */
4640 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4641 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4642
4643 /* Return the spanned pages */
4644 return zone_end_pfn - zone_start_pfn;
4645 }
4646
4647 /*
4648 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4649 * then all holes in the requested range will be accounted for.
4650 */
4651 unsigned long __meminit __absent_pages_in_range(int nid,
4652 unsigned long range_start_pfn,
4653 unsigned long range_end_pfn)
4654 {
4655 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4656 unsigned long start_pfn, end_pfn;
4657 int i;
4658
4659 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4660 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4661 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4662 nr_absent -= end_pfn - start_pfn;
4663 }
4664 return nr_absent;
4665 }
4666
4667 /**
4668 * absent_pages_in_range - Return number of page frames in holes within a range
4669 * @start_pfn: The start PFN to start searching for holes
4670 * @end_pfn: The end PFN to stop searching for holes
4671 *
4672 * It returns the number of pages frames in memory holes within a range.
4673 */
4674 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4675 unsigned long end_pfn)
4676 {
4677 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4678 }
4679
4680 /* Return the number of page frames in holes in a zone on a node */
4681 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4682 unsigned long zone_type,
4683 unsigned long node_start_pfn,
4684 unsigned long node_end_pfn,
4685 unsigned long *ignored)
4686 {
4687 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4688 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4689 unsigned long zone_start_pfn, zone_end_pfn;
4690
4691 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4692 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4693
4694 adjust_zone_range_for_zone_movable(nid, zone_type,
4695 node_start_pfn, node_end_pfn,
4696 &zone_start_pfn, &zone_end_pfn);
4697 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4698 }
4699
4700 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4701 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4702 unsigned long zone_type,
4703 unsigned long node_start_pfn,
4704 unsigned long node_end_pfn,
4705 unsigned long *zones_size)
4706 {
4707 return zones_size[zone_type];
4708 }
4709
4710 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4711 unsigned long zone_type,
4712 unsigned long node_start_pfn,
4713 unsigned long node_end_pfn,
4714 unsigned long *zholes_size)
4715 {
4716 if (!zholes_size)
4717 return 0;
4718
4719 return zholes_size[zone_type];
4720 }
4721
4722 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4723
4724 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4725 unsigned long node_start_pfn,
4726 unsigned long node_end_pfn,
4727 unsigned long *zones_size,
4728 unsigned long *zholes_size)
4729 {
4730 unsigned long realtotalpages, totalpages = 0;
4731 enum zone_type i;
4732
4733 for (i = 0; i < MAX_NR_ZONES; i++)
4734 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4735 node_start_pfn,
4736 node_end_pfn,
4737 zones_size);
4738 pgdat->node_spanned_pages = totalpages;
4739
4740 realtotalpages = totalpages;
4741 for (i = 0; i < MAX_NR_ZONES; i++)
4742 realtotalpages -=
4743 zone_absent_pages_in_node(pgdat->node_id, i,
4744 node_start_pfn, node_end_pfn,
4745 zholes_size);
4746 pgdat->node_present_pages = realtotalpages;
4747 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4748 realtotalpages);
4749 }
4750
4751 #ifndef CONFIG_SPARSEMEM
4752 /*
4753 * Calculate the size of the zone->blockflags rounded to an unsigned long
4754 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4755 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4756 * round what is now in bits to nearest long in bits, then return it in
4757 * bytes.
4758 */
4759 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4760 {
4761 unsigned long usemapsize;
4762
4763 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4764 usemapsize = roundup(zonesize, pageblock_nr_pages);
4765 usemapsize = usemapsize >> pageblock_order;
4766 usemapsize *= NR_PAGEBLOCK_BITS;
4767 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4768
4769 return usemapsize / 8;
4770 }
4771
4772 static void __init setup_usemap(struct pglist_data *pgdat,
4773 struct zone *zone,
4774 unsigned long zone_start_pfn,
4775 unsigned long zonesize)
4776 {
4777 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4778 zone->pageblock_flags = NULL;
4779 if (usemapsize)
4780 zone->pageblock_flags =
4781 memblock_virt_alloc_node_nopanic(usemapsize,
4782 pgdat->node_id);
4783 }
4784 #else
4785 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4786 unsigned long zone_start_pfn, unsigned long zonesize) {}
4787 #endif /* CONFIG_SPARSEMEM */
4788
4789 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4790
4791 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4792 void __paginginit set_pageblock_order(void)
4793 {
4794 unsigned int order;
4795
4796 /* Check that pageblock_nr_pages has not already been setup */
4797 if (pageblock_order)
4798 return;
4799
4800 if (HPAGE_SHIFT > PAGE_SHIFT)
4801 order = HUGETLB_PAGE_ORDER;
4802 else
4803 order = MAX_ORDER - 1;
4804
4805 /*
4806 * Assume the largest contiguous order of interest is a huge page.
4807 * This value may be variable depending on boot parameters on IA64 and
4808 * powerpc.
4809 */
4810 pageblock_order = order;
4811 }
4812 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4813
4814 /*
4815 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4816 * is unused as pageblock_order is set at compile-time. See
4817 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4818 * the kernel config
4819 */
4820 void __paginginit set_pageblock_order(void)
4821 {
4822 }
4823
4824 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4825
4826 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4827 unsigned long present_pages)
4828 {
4829 unsigned long pages = spanned_pages;
4830
4831 /*
4832 * Provide a more accurate estimation if there are holes within
4833 * the zone and SPARSEMEM is in use. If there are holes within the
4834 * zone, each populated memory region may cost us one or two extra
4835 * memmap pages due to alignment because memmap pages for each
4836 * populated regions may not naturally algined on page boundary.
4837 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4838 */
4839 if (spanned_pages > present_pages + (present_pages >> 4) &&
4840 IS_ENABLED(CONFIG_SPARSEMEM))
4841 pages = present_pages;
4842
4843 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4844 }
4845
4846 /*
4847 * Set up the zone data structures:
4848 * - mark all pages reserved
4849 * - mark all memory queues empty
4850 * - clear the memory bitmaps
4851 *
4852 * NOTE: pgdat should get zeroed by caller.
4853 */
4854 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4855 unsigned long node_start_pfn, unsigned long node_end_pfn,
4856 unsigned long *zones_size, unsigned long *zholes_size)
4857 {
4858 enum zone_type j;
4859 int nid = pgdat->node_id;
4860 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4861 int ret;
4862
4863 pgdat_resize_init(pgdat);
4864 #ifdef CONFIG_NUMA_BALANCING
4865 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4866 pgdat->numabalancing_migrate_nr_pages = 0;
4867 pgdat->numabalancing_migrate_next_window = jiffies;
4868 #endif
4869 init_waitqueue_head(&pgdat->kswapd_wait);
4870 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4871 pgdat_page_ext_init(pgdat);
4872
4873 for (j = 0; j < MAX_NR_ZONES; j++) {
4874 struct zone *zone = pgdat->node_zones + j;
4875 unsigned long size, realsize, freesize, memmap_pages;
4876
4877 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4878 node_end_pfn, zones_size);
4879 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4880 node_start_pfn,
4881 node_end_pfn,
4882 zholes_size);
4883
4884 /*
4885 * Adjust freesize so that it accounts for how much memory
4886 * is used by this zone for memmap. This affects the watermark
4887 * and per-cpu initialisations
4888 */
4889 memmap_pages = calc_memmap_size(size, realsize);
4890 if (!is_highmem_idx(j)) {
4891 if (freesize >= memmap_pages) {
4892 freesize -= memmap_pages;
4893 if (memmap_pages)
4894 printk(KERN_DEBUG
4895 " %s zone: %lu pages used for memmap\n",
4896 zone_names[j], memmap_pages);
4897 } else
4898 printk(KERN_WARNING
4899 " %s zone: %lu pages exceeds freesize %lu\n",
4900 zone_names[j], memmap_pages, freesize);
4901 }
4902
4903 /* Account for reserved pages */
4904 if (j == 0 && freesize > dma_reserve) {
4905 freesize -= dma_reserve;
4906 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4907 zone_names[0], dma_reserve);
4908 }
4909
4910 if (!is_highmem_idx(j))
4911 nr_kernel_pages += freesize;
4912 /* Charge for highmem memmap if there are enough kernel pages */
4913 else if (nr_kernel_pages > memmap_pages * 2)
4914 nr_kernel_pages -= memmap_pages;
4915 nr_all_pages += freesize;
4916
4917 zone->spanned_pages = size;
4918 zone->present_pages = realsize;
4919 /*
4920 * Set an approximate value for lowmem here, it will be adjusted
4921 * when the bootmem allocator frees pages into the buddy system.
4922 * And all highmem pages will be managed by the buddy system.
4923 */
4924 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4925 #ifdef CONFIG_NUMA
4926 zone->node = nid;
4927 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4928 / 100;
4929 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4930 #endif
4931 zone->name = zone_names[j];
4932 spin_lock_init(&zone->lock);
4933 spin_lock_init(&zone->lru_lock);
4934 zone_seqlock_init(zone);
4935 zone->zone_pgdat = pgdat;
4936 zone_pcp_init(zone);
4937
4938 /* For bootup, initialized properly in watermark setup */
4939 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4940
4941 lruvec_init(&zone->lruvec);
4942 if (!size)
4943 continue;
4944
4945 set_pageblock_order();
4946 setup_usemap(pgdat, zone, zone_start_pfn, size);
4947 ret = init_currently_empty_zone(zone, zone_start_pfn,
4948 size, MEMMAP_EARLY);
4949 BUG_ON(ret);
4950 memmap_init(size, nid, j, zone_start_pfn);
4951 zone_start_pfn += size;
4952 }
4953 }
4954
4955 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4956 {
4957 /* Skip empty nodes */
4958 if (!pgdat->node_spanned_pages)
4959 return;
4960
4961 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4962 /* ia64 gets its own node_mem_map, before this, without bootmem */
4963 if (!pgdat->node_mem_map) {
4964 unsigned long size, start, end;
4965 struct page *map;
4966
4967 /*
4968 * The zone's endpoints aren't required to be MAX_ORDER
4969 * aligned but the node_mem_map endpoints must be in order
4970 * for the buddy allocator to function correctly.
4971 */
4972 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4973 end = pgdat_end_pfn(pgdat);
4974 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4975 size = (end - start) * sizeof(struct page);
4976 map = alloc_remap(pgdat->node_id, size);
4977 if (!map)
4978 map = memblock_virt_alloc_node_nopanic(size,
4979 pgdat->node_id);
4980 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4981 }
4982 #ifndef CONFIG_NEED_MULTIPLE_NODES
4983 /*
4984 * With no DISCONTIG, the global mem_map is just set as node 0's
4985 */
4986 if (pgdat == NODE_DATA(0)) {
4987 mem_map = NODE_DATA(0)->node_mem_map;
4988 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4989 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4990 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4991 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4992 }
4993 #endif
4994 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4995 }
4996
4997 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4998 unsigned long node_start_pfn, unsigned long *zholes_size)
4999 {
5000 pg_data_t *pgdat = NODE_DATA(nid);
5001 unsigned long start_pfn = 0;
5002 unsigned long end_pfn = 0;
5003
5004 /* pg_data_t should be reset to zero when it's allocated */
5005 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5006
5007 pgdat->node_id = nid;
5008 pgdat->node_start_pfn = node_start_pfn;
5009 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5010 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5011 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
5012 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
5013 #endif
5014 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5015 zones_size, zholes_size);
5016
5017 alloc_node_mem_map(pgdat);
5018 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5019 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5020 nid, (unsigned long)pgdat,
5021 (unsigned long)pgdat->node_mem_map);
5022 #endif
5023
5024 free_area_init_core(pgdat, start_pfn, end_pfn,
5025 zones_size, zholes_size);
5026 }
5027
5028 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5029
5030 #if MAX_NUMNODES > 1
5031 /*
5032 * Figure out the number of possible node ids.
5033 */
5034 void __init setup_nr_node_ids(void)
5035 {
5036 unsigned int node;
5037 unsigned int highest = 0;
5038
5039 for_each_node_mask(node, node_possible_map)
5040 highest = node;
5041 nr_node_ids = highest + 1;
5042 }
5043 #endif
5044
5045 /**
5046 * node_map_pfn_alignment - determine the maximum internode alignment
5047 *
5048 * This function should be called after node map is populated and sorted.
5049 * It calculates the maximum power of two alignment which can distinguish
5050 * all the nodes.
5051 *
5052 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5053 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5054 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5055 * shifted, 1GiB is enough and this function will indicate so.
5056 *
5057 * This is used to test whether pfn -> nid mapping of the chosen memory
5058 * model has fine enough granularity to avoid incorrect mapping for the
5059 * populated node map.
5060 *
5061 * Returns the determined alignment in pfn's. 0 if there is no alignment
5062 * requirement (single node).
5063 */
5064 unsigned long __init node_map_pfn_alignment(void)
5065 {
5066 unsigned long accl_mask = 0, last_end = 0;
5067 unsigned long start, end, mask;
5068 int last_nid = -1;
5069 int i, nid;
5070
5071 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5072 if (!start || last_nid < 0 || last_nid == nid) {
5073 last_nid = nid;
5074 last_end = end;
5075 continue;
5076 }
5077
5078 /*
5079 * Start with a mask granular enough to pin-point to the
5080 * start pfn and tick off bits one-by-one until it becomes
5081 * too coarse to separate the current node from the last.
5082 */
5083 mask = ~((1 << __ffs(start)) - 1);
5084 while (mask && last_end <= (start & (mask << 1)))
5085 mask <<= 1;
5086
5087 /* accumulate all internode masks */
5088 accl_mask |= mask;
5089 }
5090
5091 /* convert mask to number of pages */
5092 return ~accl_mask + 1;
5093 }
5094
5095 /* Find the lowest pfn for a node */
5096 static unsigned long __init find_min_pfn_for_node(int nid)
5097 {
5098 unsigned long min_pfn = ULONG_MAX;
5099 unsigned long start_pfn;
5100 int i;
5101
5102 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5103 min_pfn = min(min_pfn, start_pfn);
5104
5105 if (min_pfn == ULONG_MAX) {
5106 printk(KERN_WARNING
5107 "Could not find start_pfn for node %d\n", nid);
5108 return 0;
5109 }
5110
5111 return min_pfn;
5112 }
5113
5114 /**
5115 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5116 *
5117 * It returns the minimum PFN based on information provided via
5118 * memblock_set_node().
5119 */
5120 unsigned long __init find_min_pfn_with_active_regions(void)
5121 {
5122 return find_min_pfn_for_node(MAX_NUMNODES);
5123 }
5124
5125 /*
5126 * early_calculate_totalpages()
5127 * Sum pages in active regions for movable zone.
5128 * Populate N_MEMORY for calculating usable_nodes.
5129 */
5130 static unsigned long __init early_calculate_totalpages(void)
5131 {
5132 unsigned long totalpages = 0;
5133 unsigned long start_pfn, end_pfn;
5134 int i, nid;
5135
5136 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5137 unsigned long pages = end_pfn - start_pfn;
5138
5139 totalpages += pages;
5140 if (pages)
5141 node_set_state(nid, N_MEMORY);
5142 }
5143 return totalpages;
5144 }
5145
5146 /*
5147 * Find the PFN the Movable zone begins in each node. Kernel memory
5148 * is spread evenly between nodes as long as the nodes have enough
5149 * memory. When they don't, some nodes will have more kernelcore than
5150 * others
5151 */
5152 static void __init find_zone_movable_pfns_for_nodes(void)
5153 {
5154 int i, nid;
5155 unsigned long usable_startpfn;
5156 unsigned long kernelcore_node, kernelcore_remaining;
5157 /* save the state before borrow the nodemask */
5158 nodemask_t saved_node_state = node_states[N_MEMORY];
5159 unsigned long totalpages = early_calculate_totalpages();
5160 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5161 struct memblock_region *r;
5162
5163 /* Need to find movable_zone earlier when movable_node is specified. */
5164 find_usable_zone_for_movable();
5165
5166 /*
5167 * If movable_node is specified, ignore kernelcore and movablecore
5168 * options.
5169 */
5170 if (movable_node_is_enabled()) {
5171 for_each_memblock(memory, r) {
5172 if (!memblock_is_hotpluggable(r))
5173 continue;
5174
5175 nid = r->nid;
5176
5177 usable_startpfn = PFN_DOWN(r->base);
5178 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5179 min(usable_startpfn, zone_movable_pfn[nid]) :
5180 usable_startpfn;
5181 }
5182
5183 goto out2;
5184 }
5185
5186 /*
5187 * If movablecore=nn[KMG] was specified, calculate what size of
5188 * kernelcore that corresponds so that memory usable for
5189 * any allocation type is evenly spread. If both kernelcore
5190 * and movablecore are specified, then the value of kernelcore
5191 * will be used for required_kernelcore if it's greater than
5192 * what movablecore would have allowed.
5193 */
5194 if (required_movablecore) {
5195 unsigned long corepages;
5196
5197 /*
5198 * Round-up so that ZONE_MOVABLE is at least as large as what
5199 * was requested by the user
5200 */
5201 required_movablecore =
5202 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5203 corepages = totalpages - required_movablecore;
5204
5205 required_kernelcore = max(required_kernelcore, corepages);
5206 }
5207
5208 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5209 if (!required_kernelcore)
5210 goto out;
5211
5212 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5213 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5214
5215 restart:
5216 /* Spread kernelcore memory as evenly as possible throughout nodes */
5217 kernelcore_node = required_kernelcore / usable_nodes;
5218 for_each_node_state(nid, N_MEMORY) {
5219 unsigned long start_pfn, end_pfn;
5220
5221 /*
5222 * Recalculate kernelcore_node if the division per node
5223 * now exceeds what is necessary to satisfy the requested
5224 * amount of memory for the kernel
5225 */
5226 if (required_kernelcore < kernelcore_node)
5227 kernelcore_node = required_kernelcore / usable_nodes;
5228
5229 /*
5230 * As the map is walked, we track how much memory is usable
5231 * by the kernel using kernelcore_remaining. When it is
5232 * 0, the rest of the node is usable by ZONE_MOVABLE
5233 */
5234 kernelcore_remaining = kernelcore_node;
5235
5236 /* Go through each range of PFNs within this node */
5237 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5238 unsigned long size_pages;
5239
5240 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5241 if (start_pfn >= end_pfn)
5242 continue;
5243
5244 /* Account for what is only usable for kernelcore */
5245 if (start_pfn < usable_startpfn) {
5246 unsigned long kernel_pages;
5247 kernel_pages = min(end_pfn, usable_startpfn)
5248 - start_pfn;
5249
5250 kernelcore_remaining -= min(kernel_pages,
5251 kernelcore_remaining);
5252 required_kernelcore -= min(kernel_pages,
5253 required_kernelcore);
5254
5255 /* Continue if range is now fully accounted */
5256 if (end_pfn <= usable_startpfn) {
5257
5258 /*
5259 * Push zone_movable_pfn to the end so
5260 * that if we have to rebalance
5261 * kernelcore across nodes, we will
5262 * not double account here
5263 */
5264 zone_movable_pfn[nid] = end_pfn;
5265 continue;
5266 }
5267 start_pfn = usable_startpfn;
5268 }
5269
5270 /*
5271 * The usable PFN range for ZONE_MOVABLE is from
5272 * start_pfn->end_pfn. Calculate size_pages as the
5273 * number of pages used as kernelcore
5274 */
5275 size_pages = end_pfn - start_pfn;
5276 if (size_pages > kernelcore_remaining)
5277 size_pages = kernelcore_remaining;
5278 zone_movable_pfn[nid] = start_pfn + size_pages;
5279
5280 /*
5281 * Some kernelcore has been met, update counts and
5282 * break if the kernelcore for this node has been
5283 * satisfied
5284 */
5285 required_kernelcore -= min(required_kernelcore,
5286 size_pages);
5287 kernelcore_remaining -= size_pages;
5288 if (!kernelcore_remaining)
5289 break;
5290 }
5291 }
5292
5293 /*
5294 * If there is still required_kernelcore, we do another pass with one
5295 * less node in the count. This will push zone_movable_pfn[nid] further
5296 * along on the nodes that still have memory until kernelcore is
5297 * satisfied
5298 */
5299 usable_nodes--;
5300 if (usable_nodes && required_kernelcore > usable_nodes)
5301 goto restart;
5302
5303 out2:
5304 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5305 for (nid = 0; nid < MAX_NUMNODES; nid++)
5306 zone_movable_pfn[nid] =
5307 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5308
5309 out:
5310 /* restore the node_state */
5311 node_states[N_MEMORY] = saved_node_state;
5312 }
5313
5314 /* Any regular or high memory on that node ? */
5315 static void check_for_memory(pg_data_t *pgdat, int nid)
5316 {
5317 enum zone_type zone_type;
5318
5319 if (N_MEMORY == N_NORMAL_MEMORY)
5320 return;
5321
5322 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5323 struct zone *zone = &pgdat->node_zones[zone_type];
5324 if (populated_zone(zone)) {
5325 node_set_state(nid, N_HIGH_MEMORY);
5326 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5327 zone_type <= ZONE_NORMAL)
5328 node_set_state(nid, N_NORMAL_MEMORY);
5329 break;
5330 }
5331 }
5332 }
5333
5334 /**
5335 * free_area_init_nodes - Initialise all pg_data_t and zone data
5336 * @max_zone_pfn: an array of max PFNs for each zone
5337 *
5338 * This will call free_area_init_node() for each active node in the system.
5339 * Using the page ranges provided by memblock_set_node(), the size of each
5340 * zone in each node and their holes is calculated. If the maximum PFN
5341 * between two adjacent zones match, it is assumed that the zone is empty.
5342 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5343 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5344 * starts where the previous one ended. For example, ZONE_DMA32 starts
5345 * at arch_max_dma_pfn.
5346 */
5347 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5348 {
5349 unsigned long start_pfn, end_pfn;
5350 int i, nid;
5351
5352 /* Record where the zone boundaries are */
5353 memset(arch_zone_lowest_possible_pfn, 0,
5354 sizeof(arch_zone_lowest_possible_pfn));
5355 memset(arch_zone_highest_possible_pfn, 0,
5356 sizeof(arch_zone_highest_possible_pfn));
5357 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5358 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5359 for (i = 1; i < MAX_NR_ZONES; i++) {
5360 if (i == ZONE_MOVABLE)
5361 continue;
5362 arch_zone_lowest_possible_pfn[i] =
5363 arch_zone_highest_possible_pfn[i-1];
5364 arch_zone_highest_possible_pfn[i] =
5365 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5366 }
5367 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5368 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5369
5370 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5371 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5372 find_zone_movable_pfns_for_nodes();
5373
5374 /* Print out the zone ranges */
5375 pr_info("Zone ranges:\n");
5376 for (i = 0; i < MAX_NR_ZONES; i++) {
5377 if (i == ZONE_MOVABLE)
5378 continue;
5379 pr_info(" %-8s ", zone_names[i]);
5380 if (arch_zone_lowest_possible_pfn[i] ==
5381 arch_zone_highest_possible_pfn[i])
5382 pr_cont("empty\n");
5383 else
5384 pr_cont("[mem %0#10lx-%0#10lx]\n",
5385 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5386 (arch_zone_highest_possible_pfn[i]
5387 << PAGE_SHIFT) - 1);
5388 }
5389
5390 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5391 pr_info("Movable zone start for each node\n");
5392 for (i = 0; i < MAX_NUMNODES; i++) {
5393 if (zone_movable_pfn[i])
5394 pr_info(" Node %d: %#010lx\n", i,
5395 zone_movable_pfn[i] << PAGE_SHIFT);
5396 }
5397
5398 /* Print out the early node map */
5399 pr_info("Early memory node ranges\n");
5400 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5401 pr_info(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5402 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5403
5404 /* Initialise every node */
5405 mminit_verify_pageflags_layout();
5406 setup_nr_node_ids();
5407 for_each_online_node(nid) {
5408 pg_data_t *pgdat = NODE_DATA(nid);
5409 free_area_init_node(nid, NULL,
5410 find_min_pfn_for_node(nid), NULL);
5411
5412 /* Any memory on that node */
5413 if (pgdat->node_present_pages)
5414 node_set_state(nid, N_MEMORY);
5415 check_for_memory(pgdat, nid);
5416 }
5417 }
5418
5419 static int __init cmdline_parse_core(char *p, unsigned long *core)
5420 {
5421 unsigned long long coremem;
5422 if (!p)
5423 return -EINVAL;
5424
5425 coremem = memparse(p, &p);
5426 *core = coremem >> PAGE_SHIFT;
5427
5428 /* Paranoid check that UL is enough for the coremem value */
5429 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5430
5431 return 0;
5432 }
5433
5434 /*
5435 * kernelcore=size sets the amount of memory for use for allocations that
5436 * cannot be reclaimed or migrated.
5437 */
5438 static int __init cmdline_parse_kernelcore(char *p)
5439 {
5440 return cmdline_parse_core(p, &required_kernelcore);
5441 }
5442
5443 /*
5444 * movablecore=size sets the amount of memory for use for allocations that
5445 * can be reclaimed or migrated.
5446 */
5447 static int __init cmdline_parse_movablecore(char *p)
5448 {
5449 return cmdline_parse_core(p, &required_movablecore);
5450 }
5451
5452 early_param("kernelcore", cmdline_parse_kernelcore);
5453 early_param("movablecore", cmdline_parse_movablecore);
5454
5455 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5456
5457 void adjust_managed_page_count(struct page *page, long count)
5458 {
5459 spin_lock(&managed_page_count_lock);
5460 page_zone(page)->managed_pages += count;
5461 totalram_pages += count;
5462 #ifdef CONFIG_HIGHMEM
5463 if (PageHighMem(page))
5464 totalhigh_pages += count;
5465 #endif
5466 spin_unlock(&managed_page_count_lock);
5467 }
5468 EXPORT_SYMBOL(adjust_managed_page_count);
5469
5470 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5471 {
5472 void *pos;
5473 unsigned long pages = 0;
5474
5475 start = (void *)PAGE_ALIGN((unsigned long)start);
5476 end = (void *)((unsigned long)end & PAGE_MASK);
5477 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5478 if ((unsigned int)poison <= 0xFF)
5479 memset(pos, poison, PAGE_SIZE);
5480 free_reserved_page(virt_to_page(pos));
5481 }
5482
5483 if (pages && s)
5484 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5485 s, pages << (PAGE_SHIFT - 10), start, end);
5486
5487 return pages;
5488 }
5489 EXPORT_SYMBOL(free_reserved_area);
5490
5491 #ifdef CONFIG_HIGHMEM
5492 void free_highmem_page(struct page *page)
5493 {
5494 __free_reserved_page(page);
5495 totalram_pages++;
5496 page_zone(page)->managed_pages++;
5497 totalhigh_pages++;
5498 }
5499 #endif
5500
5501
5502 void __init mem_init_print_info(const char *str)
5503 {
5504 unsigned long physpages, codesize, datasize, rosize, bss_size;
5505 unsigned long init_code_size, init_data_size;
5506
5507 physpages = get_num_physpages();
5508 codesize = _etext - _stext;
5509 datasize = _edata - _sdata;
5510 rosize = __end_rodata - __start_rodata;
5511 bss_size = __bss_stop - __bss_start;
5512 init_data_size = __init_end - __init_begin;
5513 init_code_size = _einittext - _sinittext;
5514
5515 /*
5516 * Detect special cases and adjust section sizes accordingly:
5517 * 1) .init.* may be embedded into .data sections
5518 * 2) .init.text.* may be out of [__init_begin, __init_end],
5519 * please refer to arch/tile/kernel/vmlinux.lds.S.
5520 * 3) .rodata.* may be embedded into .text or .data sections.
5521 */
5522 #define adj_init_size(start, end, size, pos, adj) \
5523 do { \
5524 if (start <= pos && pos < end && size > adj) \
5525 size -= adj; \
5526 } while (0)
5527
5528 adj_init_size(__init_begin, __init_end, init_data_size,
5529 _sinittext, init_code_size);
5530 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5531 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5532 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5533 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5534
5535 #undef adj_init_size
5536
5537 pr_info("Memory: %luK/%luK available "
5538 "(%luK kernel code, %luK rwdata, %luK rodata, "
5539 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5540 #ifdef CONFIG_HIGHMEM
5541 ", %luK highmem"
5542 #endif
5543 "%s%s)\n",
5544 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5545 codesize >> 10, datasize >> 10, rosize >> 10,
5546 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5547 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5548 totalcma_pages << (PAGE_SHIFT-10),
5549 #ifdef CONFIG_HIGHMEM
5550 totalhigh_pages << (PAGE_SHIFT-10),
5551 #endif
5552 str ? ", " : "", str ? str : "");
5553 }
5554
5555 /**
5556 * set_dma_reserve - set the specified number of pages reserved in the first zone
5557 * @new_dma_reserve: The number of pages to mark reserved
5558 *
5559 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5560 * In the DMA zone, a significant percentage may be consumed by kernel image
5561 * and other unfreeable allocations which can skew the watermarks badly. This
5562 * function may optionally be used to account for unfreeable pages in the
5563 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5564 * smaller per-cpu batchsize.
5565 */
5566 void __init set_dma_reserve(unsigned long new_dma_reserve)
5567 {
5568 dma_reserve = new_dma_reserve;
5569 }
5570
5571 void __init free_area_init(unsigned long *zones_size)
5572 {
5573 free_area_init_node(0, zones_size,
5574 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5575 }
5576
5577 static int page_alloc_cpu_notify(struct notifier_block *self,
5578 unsigned long action, void *hcpu)
5579 {
5580 int cpu = (unsigned long)hcpu;
5581
5582 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5583 lru_add_drain_cpu(cpu);
5584 drain_pages(cpu);
5585
5586 /*
5587 * Spill the event counters of the dead processor
5588 * into the current processors event counters.
5589 * This artificially elevates the count of the current
5590 * processor.
5591 */
5592 vm_events_fold_cpu(cpu);
5593
5594 /*
5595 * Zero the differential counters of the dead processor
5596 * so that the vm statistics are consistent.
5597 *
5598 * This is only okay since the processor is dead and cannot
5599 * race with what we are doing.
5600 */
5601 cpu_vm_stats_fold(cpu);
5602 }
5603 return NOTIFY_OK;
5604 }
5605
5606 void __init page_alloc_init(void)
5607 {
5608 hotcpu_notifier(page_alloc_cpu_notify, 0);
5609 }
5610
5611 /*
5612 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5613 * or min_free_kbytes changes.
5614 */
5615 static void calculate_totalreserve_pages(void)
5616 {
5617 struct pglist_data *pgdat;
5618 unsigned long reserve_pages = 0;
5619 enum zone_type i, j;
5620
5621 for_each_online_pgdat(pgdat) {
5622 for (i = 0; i < MAX_NR_ZONES; i++) {
5623 struct zone *zone = pgdat->node_zones + i;
5624 long max = 0;
5625
5626 /* Find valid and maximum lowmem_reserve in the zone */
5627 for (j = i; j < MAX_NR_ZONES; j++) {
5628 if (zone->lowmem_reserve[j] > max)
5629 max = zone->lowmem_reserve[j];
5630 }
5631
5632 /* we treat the high watermark as reserved pages. */
5633 max += high_wmark_pages(zone);
5634
5635 if (max > zone->managed_pages)
5636 max = zone->managed_pages;
5637 reserve_pages += max;
5638 /*
5639 * Lowmem reserves are not available to
5640 * GFP_HIGHUSER page cache allocations and
5641 * kswapd tries to balance zones to their high
5642 * watermark. As a result, neither should be
5643 * regarded as dirtyable memory, to prevent a
5644 * situation where reclaim has to clean pages
5645 * in order to balance the zones.
5646 */
5647 zone->dirty_balance_reserve = max;
5648 }
5649 }
5650 dirty_balance_reserve = reserve_pages;
5651 totalreserve_pages = reserve_pages;
5652 }
5653
5654 /*
5655 * setup_per_zone_lowmem_reserve - called whenever
5656 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5657 * has a correct pages reserved value, so an adequate number of
5658 * pages are left in the zone after a successful __alloc_pages().
5659 */
5660 static void setup_per_zone_lowmem_reserve(void)
5661 {
5662 struct pglist_data *pgdat;
5663 enum zone_type j, idx;
5664
5665 for_each_online_pgdat(pgdat) {
5666 for (j = 0; j < MAX_NR_ZONES; j++) {
5667 struct zone *zone = pgdat->node_zones + j;
5668 unsigned long managed_pages = zone->managed_pages;
5669
5670 zone->lowmem_reserve[j] = 0;
5671
5672 idx = j;
5673 while (idx) {
5674 struct zone *lower_zone;
5675
5676 idx--;
5677
5678 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5679 sysctl_lowmem_reserve_ratio[idx] = 1;
5680
5681 lower_zone = pgdat->node_zones + idx;
5682 lower_zone->lowmem_reserve[j] = managed_pages /
5683 sysctl_lowmem_reserve_ratio[idx];
5684 managed_pages += lower_zone->managed_pages;
5685 }
5686 }
5687 }
5688
5689 /* update totalreserve_pages */
5690 calculate_totalreserve_pages();
5691 }
5692
5693 static void __setup_per_zone_wmarks(void)
5694 {
5695 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5696 unsigned long lowmem_pages = 0;
5697 struct zone *zone;
5698 unsigned long flags;
5699
5700 /* Calculate total number of !ZONE_HIGHMEM pages */
5701 for_each_zone(zone) {
5702 if (!is_highmem(zone))
5703 lowmem_pages += zone->managed_pages;
5704 }
5705
5706 for_each_zone(zone) {
5707 u64 tmp;
5708
5709 spin_lock_irqsave(&zone->lock, flags);
5710 tmp = (u64)pages_min * zone->managed_pages;
5711 do_div(tmp, lowmem_pages);
5712 if (is_highmem(zone)) {
5713 /*
5714 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5715 * need highmem pages, so cap pages_min to a small
5716 * value here.
5717 *
5718 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5719 * deltas controls asynch page reclaim, and so should
5720 * not be capped for highmem.
5721 */
5722 unsigned long min_pages;
5723
5724 min_pages = zone->managed_pages / 1024;
5725 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5726 zone->watermark[WMARK_MIN] = min_pages;
5727 } else {
5728 /*
5729 * If it's a lowmem zone, reserve a number of pages
5730 * proportionate to the zone's size.
5731 */
5732 zone->watermark[WMARK_MIN] = tmp;
5733 }
5734
5735 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5736 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5737
5738 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5739 high_wmark_pages(zone) - low_wmark_pages(zone) -
5740 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5741
5742 setup_zone_migrate_reserve(zone);
5743 spin_unlock_irqrestore(&zone->lock, flags);
5744 }
5745
5746 /* update totalreserve_pages */
5747 calculate_totalreserve_pages();
5748 }
5749
5750 /**
5751 * setup_per_zone_wmarks - called when min_free_kbytes changes
5752 * or when memory is hot-{added|removed}
5753 *
5754 * Ensures that the watermark[min,low,high] values for each zone are set
5755 * correctly with respect to min_free_kbytes.
5756 */
5757 void setup_per_zone_wmarks(void)
5758 {
5759 mutex_lock(&zonelists_mutex);
5760 __setup_per_zone_wmarks();
5761 mutex_unlock(&zonelists_mutex);
5762 }
5763
5764 /*
5765 * The inactive anon list should be small enough that the VM never has to
5766 * do too much work, but large enough that each inactive page has a chance
5767 * to be referenced again before it is swapped out.
5768 *
5769 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5770 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5771 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5772 * the anonymous pages are kept on the inactive list.
5773 *
5774 * total target max
5775 * memory ratio inactive anon
5776 * -------------------------------------
5777 * 10MB 1 5MB
5778 * 100MB 1 50MB
5779 * 1GB 3 250MB
5780 * 10GB 10 0.9GB
5781 * 100GB 31 3GB
5782 * 1TB 101 10GB
5783 * 10TB 320 32GB
5784 */
5785 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5786 {
5787 unsigned int gb, ratio;
5788
5789 /* Zone size in gigabytes */
5790 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5791 if (gb)
5792 ratio = int_sqrt(10 * gb);
5793 else
5794 ratio = 1;
5795
5796 zone->inactive_ratio = ratio;
5797 }
5798
5799 static void __meminit setup_per_zone_inactive_ratio(void)
5800 {
5801 struct zone *zone;
5802
5803 for_each_zone(zone)
5804 calculate_zone_inactive_ratio(zone);
5805 }
5806
5807 /*
5808 * Initialise min_free_kbytes.
5809 *
5810 * For small machines we want it small (128k min). For large machines
5811 * we want it large (64MB max). But it is not linear, because network
5812 * bandwidth does not increase linearly with machine size. We use
5813 *
5814 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5815 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5816 *
5817 * which yields
5818 *
5819 * 16MB: 512k
5820 * 32MB: 724k
5821 * 64MB: 1024k
5822 * 128MB: 1448k
5823 * 256MB: 2048k
5824 * 512MB: 2896k
5825 * 1024MB: 4096k
5826 * 2048MB: 5792k
5827 * 4096MB: 8192k
5828 * 8192MB: 11584k
5829 * 16384MB: 16384k
5830 */
5831 int __meminit init_per_zone_wmark_min(void)
5832 {
5833 unsigned long lowmem_kbytes;
5834 int new_min_free_kbytes;
5835
5836 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5837 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5838
5839 if (new_min_free_kbytes > user_min_free_kbytes) {
5840 min_free_kbytes = new_min_free_kbytes;
5841 if (min_free_kbytes < 128)
5842 min_free_kbytes = 128;
5843 if (min_free_kbytes > 65536)
5844 min_free_kbytes = 65536;
5845 } else {
5846 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5847 new_min_free_kbytes, user_min_free_kbytes);
5848 }
5849 setup_per_zone_wmarks();
5850 refresh_zone_stat_thresholds();
5851 setup_per_zone_lowmem_reserve();
5852 setup_per_zone_inactive_ratio();
5853 return 0;
5854 }
5855 module_init(init_per_zone_wmark_min)
5856
5857 /*
5858 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5859 * that we can call two helper functions whenever min_free_kbytes
5860 * changes.
5861 */
5862 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5863 void __user *buffer, size_t *length, loff_t *ppos)
5864 {
5865 int rc;
5866
5867 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5868 if (rc)
5869 return rc;
5870
5871 if (write) {
5872 user_min_free_kbytes = min_free_kbytes;
5873 setup_per_zone_wmarks();
5874 }
5875 return 0;
5876 }
5877
5878 #ifdef CONFIG_NUMA
5879 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5880 void __user *buffer, size_t *length, loff_t *ppos)
5881 {
5882 struct zone *zone;
5883 int rc;
5884
5885 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5886 if (rc)
5887 return rc;
5888
5889 for_each_zone(zone)
5890 zone->min_unmapped_pages = (zone->managed_pages *
5891 sysctl_min_unmapped_ratio) / 100;
5892 return 0;
5893 }
5894
5895 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5896 void __user *buffer, size_t *length, loff_t *ppos)
5897 {
5898 struct zone *zone;
5899 int rc;
5900
5901 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5902 if (rc)
5903 return rc;
5904
5905 for_each_zone(zone)
5906 zone->min_slab_pages = (zone->managed_pages *
5907 sysctl_min_slab_ratio) / 100;
5908 return 0;
5909 }
5910 #endif
5911
5912 /*
5913 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5914 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5915 * whenever sysctl_lowmem_reserve_ratio changes.
5916 *
5917 * The reserve ratio obviously has absolutely no relation with the
5918 * minimum watermarks. The lowmem reserve ratio can only make sense
5919 * if in function of the boot time zone sizes.
5920 */
5921 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5922 void __user *buffer, size_t *length, loff_t *ppos)
5923 {
5924 proc_dointvec_minmax(table, write, buffer, length, ppos);
5925 setup_per_zone_lowmem_reserve();
5926 return 0;
5927 }
5928
5929 /*
5930 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5931 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5932 * pagelist can have before it gets flushed back to buddy allocator.
5933 */
5934 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5935 void __user *buffer, size_t *length, loff_t *ppos)
5936 {
5937 struct zone *zone;
5938 int old_percpu_pagelist_fraction;
5939 int ret;
5940
5941 mutex_lock(&pcp_batch_high_lock);
5942 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5943
5944 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5945 if (!write || ret < 0)
5946 goto out;
5947
5948 /* Sanity checking to avoid pcp imbalance */
5949 if (percpu_pagelist_fraction &&
5950 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5951 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5952 ret = -EINVAL;
5953 goto out;
5954 }
5955
5956 /* No change? */
5957 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5958 goto out;
5959
5960 for_each_populated_zone(zone) {
5961 unsigned int cpu;
5962
5963 for_each_possible_cpu(cpu)
5964 pageset_set_high_and_batch(zone,
5965 per_cpu_ptr(zone->pageset, cpu));
5966 }
5967 out:
5968 mutex_unlock(&pcp_batch_high_lock);
5969 return ret;
5970 }
5971
5972 int hashdist = HASHDIST_DEFAULT;
5973
5974 #ifdef CONFIG_NUMA
5975 static int __init set_hashdist(char *str)
5976 {
5977 if (!str)
5978 return 0;
5979 hashdist = simple_strtoul(str, &str, 0);
5980 return 1;
5981 }
5982 __setup("hashdist=", set_hashdist);
5983 #endif
5984
5985 /*
5986 * allocate a large system hash table from bootmem
5987 * - it is assumed that the hash table must contain an exact power-of-2
5988 * quantity of entries
5989 * - limit is the number of hash buckets, not the total allocation size
5990 */
5991 void *__init alloc_large_system_hash(const char *tablename,
5992 unsigned long bucketsize,
5993 unsigned long numentries,
5994 int scale,
5995 int flags,
5996 unsigned int *_hash_shift,
5997 unsigned int *_hash_mask,
5998 unsigned long low_limit,
5999 unsigned long high_limit)
6000 {
6001 unsigned long long max = high_limit;
6002 unsigned long log2qty, size;
6003 void *table = NULL;
6004
6005 /* allow the kernel cmdline to have a say */
6006 if (!numentries) {
6007 /* round applicable memory size up to nearest megabyte */
6008 numentries = nr_kernel_pages;
6009
6010 /* It isn't necessary when PAGE_SIZE >= 1MB */
6011 if (PAGE_SHIFT < 20)
6012 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6013
6014 /* limit to 1 bucket per 2^scale bytes of low memory */
6015 if (scale > PAGE_SHIFT)
6016 numentries >>= (scale - PAGE_SHIFT);
6017 else
6018 numentries <<= (PAGE_SHIFT - scale);
6019
6020 /* Make sure we've got at least a 0-order allocation.. */
6021 if (unlikely(flags & HASH_SMALL)) {
6022 /* Makes no sense without HASH_EARLY */
6023 WARN_ON(!(flags & HASH_EARLY));
6024 if (!(numentries >> *_hash_shift)) {
6025 numentries = 1UL << *_hash_shift;
6026 BUG_ON(!numentries);
6027 }
6028 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6029 numentries = PAGE_SIZE / bucketsize;
6030 }
6031 numentries = roundup_pow_of_two(numentries);
6032
6033 /* limit allocation size to 1/16 total memory by default */
6034 if (max == 0) {
6035 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6036 do_div(max, bucketsize);
6037 }
6038 max = min(max, 0x80000000ULL);
6039
6040 if (numentries < low_limit)
6041 numentries = low_limit;
6042 if (numentries > max)
6043 numentries = max;
6044
6045 log2qty = ilog2(numentries);
6046
6047 do {
6048 size = bucketsize << log2qty;
6049 if (flags & HASH_EARLY)
6050 table = memblock_virt_alloc_nopanic(size, 0);
6051 else if (hashdist)
6052 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6053 else {
6054 /*
6055 * If bucketsize is not a power-of-two, we may free
6056 * some pages at the end of hash table which
6057 * alloc_pages_exact() automatically does
6058 */
6059 if (get_order(size) < MAX_ORDER) {
6060 table = alloc_pages_exact(size, GFP_ATOMIC);
6061 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6062 }
6063 }
6064 } while (!table && size > PAGE_SIZE && --log2qty);
6065
6066 if (!table)
6067 panic("Failed to allocate %s hash table\n", tablename);
6068
6069 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6070 tablename,
6071 (1UL << log2qty),
6072 ilog2(size) - PAGE_SHIFT,
6073 size);
6074
6075 if (_hash_shift)
6076 *_hash_shift = log2qty;
6077 if (_hash_mask)
6078 *_hash_mask = (1 << log2qty) - 1;
6079
6080 return table;
6081 }
6082
6083 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6084 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6085 unsigned long pfn)
6086 {
6087 #ifdef CONFIG_SPARSEMEM
6088 return __pfn_to_section(pfn)->pageblock_flags;
6089 #else
6090 return zone->pageblock_flags;
6091 #endif /* CONFIG_SPARSEMEM */
6092 }
6093
6094 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6095 {
6096 #ifdef CONFIG_SPARSEMEM
6097 pfn &= (PAGES_PER_SECTION-1);
6098 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6099 #else
6100 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6101 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6102 #endif /* CONFIG_SPARSEMEM */
6103 }
6104
6105 /**
6106 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6107 * @page: The page within the block of interest
6108 * @pfn: The target page frame number
6109 * @end_bitidx: The last bit of interest to retrieve
6110 * @mask: mask of bits that the caller is interested in
6111 *
6112 * Return: pageblock_bits flags
6113 */
6114 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6115 unsigned long end_bitidx,
6116 unsigned long mask)
6117 {
6118 struct zone *zone;
6119 unsigned long *bitmap;
6120 unsigned long bitidx, word_bitidx;
6121 unsigned long word;
6122
6123 zone = page_zone(page);
6124 bitmap = get_pageblock_bitmap(zone, pfn);
6125 bitidx = pfn_to_bitidx(zone, pfn);
6126 word_bitidx = bitidx / BITS_PER_LONG;
6127 bitidx &= (BITS_PER_LONG-1);
6128
6129 word = bitmap[word_bitidx];
6130 bitidx += end_bitidx;
6131 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6132 }
6133
6134 /**
6135 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6136 * @page: The page within the block of interest
6137 * @flags: The flags to set
6138 * @pfn: The target page frame number
6139 * @end_bitidx: The last bit of interest
6140 * @mask: mask of bits that the caller is interested in
6141 */
6142 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6143 unsigned long pfn,
6144 unsigned long end_bitidx,
6145 unsigned long mask)
6146 {
6147 struct zone *zone;
6148 unsigned long *bitmap;
6149 unsigned long bitidx, word_bitidx;
6150 unsigned long old_word, word;
6151
6152 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6153
6154 zone = page_zone(page);
6155 bitmap = get_pageblock_bitmap(zone, pfn);
6156 bitidx = pfn_to_bitidx(zone, pfn);
6157 word_bitidx = bitidx / BITS_PER_LONG;
6158 bitidx &= (BITS_PER_LONG-1);
6159
6160 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6161
6162 bitidx += end_bitidx;
6163 mask <<= (BITS_PER_LONG - bitidx - 1);
6164 flags <<= (BITS_PER_LONG - bitidx - 1);
6165
6166 word = ACCESS_ONCE(bitmap[word_bitidx]);
6167 for (;;) {
6168 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6169 if (word == old_word)
6170 break;
6171 word = old_word;
6172 }
6173 }
6174
6175 /*
6176 * This function checks whether pageblock includes unmovable pages or not.
6177 * If @count is not zero, it is okay to include less @count unmovable pages
6178 *
6179 * PageLRU check without isolation or lru_lock could race so that
6180 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6181 * expect this function should be exact.
6182 */
6183 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6184 bool skip_hwpoisoned_pages)
6185 {
6186 unsigned long pfn, iter, found;
6187 int mt;
6188
6189 /*
6190 * For avoiding noise data, lru_add_drain_all() should be called
6191 * If ZONE_MOVABLE, the zone never contains unmovable pages
6192 */
6193 if (zone_idx(zone) == ZONE_MOVABLE)
6194 return false;
6195 mt = get_pageblock_migratetype(page);
6196 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6197 return false;
6198
6199 pfn = page_to_pfn(page);
6200 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6201 unsigned long check = pfn + iter;
6202
6203 if (!pfn_valid_within(check))
6204 continue;
6205
6206 page = pfn_to_page(check);
6207
6208 /*
6209 * Hugepages are not in LRU lists, but they're movable.
6210 * We need not scan over tail pages bacause we don't
6211 * handle each tail page individually in migration.
6212 */
6213 if (PageHuge(page)) {
6214 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6215 continue;
6216 }
6217
6218 /*
6219 * We can't use page_count without pin a page
6220 * because another CPU can free compound page.
6221 * This check already skips compound tails of THP
6222 * because their page->_count is zero at all time.
6223 */
6224 if (!atomic_read(&page->_count)) {
6225 if (PageBuddy(page))
6226 iter += (1 << page_order(page)) - 1;
6227 continue;
6228 }
6229
6230 /*
6231 * The HWPoisoned page may be not in buddy system, and
6232 * page_count() is not 0.
6233 */
6234 if (skip_hwpoisoned_pages && PageHWPoison(page))
6235 continue;
6236
6237 if (!PageLRU(page))
6238 found++;
6239 /*
6240 * If there are RECLAIMABLE pages, we need to check
6241 * it. But now, memory offline itself doesn't call
6242 * shrink_node_slabs() and it still to be fixed.
6243 */
6244 /*
6245 * If the page is not RAM, page_count()should be 0.
6246 * we don't need more check. This is an _used_ not-movable page.
6247 *
6248 * The problematic thing here is PG_reserved pages. PG_reserved
6249 * is set to both of a memory hole page and a _used_ kernel
6250 * page at boot.
6251 */
6252 if (found > count)
6253 return true;
6254 }
6255 return false;
6256 }
6257
6258 bool is_pageblock_removable_nolock(struct page *page)
6259 {
6260 struct zone *zone;
6261 unsigned long pfn;
6262
6263 /*
6264 * We have to be careful here because we are iterating over memory
6265 * sections which are not zone aware so we might end up outside of
6266 * the zone but still within the section.
6267 * We have to take care about the node as well. If the node is offline
6268 * its NODE_DATA will be NULL - see page_zone.
6269 */
6270 if (!node_online(page_to_nid(page)))
6271 return false;
6272
6273 zone = page_zone(page);
6274 pfn = page_to_pfn(page);
6275 if (!zone_spans_pfn(zone, pfn))
6276 return false;
6277
6278 return !has_unmovable_pages(zone, page, 0, true);
6279 }
6280
6281 #ifdef CONFIG_CMA
6282
6283 static unsigned long pfn_max_align_down(unsigned long pfn)
6284 {
6285 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6286 pageblock_nr_pages) - 1);
6287 }
6288
6289 static unsigned long pfn_max_align_up(unsigned long pfn)
6290 {
6291 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6292 pageblock_nr_pages));
6293 }
6294
6295 /* [start, end) must belong to a single zone. */
6296 static int __alloc_contig_migrate_range(struct compact_control *cc,
6297 unsigned long start, unsigned long end)
6298 {
6299 /* This function is based on compact_zone() from compaction.c. */
6300 unsigned long nr_reclaimed;
6301 unsigned long pfn = start;
6302 unsigned int tries = 0;
6303 int ret = 0;
6304
6305 migrate_prep();
6306
6307 while (pfn < end || !list_empty(&cc->migratepages)) {
6308 if (fatal_signal_pending(current)) {
6309 ret = -EINTR;
6310 break;
6311 }
6312
6313 if (list_empty(&cc->migratepages)) {
6314 cc->nr_migratepages = 0;
6315 pfn = isolate_migratepages_range(cc, pfn, end);
6316 if (!pfn) {
6317 ret = -EINTR;
6318 break;
6319 }
6320 tries = 0;
6321 } else if (++tries == 5) {
6322 ret = ret < 0 ? ret : -EBUSY;
6323 break;
6324 }
6325
6326 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6327 &cc->migratepages);
6328 cc->nr_migratepages -= nr_reclaimed;
6329
6330 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6331 NULL, 0, cc->mode, MR_CMA);
6332 }
6333 if (ret < 0) {
6334 putback_movable_pages(&cc->migratepages);
6335 return ret;
6336 }
6337 return 0;
6338 }
6339
6340 /**
6341 * alloc_contig_range() -- tries to allocate given range of pages
6342 * @start: start PFN to allocate
6343 * @end: one-past-the-last PFN to allocate
6344 * @migratetype: migratetype of the underlaying pageblocks (either
6345 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6346 * in range must have the same migratetype and it must
6347 * be either of the two.
6348 *
6349 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6350 * aligned, however it's the caller's responsibility to guarantee that
6351 * we are the only thread that changes migrate type of pageblocks the
6352 * pages fall in.
6353 *
6354 * The PFN range must belong to a single zone.
6355 *
6356 * Returns zero on success or negative error code. On success all
6357 * pages which PFN is in [start, end) are allocated for the caller and
6358 * need to be freed with free_contig_range().
6359 */
6360 int alloc_contig_range(unsigned long start, unsigned long end,
6361 unsigned migratetype)
6362 {
6363 unsigned long outer_start, outer_end;
6364 int ret = 0, order;
6365
6366 struct compact_control cc = {
6367 .nr_migratepages = 0,
6368 .order = -1,
6369 .zone = page_zone(pfn_to_page(start)),
6370 .mode = MIGRATE_SYNC,
6371 .ignore_skip_hint = true,
6372 };
6373 INIT_LIST_HEAD(&cc.migratepages);
6374
6375 /*
6376 * What we do here is we mark all pageblocks in range as
6377 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6378 * have different sizes, and due to the way page allocator
6379 * work, we align the range to biggest of the two pages so
6380 * that page allocator won't try to merge buddies from
6381 * different pageblocks and change MIGRATE_ISOLATE to some
6382 * other migration type.
6383 *
6384 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6385 * migrate the pages from an unaligned range (ie. pages that
6386 * we are interested in). This will put all the pages in
6387 * range back to page allocator as MIGRATE_ISOLATE.
6388 *
6389 * When this is done, we take the pages in range from page
6390 * allocator removing them from the buddy system. This way
6391 * page allocator will never consider using them.
6392 *
6393 * This lets us mark the pageblocks back as
6394 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6395 * aligned range but not in the unaligned, original range are
6396 * put back to page allocator so that buddy can use them.
6397 */
6398
6399 ret = start_isolate_page_range(pfn_max_align_down(start),
6400 pfn_max_align_up(end), migratetype,
6401 false);
6402 if (ret)
6403 return ret;
6404
6405 ret = __alloc_contig_migrate_range(&cc, start, end);
6406 if (ret)
6407 goto done;
6408
6409 /*
6410 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6411 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6412 * more, all pages in [start, end) are free in page allocator.
6413 * What we are going to do is to allocate all pages from
6414 * [start, end) (that is remove them from page allocator).
6415 *
6416 * The only problem is that pages at the beginning and at the
6417 * end of interesting range may be not aligned with pages that
6418 * page allocator holds, ie. they can be part of higher order
6419 * pages. Because of this, we reserve the bigger range and
6420 * once this is done free the pages we are not interested in.
6421 *
6422 * We don't have to hold zone->lock here because the pages are
6423 * isolated thus they won't get removed from buddy.
6424 */
6425
6426 lru_add_drain_all();
6427 drain_all_pages(cc.zone);
6428
6429 order = 0;
6430 outer_start = start;
6431 while (!PageBuddy(pfn_to_page(outer_start))) {
6432 if (++order >= MAX_ORDER) {
6433 ret = -EBUSY;
6434 goto done;
6435 }
6436 outer_start &= ~0UL << order;
6437 }
6438
6439 /* Make sure the range is really isolated. */
6440 if (test_pages_isolated(outer_start, end, false)) {
6441 pr_info("%s: [%lx, %lx) PFNs busy\n",
6442 __func__, outer_start, end);
6443 ret = -EBUSY;
6444 goto done;
6445 }
6446
6447 /* Grab isolated pages from freelists. */
6448 outer_end = isolate_freepages_range(&cc, outer_start, end);
6449 if (!outer_end) {
6450 ret = -EBUSY;
6451 goto done;
6452 }
6453
6454 /* Free head and tail (if any) */
6455 if (start != outer_start)
6456 free_contig_range(outer_start, start - outer_start);
6457 if (end != outer_end)
6458 free_contig_range(end, outer_end - end);
6459
6460 done:
6461 undo_isolate_page_range(pfn_max_align_down(start),
6462 pfn_max_align_up(end), migratetype);
6463 return ret;
6464 }
6465
6466 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6467 {
6468 unsigned int count = 0;
6469
6470 for (; nr_pages--; pfn++) {
6471 struct page *page = pfn_to_page(pfn);
6472
6473 count += page_count(page) != 1;
6474 __free_page(page);
6475 }
6476 WARN(count != 0, "%d pages are still in use!\n", count);
6477 }
6478 #endif
6479
6480 #ifdef CONFIG_MEMORY_HOTPLUG
6481 /*
6482 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6483 * page high values need to be recalulated.
6484 */
6485 void __meminit zone_pcp_update(struct zone *zone)
6486 {
6487 unsigned cpu;
6488 mutex_lock(&pcp_batch_high_lock);
6489 for_each_possible_cpu(cpu)
6490 pageset_set_high_and_batch(zone,
6491 per_cpu_ptr(zone->pageset, cpu));
6492 mutex_unlock(&pcp_batch_high_lock);
6493 }
6494 #endif
6495
6496 void zone_pcp_reset(struct zone *zone)
6497 {
6498 unsigned long flags;
6499 int cpu;
6500 struct per_cpu_pageset *pset;
6501
6502 /* avoid races with drain_pages() */
6503 local_irq_save(flags);
6504 if (zone->pageset != &boot_pageset) {
6505 for_each_online_cpu(cpu) {
6506 pset = per_cpu_ptr(zone->pageset, cpu);
6507 drain_zonestat(zone, pset);
6508 }
6509 free_percpu(zone->pageset);
6510 zone->pageset = &boot_pageset;
6511 }
6512 local_irq_restore(flags);
6513 }
6514
6515 #ifdef CONFIG_MEMORY_HOTREMOVE
6516 /*
6517 * All pages in the range must be isolated before calling this.
6518 */
6519 void
6520 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6521 {
6522 struct page *page;
6523 struct zone *zone;
6524 unsigned int order, i;
6525 unsigned long pfn;
6526 unsigned long flags;
6527 /* find the first valid pfn */
6528 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6529 if (pfn_valid(pfn))
6530 break;
6531 if (pfn == end_pfn)
6532 return;
6533 zone = page_zone(pfn_to_page(pfn));
6534 spin_lock_irqsave(&zone->lock, flags);
6535 pfn = start_pfn;
6536 while (pfn < end_pfn) {
6537 if (!pfn_valid(pfn)) {
6538 pfn++;
6539 continue;
6540 }
6541 page = pfn_to_page(pfn);
6542 /*
6543 * The HWPoisoned page may be not in buddy system, and
6544 * page_count() is not 0.
6545 */
6546 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6547 pfn++;
6548 SetPageReserved(page);
6549 continue;
6550 }
6551
6552 BUG_ON(page_count(page));
6553 BUG_ON(!PageBuddy(page));
6554 order = page_order(page);
6555 #ifdef CONFIG_DEBUG_VM
6556 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6557 pfn, 1 << order, end_pfn);
6558 #endif
6559 list_del(&page->lru);
6560 rmv_page_order(page);
6561 zone->free_area[order].nr_free--;
6562 for (i = 0; i < (1 << order); i++)
6563 SetPageReserved((page+i));
6564 pfn += (1 << order);
6565 }
6566 spin_unlock_irqrestore(&zone->lock, flags);
6567 }
6568 #endif
6569
6570 #ifdef CONFIG_MEMORY_FAILURE
6571 bool is_free_buddy_page(struct page *page)
6572 {
6573 struct zone *zone = page_zone(page);
6574 unsigned long pfn = page_to_pfn(page);
6575 unsigned long flags;
6576 unsigned int order;
6577
6578 spin_lock_irqsave(&zone->lock, flags);
6579 for (order = 0; order < MAX_ORDER; order++) {
6580 struct page *page_head = page - (pfn & ((1 << order) - 1));
6581
6582 if (PageBuddy(page_head) && page_order(page_head) >= order)
6583 break;
6584 }
6585 spin_unlock_irqrestore(&zone->lock, flags);
6586
6587 return order < MAX_ORDER;
6588 }
6589 #endif