]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm: microoptimize zonelist operations
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
eefa864b 51#include <linux/page_ext.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
268bb0ce 56#include <linux/prefetch.h>
6e543d57 57#include <linux/mm_inline.h>
041d3a8c 58#include <linux/migrate.h>
e30825f1 59#include <linux/page_ext.h>
949f7ec5 60#include <linux/hugetlb.h>
8bd75c77 61#include <linux/sched/rt.h>
48c96a36 62#include <linux/page_owner.h>
1da177e4 63
7ee3d4e8 64#include <asm/sections.h>
1da177e4 65#include <asm/tlbflush.h>
ac924c60 66#include <asm/div64.h>
1da177e4
LT
67#include "internal.h"
68
c8e251fa
CS
69/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 71#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 72
72812019
LS
73#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74DEFINE_PER_CPU(int, numa_node);
75EXPORT_PER_CPU_SYMBOL(numa_node);
76#endif
77
7aac7898
LS
78#ifdef CONFIG_HAVE_MEMORYLESS_NODES
79/*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 87int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
88#endif
89
1da177e4 90/*
13808910 91 * Array of node states.
1da177e4 92 */
13808910
CL
93nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
94 [N_POSSIBLE] = NODE_MASK_ALL,
95 [N_ONLINE] = { { [0] = 1UL } },
96#ifndef CONFIG_NUMA
97 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
98#ifdef CONFIG_HIGHMEM
99 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
100#endif
101#ifdef CONFIG_MOVABLE_NODE
102 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
103#endif
104 [N_CPU] = { { [0] = 1UL } },
105#endif /* NUMA */
106};
107EXPORT_SYMBOL(node_states);
108
c3d5f5f0
JL
109/* Protect totalram_pages and zone->managed_pages */
110static DEFINE_SPINLOCK(managed_page_count_lock);
111
6c231b7b 112unsigned long totalram_pages __read_mostly;
cb45b0e9 113unsigned long totalreserve_pages __read_mostly;
e48322ab 114unsigned long totalcma_pages __read_mostly;
ab8fabd4
JW
115/*
116 * When calculating the number of globally allowed dirty pages, there
117 * is a certain number of per-zone reserves that should not be
118 * considered dirtyable memory. This is the sum of those reserves
119 * over all existing zones that contribute dirtyable memory.
120 */
121unsigned long dirty_balance_reserve __read_mostly;
122
1b76b02f 123int percpu_pagelist_fraction;
dcce284a 124gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 125
452aa699
RW
126#ifdef CONFIG_PM_SLEEP
127/*
128 * The following functions are used by the suspend/hibernate code to temporarily
129 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
130 * while devices are suspended. To avoid races with the suspend/hibernate code,
131 * they should always be called with pm_mutex held (gfp_allowed_mask also should
132 * only be modified with pm_mutex held, unless the suspend/hibernate code is
133 * guaranteed not to run in parallel with that modification).
134 */
c9e664f1
RW
135
136static gfp_t saved_gfp_mask;
137
138void pm_restore_gfp_mask(void)
452aa699
RW
139{
140 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
141 if (saved_gfp_mask) {
142 gfp_allowed_mask = saved_gfp_mask;
143 saved_gfp_mask = 0;
144 }
452aa699
RW
145}
146
c9e664f1 147void pm_restrict_gfp_mask(void)
452aa699 148{
452aa699 149 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
150 WARN_ON(saved_gfp_mask);
151 saved_gfp_mask = gfp_allowed_mask;
152 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 153}
f90ac398
MG
154
155bool pm_suspended_storage(void)
156{
157 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
158 return false;
159 return true;
160}
452aa699
RW
161#endif /* CONFIG_PM_SLEEP */
162
d9c23400
MG
163#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
164int pageblock_order __read_mostly;
165#endif
166
d98c7a09 167static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 168
1da177e4
LT
169/*
170 * results with 256, 32 in the lowmem_reserve sysctl:
171 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
172 * 1G machine -> (16M dma, 784M normal, 224M high)
173 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
174 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
175 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
176 *
177 * TBD: should special case ZONE_DMA32 machines here - in those we normally
178 * don't need any ZONE_NORMAL reservation
1da177e4 179 */
2f1b6248 180int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 256,
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 256,
fb0e7942 186#endif
e53ef38d 187#ifdef CONFIG_HIGHMEM
2a1e274a 188 32,
e53ef38d 189#endif
2a1e274a 190 32,
2f1b6248 191};
1da177e4
LT
192
193EXPORT_SYMBOL(totalram_pages);
1da177e4 194
15ad7cdc 195static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 196#ifdef CONFIG_ZONE_DMA
2f1b6248 197 "DMA",
4b51d669 198#endif
fb0e7942 199#ifdef CONFIG_ZONE_DMA32
2f1b6248 200 "DMA32",
fb0e7942 201#endif
2f1b6248 202 "Normal",
e53ef38d 203#ifdef CONFIG_HIGHMEM
2a1e274a 204 "HighMem",
e53ef38d 205#endif
2a1e274a 206 "Movable",
2f1b6248
CL
207};
208
1da177e4 209int min_free_kbytes = 1024;
42aa83cb 210int user_min_free_kbytes = -1;
1da177e4 211
2c85f51d
JB
212static unsigned long __meminitdata nr_kernel_pages;
213static unsigned long __meminitdata nr_all_pages;
a3142c8e 214static unsigned long __meminitdata dma_reserve;
1da177e4 215
0ee332c1
TH
216#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
217static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
218static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
219static unsigned long __initdata required_kernelcore;
220static unsigned long __initdata required_movablecore;
221static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
222
223/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
224int movable_zone;
225EXPORT_SYMBOL(movable_zone);
226#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 227
418508c1
MS
228#if MAX_NUMNODES > 1
229int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 230int nr_online_nodes __read_mostly = 1;
418508c1 231EXPORT_SYMBOL(nr_node_ids);
62bc62a8 232EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
233#endif
234
9ef9acb0
MG
235int page_group_by_mobility_disabled __read_mostly;
236
ee6f509c 237void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 238{
5d0f3f72
KM
239 if (unlikely(page_group_by_mobility_disabled &&
240 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
241 migratetype = MIGRATE_UNMOVABLE;
242
b2a0ac88
MG
243 set_pageblock_flags_group(page, (unsigned long)migratetype,
244 PB_migrate, PB_migrate_end);
245}
246
7f33d49a
RW
247bool oom_killer_disabled __read_mostly;
248
13e7444b 249#ifdef CONFIG_DEBUG_VM
c6a57e19 250static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 251{
bdc8cb98
DH
252 int ret = 0;
253 unsigned seq;
254 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 255 unsigned long sp, start_pfn;
c6a57e19 256
bdc8cb98
DH
257 do {
258 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
259 start_pfn = zone->zone_start_pfn;
260 sp = zone->spanned_pages;
108bcc96 261 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
262 ret = 1;
263 } while (zone_span_seqretry(zone, seq));
264
b5e6a5a2 265 if (ret)
613813e8
DH
266 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
267 pfn, zone_to_nid(zone), zone->name,
268 start_pfn, start_pfn + sp);
b5e6a5a2 269
bdc8cb98 270 return ret;
c6a57e19
DH
271}
272
273static int page_is_consistent(struct zone *zone, struct page *page)
274{
14e07298 275 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 276 return 0;
1da177e4 277 if (zone != page_zone(page))
c6a57e19
DH
278 return 0;
279
280 return 1;
281}
282/*
283 * Temporary debugging check for pages not lying within a given zone.
284 */
285static int bad_range(struct zone *zone, struct page *page)
286{
287 if (page_outside_zone_boundaries(zone, page))
1da177e4 288 return 1;
c6a57e19
DH
289 if (!page_is_consistent(zone, page))
290 return 1;
291
1da177e4
LT
292 return 0;
293}
13e7444b
NP
294#else
295static inline int bad_range(struct zone *zone, struct page *page)
296{
297 return 0;
298}
299#endif
300
d230dec1
KS
301static void bad_page(struct page *page, const char *reason,
302 unsigned long bad_flags)
1da177e4 303{
d936cf9b
HD
304 static unsigned long resume;
305 static unsigned long nr_shown;
306 static unsigned long nr_unshown;
307
2a7684a2
WF
308 /* Don't complain about poisoned pages */
309 if (PageHWPoison(page)) {
22b751c3 310 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
311 return;
312 }
313
d936cf9b
HD
314 /*
315 * Allow a burst of 60 reports, then keep quiet for that minute;
316 * or allow a steady drip of one report per second.
317 */
318 if (nr_shown == 60) {
319 if (time_before(jiffies, resume)) {
320 nr_unshown++;
321 goto out;
322 }
323 if (nr_unshown) {
1e9e6365
HD
324 printk(KERN_ALERT
325 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
326 nr_unshown);
327 nr_unshown = 0;
328 }
329 nr_shown = 0;
330 }
331 if (nr_shown++ == 0)
332 resume = jiffies + 60 * HZ;
333
1e9e6365 334 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 335 current->comm, page_to_pfn(page));
f0b791a3 336 dump_page_badflags(page, reason, bad_flags);
3dc14741 337
4f31888c 338 print_modules();
1da177e4 339 dump_stack();
d936cf9b 340out:
8cc3b392 341 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 342 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 343 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
344}
345
1da177e4
LT
346/*
347 * Higher-order pages are called "compound pages". They are structured thusly:
348 *
349 * The first PAGE_SIZE page is called the "head page".
350 *
351 * The remaining PAGE_SIZE pages are called "tail pages".
352 *
6416b9fa
WSH
353 * All pages have PG_compound set. All tail pages have their ->first_page
354 * pointing at the head page.
1da177e4 355 *
41d78ba5
HD
356 * The first tail page's ->lru.next holds the address of the compound page's
357 * put_page() function. Its ->lru.prev holds the order of allocation.
358 * This usage means that zero-order pages may not be compound.
1da177e4 359 */
d98c7a09
HD
360
361static void free_compound_page(struct page *page)
362{
d85f3385 363 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
364}
365
01ad1c08 366void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
367{
368 int i;
369 int nr_pages = 1 << order;
370
371 set_compound_page_dtor(page, free_compound_page);
372 set_compound_order(page, order);
373 __SetPageHead(page);
374 for (i = 1; i < nr_pages; i++) {
375 struct page *p = page + i;
58a84aa9 376 set_page_count(p, 0);
18229df5 377 p->first_page = page;
668f9abb
DR
378 /* Make sure p->first_page is always valid for PageTail() */
379 smp_wmb();
380 __SetPageTail(p);
18229df5
AW
381 }
382}
383
59ff4216 384/* update __split_huge_page_refcount if you change this function */
8cc3b392 385static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
386{
387 int i;
388 int nr_pages = 1 << order;
8cc3b392 389 int bad = 0;
1da177e4 390
0bb2c763 391 if (unlikely(compound_order(page) != order)) {
f0b791a3 392 bad_page(page, "wrong compound order", 0);
8cc3b392
HD
393 bad++;
394 }
1da177e4 395
6d777953 396 __ClearPageHead(page);
8cc3b392 397
18229df5
AW
398 for (i = 1; i < nr_pages; i++) {
399 struct page *p = page + i;
1da177e4 400
f0b791a3
DH
401 if (unlikely(!PageTail(p))) {
402 bad_page(page, "PageTail not set", 0);
403 bad++;
404 } else if (unlikely(p->first_page != page)) {
405 bad_page(page, "first_page not consistent", 0);
8cc3b392
HD
406 bad++;
407 }
d85f3385 408 __ClearPageTail(p);
1da177e4 409 }
8cc3b392
HD
410
411 return bad;
1da177e4 412}
1da177e4 413
7aeb09f9
MG
414static inline void prep_zero_page(struct page *page, unsigned int order,
415 gfp_t gfp_flags)
17cf4406
NP
416{
417 int i;
418
6626c5d5
AM
419 /*
420 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
421 * and __GFP_HIGHMEM from hard or soft interrupt context.
422 */
725d704e 423 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
424 for (i = 0; i < (1 << order); i++)
425 clear_highpage(page + i);
426}
427
c0a32fc5
SG
428#ifdef CONFIG_DEBUG_PAGEALLOC
429unsigned int _debug_guardpage_minorder;
031bc574 430bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
431bool _debug_guardpage_enabled __read_mostly;
432
031bc574
JK
433static int __init early_debug_pagealloc(char *buf)
434{
435 if (!buf)
436 return -EINVAL;
437
438 if (strcmp(buf, "on") == 0)
439 _debug_pagealloc_enabled = true;
440
441 return 0;
442}
443early_param("debug_pagealloc", early_debug_pagealloc);
444
e30825f1
JK
445static bool need_debug_guardpage(void)
446{
031bc574
JK
447 /* If we don't use debug_pagealloc, we don't need guard page */
448 if (!debug_pagealloc_enabled())
449 return false;
450
e30825f1
JK
451 return true;
452}
453
454static void init_debug_guardpage(void)
455{
031bc574
JK
456 if (!debug_pagealloc_enabled())
457 return;
458
e30825f1
JK
459 _debug_guardpage_enabled = true;
460}
461
462struct page_ext_operations debug_guardpage_ops = {
463 .need = need_debug_guardpage,
464 .init = init_debug_guardpage,
465};
c0a32fc5
SG
466
467static int __init debug_guardpage_minorder_setup(char *buf)
468{
469 unsigned long res;
470
471 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
472 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
473 return 0;
474 }
475 _debug_guardpage_minorder = res;
476 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
477 return 0;
478}
479__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
480
2847cf95
JK
481static inline void set_page_guard(struct zone *zone, struct page *page,
482 unsigned int order, int migratetype)
c0a32fc5 483{
e30825f1
JK
484 struct page_ext *page_ext;
485
486 if (!debug_guardpage_enabled())
487 return;
488
489 page_ext = lookup_page_ext(page);
490 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
491
2847cf95
JK
492 INIT_LIST_HEAD(&page->lru);
493 set_page_private(page, order);
494 /* Guard pages are not available for any usage */
495 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
496}
497
2847cf95
JK
498static inline void clear_page_guard(struct zone *zone, struct page *page,
499 unsigned int order, int migratetype)
c0a32fc5 500{
e30825f1
JK
501 struct page_ext *page_ext;
502
503 if (!debug_guardpage_enabled())
504 return;
505
506 page_ext = lookup_page_ext(page);
507 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
508
2847cf95
JK
509 set_page_private(page, 0);
510 if (!is_migrate_isolate(migratetype))
511 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
512}
513#else
e30825f1 514struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
515static inline void set_page_guard(struct zone *zone, struct page *page,
516 unsigned int order, int migratetype) {}
517static inline void clear_page_guard(struct zone *zone, struct page *page,
518 unsigned int order, int migratetype) {}
c0a32fc5
SG
519#endif
520
7aeb09f9 521static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 522{
4c21e2f2 523 set_page_private(page, order);
676165a8 524 __SetPageBuddy(page);
1da177e4
LT
525}
526
527static inline void rmv_page_order(struct page *page)
528{
676165a8 529 __ClearPageBuddy(page);
4c21e2f2 530 set_page_private(page, 0);
1da177e4
LT
531}
532
1da177e4
LT
533/*
534 * This function checks whether a page is free && is the buddy
535 * we can do coalesce a page and its buddy if
13e7444b 536 * (a) the buddy is not in a hole &&
676165a8 537 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
538 * (c) a page and its buddy have the same order &&
539 * (d) a page and its buddy are in the same zone.
676165a8 540 *
cf6fe945
WSH
541 * For recording whether a page is in the buddy system, we set ->_mapcount
542 * PAGE_BUDDY_MAPCOUNT_VALUE.
543 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
544 * serialized by zone->lock.
1da177e4 545 *
676165a8 546 * For recording page's order, we use page_private(page).
1da177e4 547 */
cb2b95e1 548static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 549 unsigned int order)
1da177e4 550{
14e07298 551 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 552 return 0;
13e7444b 553
c0a32fc5 554 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
555 if (page_zone_id(page) != page_zone_id(buddy))
556 return 0;
557
4c5018ce
WY
558 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
559
c0a32fc5
SG
560 return 1;
561 }
562
cb2b95e1 563 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
564 /*
565 * zone check is done late to avoid uselessly
566 * calculating zone/node ids for pages that could
567 * never merge.
568 */
569 if (page_zone_id(page) != page_zone_id(buddy))
570 return 0;
571
4c5018ce
WY
572 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
573
6aa3001b 574 return 1;
676165a8 575 }
6aa3001b 576 return 0;
1da177e4
LT
577}
578
579/*
580 * Freeing function for a buddy system allocator.
581 *
582 * The concept of a buddy system is to maintain direct-mapped table
583 * (containing bit values) for memory blocks of various "orders".
584 * The bottom level table contains the map for the smallest allocatable
585 * units of memory (here, pages), and each level above it describes
586 * pairs of units from the levels below, hence, "buddies".
587 * At a high level, all that happens here is marking the table entry
588 * at the bottom level available, and propagating the changes upward
589 * as necessary, plus some accounting needed to play nicely with other
590 * parts of the VM system.
591 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
592 * free pages of length of (1 << order) and marked with _mapcount
593 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
594 * field.
1da177e4 595 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
596 * other. That is, if we allocate a small block, and both were
597 * free, the remainder of the region must be split into blocks.
1da177e4 598 * If a block is freed, and its buddy is also free, then this
5f63b720 599 * triggers coalescing into a block of larger size.
1da177e4 600 *
6d49e352 601 * -- nyc
1da177e4
LT
602 */
603
48db57f8 604static inline void __free_one_page(struct page *page,
dc4b0caf 605 unsigned long pfn,
ed0ae21d
MG
606 struct zone *zone, unsigned int order,
607 int migratetype)
1da177e4
LT
608{
609 unsigned long page_idx;
6dda9d55 610 unsigned long combined_idx;
43506fad 611 unsigned long uninitialized_var(buddy_idx);
6dda9d55 612 struct page *buddy;
3c605096 613 int max_order = MAX_ORDER;
1da177e4 614
d29bb978
CS
615 VM_BUG_ON(!zone_is_initialized(zone));
616
224abf92 617 if (unlikely(PageCompound(page)))
8cc3b392
HD
618 if (unlikely(destroy_compound_page(page, order)))
619 return;
1da177e4 620
ed0ae21d 621 VM_BUG_ON(migratetype == -1);
3c605096
JK
622 if (is_migrate_isolate(migratetype)) {
623 /*
624 * We restrict max order of merging to prevent merge
625 * between freepages on isolate pageblock and normal
626 * pageblock. Without this, pageblock isolation
627 * could cause incorrect freepage accounting.
628 */
629 max_order = min(MAX_ORDER, pageblock_order + 1);
630 } else {
8f82b55d 631 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 632 }
ed0ae21d 633
3c605096 634 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 635
309381fe
SL
636 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
637 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 638
3c605096 639 while (order < max_order - 1) {
43506fad
KC
640 buddy_idx = __find_buddy_index(page_idx, order);
641 buddy = page + (buddy_idx - page_idx);
cb2b95e1 642 if (!page_is_buddy(page, buddy, order))
3c82d0ce 643 break;
c0a32fc5
SG
644 /*
645 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
646 * merge with it and move up one order.
647 */
648 if (page_is_guard(buddy)) {
2847cf95 649 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
650 } else {
651 list_del(&buddy->lru);
652 zone->free_area[order].nr_free--;
653 rmv_page_order(buddy);
654 }
43506fad 655 combined_idx = buddy_idx & page_idx;
1da177e4
LT
656 page = page + (combined_idx - page_idx);
657 page_idx = combined_idx;
658 order++;
659 }
660 set_page_order(page, order);
6dda9d55
CZ
661
662 /*
663 * If this is not the largest possible page, check if the buddy
664 * of the next-highest order is free. If it is, it's possible
665 * that pages are being freed that will coalesce soon. In case,
666 * that is happening, add the free page to the tail of the list
667 * so it's less likely to be used soon and more likely to be merged
668 * as a higher order page
669 */
b7f50cfa 670 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 671 struct page *higher_page, *higher_buddy;
43506fad
KC
672 combined_idx = buddy_idx & page_idx;
673 higher_page = page + (combined_idx - page_idx);
674 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 675 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
676 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
677 list_add_tail(&page->lru,
678 &zone->free_area[order].free_list[migratetype]);
679 goto out;
680 }
681 }
682
683 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
684out:
1da177e4
LT
685 zone->free_area[order].nr_free++;
686}
687
224abf92 688static inline int free_pages_check(struct page *page)
1da177e4 689{
d230dec1 690 const char *bad_reason = NULL;
f0b791a3
DH
691 unsigned long bad_flags = 0;
692
693 if (unlikely(page_mapcount(page)))
694 bad_reason = "nonzero mapcount";
695 if (unlikely(page->mapping != NULL))
696 bad_reason = "non-NULL mapping";
697 if (unlikely(atomic_read(&page->_count) != 0))
698 bad_reason = "nonzero _count";
699 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
700 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
701 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
702 }
9edad6ea
JW
703#ifdef CONFIG_MEMCG
704 if (unlikely(page->mem_cgroup))
705 bad_reason = "page still charged to cgroup";
706#endif
f0b791a3
DH
707 if (unlikely(bad_reason)) {
708 bad_page(page, bad_reason, bad_flags);
79f4b7bf 709 return 1;
8cc3b392 710 }
90572890 711 page_cpupid_reset_last(page);
79f4b7bf
HD
712 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
713 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
714 return 0;
1da177e4
LT
715}
716
717/*
5f8dcc21 718 * Frees a number of pages from the PCP lists
1da177e4 719 * Assumes all pages on list are in same zone, and of same order.
207f36ee 720 * count is the number of pages to free.
1da177e4
LT
721 *
722 * If the zone was previously in an "all pages pinned" state then look to
723 * see if this freeing clears that state.
724 *
725 * And clear the zone's pages_scanned counter, to hold off the "all pages are
726 * pinned" detection logic.
727 */
5f8dcc21
MG
728static void free_pcppages_bulk(struct zone *zone, int count,
729 struct per_cpu_pages *pcp)
1da177e4 730{
5f8dcc21 731 int migratetype = 0;
a6f9edd6 732 int batch_free = 0;
72853e29 733 int to_free = count;
0d5d823a 734 unsigned long nr_scanned;
5f8dcc21 735
c54ad30c 736 spin_lock(&zone->lock);
0d5d823a
MG
737 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
738 if (nr_scanned)
739 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 740
72853e29 741 while (to_free) {
48db57f8 742 struct page *page;
5f8dcc21
MG
743 struct list_head *list;
744
745 /*
a6f9edd6
MG
746 * Remove pages from lists in a round-robin fashion. A
747 * batch_free count is maintained that is incremented when an
748 * empty list is encountered. This is so more pages are freed
749 * off fuller lists instead of spinning excessively around empty
750 * lists
5f8dcc21
MG
751 */
752 do {
a6f9edd6 753 batch_free++;
5f8dcc21
MG
754 if (++migratetype == MIGRATE_PCPTYPES)
755 migratetype = 0;
756 list = &pcp->lists[migratetype];
757 } while (list_empty(list));
48db57f8 758
1d16871d
NK
759 /* This is the only non-empty list. Free them all. */
760 if (batch_free == MIGRATE_PCPTYPES)
761 batch_free = to_free;
762
a6f9edd6 763 do {
770c8aaa
BZ
764 int mt; /* migratetype of the to-be-freed page */
765
a6f9edd6
MG
766 page = list_entry(list->prev, struct page, lru);
767 /* must delete as __free_one_page list manipulates */
768 list_del(&page->lru);
b12c4ad1 769 mt = get_freepage_migratetype(page);
8f82b55d 770 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 771 mt = get_pageblock_migratetype(page);
51bb1a40 772
a7016235 773 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 774 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 775 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 776 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 777 }
c54ad30c 778 spin_unlock(&zone->lock);
1da177e4
LT
779}
780
dc4b0caf
MG
781static void free_one_page(struct zone *zone,
782 struct page *page, unsigned long pfn,
7aeb09f9 783 unsigned int order,
ed0ae21d 784 int migratetype)
1da177e4 785{
0d5d823a 786 unsigned long nr_scanned;
006d22d9 787 spin_lock(&zone->lock);
0d5d823a
MG
788 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
789 if (nr_scanned)
790 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 791
ad53f92e
JK
792 if (unlikely(has_isolate_pageblock(zone) ||
793 is_migrate_isolate(migratetype))) {
794 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 795 }
dc4b0caf 796 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 797 spin_unlock(&zone->lock);
48db57f8
NP
798}
799
ec95f53a 800static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 801{
1da177e4 802 int i;
8cc3b392 803 int bad = 0;
1da177e4 804
ab1f306f
YZ
805 VM_BUG_ON_PAGE(PageTail(page), page);
806 VM_BUG_ON_PAGE(PageHead(page) && compound_order(page) != order, page);
807
b413d48a 808 trace_mm_page_free(page, order);
b1eeab67
VN
809 kmemcheck_free_shadow(page, order);
810
8dd60a3a
AA
811 if (PageAnon(page))
812 page->mapping = NULL;
813 for (i = 0; i < (1 << order); i++)
814 bad += free_pages_check(page + i);
8cc3b392 815 if (bad)
ec95f53a 816 return false;
689bcebf 817
48c96a36
JK
818 reset_page_owner(page, order);
819
3ac7fe5a 820 if (!PageHighMem(page)) {
b8af2941
PK
821 debug_check_no_locks_freed(page_address(page),
822 PAGE_SIZE << order);
3ac7fe5a
TG
823 debug_check_no_obj_freed(page_address(page),
824 PAGE_SIZE << order);
825 }
dafb1367 826 arch_free_page(page, order);
48db57f8 827 kernel_map_pages(page, 1 << order, 0);
dafb1367 828
ec95f53a
KM
829 return true;
830}
831
832static void __free_pages_ok(struct page *page, unsigned int order)
833{
834 unsigned long flags;
95e34412 835 int migratetype;
dc4b0caf 836 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
837
838 if (!free_pages_prepare(page, order))
839 return;
840
cfc47a28 841 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 842 local_irq_save(flags);
f8891e5e 843 __count_vm_events(PGFREE, 1 << order);
95e34412 844 set_freepage_migratetype(page, migratetype);
dc4b0caf 845 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 846 local_irq_restore(flags);
1da177e4
LT
847}
848
170a5a7e 849void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 850{
c3993076 851 unsigned int nr_pages = 1 << order;
e2d0bd2b 852 struct page *p = page;
c3993076 853 unsigned int loop;
a226f6c8 854
e2d0bd2b
YL
855 prefetchw(p);
856 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
857 prefetchw(p + 1);
c3993076
JW
858 __ClearPageReserved(p);
859 set_page_count(p, 0);
a226f6c8 860 }
e2d0bd2b
YL
861 __ClearPageReserved(p);
862 set_page_count(p, 0);
c3993076 863
e2d0bd2b 864 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
865 set_page_refcounted(page);
866 __free_pages(page, order);
a226f6c8
DH
867}
868
47118af0 869#ifdef CONFIG_CMA
9cf510a5 870/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
871void __init init_cma_reserved_pageblock(struct page *page)
872{
873 unsigned i = pageblock_nr_pages;
874 struct page *p = page;
875
876 do {
877 __ClearPageReserved(p);
878 set_page_count(p, 0);
879 } while (++p, --i);
880
47118af0 881 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
882
883 if (pageblock_order >= MAX_ORDER) {
884 i = pageblock_nr_pages;
885 p = page;
886 do {
887 set_page_refcounted(p);
888 __free_pages(p, MAX_ORDER - 1);
889 p += MAX_ORDER_NR_PAGES;
890 } while (i -= MAX_ORDER_NR_PAGES);
891 } else {
892 set_page_refcounted(page);
893 __free_pages(page, pageblock_order);
894 }
895
3dcc0571 896 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
897}
898#endif
1da177e4
LT
899
900/*
901 * The order of subdivision here is critical for the IO subsystem.
902 * Please do not alter this order without good reasons and regression
903 * testing. Specifically, as large blocks of memory are subdivided,
904 * the order in which smaller blocks are delivered depends on the order
905 * they're subdivided in this function. This is the primary factor
906 * influencing the order in which pages are delivered to the IO
907 * subsystem according to empirical testing, and this is also justified
908 * by considering the behavior of a buddy system containing a single
909 * large block of memory acted on by a series of small allocations.
910 * This behavior is a critical factor in sglist merging's success.
911 *
6d49e352 912 * -- nyc
1da177e4 913 */
085cc7d5 914static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
915 int low, int high, struct free_area *area,
916 int migratetype)
1da177e4
LT
917{
918 unsigned long size = 1 << high;
919
920 while (high > low) {
921 area--;
922 high--;
923 size >>= 1;
309381fe 924 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 925
2847cf95 926 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 927 debug_guardpage_enabled() &&
2847cf95 928 high < debug_guardpage_minorder()) {
c0a32fc5
SG
929 /*
930 * Mark as guard pages (or page), that will allow to
931 * merge back to allocator when buddy will be freed.
932 * Corresponding page table entries will not be touched,
933 * pages will stay not present in virtual address space
934 */
2847cf95 935 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
936 continue;
937 }
b2a0ac88 938 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
939 area->nr_free++;
940 set_page_order(&page[size], high);
941 }
1da177e4
LT
942}
943
1da177e4
LT
944/*
945 * This page is about to be returned from the page allocator
946 */
2a7684a2 947static inline int check_new_page(struct page *page)
1da177e4 948{
d230dec1 949 const char *bad_reason = NULL;
f0b791a3
DH
950 unsigned long bad_flags = 0;
951
952 if (unlikely(page_mapcount(page)))
953 bad_reason = "nonzero mapcount";
954 if (unlikely(page->mapping != NULL))
955 bad_reason = "non-NULL mapping";
956 if (unlikely(atomic_read(&page->_count) != 0))
957 bad_reason = "nonzero _count";
958 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
959 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
960 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
961 }
9edad6ea
JW
962#ifdef CONFIG_MEMCG
963 if (unlikely(page->mem_cgroup))
964 bad_reason = "page still charged to cgroup";
965#endif
f0b791a3
DH
966 if (unlikely(bad_reason)) {
967 bad_page(page, bad_reason, bad_flags);
689bcebf 968 return 1;
8cc3b392 969 }
2a7684a2
WF
970 return 0;
971}
972
75379191
VB
973static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
974 int alloc_flags)
2a7684a2
WF
975{
976 int i;
977
978 for (i = 0; i < (1 << order); i++) {
979 struct page *p = page + i;
980 if (unlikely(check_new_page(p)))
981 return 1;
982 }
689bcebf 983
4c21e2f2 984 set_page_private(page, 0);
7835e98b 985 set_page_refcounted(page);
cc102509
NP
986
987 arch_alloc_page(page, order);
1da177e4 988 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
989
990 if (gfp_flags & __GFP_ZERO)
991 prep_zero_page(page, order, gfp_flags);
992
993 if (order && (gfp_flags & __GFP_COMP))
994 prep_compound_page(page, order);
995
48c96a36
JK
996 set_page_owner(page, order, gfp_flags);
997
75379191
VB
998 /*
999 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
1000 * allocate the page. The expectation is that the caller is taking
1001 * steps that will free more memory. The caller should avoid the page
1002 * being used for !PFMEMALLOC purposes.
1003 */
1004 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1005
689bcebf 1006 return 0;
1da177e4
LT
1007}
1008
56fd56b8
MG
1009/*
1010 * Go through the free lists for the given migratetype and remove
1011 * the smallest available page from the freelists
1012 */
728ec980
MG
1013static inline
1014struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1015 int migratetype)
1016{
1017 unsigned int current_order;
b8af2941 1018 struct free_area *area;
56fd56b8
MG
1019 struct page *page;
1020
1021 /* Find a page of the appropriate size in the preferred list */
1022 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1023 area = &(zone->free_area[current_order]);
1024 if (list_empty(&area->free_list[migratetype]))
1025 continue;
1026
1027 page = list_entry(area->free_list[migratetype].next,
1028 struct page, lru);
1029 list_del(&page->lru);
1030 rmv_page_order(page);
1031 area->nr_free--;
56fd56b8 1032 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 1033 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
1034 return page;
1035 }
1036
1037 return NULL;
1038}
1039
1040
b2a0ac88
MG
1041/*
1042 * This array describes the order lists are fallen back to when
1043 * the free lists for the desirable migrate type are depleted
1044 */
47118af0
MN
1045static int fallbacks[MIGRATE_TYPES][4] = {
1046 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1047 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1048#ifdef CONFIG_CMA
1049 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1050 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1051#else
1052 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1053#endif
6d4a4916 1054 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1055#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 1056 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1057#endif
b2a0ac88
MG
1058};
1059
c361be55
MG
1060/*
1061 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1062 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1063 * boundary. If alignment is required, use move_freepages_block()
1064 */
435b405c 1065int move_freepages(struct zone *zone,
b69a7288
AB
1066 struct page *start_page, struct page *end_page,
1067 int migratetype)
c361be55
MG
1068{
1069 struct page *page;
1070 unsigned long order;
d100313f 1071 int pages_moved = 0;
c361be55
MG
1072
1073#ifndef CONFIG_HOLES_IN_ZONE
1074 /*
1075 * page_zone is not safe to call in this context when
1076 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1077 * anyway as we check zone boundaries in move_freepages_block().
1078 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1079 * grouping pages by mobility
c361be55 1080 */
97ee4ba7 1081 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1082#endif
1083
1084 for (page = start_page; page <= end_page;) {
344c790e 1085 /* Make sure we are not inadvertently changing nodes */
309381fe 1086 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1087
c361be55
MG
1088 if (!pfn_valid_within(page_to_pfn(page))) {
1089 page++;
1090 continue;
1091 }
1092
1093 if (!PageBuddy(page)) {
1094 page++;
1095 continue;
1096 }
1097
1098 order = page_order(page);
84be48d8
KS
1099 list_move(&page->lru,
1100 &zone->free_area[order].free_list[migratetype]);
95e34412 1101 set_freepage_migratetype(page, migratetype);
c361be55 1102 page += 1 << order;
d100313f 1103 pages_moved += 1 << order;
c361be55
MG
1104 }
1105
d100313f 1106 return pages_moved;
c361be55
MG
1107}
1108
ee6f509c 1109int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1110 int migratetype)
c361be55
MG
1111{
1112 unsigned long start_pfn, end_pfn;
1113 struct page *start_page, *end_page;
1114
1115 start_pfn = page_to_pfn(page);
d9c23400 1116 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1117 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1118 end_page = start_page + pageblock_nr_pages - 1;
1119 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1120
1121 /* Do not cross zone boundaries */
108bcc96 1122 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1123 start_page = page;
108bcc96 1124 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1125 return 0;
1126
1127 return move_freepages(zone, start_page, end_page, migratetype);
1128}
1129
2f66a68f
MG
1130static void change_pageblock_range(struct page *pageblock_page,
1131 int start_order, int migratetype)
1132{
1133 int nr_pageblocks = 1 << (start_order - pageblock_order);
1134
1135 while (nr_pageblocks--) {
1136 set_pageblock_migratetype(pageblock_page, migratetype);
1137 pageblock_page += pageblock_nr_pages;
1138 }
1139}
1140
fef903ef
SB
1141/*
1142 * If breaking a large block of pages, move all free pages to the preferred
1143 * allocation list. If falling back for a reclaimable kernel allocation, be
1144 * more aggressive about taking ownership of free pages.
1145 *
1146 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1147 * nor move CMA pages to different free lists. We don't want unmovable pages
1148 * to be allocated from MIGRATE_CMA areas.
1149 *
1150 * Returns the new migratetype of the pageblock (or the same old migratetype
1151 * if it was unchanged).
1152 */
1153static int try_to_steal_freepages(struct zone *zone, struct page *page,
1154 int start_type, int fallback_type)
1155{
1156 int current_order = page_order(page);
1157
0cbef29a
KM
1158 /*
1159 * When borrowing from MIGRATE_CMA, we need to release the excess
5bcc9f86
VB
1160 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1161 * is set to CMA so it is returned to the correct freelist in case
1162 * the page ends up being not actually allocated from the pcp lists.
0cbef29a 1163 */
fef903ef
SB
1164 if (is_migrate_cma(fallback_type))
1165 return fallback_type;
1166
1167 /* Take ownership for orders >= pageblock_order */
1168 if (current_order >= pageblock_order) {
1169 change_pageblock_range(page, current_order, start_type);
1170 return start_type;
1171 }
1172
1173 if (current_order >= pageblock_order / 2 ||
1174 start_type == MIGRATE_RECLAIMABLE ||
1175 page_group_by_mobility_disabled) {
1176 int pages;
1177
1178 pages = move_freepages_block(zone, page, start_type);
1179
1180 /* Claim the whole block if over half of it is free */
1181 if (pages >= (1 << (pageblock_order-1)) ||
1182 page_group_by_mobility_disabled) {
1183
1184 set_pageblock_migratetype(page, start_type);
1185 return start_type;
1186 }
1187
1188 }
1189
1190 return fallback_type;
1191}
1192
b2a0ac88 1193/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1194static inline struct page *
7aeb09f9 1195__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1196{
b8af2941 1197 struct free_area *area;
7aeb09f9 1198 unsigned int current_order;
b2a0ac88 1199 struct page *page;
fef903ef 1200 int migratetype, new_type, i;
b2a0ac88
MG
1201
1202 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1203 for (current_order = MAX_ORDER-1;
1204 current_order >= order && current_order <= MAX_ORDER-1;
1205 --current_order) {
6d4a4916 1206 for (i = 0;; i++) {
b2a0ac88
MG
1207 migratetype = fallbacks[start_migratetype][i];
1208
56fd56b8
MG
1209 /* MIGRATE_RESERVE handled later if necessary */
1210 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1211 break;
e010487d 1212
b2a0ac88
MG
1213 area = &(zone->free_area[current_order]);
1214 if (list_empty(&area->free_list[migratetype]))
1215 continue;
1216
1217 page = list_entry(area->free_list[migratetype].next,
1218 struct page, lru);
1219 area->nr_free--;
1220
fef903ef
SB
1221 new_type = try_to_steal_freepages(zone, page,
1222 start_migratetype,
1223 migratetype);
b2a0ac88
MG
1224
1225 /* Remove the page from the freelists */
1226 list_del(&page->lru);
1227 rmv_page_order(page);
b2a0ac88 1228
47118af0 1229 expand(zone, page, order, current_order, area,
0cbef29a 1230 new_type);
5bcc9f86
VB
1231 /* The freepage_migratetype may differ from pageblock's
1232 * migratetype depending on the decisions in
1233 * try_to_steal_freepages. This is OK as long as it does
1234 * not differ for MIGRATE_CMA type.
1235 */
1236 set_freepage_migratetype(page, new_type);
e0fff1bd 1237
52c8f6a5
KM
1238 trace_mm_page_alloc_extfrag(page, order, current_order,
1239 start_migratetype, migratetype, new_type);
e0fff1bd 1240
b2a0ac88
MG
1241 return page;
1242 }
1243 }
1244
728ec980 1245 return NULL;
b2a0ac88
MG
1246}
1247
56fd56b8 1248/*
1da177e4
LT
1249 * Do the hard work of removing an element from the buddy allocator.
1250 * Call me with the zone->lock already held.
1251 */
b2a0ac88
MG
1252static struct page *__rmqueue(struct zone *zone, unsigned int order,
1253 int migratetype)
1da177e4 1254{
1da177e4
LT
1255 struct page *page;
1256
728ec980 1257retry_reserve:
56fd56b8 1258 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1259
728ec980 1260 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1261 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1262
728ec980
MG
1263 /*
1264 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1265 * is used because __rmqueue_smallest is an inline function
1266 * and we want just one call site
1267 */
1268 if (!page) {
1269 migratetype = MIGRATE_RESERVE;
1270 goto retry_reserve;
1271 }
1272 }
1273
0d3d062a 1274 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1275 return page;
1da177e4
LT
1276}
1277
5f63b720 1278/*
1da177e4
LT
1279 * Obtain a specified number of elements from the buddy allocator, all under
1280 * a single hold of the lock, for efficiency. Add them to the supplied list.
1281 * Returns the number of new pages which were placed at *list.
1282 */
5f63b720 1283static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1284 unsigned long count, struct list_head *list,
b745bc85 1285 int migratetype, bool cold)
1da177e4 1286{
5bcc9f86 1287 int i;
5f63b720 1288
c54ad30c 1289 spin_lock(&zone->lock);
1da177e4 1290 for (i = 0; i < count; ++i) {
b2a0ac88 1291 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1292 if (unlikely(page == NULL))
1da177e4 1293 break;
81eabcbe
MG
1294
1295 /*
1296 * Split buddy pages returned by expand() are received here
1297 * in physical page order. The page is added to the callers and
1298 * list and the list head then moves forward. From the callers
1299 * perspective, the linked list is ordered by page number in
1300 * some conditions. This is useful for IO devices that can
1301 * merge IO requests if the physical pages are ordered
1302 * properly.
1303 */
b745bc85 1304 if (likely(!cold))
e084b2d9
MG
1305 list_add(&page->lru, list);
1306 else
1307 list_add_tail(&page->lru, list);
81eabcbe 1308 list = &page->lru;
5bcc9f86 1309 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1310 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1311 -(1 << order));
1da177e4 1312 }
f2260e6b 1313 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1314 spin_unlock(&zone->lock);
085cc7d5 1315 return i;
1da177e4
LT
1316}
1317
4ae7c039 1318#ifdef CONFIG_NUMA
8fce4d8e 1319/*
4037d452
CL
1320 * Called from the vmstat counter updater to drain pagesets of this
1321 * currently executing processor on remote nodes after they have
1322 * expired.
1323 *
879336c3
CL
1324 * Note that this function must be called with the thread pinned to
1325 * a single processor.
8fce4d8e 1326 */
4037d452 1327void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1328{
4ae7c039 1329 unsigned long flags;
7be12fc9 1330 int to_drain, batch;
4ae7c039 1331
4037d452 1332 local_irq_save(flags);
998d39cb 1333 batch = ACCESS_ONCE(pcp->batch);
7be12fc9 1334 to_drain = min(pcp->count, batch);
2a13515c
KM
1335 if (to_drain > 0) {
1336 free_pcppages_bulk(zone, to_drain, pcp);
1337 pcp->count -= to_drain;
1338 }
4037d452 1339 local_irq_restore(flags);
4ae7c039
CL
1340}
1341#endif
1342
9f8f2172 1343/*
93481ff0 1344 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1345 *
1346 * The processor must either be the current processor and the
1347 * thread pinned to the current processor or a processor that
1348 * is not online.
1349 */
93481ff0 1350static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1351{
c54ad30c 1352 unsigned long flags;
93481ff0
VB
1353 struct per_cpu_pageset *pset;
1354 struct per_cpu_pages *pcp;
1da177e4 1355
93481ff0
VB
1356 local_irq_save(flags);
1357 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1358
93481ff0
VB
1359 pcp = &pset->pcp;
1360 if (pcp->count) {
1361 free_pcppages_bulk(zone, pcp->count, pcp);
1362 pcp->count = 0;
1363 }
1364 local_irq_restore(flags);
1365}
3dfa5721 1366
93481ff0
VB
1367/*
1368 * Drain pcplists of all zones on the indicated processor.
1369 *
1370 * The processor must either be the current processor and the
1371 * thread pinned to the current processor or a processor that
1372 * is not online.
1373 */
1374static void drain_pages(unsigned int cpu)
1375{
1376 struct zone *zone;
1377
1378 for_each_populated_zone(zone) {
1379 drain_pages_zone(cpu, zone);
1da177e4
LT
1380 }
1381}
1da177e4 1382
9f8f2172
CL
1383/*
1384 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1385 *
1386 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1387 * the single zone's pages.
9f8f2172 1388 */
93481ff0 1389void drain_local_pages(struct zone *zone)
9f8f2172 1390{
93481ff0
VB
1391 int cpu = smp_processor_id();
1392
1393 if (zone)
1394 drain_pages_zone(cpu, zone);
1395 else
1396 drain_pages(cpu);
9f8f2172
CL
1397}
1398
1399/*
74046494
GBY
1400 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1401 *
93481ff0
VB
1402 * When zone parameter is non-NULL, spill just the single zone's pages.
1403 *
74046494
GBY
1404 * Note that this code is protected against sending an IPI to an offline
1405 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1406 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1407 * nothing keeps CPUs from showing up after we populated the cpumask and
1408 * before the call to on_each_cpu_mask().
9f8f2172 1409 */
93481ff0 1410void drain_all_pages(struct zone *zone)
9f8f2172 1411{
74046494 1412 int cpu;
74046494
GBY
1413
1414 /*
1415 * Allocate in the BSS so we wont require allocation in
1416 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1417 */
1418 static cpumask_t cpus_with_pcps;
1419
1420 /*
1421 * We don't care about racing with CPU hotplug event
1422 * as offline notification will cause the notified
1423 * cpu to drain that CPU pcps and on_each_cpu_mask
1424 * disables preemption as part of its processing
1425 */
1426 for_each_online_cpu(cpu) {
93481ff0
VB
1427 struct per_cpu_pageset *pcp;
1428 struct zone *z;
74046494 1429 bool has_pcps = false;
93481ff0
VB
1430
1431 if (zone) {
74046494 1432 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1433 if (pcp->pcp.count)
74046494 1434 has_pcps = true;
93481ff0
VB
1435 } else {
1436 for_each_populated_zone(z) {
1437 pcp = per_cpu_ptr(z->pageset, cpu);
1438 if (pcp->pcp.count) {
1439 has_pcps = true;
1440 break;
1441 }
74046494
GBY
1442 }
1443 }
93481ff0 1444
74046494
GBY
1445 if (has_pcps)
1446 cpumask_set_cpu(cpu, &cpus_with_pcps);
1447 else
1448 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1449 }
93481ff0
VB
1450 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1451 zone, 1);
9f8f2172
CL
1452}
1453
296699de 1454#ifdef CONFIG_HIBERNATION
1da177e4
LT
1455
1456void mark_free_pages(struct zone *zone)
1457{
f623f0db
RW
1458 unsigned long pfn, max_zone_pfn;
1459 unsigned long flags;
7aeb09f9 1460 unsigned int order, t;
1da177e4
LT
1461 struct list_head *curr;
1462
8080fc03 1463 if (zone_is_empty(zone))
1da177e4
LT
1464 return;
1465
1466 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1467
108bcc96 1468 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1469 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1470 if (pfn_valid(pfn)) {
1471 struct page *page = pfn_to_page(pfn);
1472
7be98234
RW
1473 if (!swsusp_page_is_forbidden(page))
1474 swsusp_unset_page_free(page);
f623f0db 1475 }
1da177e4 1476
b2a0ac88
MG
1477 for_each_migratetype_order(order, t) {
1478 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1479 unsigned long i;
1da177e4 1480
f623f0db
RW
1481 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1482 for (i = 0; i < (1UL << order); i++)
7be98234 1483 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1484 }
b2a0ac88 1485 }
1da177e4
LT
1486 spin_unlock_irqrestore(&zone->lock, flags);
1487}
e2c55dc8 1488#endif /* CONFIG_PM */
1da177e4 1489
1da177e4
LT
1490/*
1491 * Free a 0-order page
b745bc85 1492 * cold == true ? free a cold page : free a hot page
1da177e4 1493 */
b745bc85 1494void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1495{
1496 struct zone *zone = page_zone(page);
1497 struct per_cpu_pages *pcp;
1498 unsigned long flags;
dc4b0caf 1499 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1500 int migratetype;
1da177e4 1501
ec95f53a 1502 if (!free_pages_prepare(page, 0))
689bcebf
HD
1503 return;
1504
dc4b0caf 1505 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1506 set_freepage_migratetype(page, migratetype);
1da177e4 1507 local_irq_save(flags);
f8891e5e 1508 __count_vm_event(PGFREE);
da456f14 1509
5f8dcc21
MG
1510 /*
1511 * We only track unmovable, reclaimable and movable on pcp lists.
1512 * Free ISOLATE pages back to the allocator because they are being
1513 * offlined but treat RESERVE as movable pages so we can get those
1514 * areas back if necessary. Otherwise, we may have to free
1515 * excessively into the page allocator
1516 */
1517 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1518 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1519 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1520 goto out;
1521 }
1522 migratetype = MIGRATE_MOVABLE;
1523 }
1524
99dcc3e5 1525 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1526 if (!cold)
5f8dcc21 1527 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1528 else
1529 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1530 pcp->count++;
48db57f8 1531 if (pcp->count >= pcp->high) {
998d39cb
CS
1532 unsigned long batch = ACCESS_ONCE(pcp->batch);
1533 free_pcppages_bulk(zone, batch, pcp);
1534 pcp->count -= batch;
48db57f8 1535 }
5f8dcc21
MG
1536
1537out:
1da177e4 1538 local_irq_restore(flags);
1da177e4
LT
1539}
1540
cc59850e
KK
1541/*
1542 * Free a list of 0-order pages
1543 */
b745bc85 1544void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1545{
1546 struct page *page, *next;
1547
1548 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1549 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1550 free_hot_cold_page(page, cold);
1551 }
1552}
1553
8dfcc9ba
NP
1554/*
1555 * split_page takes a non-compound higher-order page, and splits it into
1556 * n (1<<order) sub-pages: page[0..n]
1557 * Each sub-page must be freed individually.
1558 *
1559 * Note: this is probably too low level an operation for use in drivers.
1560 * Please consult with lkml before using this in your driver.
1561 */
1562void split_page(struct page *page, unsigned int order)
1563{
1564 int i;
1565
309381fe
SL
1566 VM_BUG_ON_PAGE(PageCompound(page), page);
1567 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1568
1569#ifdef CONFIG_KMEMCHECK
1570 /*
1571 * Split shadow pages too, because free(page[0]) would
1572 * otherwise free the whole shadow.
1573 */
1574 if (kmemcheck_page_is_tracked(page))
1575 split_page(virt_to_page(page[0].shadow), order);
1576#endif
1577
48c96a36
JK
1578 set_page_owner(page, 0, 0);
1579 for (i = 1; i < (1 << order); i++) {
7835e98b 1580 set_page_refcounted(page + i);
48c96a36
JK
1581 set_page_owner(page + i, 0, 0);
1582 }
8dfcc9ba 1583}
5853ff23 1584EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1585
3c605096 1586int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1587{
748446bb
MG
1588 unsigned long watermark;
1589 struct zone *zone;
2139cbe6 1590 int mt;
748446bb
MG
1591
1592 BUG_ON(!PageBuddy(page));
1593
1594 zone = page_zone(page);
2e30abd1 1595 mt = get_pageblock_migratetype(page);
748446bb 1596
194159fb 1597 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1598 /* Obey watermarks as if the page was being allocated */
1599 watermark = low_wmark_pages(zone) + (1 << order);
1600 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1601 return 0;
1602
8fb74b9f 1603 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1604 }
748446bb
MG
1605
1606 /* Remove page from free list */
1607 list_del(&page->lru);
1608 zone->free_area[order].nr_free--;
1609 rmv_page_order(page);
2139cbe6 1610
8fb74b9f 1611 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1612 if (order >= pageblock_order - 1) {
1613 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1614 for (; page < endpage; page += pageblock_nr_pages) {
1615 int mt = get_pageblock_migratetype(page);
194159fb 1616 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1617 set_pageblock_migratetype(page,
1618 MIGRATE_MOVABLE);
1619 }
748446bb
MG
1620 }
1621
48c96a36 1622 set_page_owner(page, order, 0);
8fb74b9f 1623 return 1UL << order;
1fb3f8ca
MG
1624}
1625
1626/*
1627 * Similar to split_page except the page is already free. As this is only
1628 * being used for migration, the migratetype of the block also changes.
1629 * As this is called with interrupts disabled, the caller is responsible
1630 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1631 * are enabled.
1632 *
1633 * Note: this is probably too low level an operation for use in drivers.
1634 * Please consult with lkml before using this in your driver.
1635 */
1636int split_free_page(struct page *page)
1637{
1638 unsigned int order;
1639 int nr_pages;
1640
1fb3f8ca
MG
1641 order = page_order(page);
1642
8fb74b9f 1643 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1644 if (!nr_pages)
1645 return 0;
1646
1647 /* Split into individual pages */
1648 set_page_refcounted(page);
1649 split_page(page, order);
1650 return nr_pages;
748446bb
MG
1651}
1652
1da177e4 1653/*
75379191 1654 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 1655 */
0a15c3e9
MG
1656static inline
1657struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
1658 struct zone *zone, unsigned int order,
1659 gfp_t gfp_flags, int migratetype)
1da177e4
LT
1660{
1661 unsigned long flags;
689bcebf 1662 struct page *page;
b745bc85 1663 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 1664
48db57f8 1665 if (likely(order == 0)) {
1da177e4 1666 struct per_cpu_pages *pcp;
5f8dcc21 1667 struct list_head *list;
1da177e4 1668
1da177e4 1669 local_irq_save(flags);
99dcc3e5
CL
1670 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1671 list = &pcp->lists[migratetype];
5f8dcc21 1672 if (list_empty(list)) {
535131e6 1673 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1674 pcp->batch, list,
e084b2d9 1675 migratetype, cold);
5f8dcc21 1676 if (unlikely(list_empty(list)))
6fb332fa 1677 goto failed;
535131e6 1678 }
b92a6edd 1679
5f8dcc21
MG
1680 if (cold)
1681 page = list_entry(list->prev, struct page, lru);
1682 else
1683 page = list_entry(list->next, struct page, lru);
1684
b92a6edd
MG
1685 list_del(&page->lru);
1686 pcp->count--;
7fb1d9fc 1687 } else {
dab48dab
AM
1688 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1689 /*
1690 * __GFP_NOFAIL is not to be used in new code.
1691 *
1692 * All __GFP_NOFAIL callers should be fixed so that they
1693 * properly detect and handle allocation failures.
1694 *
1695 * We most definitely don't want callers attempting to
4923abf9 1696 * allocate greater than order-1 page units with
dab48dab
AM
1697 * __GFP_NOFAIL.
1698 */
4923abf9 1699 WARN_ON_ONCE(order > 1);
dab48dab 1700 }
1da177e4 1701 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1702 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1703 spin_unlock(&zone->lock);
1704 if (!page)
1705 goto failed;
d1ce749a 1706 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1707 get_freepage_migratetype(page));
1da177e4
LT
1708 }
1709
3a025760 1710 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 1711 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
1712 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1713 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 1714
f8891e5e 1715 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1716 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1717 local_irq_restore(flags);
1da177e4 1718
309381fe 1719 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1720 return page;
a74609fa
NP
1721
1722failed:
1723 local_irq_restore(flags);
a74609fa 1724 return NULL;
1da177e4
LT
1725}
1726
933e312e
AM
1727#ifdef CONFIG_FAIL_PAGE_ALLOC
1728
b2588c4b 1729static struct {
933e312e
AM
1730 struct fault_attr attr;
1731
1732 u32 ignore_gfp_highmem;
1733 u32 ignore_gfp_wait;
54114994 1734 u32 min_order;
933e312e
AM
1735} fail_page_alloc = {
1736 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1737 .ignore_gfp_wait = 1,
1738 .ignore_gfp_highmem = 1,
54114994 1739 .min_order = 1,
933e312e
AM
1740};
1741
1742static int __init setup_fail_page_alloc(char *str)
1743{
1744 return setup_fault_attr(&fail_page_alloc.attr, str);
1745}
1746__setup("fail_page_alloc=", setup_fail_page_alloc);
1747
deaf386e 1748static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1749{
54114994 1750 if (order < fail_page_alloc.min_order)
deaf386e 1751 return false;
933e312e 1752 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1753 return false;
933e312e 1754 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1755 return false;
933e312e 1756 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1757 return false;
933e312e
AM
1758
1759 return should_fail(&fail_page_alloc.attr, 1 << order);
1760}
1761
1762#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1763
1764static int __init fail_page_alloc_debugfs(void)
1765{
f4ae40a6 1766 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1767 struct dentry *dir;
933e312e 1768
dd48c085
AM
1769 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1770 &fail_page_alloc.attr);
1771 if (IS_ERR(dir))
1772 return PTR_ERR(dir);
933e312e 1773
b2588c4b
AM
1774 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1775 &fail_page_alloc.ignore_gfp_wait))
1776 goto fail;
1777 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1778 &fail_page_alloc.ignore_gfp_highmem))
1779 goto fail;
1780 if (!debugfs_create_u32("min-order", mode, dir,
1781 &fail_page_alloc.min_order))
1782 goto fail;
1783
1784 return 0;
1785fail:
dd48c085 1786 debugfs_remove_recursive(dir);
933e312e 1787
b2588c4b 1788 return -ENOMEM;
933e312e
AM
1789}
1790
1791late_initcall(fail_page_alloc_debugfs);
1792
1793#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1794
1795#else /* CONFIG_FAIL_PAGE_ALLOC */
1796
deaf386e 1797static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1798{
deaf386e 1799 return false;
933e312e
AM
1800}
1801
1802#endif /* CONFIG_FAIL_PAGE_ALLOC */
1803
1da177e4 1804/*
88f5acf8 1805 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1806 * of the allocation.
1807 */
7aeb09f9
MG
1808static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1809 unsigned long mark, int classzone_idx, int alloc_flags,
1810 long free_pages)
1da177e4 1811{
26086de3 1812 /* free_pages may go negative - that's OK */
d23ad423 1813 long min = mark;
1da177e4 1814 int o;
026b0814 1815 long free_cma = 0;
1da177e4 1816
df0a6daa 1817 free_pages -= (1 << order) - 1;
7fb1d9fc 1818 if (alloc_flags & ALLOC_HIGH)
1da177e4 1819 min -= min / 2;
7fb1d9fc 1820 if (alloc_flags & ALLOC_HARDER)
1da177e4 1821 min -= min / 4;
d95ea5d1
BZ
1822#ifdef CONFIG_CMA
1823 /* If allocation can't use CMA areas don't use free CMA pages */
1824 if (!(alloc_flags & ALLOC_CMA))
026b0814 1825 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1826#endif
026b0814 1827
3484b2de 1828 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1829 return false;
1da177e4
LT
1830 for (o = 0; o < order; o++) {
1831 /* At the next order, this order's pages become unavailable */
1832 free_pages -= z->free_area[o].nr_free << o;
1833
1834 /* Require fewer higher order pages to be free */
1835 min >>= 1;
1836
1837 if (free_pages <= min)
88f5acf8 1838 return false;
1da177e4 1839 }
88f5acf8
MG
1840 return true;
1841}
1842
7aeb09f9 1843bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
1844 int classzone_idx, int alloc_flags)
1845{
1846 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1847 zone_page_state(z, NR_FREE_PAGES));
1848}
1849
7aeb09f9
MG
1850bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1851 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
1852{
1853 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1854
1855 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1856 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1857
1858 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1859 free_pages);
1da177e4
LT
1860}
1861
9276b1bc
PJ
1862#ifdef CONFIG_NUMA
1863/*
1864 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1865 * skip over zones that are not allowed by the cpuset, or that have
1866 * been recently (in last second) found to be nearly full. See further
1867 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1868 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1869 *
a1aeb65a 1870 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1871 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1872 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1873 *
1874 * If the zonelist cache is not available for this zonelist, does
1875 * nothing and returns NULL.
1876 *
1877 * If the fullzones BITMAP in the zonelist cache is stale (more than
1878 * a second since last zap'd) then we zap it out (clear its bits.)
1879 *
1880 * We hold off even calling zlc_setup, until after we've checked the
1881 * first zone in the zonelist, on the theory that most allocations will
1882 * be satisfied from that first zone, so best to examine that zone as
1883 * quickly as we can.
1884 */
1885static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1886{
1887 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1888 nodemask_t *allowednodes; /* zonelist_cache approximation */
1889
1890 zlc = zonelist->zlcache_ptr;
1891 if (!zlc)
1892 return NULL;
1893
f05111f5 1894 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1895 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1896 zlc->last_full_zap = jiffies;
1897 }
1898
1899 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1900 &cpuset_current_mems_allowed :
4b0ef1fe 1901 &node_states[N_MEMORY];
9276b1bc
PJ
1902 return allowednodes;
1903}
1904
1905/*
1906 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1907 * if it is worth looking at further for free memory:
1908 * 1) Check that the zone isn't thought to be full (doesn't have its
1909 * bit set in the zonelist_cache fullzones BITMAP).
1910 * 2) Check that the zones node (obtained from the zonelist_cache
1911 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1912 * Return true (non-zero) if zone is worth looking at further, or
1913 * else return false (zero) if it is not.
1914 *
1915 * This check -ignores- the distinction between various watermarks,
1916 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1917 * found to be full for any variation of these watermarks, it will
1918 * be considered full for up to one second by all requests, unless
1919 * we are so low on memory on all allowed nodes that we are forced
1920 * into the second scan of the zonelist.
1921 *
1922 * In the second scan we ignore this zonelist cache and exactly
1923 * apply the watermarks to all zones, even it is slower to do so.
1924 * We are low on memory in the second scan, and should leave no stone
1925 * unturned looking for a free page.
1926 */
dd1a239f 1927static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1928 nodemask_t *allowednodes)
1929{
1930 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1931 int i; /* index of *z in zonelist zones */
1932 int n; /* node that zone *z is on */
1933
1934 zlc = zonelist->zlcache_ptr;
1935 if (!zlc)
1936 return 1;
1937
dd1a239f 1938 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1939 n = zlc->z_to_n[i];
1940
1941 /* This zone is worth trying if it is allowed but not full */
1942 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1943}
1944
1945/*
1946 * Given 'z' scanning a zonelist, set the corresponding bit in
1947 * zlc->fullzones, so that subsequent attempts to allocate a page
1948 * from that zone don't waste time re-examining it.
1949 */
dd1a239f 1950static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1951{
1952 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1953 int i; /* index of *z in zonelist zones */
1954
1955 zlc = zonelist->zlcache_ptr;
1956 if (!zlc)
1957 return;
1958
dd1a239f 1959 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1960
1961 set_bit(i, zlc->fullzones);
1962}
1963
76d3fbf8
MG
1964/*
1965 * clear all zones full, called after direct reclaim makes progress so that
1966 * a zone that was recently full is not skipped over for up to a second
1967 */
1968static void zlc_clear_zones_full(struct zonelist *zonelist)
1969{
1970 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1971
1972 zlc = zonelist->zlcache_ptr;
1973 if (!zlc)
1974 return;
1975
1976 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1977}
1978
81c0a2bb
JW
1979static bool zone_local(struct zone *local_zone, struct zone *zone)
1980{
fff4068c 1981 return local_zone->node == zone->node;
81c0a2bb
JW
1982}
1983
957f822a
DR
1984static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1985{
5f7a75ac
MG
1986 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1987 RECLAIM_DISTANCE;
957f822a
DR
1988}
1989
9276b1bc
PJ
1990#else /* CONFIG_NUMA */
1991
1992static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1993{
1994 return NULL;
1995}
1996
dd1a239f 1997static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1998 nodemask_t *allowednodes)
1999{
2000 return 1;
2001}
2002
dd1a239f 2003static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2004{
2005}
76d3fbf8
MG
2006
2007static void zlc_clear_zones_full(struct zonelist *zonelist)
2008{
2009}
957f822a 2010
81c0a2bb
JW
2011static bool zone_local(struct zone *local_zone, struct zone *zone)
2012{
2013 return true;
2014}
2015
957f822a
DR
2016static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2017{
2018 return true;
2019}
2020
9276b1bc
PJ
2021#endif /* CONFIG_NUMA */
2022
4ffeaf35
MG
2023static void reset_alloc_batches(struct zone *preferred_zone)
2024{
2025 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2026
2027 do {
2028 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2029 high_wmark_pages(zone) - low_wmark_pages(zone) -
2030 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2031 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2032 } while (zone++ != preferred_zone);
2033}
2034
7fb1d9fc 2035/*
0798e519 2036 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2037 * a page.
2038 */
2039static struct page *
a9263751
VB
2040get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2041 const struct alloc_context *ac)
753ee728 2042{
a9263751 2043 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2044 struct zoneref *z;
7fb1d9fc 2045 struct page *page = NULL;
5117f45d 2046 struct zone *zone;
9276b1bc
PJ
2047 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2048 int zlc_active = 0; /* set if using zonelist_cache */
2049 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
2050 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2051 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
2052 int nr_fair_skipped = 0;
2053 bool zonelist_rescan;
54a6eb5c 2054
9276b1bc 2055zonelist_scan:
4ffeaf35
MG
2056 zonelist_rescan = false;
2057
7fb1d9fc 2058 /*
9276b1bc 2059 * Scan zonelist, looking for a zone with enough free.
344736f2 2060 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2061 */
a9263751
VB
2062 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2063 ac->nodemask) {
e085dbc5
JW
2064 unsigned long mark;
2065
e5adfffc 2066 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
2067 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2068 continue;
664eedde
MG
2069 if (cpusets_enabled() &&
2070 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2071 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2072 continue;
81c0a2bb
JW
2073 /*
2074 * Distribute pages in proportion to the individual
2075 * zone size to ensure fair page aging. The zone a
2076 * page was allocated in should have no effect on the
2077 * time the page has in memory before being reclaimed.
81c0a2bb 2078 */
3a025760 2079 if (alloc_flags & ALLOC_FAIR) {
a9263751 2080 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2081 break;
57054651 2082 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2083 nr_fair_skipped++;
3a025760 2084 continue;
4ffeaf35 2085 }
81c0a2bb 2086 }
a756cf59
JW
2087 /*
2088 * When allocating a page cache page for writing, we
2089 * want to get it from a zone that is within its dirty
2090 * limit, such that no single zone holds more than its
2091 * proportional share of globally allowed dirty pages.
2092 * The dirty limits take into account the zone's
2093 * lowmem reserves and high watermark so that kswapd
2094 * should be able to balance it without having to
2095 * write pages from its LRU list.
2096 *
2097 * This may look like it could increase pressure on
2098 * lower zones by failing allocations in higher zones
2099 * before they are full. But the pages that do spill
2100 * over are limited as the lower zones are protected
2101 * by this very same mechanism. It should not become
2102 * a practical burden to them.
2103 *
2104 * XXX: For now, allow allocations to potentially
2105 * exceed the per-zone dirty limit in the slowpath
2106 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2107 * which is important when on a NUMA setup the allowed
2108 * zones are together not big enough to reach the
2109 * global limit. The proper fix for these situations
2110 * will require awareness of zones in the
2111 * dirty-throttling and the flusher threads.
2112 */
a6e21b14 2113 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2114 continue;
7fb1d9fc 2115
e085dbc5
JW
2116 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2117 if (!zone_watermark_ok(zone, order, mark,
a9263751 2118 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2119 int ret;
2120
5dab2911
MG
2121 /* Checked here to keep the fast path fast */
2122 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2123 if (alloc_flags & ALLOC_NO_WATERMARKS)
2124 goto try_this_zone;
2125
e5adfffc
KS
2126 if (IS_ENABLED(CONFIG_NUMA) &&
2127 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2128 /*
2129 * we do zlc_setup if there are multiple nodes
2130 * and before considering the first zone allowed
2131 * by the cpuset.
2132 */
2133 allowednodes = zlc_setup(zonelist, alloc_flags);
2134 zlc_active = 1;
2135 did_zlc_setup = 1;
2136 }
2137
957f822a 2138 if (zone_reclaim_mode == 0 ||
a9263751 2139 !zone_allows_reclaim(ac->preferred_zone, zone))
fa5e084e
MG
2140 goto this_zone_full;
2141
cd38b115
MG
2142 /*
2143 * As we may have just activated ZLC, check if the first
2144 * eligible zone has failed zone_reclaim recently.
2145 */
e5adfffc 2146 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2147 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2148 continue;
2149
fa5e084e
MG
2150 ret = zone_reclaim(zone, gfp_mask, order);
2151 switch (ret) {
2152 case ZONE_RECLAIM_NOSCAN:
2153 /* did not scan */
cd38b115 2154 continue;
fa5e084e
MG
2155 case ZONE_RECLAIM_FULL:
2156 /* scanned but unreclaimable */
cd38b115 2157 continue;
fa5e084e
MG
2158 default:
2159 /* did we reclaim enough */
fed2719e 2160 if (zone_watermark_ok(zone, order, mark,
a9263751 2161 ac->classzone_idx, alloc_flags))
fed2719e
MG
2162 goto try_this_zone;
2163
2164 /*
2165 * Failed to reclaim enough to meet watermark.
2166 * Only mark the zone full if checking the min
2167 * watermark or if we failed to reclaim just
2168 * 1<<order pages or else the page allocator
2169 * fastpath will prematurely mark zones full
2170 * when the watermark is between the low and
2171 * min watermarks.
2172 */
2173 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2174 ret == ZONE_RECLAIM_SOME)
9276b1bc 2175 goto this_zone_full;
fed2719e
MG
2176
2177 continue;
0798e519 2178 }
7fb1d9fc
RS
2179 }
2180
fa5e084e 2181try_this_zone:
a9263751
VB
2182 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2183 gfp_mask, ac->migratetype);
75379191
VB
2184 if (page) {
2185 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2186 goto try_this_zone;
2187 return page;
2188 }
9276b1bc 2189this_zone_full:
65bb3719 2190 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2191 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2192 }
9276b1bc 2193
4ffeaf35
MG
2194 /*
2195 * The first pass makes sure allocations are spread fairly within the
2196 * local node. However, the local node might have free pages left
2197 * after the fairness batches are exhausted, and remote zones haven't
2198 * even been considered yet. Try once more without fairness, and
2199 * include remote zones now, before entering the slowpath and waking
2200 * kswapd: prefer spilling to a remote zone over swapping locally.
2201 */
2202 if (alloc_flags & ALLOC_FAIR) {
2203 alloc_flags &= ~ALLOC_FAIR;
2204 if (nr_fair_skipped) {
2205 zonelist_rescan = true;
a9263751 2206 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2207 }
2208 if (nr_online_nodes > 1)
2209 zonelist_rescan = true;
2210 }
2211
2212 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2213 /* Disable zlc cache for second zonelist scan */
2214 zlc_active = 0;
2215 zonelist_rescan = true;
2216 }
2217
2218 if (zonelist_rescan)
2219 goto zonelist_scan;
2220
2221 return NULL;
753ee728
MH
2222}
2223
29423e77
DR
2224/*
2225 * Large machines with many possible nodes should not always dump per-node
2226 * meminfo in irq context.
2227 */
2228static inline bool should_suppress_show_mem(void)
2229{
2230 bool ret = false;
2231
2232#if NODES_SHIFT > 8
2233 ret = in_interrupt();
2234#endif
2235 return ret;
2236}
2237
a238ab5b
DH
2238static DEFINE_RATELIMIT_STATE(nopage_rs,
2239 DEFAULT_RATELIMIT_INTERVAL,
2240 DEFAULT_RATELIMIT_BURST);
2241
2242void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2243{
a238ab5b
DH
2244 unsigned int filter = SHOW_MEM_FILTER_NODES;
2245
c0a32fc5
SG
2246 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2247 debug_guardpage_minorder() > 0)
a238ab5b
DH
2248 return;
2249
2250 /*
2251 * This documents exceptions given to allocations in certain
2252 * contexts that are allowed to allocate outside current's set
2253 * of allowed nodes.
2254 */
2255 if (!(gfp_mask & __GFP_NOMEMALLOC))
2256 if (test_thread_flag(TIF_MEMDIE) ||
2257 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2258 filter &= ~SHOW_MEM_FILTER_NODES;
2259 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2260 filter &= ~SHOW_MEM_FILTER_NODES;
2261
2262 if (fmt) {
3ee9a4f0
JP
2263 struct va_format vaf;
2264 va_list args;
2265
a238ab5b 2266 va_start(args, fmt);
3ee9a4f0
JP
2267
2268 vaf.fmt = fmt;
2269 vaf.va = &args;
2270
2271 pr_warn("%pV", &vaf);
2272
a238ab5b
DH
2273 va_end(args);
2274 }
2275
3ee9a4f0
JP
2276 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2277 current->comm, order, gfp_mask);
a238ab5b
DH
2278
2279 dump_stack();
2280 if (!should_suppress_show_mem())
2281 show_mem(filter);
2282}
2283
11e33f6a
MG
2284static inline int
2285should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2286 unsigned long did_some_progress,
11e33f6a 2287 unsigned long pages_reclaimed)
1da177e4 2288{
11e33f6a
MG
2289 /* Do not loop if specifically requested */
2290 if (gfp_mask & __GFP_NORETRY)
2291 return 0;
1da177e4 2292
f90ac398
MG
2293 /* Always retry if specifically requested */
2294 if (gfp_mask & __GFP_NOFAIL)
2295 return 1;
2296
2297 /*
2298 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2299 * making forward progress without invoking OOM. Suspend also disables
2300 * storage devices so kswapd will not help. Bail if we are suspending.
2301 */
2302 if (!did_some_progress && pm_suspended_storage())
2303 return 0;
2304
11e33f6a
MG
2305 /*
2306 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2307 * means __GFP_NOFAIL, but that may not be true in other
2308 * implementations.
2309 */
2310 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2311 return 1;
2312
2313 /*
2314 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2315 * specified, then we retry until we no longer reclaim any pages
2316 * (above), or we've reclaimed an order of pages at least as
2317 * large as the allocation's order. In both cases, if the
2318 * allocation still fails, we stop retrying.
2319 */
2320 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2321 return 1;
cf40bd16 2322
11e33f6a
MG
2323 return 0;
2324}
933e312e 2325
11e33f6a
MG
2326static inline struct page *
2327__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2328 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a
MG
2329{
2330 struct page *page;
2331
9879de73
JW
2332 *did_some_progress = 0;
2333
2334 if (oom_killer_disabled)
2335 return NULL;
2336
2337 /*
2338 * Acquire the per-zone oom lock for each zone. If that
2339 * fails, somebody else is making progress for us.
2340 */
a9263751 2341 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
9879de73 2342 *did_some_progress = 1;
11e33f6a 2343 schedule_timeout_uninterruptible(1);
1da177e4
LT
2344 return NULL;
2345 }
6b1de916 2346
5695be14
MH
2347 /*
2348 * PM-freezer should be notified that there might be an OOM killer on
2349 * its way to kill and wake somebody up. This is too early and we might
2350 * end up not killing anything but false positives are acceptable.
2351 * See freeze_processes.
2352 */
2353 note_oom_kill();
2354
11e33f6a
MG
2355 /*
2356 * Go through the zonelist yet one more time, keep very high watermark
2357 * here, this is only to catch a parallel oom killing, we must fail if
2358 * we're still under heavy pressure.
2359 */
a9263751
VB
2360 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2361 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2362 if (page)
11e33f6a
MG
2363 goto out;
2364
4365a567 2365 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2366 /* Coredumps can quickly deplete all memory reserves */
2367 if (current->flags & PF_DUMPCORE)
2368 goto out;
4365a567
KH
2369 /* The OOM killer will not help higher order allocs */
2370 if (order > PAGE_ALLOC_COSTLY_ORDER)
2371 goto out;
03668b3c 2372 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2373 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2374 goto out;
9879de73
JW
2375 /* The OOM killer does not compensate for light reclaim */
2376 if (!(gfp_mask & __GFP_FS))
2377 goto out;
4365a567
KH
2378 /*
2379 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2380 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2381 * The caller should handle page allocation failure by itself if
2382 * it specifies __GFP_THISNODE.
2383 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2384 */
2385 if (gfp_mask & __GFP_THISNODE)
2386 goto out;
2387 }
11e33f6a 2388 /* Exhausted what can be done so it's blamo time */
a9263751 2389 out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false);
9879de73 2390 *did_some_progress = 1;
11e33f6a 2391out:
a9263751 2392 oom_zonelist_unlock(ac->zonelist, gfp_mask);
11e33f6a
MG
2393 return page;
2394}
2395
56de7263
MG
2396#ifdef CONFIG_COMPACTION
2397/* Try memory compaction for high-order allocations before reclaim */
2398static struct page *
2399__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2400 int alloc_flags, const struct alloc_context *ac,
2401 enum migrate_mode mode, int *contended_compaction,
2402 bool *deferred_compaction)
56de7263 2403{
53853e2d 2404 unsigned long compact_result;
98dd3b48 2405 struct page *page;
53853e2d
VB
2406
2407 if (!order)
66199712 2408 return NULL;
66199712 2409
c06b1fca 2410 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2411 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2412 mode, contended_compaction);
c06b1fca 2413 current->flags &= ~PF_MEMALLOC;
56de7263 2414
98dd3b48
VB
2415 switch (compact_result) {
2416 case COMPACT_DEFERRED:
53853e2d 2417 *deferred_compaction = true;
98dd3b48
VB
2418 /* fall-through */
2419 case COMPACT_SKIPPED:
2420 return NULL;
2421 default:
2422 break;
2423 }
53853e2d 2424
98dd3b48
VB
2425 /*
2426 * At least in one zone compaction wasn't deferred or skipped, so let's
2427 * count a compaction stall
2428 */
2429 count_vm_event(COMPACTSTALL);
8fb74b9f 2430
a9263751
VB
2431 page = get_page_from_freelist(gfp_mask, order,
2432 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2433
98dd3b48
VB
2434 if (page) {
2435 struct zone *zone = page_zone(page);
53853e2d 2436
98dd3b48
VB
2437 zone->compact_blockskip_flush = false;
2438 compaction_defer_reset(zone, order, true);
2439 count_vm_event(COMPACTSUCCESS);
2440 return page;
2441 }
56de7263 2442
98dd3b48
VB
2443 /*
2444 * It's bad if compaction run occurs and fails. The most likely reason
2445 * is that pages exist, but not enough to satisfy watermarks.
2446 */
2447 count_vm_event(COMPACTFAIL);
66199712 2448
98dd3b48 2449 cond_resched();
56de7263
MG
2450
2451 return NULL;
2452}
2453#else
2454static inline struct page *
2455__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2456 int alloc_flags, const struct alloc_context *ac,
2457 enum migrate_mode mode, int *contended_compaction,
2458 bool *deferred_compaction)
56de7263
MG
2459{
2460 return NULL;
2461}
2462#endif /* CONFIG_COMPACTION */
2463
bba90710
MS
2464/* Perform direct synchronous page reclaim */
2465static int
a9263751
VB
2466__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2467 const struct alloc_context *ac)
11e33f6a 2468{
11e33f6a 2469 struct reclaim_state reclaim_state;
bba90710 2470 int progress;
11e33f6a
MG
2471
2472 cond_resched();
2473
2474 /* We now go into synchronous reclaim */
2475 cpuset_memory_pressure_bump();
c06b1fca 2476 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2477 lockdep_set_current_reclaim_state(gfp_mask);
2478 reclaim_state.reclaimed_slab = 0;
c06b1fca 2479 current->reclaim_state = &reclaim_state;
11e33f6a 2480
a9263751
VB
2481 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2482 ac->nodemask);
11e33f6a 2483
c06b1fca 2484 current->reclaim_state = NULL;
11e33f6a 2485 lockdep_clear_current_reclaim_state();
c06b1fca 2486 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2487
2488 cond_resched();
2489
bba90710
MS
2490 return progress;
2491}
2492
2493/* The really slow allocator path where we enter direct reclaim */
2494static inline struct page *
2495__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2496 int alloc_flags, const struct alloc_context *ac,
2497 unsigned long *did_some_progress)
bba90710
MS
2498{
2499 struct page *page = NULL;
2500 bool drained = false;
2501
a9263751 2502 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2503 if (unlikely(!(*did_some_progress)))
2504 return NULL;
11e33f6a 2505
76d3fbf8 2506 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2507 if (IS_ENABLED(CONFIG_NUMA))
a9263751 2508 zlc_clear_zones_full(ac->zonelist);
76d3fbf8 2509
9ee493ce 2510retry:
a9263751
VB
2511 page = get_page_from_freelist(gfp_mask, order,
2512 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2513
2514 /*
2515 * If an allocation failed after direct reclaim, it could be because
2516 * pages are pinned on the per-cpu lists. Drain them and try again
2517 */
2518 if (!page && !drained) {
93481ff0 2519 drain_all_pages(NULL);
9ee493ce
MG
2520 drained = true;
2521 goto retry;
2522 }
2523
11e33f6a
MG
2524 return page;
2525}
2526
1da177e4 2527/*
11e33f6a
MG
2528 * This is called in the allocator slow-path if the allocation request is of
2529 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2530 */
11e33f6a
MG
2531static inline struct page *
2532__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
a9263751 2533 const struct alloc_context *ac)
11e33f6a
MG
2534{
2535 struct page *page;
2536
2537 do {
a9263751
VB
2538 page = get_page_from_freelist(gfp_mask, order,
2539 ALLOC_NO_WATERMARKS, ac);
11e33f6a
MG
2540
2541 if (!page && gfp_mask & __GFP_NOFAIL)
a9263751
VB
2542 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2543 HZ/50);
11e33f6a
MG
2544 } while (!page && (gfp_mask & __GFP_NOFAIL));
2545
2546 return page;
2547}
2548
a9263751 2549static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2550{
2551 struct zoneref *z;
2552 struct zone *zone;
2553
a9263751
VB
2554 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2555 ac->high_zoneidx, ac->nodemask)
2556 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2557}
2558
341ce06f
PZ
2559static inline int
2560gfp_to_alloc_flags(gfp_t gfp_mask)
2561{
341ce06f 2562 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2563 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2564
a56f57ff 2565 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2566 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2567
341ce06f
PZ
2568 /*
2569 * The caller may dip into page reserves a bit more if the caller
2570 * cannot run direct reclaim, or if the caller has realtime scheduling
2571 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2572 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2573 */
e6223a3b 2574 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2575
b104a35d 2576 if (atomic) {
5c3240d9 2577 /*
b104a35d
DR
2578 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2579 * if it can't schedule.
5c3240d9 2580 */
b104a35d 2581 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2582 alloc_flags |= ALLOC_HARDER;
523b9458 2583 /*
b104a35d 2584 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2585 * comment for __cpuset_node_allowed().
523b9458 2586 */
341ce06f 2587 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2588 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2589 alloc_flags |= ALLOC_HARDER;
2590
b37f1dd0
MG
2591 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2592 if (gfp_mask & __GFP_MEMALLOC)
2593 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2594 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2595 alloc_flags |= ALLOC_NO_WATERMARKS;
2596 else if (!in_interrupt() &&
2597 ((current->flags & PF_MEMALLOC) ||
2598 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2599 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2600 }
d95ea5d1 2601#ifdef CONFIG_CMA
43e7a34d 2602 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2603 alloc_flags |= ALLOC_CMA;
2604#endif
341ce06f
PZ
2605 return alloc_flags;
2606}
2607
072bb0aa
MG
2608bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2609{
b37f1dd0 2610 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2611}
2612
11e33f6a
MG
2613static inline struct page *
2614__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2615 struct alloc_context *ac)
11e33f6a
MG
2616{
2617 const gfp_t wait = gfp_mask & __GFP_WAIT;
2618 struct page *page = NULL;
2619 int alloc_flags;
2620 unsigned long pages_reclaimed = 0;
2621 unsigned long did_some_progress;
e0b9daeb 2622 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2623 bool deferred_compaction = false;
1f9efdef 2624 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2625
72807a74
MG
2626 /*
2627 * In the slowpath, we sanity check order to avoid ever trying to
2628 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2629 * be using allocators in order of preference for an area that is
2630 * too large.
2631 */
1fc28b70
MG
2632 if (order >= MAX_ORDER) {
2633 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2634 return NULL;
1fc28b70 2635 }
1da177e4 2636
952f3b51
CL
2637 /*
2638 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2639 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2640 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2641 * using a larger set of nodes after it has established that the
2642 * allowed per node queues are empty and that nodes are
2643 * over allocated.
2644 */
3a025760
JW
2645 if (IS_ENABLED(CONFIG_NUMA) &&
2646 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2647 goto nopage;
2648
9879de73 2649retry:
3a025760 2650 if (!(gfp_mask & __GFP_NO_KSWAPD))
a9263751 2651 wake_all_kswapds(order, ac);
1da177e4 2652
9bf2229f 2653 /*
7fb1d9fc
RS
2654 * OK, we're below the kswapd watermark and have kicked background
2655 * reclaim. Now things get more complex, so set up alloc_flags according
2656 * to how we want to proceed.
9bf2229f 2657 */
341ce06f 2658 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2659
f33261d7
DR
2660 /*
2661 * Find the true preferred zone if the allocation is unconstrained by
2662 * cpusets.
2663 */
a9263751 2664 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 2665 struct zoneref *preferred_zoneref;
a9263751
VB
2666 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2667 ac->high_zoneidx, NULL, &ac->preferred_zone);
2668 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 2669 }
f33261d7 2670
341ce06f 2671 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
2672 page = get_page_from_freelist(gfp_mask, order,
2673 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
2674 if (page)
2675 goto got_pg;
1da177e4 2676
11e33f6a 2677 /* Allocate without watermarks if the context allows */
341ce06f 2678 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2679 /*
2680 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2681 * the allocation is high priority and these type of
2682 * allocations are system rather than user orientated
2683 */
a9263751
VB
2684 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2685
2686 page = __alloc_pages_high_priority(gfp_mask, order, ac);
183f6371 2687
cfd19c5a 2688 if (page) {
341ce06f 2689 goto got_pg;
cfd19c5a 2690 }
1da177e4
LT
2691 }
2692
2693 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2694 if (!wait) {
2695 /*
2696 * All existing users of the deprecated __GFP_NOFAIL are
2697 * blockable, so warn of any new users that actually allow this
2698 * type of allocation to fail.
2699 */
2700 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2701 goto nopage;
aed0a0e3 2702 }
1da177e4 2703
341ce06f 2704 /* Avoid recursion of direct reclaim */
c06b1fca 2705 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2706 goto nopage;
2707
6583bb64
DR
2708 /* Avoid allocations with no watermarks from looping endlessly */
2709 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2710 goto nopage;
2711
77f1fe6b
MG
2712 /*
2713 * Try direct compaction. The first pass is asynchronous. Subsequent
2714 * attempts after direct reclaim are synchronous
2715 */
a9263751
VB
2716 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2717 migration_mode,
2718 &contended_compaction,
53853e2d 2719 &deferred_compaction);
56de7263
MG
2720 if (page)
2721 goto got_pg;
75f30861 2722
1f9efdef
VB
2723 /* Checks for THP-specific high-order allocations */
2724 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2725 /*
2726 * If compaction is deferred for high-order allocations, it is
2727 * because sync compaction recently failed. If this is the case
2728 * and the caller requested a THP allocation, we do not want
2729 * to heavily disrupt the system, so we fail the allocation
2730 * instead of entering direct reclaim.
2731 */
2732 if (deferred_compaction)
2733 goto nopage;
2734
2735 /*
2736 * In all zones where compaction was attempted (and not
2737 * deferred or skipped), lock contention has been detected.
2738 * For THP allocation we do not want to disrupt the others
2739 * so we fallback to base pages instead.
2740 */
2741 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2742 goto nopage;
2743
2744 /*
2745 * If compaction was aborted due to need_resched(), we do not
2746 * want to further increase allocation latency, unless it is
2747 * khugepaged trying to collapse.
2748 */
2749 if (contended_compaction == COMPACT_CONTENDED_SCHED
2750 && !(current->flags & PF_KTHREAD))
2751 goto nopage;
2752 }
66199712 2753
8fe78048
DR
2754 /*
2755 * It can become very expensive to allocate transparent hugepages at
2756 * fault, so use asynchronous memory compaction for THP unless it is
2757 * khugepaged trying to collapse.
2758 */
2759 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2760 (current->flags & PF_KTHREAD))
2761 migration_mode = MIGRATE_SYNC_LIGHT;
2762
11e33f6a 2763 /* Try direct reclaim and then allocating */
a9263751
VB
2764 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2765 &did_some_progress);
11e33f6a
MG
2766 if (page)
2767 goto got_pg;
1da177e4 2768
11e33f6a 2769 /* Check if we should retry the allocation */
a41f24ea 2770 pages_reclaimed += did_some_progress;
f90ac398
MG
2771 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2772 pages_reclaimed)) {
9879de73
JW
2773 /*
2774 * If we fail to make progress by freeing individual
2775 * pages, but the allocation wants us to keep going,
2776 * start OOM killing tasks.
2777 */
2778 if (!did_some_progress) {
a9263751
VB
2779 page = __alloc_pages_may_oom(gfp_mask, order, ac,
2780 &did_some_progress);
9879de73
JW
2781 if (page)
2782 goto got_pg;
2783 if (!did_some_progress)
2784 goto nopage;
2785 }
11e33f6a 2786 /* Wait for some write requests to complete then retry */
a9263751 2787 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 2788 goto retry;
3e7d3449
MG
2789 } else {
2790 /*
2791 * High-order allocations do not necessarily loop after
2792 * direct reclaim and reclaim/compaction depends on compaction
2793 * being called after reclaim so call directly if necessary
2794 */
a9263751
VB
2795 page = __alloc_pages_direct_compact(gfp_mask, order,
2796 alloc_flags, ac, migration_mode,
2797 &contended_compaction,
53853e2d 2798 &deferred_compaction);
3e7d3449
MG
2799 if (page)
2800 goto got_pg;
1da177e4
LT
2801 }
2802
2803nopage:
a238ab5b 2804 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 2805got_pg:
072bb0aa 2806 return page;
1da177e4 2807}
11e33f6a
MG
2808
2809/*
2810 * This is the 'heart' of the zoned buddy allocator.
2811 */
2812struct page *
2813__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2814 struct zonelist *zonelist, nodemask_t *nodemask)
2815{
d8846374 2816 struct zoneref *preferred_zoneref;
cc9a6c87 2817 struct page *page = NULL;
cc9a6c87 2818 unsigned int cpuset_mems_cookie;
3a025760 2819 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 2820 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
2821 struct alloc_context ac = {
2822 .high_zoneidx = gfp_zone(gfp_mask),
2823 .nodemask = nodemask,
2824 .migratetype = gfpflags_to_migratetype(gfp_mask),
2825 };
11e33f6a 2826
dcce284a
BH
2827 gfp_mask &= gfp_allowed_mask;
2828
11e33f6a
MG
2829 lockdep_trace_alloc(gfp_mask);
2830
2831 might_sleep_if(gfp_mask & __GFP_WAIT);
2832
2833 if (should_fail_alloc_page(gfp_mask, order))
2834 return NULL;
2835
2836 /*
2837 * Check the zones suitable for the gfp_mask contain at least one
2838 * valid zone. It's possible to have an empty zonelist as a result
2839 * of GFP_THISNODE and a memoryless node
2840 */
2841 if (unlikely(!zonelist->_zonerefs->zone))
2842 return NULL;
2843
a9263751 2844 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
2845 alloc_flags |= ALLOC_CMA;
2846
cc9a6c87 2847retry_cpuset:
d26914d1 2848 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2849
a9263751
VB
2850 /* We set it here, as __alloc_pages_slowpath might have changed it */
2851 ac.zonelist = zonelist;
5117f45d 2852 /* The preferred zone is used for statistics later */
a9263751
VB
2853 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2854 ac.nodemask ? : &cpuset_current_mems_allowed,
2855 &ac.preferred_zone);
2856 if (!ac.preferred_zone)
cc9a6c87 2857 goto out;
a9263751 2858 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
2859
2860 /* First allocation attempt */
91fbdc0f 2861 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 2862 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
2863 if (unlikely(!page)) {
2864 /*
2865 * Runtime PM, block IO and its error handling path
2866 * can deadlock because I/O on the device might not
2867 * complete.
2868 */
91fbdc0f
AM
2869 alloc_mask = memalloc_noio_flags(gfp_mask);
2870
a9263751 2871 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 2872 }
11e33f6a 2873
23f086f9
XQ
2874 if (kmemcheck_enabled && page)
2875 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2876
a9263751 2877 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
2878
2879out:
2880 /*
2881 * When updating a task's mems_allowed, it is possible to race with
2882 * parallel threads in such a way that an allocation can fail while
2883 * the mask is being updated. If a page allocation is about to fail,
2884 * check if the cpuset changed during allocation and if so, retry.
2885 */
d26914d1 2886 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2887 goto retry_cpuset;
2888
11e33f6a 2889 return page;
1da177e4 2890}
d239171e 2891EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2892
2893/*
2894 * Common helper functions.
2895 */
920c7a5d 2896unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2897{
945a1113
AM
2898 struct page *page;
2899
2900 /*
2901 * __get_free_pages() returns a 32-bit address, which cannot represent
2902 * a highmem page
2903 */
2904 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2905
1da177e4
LT
2906 page = alloc_pages(gfp_mask, order);
2907 if (!page)
2908 return 0;
2909 return (unsigned long) page_address(page);
2910}
1da177e4
LT
2911EXPORT_SYMBOL(__get_free_pages);
2912
920c7a5d 2913unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2914{
945a1113 2915 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2916}
1da177e4
LT
2917EXPORT_SYMBOL(get_zeroed_page);
2918
920c7a5d 2919void __free_pages(struct page *page, unsigned int order)
1da177e4 2920{
b5810039 2921 if (put_page_testzero(page)) {
1da177e4 2922 if (order == 0)
b745bc85 2923 free_hot_cold_page(page, false);
1da177e4
LT
2924 else
2925 __free_pages_ok(page, order);
2926 }
2927}
2928
2929EXPORT_SYMBOL(__free_pages);
2930
920c7a5d 2931void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2932{
2933 if (addr != 0) {
725d704e 2934 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2935 __free_pages(virt_to_page((void *)addr), order);
2936 }
2937}
2938
2939EXPORT_SYMBOL(free_pages);
2940
6a1a0d3b 2941/*
52383431
VD
2942 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2943 * of the current memory cgroup.
6a1a0d3b 2944 *
52383431
VD
2945 * It should be used when the caller would like to use kmalloc, but since the
2946 * allocation is large, it has to fall back to the page allocator.
2947 */
2948struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2949{
2950 struct page *page;
2951 struct mem_cgroup *memcg = NULL;
2952
2953 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2954 return NULL;
2955 page = alloc_pages(gfp_mask, order);
2956 memcg_kmem_commit_charge(page, memcg, order);
2957 return page;
2958}
2959
2960struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2961{
2962 struct page *page;
2963 struct mem_cgroup *memcg = NULL;
2964
2965 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2966 return NULL;
2967 page = alloc_pages_node(nid, gfp_mask, order);
2968 memcg_kmem_commit_charge(page, memcg, order);
2969 return page;
2970}
2971
2972/*
2973 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2974 * alloc_kmem_pages.
6a1a0d3b 2975 */
52383431 2976void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
2977{
2978 memcg_kmem_uncharge_pages(page, order);
2979 __free_pages(page, order);
2980}
2981
52383431 2982void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
2983{
2984 if (addr != 0) {
2985 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 2986 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
2987 }
2988}
2989
ee85c2e1
AK
2990static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2991{
2992 if (addr) {
2993 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2994 unsigned long used = addr + PAGE_ALIGN(size);
2995
2996 split_page(virt_to_page((void *)addr), order);
2997 while (used < alloc_end) {
2998 free_page(used);
2999 used += PAGE_SIZE;
3000 }
3001 }
3002 return (void *)addr;
3003}
3004
2be0ffe2
TT
3005/**
3006 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3007 * @size: the number of bytes to allocate
3008 * @gfp_mask: GFP flags for the allocation
3009 *
3010 * This function is similar to alloc_pages(), except that it allocates the
3011 * minimum number of pages to satisfy the request. alloc_pages() can only
3012 * allocate memory in power-of-two pages.
3013 *
3014 * This function is also limited by MAX_ORDER.
3015 *
3016 * Memory allocated by this function must be released by free_pages_exact().
3017 */
3018void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3019{
3020 unsigned int order = get_order(size);
3021 unsigned long addr;
3022
3023 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3024 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3025}
3026EXPORT_SYMBOL(alloc_pages_exact);
3027
ee85c2e1
AK
3028/**
3029 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3030 * pages on a node.
b5e6ab58 3031 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3032 * @size: the number of bytes to allocate
3033 * @gfp_mask: GFP flags for the allocation
3034 *
3035 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3036 * back.
3037 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3038 * but is not exact.
3039 */
e1931811 3040void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3041{
3042 unsigned order = get_order(size);
3043 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3044 if (!p)
3045 return NULL;
3046 return make_alloc_exact((unsigned long)page_address(p), order, size);
3047}
ee85c2e1 3048
2be0ffe2
TT
3049/**
3050 * free_pages_exact - release memory allocated via alloc_pages_exact()
3051 * @virt: the value returned by alloc_pages_exact.
3052 * @size: size of allocation, same value as passed to alloc_pages_exact().
3053 *
3054 * Release the memory allocated by a previous call to alloc_pages_exact.
3055 */
3056void free_pages_exact(void *virt, size_t size)
3057{
3058 unsigned long addr = (unsigned long)virt;
3059 unsigned long end = addr + PAGE_ALIGN(size);
3060
3061 while (addr < end) {
3062 free_page(addr);
3063 addr += PAGE_SIZE;
3064 }
3065}
3066EXPORT_SYMBOL(free_pages_exact);
3067
e0fb5815
ZY
3068/**
3069 * nr_free_zone_pages - count number of pages beyond high watermark
3070 * @offset: The zone index of the highest zone
3071 *
3072 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3073 * high watermark within all zones at or below a given zone index. For each
3074 * zone, the number of pages is calculated as:
834405c3 3075 * managed_pages - high_pages
e0fb5815 3076 */
ebec3862 3077static unsigned long nr_free_zone_pages(int offset)
1da177e4 3078{
dd1a239f 3079 struct zoneref *z;
54a6eb5c
MG
3080 struct zone *zone;
3081
e310fd43 3082 /* Just pick one node, since fallback list is circular */
ebec3862 3083 unsigned long sum = 0;
1da177e4 3084
0e88460d 3085 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3086
54a6eb5c 3087 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3088 unsigned long size = zone->managed_pages;
41858966 3089 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3090 if (size > high)
3091 sum += size - high;
1da177e4
LT
3092 }
3093
3094 return sum;
3095}
3096
e0fb5815
ZY
3097/**
3098 * nr_free_buffer_pages - count number of pages beyond high watermark
3099 *
3100 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3101 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3102 */
ebec3862 3103unsigned long nr_free_buffer_pages(void)
1da177e4 3104{
af4ca457 3105 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3106}
c2f1a551 3107EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3108
e0fb5815
ZY
3109/**
3110 * nr_free_pagecache_pages - count number of pages beyond high watermark
3111 *
3112 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3113 * high watermark within all zones.
1da177e4 3114 */
ebec3862 3115unsigned long nr_free_pagecache_pages(void)
1da177e4 3116{
2a1e274a 3117 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3118}
08e0f6a9
CL
3119
3120static inline void show_node(struct zone *zone)
1da177e4 3121{
e5adfffc 3122 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3123 printk("Node %d ", zone_to_nid(zone));
1da177e4 3124}
1da177e4 3125
1da177e4
LT
3126void si_meminfo(struct sysinfo *val)
3127{
3128 val->totalram = totalram_pages;
cc7452b6 3129 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3130 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3131 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3132 val->totalhigh = totalhigh_pages;
3133 val->freehigh = nr_free_highpages();
1da177e4
LT
3134 val->mem_unit = PAGE_SIZE;
3135}
3136
3137EXPORT_SYMBOL(si_meminfo);
3138
3139#ifdef CONFIG_NUMA
3140void si_meminfo_node(struct sysinfo *val, int nid)
3141{
cdd91a77
JL
3142 int zone_type; /* needs to be signed */
3143 unsigned long managed_pages = 0;
1da177e4
LT
3144 pg_data_t *pgdat = NODE_DATA(nid);
3145
cdd91a77
JL
3146 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3147 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3148 val->totalram = managed_pages;
cc7452b6 3149 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3150 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3151#ifdef CONFIG_HIGHMEM
b40da049 3152 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3153 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3154 NR_FREE_PAGES);
98d2b0eb
CL
3155#else
3156 val->totalhigh = 0;
3157 val->freehigh = 0;
3158#endif
1da177e4
LT
3159 val->mem_unit = PAGE_SIZE;
3160}
3161#endif
3162
ddd588b5 3163/*
7bf02ea2
DR
3164 * Determine whether the node should be displayed or not, depending on whether
3165 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3166 */
7bf02ea2 3167bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3168{
3169 bool ret = false;
cc9a6c87 3170 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3171
3172 if (!(flags & SHOW_MEM_FILTER_NODES))
3173 goto out;
3174
cc9a6c87 3175 do {
d26914d1 3176 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3177 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3178 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3179out:
3180 return ret;
3181}
3182
1da177e4
LT
3183#define K(x) ((x) << (PAGE_SHIFT-10))
3184
377e4f16
RV
3185static void show_migration_types(unsigned char type)
3186{
3187 static const char types[MIGRATE_TYPES] = {
3188 [MIGRATE_UNMOVABLE] = 'U',
3189 [MIGRATE_RECLAIMABLE] = 'E',
3190 [MIGRATE_MOVABLE] = 'M',
3191 [MIGRATE_RESERVE] = 'R',
3192#ifdef CONFIG_CMA
3193 [MIGRATE_CMA] = 'C',
3194#endif
194159fb 3195#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3196 [MIGRATE_ISOLATE] = 'I',
194159fb 3197#endif
377e4f16
RV
3198 };
3199 char tmp[MIGRATE_TYPES + 1];
3200 char *p = tmp;
3201 int i;
3202
3203 for (i = 0; i < MIGRATE_TYPES; i++) {
3204 if (type & (1 << i))
3205 *p++ = types[i];
3206 }
3207
3208 *p = '\0';
3209 printk("(%s) ", tmp);
3210}
3211
1da177e4
LT
3212/*
3213 * Show free area list (used inside shift_scroll-lock stuff)
3214 * We also calculate the percentage fragmentation. We do this by counting the
3215 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3216 * Suppresses nodes that are not allowed by current's cpuset if
3217 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3218 */
7bf02ea2 3219void show_free_areas(unsigned int filter)
1da177e4 3220{
c7241913 3221 int cpu;
1da177e4
LT
3222 struct zone *zone;
3223
ee99c71c 3224 for_each_populated_zone(zone) {
7bf02ea2 3225 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3226 continue;
c7241913
JS
3227 show_node(zone);
3228 printk("%s per-cpu:\n", zone->name);
1da177e4 3229
6b482c67 3230 for_each_online_cpu(cpu) {
1da177e4
LT
3231 struct per_cpu_pageset *pageset;
3232
99dcc3e5 3233 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3234
3dfa5721
CL
3235 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3236 cpu, pageset->pcp.high,
3237 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3238 }
3239 }
3240
a731286d
KM
3241 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3242 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3243 " unevictable:%lu"
b76146ed 3244 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3245 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3246 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3247 " free_cma:%lu\n",
4f98a2fe 3248 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3249 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3250 global_page_state(NR_ISOLATED_ANON),
3251 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3252 global_page_state(NR_INACTIVE_FILE),
a731286d 3253 global_page_state(NR_ISOLATED_FILE),
7b854121 3254 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3255 global_page_state(NR_FILE_DIRTY),
ce866b34 3256 global_page_state(NR_WRITEBACK),
fd39fc85 3257 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3258 global_page_state(NR_FREE_PAGES),
3701b033
KM
3259 global_page_state(NR_SLAB_RECLAIMABLE),
3260 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3261 global_page_state(NR_FILE_MAPPED),
4b02108a 3262 global_page_state(NR_SHMEM),
a25700a5 3263 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3264 global_page_state(NR_BOUNCE),
3265 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3266
ee99c71c 3267 for_each_populated_zone(zone) {
1da177e4
LT
3268 int i;
3269
7bf02ea2 3270 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3271 continue;
1da177e4
LT
3272 show_node(zone);
3273 printk("%s"
3274 " free:%lukB"
3275 " min:%lukB"
3276 " low:%lukB"
3277 " high:%lukB"
4f98a2fe
RR
3278 " active_anon:%lukB"
3279 " inactive_anon:%lukB"
3280 " active_file:%lukB"
3281 " inactive_file:%lukB"
7b854121 3282 " unevictable:%lukB"
a731286d
KM
3283 " isolated(anon):%lukB"
3284 " isolated(file):%lukB"
1da177e4 3285 " present:%lukB"
9feedc9d 3286 " managed:%lukB"
4a0aa73f
KM
3287 " mlocked:%lukB"
3288 " dirty:%lukB"
3289 " writeback:%lukB"
3290 " mapped:%lukB"
4b02108a 3291 " shmem:%lukB"
4a0aa73f
KM
3292 " slab_reclaimable:%lukB"
3293 " slab_unreclaimable:%lukB"
c6a7f572 3294 " kernel_stack:%lukB"
4a0aa73f
KM
3295 " pagetables:%lukB"
3296 " unstable:%lukB"
3297 " bounce:%lukB"
d1ce749a 3298 " free_cma:%lukB"
4a0aa73f 3299 " writeback_tmp:%lukB"
1da177e4
LT
3300 " pages_scanned:%lu"
3301 " all_unreclaimable? %s"
3302 "\n",
3303 zone->name,
88f5acf8 3304 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3305 K(min_wmark_pages(zone)),
3306 K(low_wmark_pages(zone)),
3307 K(high_wmark_pages(zone)),
4f98a2fe
RR
3308 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3309 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3310 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3311 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3312 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3313 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3314 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3315 K(zone->present_pages),
9feedc9d 3316 K(zone->managed_pages),
4a0aa73f
KM
3317 K(zone_page_state(zone, NR_MLOCK)),
3318 K(zone_page_state(zone, NR_FILE_DIRTY)),
3319 K(zone_page_state(zone, NR_WRITEBACK)),
3320 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3321 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3322 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3323 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3324 zone_page_state(zone, NR_KERNEL_STACK) *
3325 THREAD_SIZE / 1024,
4a0aa73f
KM
3326 K(zone_page_state(zone, NR_PAGETABLE)),
3327 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3328 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3329 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3330 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3331 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3332 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3333 );
3334 printk("lowmem_reserve[]:");
3335 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3336 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3337 printk("\n");
3338 }
3339
ee99c71c 3340 for_each_populated_zone(zone) {
b8af2941 3341 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3342 unsigned char types[MAX_ORDER];
1da177e4 3343
7bf02ea2 3344 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3345 continue;
1da177e4
LT
3346 show_node(zone);
3347 printk("%s: ", zone->name);
1da177e4
LT
3348
3349 spin_lock_irqsave(&zone->lock, flags);
3350 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3351 struct free_area *area = &zone->free_area[order];
3352 int type;
3353
3354 nr[order] = area->nr_free;
8f9de51a 3355 total += nr[order] << order;
377e4f16
RV
3356
3357 types[order] = 0;
3358 for (type = 0; type < MIGRATE_TYPES; type++) {
3359 if (!list_empty(&area->free_list[type]))
3360 types[order] |= 1 << type;
3361 }
1da177e4
LT
3362 }
3363 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3364 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3365 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3366 if (nr[order])
3367 show_migration_types(types[order]);
3368 }
1da177e4
LT
3369 printk("= %lukB\n", K(total));
3370 }
3371
949f7ec5
DR
3372 hugetlb_show_meminfo();
3373
e6f3602d
LW
3374 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3375
1da177e4
LT
3376 show_swap_cache_info();
3377}
3378
19770b32
MG
3379static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3380{
3381 zoneref->zone = zone;
3382 zoneref->zone_idx = zone_idx(zone);
3383}
3384
1da177e4
LT
3385/*
3386 * Builds allocation fallback zone lists.
1a93205b
CL
3387 *
3388 * Add all populated zones of a node to the zonelist.
1da177e4 3389 */
f0c0b2b8 3390static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3391 int nr_zones)
1da177e4 3392{
1a93205b 3393 struct zone *zone;
bc732f1d 3394 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3395
3396 do {
2f6726e5 3397 zone_type--;
070f8032 3398 zone = pgdat->node_zones + zone_type;
1a93205b 3399 if (populated_zone(zone)) {
dd1a239f
MG
3400 zoneref_set_zone(zone,
3401 &zonelist->_zonerefs[nr_zones++]);
070f8032 3402 check_highest_zone(zone_type);
1da177e4 3403 }
2f6726e5 3404 } while (zone_type);
bc732f1d 3405
070f8032 3406 return nr_zones;
1da177e4
LT
3407}
3408
f0c0b2b8
KH
3409
3410/*
3411 * zonelist_order:
3412 * 0 = automatic detection of better ordering.
3413 * 1 = order by ([node] distance, -zonetype)
3414 * 2 = order by (-zonetype, [node] distance)
3415 *
3416 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3417 * the same zonelist. So only NUMA can configure this param.
3418 */
3419#define ZONELIST_ORDER_DEFAULT 0
3420#define ZONELIST_ORDER_NODE 1
3421#define ZONELIST_ORDER_ZONE 2
3422
3423/* zonelist order in the kernel.
3424 * set_zonelist_order() will set this to NODE or ZONE.
3425 */
3426static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3427static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3428
3429
1da177e4 3430#ifdef CONFIG_NUMA
f0c0b2b8
KH
3431/* The value user specified ....changed by config */
3432static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3433/* string for sysctl */
3434#define NUMA_ZONELIST_ORDER_LEN 16
3435char numa_zonelist_order[16] = "default";
3436
3437/*
3438 * interface for configure zonelist ordering.
3439 * command line option "numa_zonelist_order"
3440 * = "[dD]efault - default, automatic configuration.
3441 * = "[nN]ode - order by node locality, then by zone within node
3442 * = "[zZ]one - order by zone, then by locality within zone
3443 */
3444
3445static int __parse_numa_zonelist_order(char *s)
3446{
3447 if (*s == 'd' || *s == 'D') {
3448 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3449 } else if (*s == 'n' || *s == 'N') {
3450 user_zonelist_order = ZONELIST_ORDER_NODE;
3451 } else if (*s == 'z' || *s == 'Z') {
3452 user_zonelist_order = ZONELIST_ORDER_ZONE;
3453 } else {
3454 printk(KERN_WARNING
3455 "Ignoring invalid numa_zonelist_order value: "
3456 "%s\n", s);
3457 return -EINVAL;
3458 }
3459 return 0;
3460}
3461
3462static __init int setup_numa_zonelist_order(char *s)
3463{
ecb256f8
VL
3464 int ret;
3465
3466 if (!s)
3467 return 0;
3468
3469 ret = __parse_numa_zonelist_order(s);
3470 if (ret == 0)
3471 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3472
3473 return ret;
f0c0b2b8
KH
3474}
3475early_param("numa_zonelist_order", setup_numa_zonelist_order);
3476
3477/*
3478 * sysctl handler for numa_zonelist_order
3479 */
cccad5b9 3480int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3481 void __user *buffer, size_t *length,
f0c0b2b8
KH
3482 loff_t *ppos)
3483{
3484 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3485 int ret;
443c6f14 3486 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3487
443c6f14 3488 mutex_lock(&zl_order_mutex);
dacbde09
CG
3489 if (write) {
3490 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3491 ret = -EINVAL;
3492 goto out;
3493 }
3494 strcpy(saved_string, (char *)table->data);
3495 }
8d65af78 3496 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3497 if (ret)
443c6f14 3498 goto out;
f0c0b2b8
KH
3499 if (write) {
3500 int oldval = user_zonelist_order;
dacbde09
CG
3501
3502 ret = __parse_numa_zonelist_order((char *)table->data);
3503 if (ret) {
f0c0b2b8
KH
3504 /*
3505 * bogus value. restore saved string
3506 */
dacbde09 3507 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3508 NUMA_ZONELIST_ORDER_LEN);
3509 user_zonelist_order = oldval;
4eaf3f64
HL
3510 } else if (oldval != user_zonelist_order) {
3511 mutex_lock(&zonelists_mutex);
9adb62a5 3512 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3513 mutex_unlock(&zonelists_mutex);
3514 }
f0c0b2b8 3515 }
443c6f14
AK
3516out:
3517 mutex_unlock(&zl_order_mutex);
3518 return ret;
f0c0b2b8
KH
3519}
3520
3521
62bc62a8 3522#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3523static int node_load[MAX_NUMNODES];
3524
1da177e4 3525/**
4dc3b16b 3526 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3527 * @node: node whose fallback list we're appending
3528 * @used_node_mask: nodemask_t of already used nodes
3529 *
3530 * We use a number of factors to determine which is the next node that should
3531 * appear on a given node's fallback list. The node should not have appeared
3532 * already in @node's fallback list, and it should be the next closest node
3533 * according to the distance array (which contains arbitrary distance values
3534 * from each node to each node in the system), and should also prefer nodes
3535 * with no CPUs, since presumably they'll have very little allocation pressure
3536 * on them otherwise.
3537 * It returns -1 if no node is found.
3538 */
f0c0b2b8 3539static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3540{
4cf808eb 3541 int n, val;
1da177e4 3542 int min_val = INT_MAX;
00ef2d2f 3543 int best_node = NUMA_NO_NODE;
a70f7302 3544 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3545
4cf808eb
LT
3546 /* Use the local node if we haven't already */
3547 if (!node_isset(node, *used_node_mask)) {
3548 node_set(node, *used_node_mask);
3549 return node;
3550 }
1da177e4 3551
4b0ef1fe 3552 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3553
3554 /* Don't want a node to appear more than once */
3555 if (node_isset(n, *used_node_mask))
3556 continue;
3557
1da177e4
LT
3558 /* Use the distance array to find the distance */
3559 val = node_distance(node, n);
3560
4cf808eb
LT
3561 /* Penalize nodes under us ("prefer the next node") */
3562 val += (n < node);
3563
1da177e4 3564 /* Give preference to headless and unused nodes */
a70f7302
RR
3565 tmp = cpumask_of_node(n);
3566 if (!cpumask_empty(tmp))
1da177e4
LT
3567 val += PENALTY_FOR_NODE_WITH_CPUS;
3568
3569 /* Slight preference for less loaded node */
3570 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3571 val += node_load[n];
3572
3573 if (val < min_val) {
3574 min_val = val;
3575 best_node = n;
3576 }
3577 }
3578
3579 if (best_node >= 0)
3580 node_set(best_node, *used_node_mask);
3581
3582 return best_node;
3583}
3584
f0c0b2b8
KH
3585
3586/*
3587 * Build zonelists ordered by node and zones within node.
3588 * This results in maximum locality--normal zone overflows into local
3589 * DMA zone, if any--but risks exhausting DMA zone.
3590 */
3591static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3592{
f0c0b2b8 3593 int j;
1da177e4 3594 struct zonelist *zonelist;
f0c0b2b8 3595
54a6eb5c 3596 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3597 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3598 ;
bc732f1d 3599 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3600 zonelist->_zonerefs[j].zone = NULL;
3601 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3602}
3603
523b9458
CL
3604/*
3605 * Build gfp_thisnode zonelists
3606 */
3607static void build_thisnode_zonelists(pg_data_t *pgdat)
3608{
523b9458
CL
3609 int j;
3610 struct zonelist *zonelist;
3611
54a6eb5c 3612 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3613 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3614 zonelist->_zonerefs[j].zone = NULL;
3615 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3616}
3617
f0c0b2b8
KH
3618/*
3619 * Build zonelists ordered by zone and nodes within zones.
3620 * This results in conserving DMA zone[s] until all Normal memory is
3621 * exhausted, but results in overflowing to remote node while memory
3622 * may still exist in local DMA zone.
3623 */
3624static int node_order[MAX_NUMNODES];
3625
3626static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3627{
f0c0b2b8
KH
3628 int pos, j, node;
3629 int zone_type; /* needs to be signed */
3630 struct zone *z;
3631 struct zonelist *zonelist;
3632
54a6eb5c
MG
3633 zonelist = &pgdat->node_zonelists[0];
3634 pos = 0;
3635 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3636 for (j = 0; j < nr_nodes; j++) {
3637 node = node_order[j];
3638 z = &NODE_DATA(node)->node_zones[zone_type];
3639 if (populated_zone(z)) {
dd1a239f
MG
3640 zoneref_set_zone(z,
3641 &zonelist->_zonerefs[pos++]);
54a6eb5c 3642 check_highest_zone(zone_type);
f0c0b2b8
KH
3643 }
3644 }
f0c0b2b8 3645 }
dd1a239f
MG
3646 zonelist->_zonerefs[pos].zone = NULL;
3647 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3648}
3649
3193913c
MG
3650#if defined(CONFIG_64BIT)
3651/*
3652 * Devices that require DMA32/DMA are relatively rare and do not justify a
3653 * penalty to every machine in case the specialised case applies. Default
3654 * to Node-ordering on 64-bit NUMA machines
3655 */
3656static int default_zonelist_order(void)
3657{
3658 return ZONELIST_ORDER_NODE;
3659}
3660#else
3661/*
3662 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3663 * by the kernel. If processes running on node 0 deplete the low memory zone
3664 * then reclaim will occur more frequency increasing stalls and potentially
3665 * be easier to OOM if a large percentage of the zone is under writeback or
3666 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3667 * Hence, default to zone ordering on 32-bit.
3668 */
f0c0b2b8
KH
3669static int default_zonelist_order(void)
3670{
f0c0b2b8
KH
3671 return ZONELIST_ORDER_ZONE;
3672}
3193913c 3673#endif /* CONFIG_64BIT */
f0c0b2b8
KH
3674
3675static void set_zonelist_order(void)
3676{
3677 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3678 current_zonelist_order = default_zonelist_order();
3679 else
3680 current_zonelist_order = user_zonelist_order;
3681}
3682
3683static void build_zonelists(pg_data_t *pgdat)
3684{
3685 int j, node, load;
3686 enum zone_type i;
1da177e4 3687 nodemask_t used_mask;
f0c0b2b8
KH
3688 int local_node, prev_node;
3689 struct zonelist *zonelist;
3690 int order = current_zonelist_order;
1da177e4
LT
3691
3692 /* initialize zonelists */
523b9458 3693 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3694 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3695 zonelist->_zonerefs[0].zone = NULL;
3696 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3697 }
3698
3699 /* NUMA-aware ordering of nodes */
3700 local_node = pgdat->node_id;
62bc62a8 3701 load = nr_online_nodes;
1da177e4
LT
3702 prev_node = local_node;
3703 nodes_clear(used_mask);
f0c0b2b8 3704
f0c0b2b8
KH
3705 memset(node_order, 0, sizeof(node_order));
3706 j = 0;
3707
1da177e4
LT
3708 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3709 /*
3710 * We don't want to pressure a particular node.
3711 * So adding penalty to the first node in same
3712 * distance group to make it round-robin.
3713 */
957f822a
DR
3714 if (node_distance(local_node, node) !=
3715 node_distance(local_node, prev_node))
f0c0b2b8
KH
3716 node_load[node] = load;
3717
1da177e4
LT
3718 prev_node = node;
3719 load--;
f0c0b2b8
KH
3720 if (order == ZONELIST_ORDER_NODE)
3721 build_zonelists_in_node_order(pgdat, node);
3722 else
3723 node_order[j++] = node; /* remember order */
3724 }
1da177e4 3725
f0c0b2b8
KH
3726 if (order == ZONELIST_ORDER_ZONE) {
3727 /* calculate node order -- i.e., DMA last! */
3728 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3729 }
523b9458
CL
3730
3731 build_thisnode_zonelists(pgdat);
1da177e4
LT
3732}
3733
9276b1bc 3734/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3735static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3736{
54a6eb5c
MG
3737 struct zonelist *zonelist;
3738 struct zonelist_cache *zlc;
dd1a239f 3739 struct zoneref *z;
9276b1bc 3740
54a6eb5c
MG
3741 zonelist = &pgdat->node_zonelists[0];
3742 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3743 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3744 for (z = zonelist->_zonerefs; z->zone; z++)
3745 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3746}
3747
7aac7898
LS
3748#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3749/*
3750 * Return node id of node used for "local" allocations.
3751 * I.e., first node id of first zone in arg node's generic zonelist.
3752 * Used for initializing percpu 'numa_mem', which is used primarily
3753 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3754 */
3755int local_memory_node(int node)
3756{
3757 struct zone *zone;
3758
3759 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3760 gfp_zone(GFP_KERNEL),
3761 NULL,
3762 &zone);
3763 return zone->node;
3764}
3765#endif
f0c0b2b8 3766
1da177e4
LT
3767#else /* CONFIG_NUMA */
3768
f0c0b2b8
KH
3769static void set_zonelist_order(void)
3770{
3771 current_zonelist_order = ZONELIST_ORDER_ZONE;
3772}
3773
3774static void build_zonelists(pg_data_t *pgdat)
1da177e4 3775{
19655d34 3776 int node, local_node;
54a6eb5c
MG
3777 enum zone_type j;
3778 struct zonelist *zonelist;
1da177e4
LT
3779
3780 local_node = pgdat->node_id;
1da177e4 3781
54a6eb5c 3782 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3783 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3784
54a6eb5c
MG
3785 /*
3786 * Now we build the zonelist so that it contains the zones
3787 * of all the other nodes.
3788 * We don't want to pressure a particular node, so when
3789 * building the zones for node N, we make sure that the
3790 * zones coming right after the local ones are those from
3791 * node N+1 (modulo N)
3792 */
3793 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3794 if (!node_online(node))
3795 continue;
bc732f1d 3796 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3797 }
54a6eb5c
MG
3798 for (node = 0; node < local_node; node++) {
3799 if (!node_online(node))
3800 continue;
bc732f1d 3801 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3802 }
3803
dd1a239f
MG
3804 zonelist->_zonerefs[j].zone = NULL;
3805 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3806}
3807
9276b1bc 3808/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3809static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3810{
54a6eb5c 3811 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3812}
3813
1da177e4
LT
3814#endif /* CONFIG_NUMA */
3815
99dcc3e5
CL
3816/*
3817 * Boot pageset table. One per cpu which is going to be used for all
3818 * zones and all nodes. The parameters will be set in such a way
3819 * that an item put on a list will immediately be handed over to
3820 * the buddy list. This is safe since pageset manipulation is done
3821 * with interrupts disabled.
3822 *
3823 * The boot_pagesets must be kept even after bootup is complete for
3824 * unused processors and/or zones. They do play a role for bootstrapping
3825 * hotplugged processors.
3826 *
3827 * zoneinfo_show() and maybe other functions do
3828 * not check if the processor is online before following the pageset pointer.
3829 * Other parts of the kernel may not check if the zone is available.
3830 */
3831static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3832static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3833static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3834
4eaf3f64
HL
3835/*
3836 * Global mutex to protect against size modification of zonelists
3837 * as well as to serialize pageset setup for the new populated zone.
3838 */
3839DEFINE_MUTEX(zonelists_mutex);
3840
9b1a4d38 3841/* return values int ....just for stop_machine() */
4ed7e022 3842static int __build_all_zonelists(void *data)
1da177e4 3843{
6811378e 3844 int nid;
99dcc3e5 3845 int cpu;
9adb62a5 3846 pg_data_t *self = data;
9276b1bc 3847
7f9cfb31
BL
3848#ifdef CONFIG_NUMA
3849 memset(node_load, 0, sizeof(node_load));
3850#endif
9adb62a5
JL
3851
3852 if (self && !node_online(self->node_id)) {
3853 build_zonelists(self);
3854 build_zonelist_cache(self);
3855 }
3856
9276b1bc 3857 for_each_online_node(nid) {
7ea1530a
CL
3858 pg_data_t *pgdat = NODE_DATA(nid);
3859
3860 build_zonelists(pgdat);
3861 build_zonelist_cache(pgdat);
9276b1bc 3862 }
99dcc3e5
CL
3863
3864 /*
3865 * Initialize the boot_pagesets that are going to be used
3866 * for bootstrapping processors. The real pagesets for
3867 * each zone will be allocated later when the per cpu
3868 * allocator is available.
3869 *
3870 * boot_pagesets are used also for bootstrapping offline
3871 * cpus if the system is already booted because the pagesets
3872 * are needed to initialize allocators on a specific cpu too.
3873 * F.e. the percpu allocator needs the page allocator which
3874 * needs the percpu allocator in order to allocate its pagesets
3875 * (a chicken-egg dilemma).
3876 */
7aac7898 3877 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3878 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3879
7aac7898
LS
3880#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3881 /*
3882 * We now know the "local memory node" for each node--
3883 * i.e., the node of the first zone in the generic zonelist.
3884 * Set up numa_mem percpu variable for on-line cpus. During
3885 * boot, only the boot cpu should be on-line; we'll init the
3886 * secondary cpus' numa_mem as they come on-line. During
3887 * node/memory hotplug, we'll fixup all on-line cpus.
3888 */
3889 if (cpu_online(cpu))
3890 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3891#endif
3892 }
3893
6811378e
YG
3894 return 0;
3895}
3896
4eaf3f64
HL
3897/*
3898 * Called with zonelists_mutex held always
3899 * unless system_state == SYSTEM_BOOTING.
3900 */
9adb62a5 3901void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3902{
f0c0b2b8
KH
3903 set_zonelist_order();
3904
6811378e 3905 if (system_state == SYSTEM_BOOTING) {
423b41d7 3906 __build_all_zonelists(NULL);
68ad8df4 3907 mminit_verify_zonelist();
6811378e
YG
3908 cpuset_init_current_mems_allowed();
3909 } else {
e9959f0f 3910#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3911 if (zone)
3912 setup_zone_pageset(zone);
e9959f0f 3913#endif
dd1895e2
CS
3914 /* we have to stop all cpus to guarantee there is no user
3915 of zonelist */
9adb62a5 3916 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3917 /* cpuset refresh routine should be here */
3918 }
bd1e22b8 3919 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3920 /*
3921 * Disable grouping by mobility if the number of pages in the
3922 * system is too low to allow the mechanism to work. It would be
3923 * more accurate, but expensive to check per-zone. This check is
3924 * made on memory-hotadd so a system can start with mobility
3925 * disabled and enable it later
3926 */
d9c23400 3927 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3928 page_group_by_mobility_disabled = 1;
3929 else
3930 page_group_by_mobility_disabled = 0;
3931
f88dfff5 3932 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 3933 "Total pages: %ld\n",
62bc62a8 3934 nr_online_nodes,
f0c0b2b8 3935 zonelist_order_name[current_zonelist_order],
9ef9acb0 3936 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3937 vm_total_pages);
3938#ifdef CONFIG_NUMA
f88dfff5 3939 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 3940#endif
1da177e4
LT
3941}
3942
3943/*
3944 * Helper functions to size the waitqueue hash table.
3945 * Essentially these want to choose hash table sizes sufficiently
3946 * large so that collisions trying to wait on pages are rare.
3947 * But in fact, the number of active page waitqueues on typical
3948 * systems is ridiculously low, less than 200. So this is even
3949 * conservative, even though it seems large.
3950 *
3951 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3952 * waitqueues, i.e. the size of the waitq table given the number of pages.
3953 */
3954#define PAGES_PER_WAITQUEUE 256
3955
cca448fe 3956#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3957static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3958{
3959 unsigned long size = 1;
3960
3961 pages /= PAGES_PER_WAITQUEUE;
3962
3963 while (size < pages)
3964 size <<= 1;
3965
3966 /*
3967 * Once we have dozens or even hundreds of threads sleeping
3968 * on IO we've got bigger problems than wait queue collision.
3969 * Limit the size of the wait table to a reasonable size.
3970 */
3971 size = min(size, 4096UL);
3972
3973 return max(size, 4UL);
3974}
cca448fe
YG
3975#else
3976/*
3977 * A zone's size might be changed by hot-add, so it is not possible to determine
3978 * a suitable size for its wait_table. So we use the maximum size now.
3979 *
3980 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3981 *
3982 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3983 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3984 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3985 *
3986 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3987 * or more by the traditional way. (See above). It equals:
3988 *
3989 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3990 * ia64(16K page size) : = ( 8G + 4M)byte.
3991 * powerpc (64K page size) : = (32G +16M)byte.
3992 */
3993static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3994{
3995 return 4096UL;
3996}
3997#endif
1da177e4
LT
3998
3999/*
4000 * This is an integer logarithm so that shifts can be used later
4001 * to extract the more random high bits from the multiplicative
4002 * hash function before the remainder is taken.
4003 */
4004static inline unsigned long wait_table_bits(unsigned long size)
4005{
4006 return ffz(~size);
4007}
4008
6d3163ce
AH
4009/*
4010 * Check if a pageblock contains reserved pages
4011 */
4012static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4013{
4014 unsigned long pfn;
4015
4016 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4017 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4018 return 1;
4019 }
4020 return 0;
4021}
4022
56fd56b8 4023/*
d9c23400 4024 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
4025 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4026 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
4027 * higher will lead to a bigger reserve which will get freed as contiguous
4028 * blocks as reclaim kicks in
4029 */
4030static void setup_zone_migrate_reserve(struct zone *zone)
4031{
6d3163ce 4032 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4033 struct page *page;
78986a67
MG
4034 unsigned long block_migratetype;
4035 int reserve;
943dca1a 4036 int old_reserve;
56fd56b8 4037
d0215638
MH
4038 /*
4039 * Get the start pfn, end pfn and the number of blocks to reserve
4040 * We have to be careful to be aligned to pageblock_nr_pages to
4041 * make sure that we always check pfn_valid for the first page in
4042 * the block.
4043 */
56fd56b8 4044 start_pfn = zone->zone_start_pfn;
108bcc96 4045 end_pfn = zone_end_pfn(zone);
d0215638 4046 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4047 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4048 pageblock_order;
56fd56b8 4049
78986a67
MG
4050 /*
4051 * Reserve blocks are generally in place to help high-order atomic
4052 * allocations that are short-lived. A min_free_kbytes value that
4053 * would result in more than 2 reserve blocks for atomic allocations
4054 * is assumed to be in place to help anti-fragmentation for the
4055 * future allocation of hugepages at runtime.
4056 */
4057 reserve = min(2, reserve);
943dca1a
YI
4058 old_reserve = zone->nr_migrate_reserve_block;
4059
4060 /* When memory hot-add, we almost always need to do nothing */
4061 if (reserve == old_reserve)
4062 return;
4063 zone->nr_migrate_reserve_block = reserve;
78986a67 4064
d9c23400 4065 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
4066 if (!pfn_valid(pfn))
4067 continue;
4068 page = pfn_to_page(pfn);
4069
344c790e
AL
4070 /* Watch out for overlapping nodes */
4071 if (page_to_nid(page) != zone_to_nid(zone))
4072 continue;
4073
56fd56b8
MG
4074 block_migratetype = get_pageblock_migratetype(page);
4075
938929f1
MG
4076 /* Only test what is necessary when the reserves are not met */
4077 if (reserve > 0) {
4078 /*
4079 * Blocks with reserved pages will never free, skip
4080 * them.
4081 */
4082 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4083 if (pageblock_is_reserved(pfn, block_end_pfn))
4084 continue;
56fd56b8 4085
938929f1
MG
4086 /* If this block is reserved, account for it */
4087 if (block_migratetype == MIGRATE_RESERVE) {
4088 reserve--;
4089 continue;
4090 }
4091
4092 /* Suitable for reserving if this block is movable */
4093 if (block_migratetype == MIGRATE_MOVABLE) {
4094 set_pageblock_migratetype(page,
4095 MIGRATE_RESERVE);
4096 move_freepages_block(zone, page,
4097 MIGRATE_RESERVE);
4098 reserve--;
4099 continue;
4100 }
943dca1a
YI
4101 } else if (!old_reserve) {
4102 /*
4103 * At boot time we don't need to scan the whole zone
4104 * for turning off MIGRATE_RESERVE.
4105 */
4106 break;
56fd56b8
MG
4107 }
4108
4109 /*
4110 * If the reserve is met and this is a previous reserved block,
4111 * take it back
4112 */
4113 if (block_migratetype == MIGRATE_RESERVE) {
4114 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4115 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4116 }
4117 }
4118}
ac0e5b7a 4119
1da177e4
LT
4120/*
4121 * Initially all pages are reserved - free ones are freed
4122 * up by free_all_bootmem() once the early boot process is
4123 * done. Non-atomic initialization, single-pass.
4124 */
c09b4240 4125void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4126 unsigned long start_pfn, enum memmap_context context)
1da177e4 4127{
1da177e4 4128 struct page *page;
29751f69
AW
4129 unsigned long end_pfn = start_pfn + size;
4130 unsigned long pfn;
86051ca5 4131 struct zone *z;
1da177e4 4132
22b31eec
HD
4133 if (highest_memmap_pfn < end_pfn - 1)
4134 highest_memmap_pfn = end_pfn - 1;
4135
86051ca5 4136 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4137 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4138 /*
4139 * There can be holes in boot-time mem_map[]s
4140 * handed to this function. They do not
4141 * exist on hotplugged memory.
4142 */
4143 if (context == MEMMAP_EARLY) {
4144 if (!early_pfn_valid(pfn))
4145 continue;
4146 if (!early_pfn_in_nid(pfn, nid))
4147 continue;
4148 }
d41dee36
AW
4149 page = pfn_to_page(pfn);
4150 set_page_links(page, zone, nid, pfn);
708614e6 4151 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4152 init_page_count(page);
22b751c3 4153 page_mapcount_reset(page);
90572890 4154 page_cpupid_reset_last(page);
1da177e4 4155 SetPageReserved(page);
b2a0ac88
MG
4156 /*
4157 * Mark the block movable so that blocks are reserved for
4158 * movable at startup. This will force kernel allocations
4159 * to reserve their blocks rather than leaking throughout
4160 * the address space during boot when many long-lived
56fd56b8
MG
4161 * kernel allocations are made. Later some blocks near
4162 * the start are marked MIGRATE_RESERVE by
4163 * setup_zone_migrate_reserve()
86051ca5
KH
4164 *
4165 * bitmap is created for zone's valid pfn range. but memmap
4166 * can be created for invalid pages (for alignment)
4167 * check here not to call set_pageblock_migratetype() against
4168 * pfn out of zone.
b2a0ac88 4169 */
86051ca5 4170 if ((z->zone_start_pfn <= pfn)
108bcc96 4171 && (pfn < zone_end_pfn(z))
86051ca5 4172 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4173 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4174
1da177e4
LT
4175 INIT_LIST_HEAD(&page->lru);
4176#ifdef WANT_PAGE_VIRTUAL
4177 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4178 if (!is_highmem_idx(zone))
3212c6be 4179 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4180#endif
1da177e4
LT
4181 }
4182}
4183
1e548deb 4184static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4185{
7aeb09f9 4186 unsigned int order, t;
b2a0ac88
MG
4187 for_each_migratetype_order(order, t) {
4188 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4189 zone->free_area[order].nr_free = 0;
4190 }
4191}
4192
4193#ifndef __HAVE_ARCH_MEMMAP_INIT
4194#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4195 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4196#endif
4197
7cd2b0a3 4198static int zone_batchsize(struct zone *zone)
e7c8d5c9 4199{
3a6be87f 4200#ifdef CONFIG_MMU
e7c8d5c9
CL
4201 int batch;
4202
4203 /*
4204 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4205 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4206 *
4207 * OK, so we don't know how big the cache is. So guess.
4208 */
b40da049 4209 batch = zone->managed_pages / 1024;
ba56e91c
SR
4210 if (batch * PAGE_SIZE > 512 * 1024)
4211 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4212 batch /= 4; /* We effectively *= 4 below */
4213 if (batch < 1)
4214 batch = 1;
4215
4216 /*
0ceaacc9
NP
4217 * Clamp the batch to a 2^n - 1 value. Having a power
4218 * of 2 value was found to be more likely to have
4219 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4220 *
0ceaacc9
NP
4221 * For example if 2 tasks are alternately allocating
4222 * batches of pages, one task can end up with a lot
4223 * of pages of one half of the possible page colors
4224 * and the other with pages of the other colors.
e7c8d5c9 4225 */
9155203a 4226 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4227
e7c8d5c9 4228 return batch;
3a6be87f
DH
4229
4230#else
4231 /* The deferral and batching of frees should be suppressed under NOMMU
4232 * conditions.
4233 *
4234 * The problem is that NOMMU needs to be able to allocate large chunks
4235 * of contiguous memory as there's no hardware page translation to
4236 * assemble apparent contiguous memory from discontiguous pages.
4237 *
4238 * Queueing large contiguous runs of pages for batching, however,
4239 * causes the pages to actually be freed in smaller chunks. As there
4240 * can be a significant delay between the individual batches being
4241 * recycled, this leads to the once large chunks of space being
4242 * fragmented and becoming unavailable for high-order allocations.
4243 */
4244 return 0;
4245#endif
e7c8d5c9
CL
4246}
4247
8d7a8fa9
CS
4248/*
4249 * pcp->high and pcp->batch values are related and dependent on one another:
4250 * ->batch must never be higher then ->high.
4251 * The following function updates them in a safe manner without read side
4252 * locking.
4253 *
4254 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4255 * those fields changing asynchronously (acording the the above rule).
4256 *
4257 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4258 * outside of boot time (or some other assurance that no concurrent updaters
4259 * exist).
4260 */
4261static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4262 unsigned long batch)
4263{
4264 /* start with a fail safe value for batch */
4265 pcp->batch = 1;
4266 smp_wmb();
4267
4268 /* Update high, then batch, in order */
4269 pcp->high = high;
4270 smp_wmb();
4271
4272 pcp->batch = batch;
4273}
4274
3664033c 4275/* a companion to pageset_set_high() */
4008bab7
CS
4276static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4277{
8d7a8fa9 4278 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4279}
4280
88c90dbc 4281static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4282{
4283 struct per_cpu_pages *pcp;
5f8dcc21 4284 int migratetype;
2caaad41 4285
1c6fe946
MD
4286 memset(p, 0, sizeof(*p));
4287
3dfa5721 4288 pcp = &p->pcp;
2caaad41 4289 pcp->count = 0;
5f8dcc21
MG
4290 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4291 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4292}
4293
88c90dbc
CS
4294static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4295{
4296 pageset_init(p);
4297 pageset_set_batch(p, batch);
4298}
4299
8ad4b1fb 4300/*
3664033c 4301 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4302 * to the value high for the pageset p.
4303 */
3664033c 4304static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4305 unsigned long high)
4306{
8d7a8fa9
CS
4307 unsigned long batch = max(1UL, high / 4);
4308 if ((high / 4) > (PAGE_SHIFT * 8))
4309 batch = PAGE_SHIFT * 8;
8ad4b1fb 4310
8d7a8fa9 4311 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4312}
4313
7cd2b0a3
DR
4314static void pageset_set_high_and_batch(struct zone *zone,
4315 struct per_cpu_pageset *pcp)
56cef2b8 4316{
56cef2b8 4317 if (percpu_pagelist_fraction)
3664033c 4318 pageset_set_high(pcp,
56cef2b8
CS
4319 (zone->managed_pages /
4320 percpu_pagelist_fraction));
4321 else
4322 pageset_set_batch(pcp, zone_batchsize(zone));
4323}
4324
169f6c19
CS
4325static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4326{
4327 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4328
4329 pageset_init(pcp);
4330 pageset_set_high_and_batch(zone, pcp);
4331}
4332
4ed7e022 4333static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4334{
4335 int cpu;
319774e2 4336 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4337 for_each_possible_cpu(cpu)
4338 zone_pageset_init(zone, cpu);
319774e2
WF
4339}
4340
2caaad41 4341/*
99dcc3e5
CL
4342 * Allocate per cpu pagesets and initialize them.
4343 * Before this call only boot pagesets were available.
e7c8d5c9 4344 */
99dcc3e5 4345void __init setup_per_cpu_pageset(void)
e7c8d5c9 4346{
99dcc3e5 4347 struct zone *zone;
e7c8d5c9 4348
319774e2
WF
4349 for_each_populated_zone(zone)
4350 setup_zone_pageset(zone);
e7c8d5c9
CL
4351}
4352
577a32f6 4353static noinline __init_refok
cca448fe 4354int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4355{
4356 int i;
cca448fe 4357 size_t alloc_size;
ed8ece2e
DH
4358
4359 /*
4360 * The per-page waitqueue mechanism uses hashed waitqueues
4361 * per zone.
4362 */
02b694de
YG
4363 zone->wait_table_hash_nr_entries =
4364 wait_table_hash_nr_entries(zone_size_pages);
4365 zone->wait_table_bits =
4366 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4367 alloc_size = zone->wait_table_hash_nr_entries
4368 * sizeof(wait_queue_head_t);
4369
cd94b9db 4370 if (!slab_is_available()) {
cca448fe 4371 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4372 memblock_virt_alloc_node_nopanic(
4373 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4374 } else {
4375 /*
4376 * This case means that a zone whose size was 0 gets new memory
4377 * via memory hot-add.
4378 * But it may be the case that a new node was hot-added. In
4379 * this case vmalloc() will not be able to use this new node's
4380 * memory - this wait_table must be initialized to use this new
4381 * node itself as well.
4382 * To use this new node's memory, further consideration will be
4383 * necessary.
4384 */
8691f3a7 4385 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4386 }
4387 if (!zone->wait_table)
4388 return -ENOMEM;
ed8ece2e 4389
b8af2941 4390 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4391 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4392
4393 return 0;
ed8ece2e
DH
4394}
4395
c09b4240 4396static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4397{
99dcc3e5
CL
4398 /*
4399 * per cpu subsystem is not up at this point. The following code
4400 * relies on the ability of the linker to provide the
4401 * offset of a (static) per cpu variable into the per cpu area.
4402 */
4403 zone->pageset = &boot_pageset;
ed8ece2e 4404
b38a8725 4405 if (populated_zone(zone))
99dcc3e5
CL
4406 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4407 zone->name, zone->present_pages,
4408 zone_batchsize(zone));
ed8ece2e
DH
4409}
4410
4ed7e022 4411int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4412 unsigned long zone_start_pfn,
a2f3aa02
DH
4413 unsigned long size,
4414 enum memmap_context context)
ed8ece2e
DH
4415{
4416 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4417 int ret;
4418 ret = zone_wait_table_init(zone, size);
4419 if (ret)
4420 return ret;
ed8ece2e
DH
4421 pgdat->nr_zones = zone_idx(zone) + 1;
4422
ed8ece2e
DH
4423 zone->zone_start_pfn = zone_start_pfn;
4424
708614e6
MG
4425 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4426 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4427 pgdat->node_id,
4428 (unsigned long)zone_idx(zone),
4429 zone_start_pfn, (zone_start_pfn + size));
4430
1e548deb 4431 zone_init_free_lists(zone);
718127cc
YG
4432
4433 return 0;
ed8ece2e
DH
4434}
4435
0ee332c1 4436#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4437#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4438/*
4439 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4440 */
f2dbcfa7 4441int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4442{
c13291a5 4443 unsigned long start_pfn, end_pfn;
e76b63f8 4444 int nid;
7c243c71
RA
4445 /*
4446 * NOTE: The following SMP-unsafe globals are only used early in boot
4447 * when the kernel is running single-threaded.
4448 */
4449 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4450 static int __meminitdata last_nid;
4451
4452 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4453 return last_nid;
c713216d 4454
e76b63f8
YL
4455 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4456 if (nid != -1) {
4457 last_start_pfn = start_pfn;
4458 last_end_pfn = end_pfn;
4459 last_nid = nid;
4460 }
4461
4462 return nid;
c713216d
MG
4463}
4464#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4465
f2dbcfa7
KH
4466int __meminit early_pfn_to_nid(unsigned long pfn)
4467{
cc2559bc
KH
4468 int nid;
4469
4470 nid = __early_pfn_to_nid(pfn);
4471 if (nid >= 0)
4472 return nid;
4473 /* just returns 0 */
4474 return 0;
f2dbcfa7
KH
4475}
4476
cc2559bc
KH
4477#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4478bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4479{
4480 int nid;
4481
4482 nid = __early_pfn_to_nid(pfn);
4483 if (nid >= 0 && nid != node)
4484 return false;
4485 return true;
4486}
4487#endif
f2dbcfa7 4488
c713216d 4489/**
6782832e 4490 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4491 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4492 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4493 *
7d018176
ZZ
4494 * If an architecture guarantees that all ranges registered contain no holes
4495 * and may be freed, this this function may be used instead of calling
4496 * memblock_free_early_nid() manually.
c713216d 4497 */
c13291a5 4498void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4499{
c13291a5
TH
4500 unsigned long start_pfn, end_pfn;
4501 int i, this_nid;
edbe7d23 4502
c13291a5
TH
4503 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4504 start_pfn = min(start_pfn, max_low_pfn);
4505 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4506
c13291a5 4507 if (start_pfn < end_pfn)
6782832e
SS
4508 memblock_free_early_nid(PFN_PHYS(start_pfn),
4509 (end_pfn - start_pfn) << PAGE_SHIFT,
4510 this_nid);
edbe7d23 4511 }
edbe7d23 4512}
edbe7d23 4513
c713216d
MG
4514/**
4515 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4516 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4517 *
7d018176
ZZ
4518 * If an architecture guarantees that all ranges registered contain no holes and may
4519 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4520 */
4521void __init sparse_memory_present_with_active_regions(int nid)
4522{
c13291a5
TH
4523 unsigned long start_pfn, end_pfn;
4524 int i, this_nid;
c713216d 4525
c13291a5
TH
4526 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4527 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4528}
4529
4530/**
4531 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4532 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4533 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4534 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4535 *
4536 * It returns the start and end page frame of a node based on information
7d018176 4537 * provided by memblock_set_node(). If called for a node
c713216d 4538 * with no available memory, a warning is printed and the start and end
88ca3b94 4539 * PFNs will be 0.
c713216d 4540 */
a3142c8e 4541void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4542 unsigned long *start_pfn, unsigned long *end_pfn)
4543{
c13291a5 4544 unsigned long this_start_pfn, this_end_pfn;
c713216d 4545 int i;
c13291a5 4546
c713216d
MG
4547 *start_pfn = -1UL;
4548 *end_pfn = 0;
4549
c13291a5
TH
4550 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4551 *start_pfn = min(*start_pfn, this_start_pfn);
4552 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4553 }
4554
633c0666 4555 if (*start_pfn == -1UL)
c713216d 4556 *start_pfn = 0;
c713216d
MG
4557}
4558
2a1e274a
MG
4559/*
4560 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4561 * assumption is made that zones within a node are ordered in monotonic
4562 * increasing memory addresses so that the "highest" populated zone is used
4563 */
b69a7288 4564static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4565{
4566 int zone_index;
4567 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4568 if (zone_index == ZONE_MOVABLE)
4569 continue;
4570
4571 if (arch_zone_highest_possible_pfn[zone_index] >
4572 arch_zone_lowest_possible_pfn[zone_index])
4573 break;
4574 }
4575
4576 VM_BUG_ON(zone_index == -1);
4577 movable_zone = zone_index;
4578}
4579
4580/*
4581 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4582 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4583 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4584 * in each node depending on the size of each node and how evenly kernelcore
4585 * is distributed. This helper function adjusts the zone ranges
4586 * provided by the architecture for a given node by using the end of the
4587 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4588 * zones within a node are in order of monotonic increases memory addresses
4589 */
b69a7288 4590static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4591 unsigned long zone_type,
4592 unsigned long node_start_pfn,
4593 unsigned long node_end_pfn,
4594 unsigned long *zone_start_pfn,
4595 unsigned long *zone_end_pfn)
4596{
4597 /* Only adjust if ZONE_MOVABLE is on this node */
4598 if (zone_movable_pfn[nid]) {
4599 /* Size ZONE_MOVABLE */
4600 if (zone_type == ZONE_MOVABLE) {
4601 *zone_start_pfn = zone_movable_pfn[nid];
4602 *zone_end_pfn = min(node_end_pfn,
4603 arch_zone_highest_possible_pfn[movable_zone]);
4604
4605 /* Adjust for ZONE_MOVABLE starting within this range */
4606 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4607 *zone_end_pfn > zone_movable_pfn[nid]) {
4608 *zone_end_pfn = zone_movable_pfn[nid];
4609
4610 /* Check if this whole range is within ZONE_MOVABLE */
4611 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4612 *zone_start_pfn = *zone_end_pfn;
4613 }
4614}
4615
c713216d
MG
4616/*
4617 * Return the number of pages a zone spans in a node, including holes
4618 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4619 */
6ea6e688 4620static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4621 unsigned long zone_type,
7960aedd
ZY
4622 unsigned long node_start_pfn,
4623 unsigned long node_end_pfn,
c713216d
MG
4624 unsigned long *ignored)
4625{
c713216d
MG
4626 unsigned long zone_start_pfn, zone_end_pfn;
4627
7960aedd 4628 /* Get the start and end of the zone */
c713216d
MG
4629 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4630 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4631 adjust_zone_range_for_zone_movable(nid, zone_type,
4632 node_start_pfn, node_end_pfn,
4633 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4634
4635 /* Check that this node has pages within the zone's required range */
4636 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4637 return 0;
4638
4639 /* Move the zone boundaries inside the node if necessary */
4640 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4641 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4642
4643 /* Return the spanned pages */
4644 return zone_end_pfn - zone_start_pfn;
4645}
4646
4647/*
4648 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4649 * then all holes in the requested range will be accounted for.
c713216d 4650 */
32996250 4651unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4652 unsigned long range_start_pfn,
4653 unsigned long range_end_pfn)
4654{
96e907d1
TH
4655 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4656 unsigned long start_pfn, end_pfn;
4657 int i;
c713216d 4658
96e907d1
TH
4659 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4660 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4661 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4662 nr_absent -= end_pfn - start_pfn;
c713216d 4663 }
96e907d1 4664 return nr_absent;
c713216d
MG
4665}
4666
4667/**
4668 * absent_pages_in_range - Return number of page frames in holes within a range
4669 * @start_pfn: The start PFN to start searching for holes
4670 * @end_pfn: The end PFN to stop searching for holes
4671 *
88ca3b94 4672 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4673 */
4674unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4675 unsigned long end_pfn)
4676{
4677 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4678}
4679
4680/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4681static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4682 unsigned long zone_type,
7960aedd
ZY
4683 unsigned long node_start_pfn,
4684 unsigned long node_end_pfn,
c713216d
MG
4685 unsigned long *ignored)
4686{
96e907d1
TH
4687 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4688 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4689 unsigned long zone_start_pfn, zone_end_pfn;
4690
96e907d1
TH
4691 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4692 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4693
2a1e274a
MG
4694 adjust_zone_range_for_zone_movable(nid, zone_type,
4695 node_start_pfn, node_end_pfn,
4696 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4697 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4698}
0e0b864e 4699
0ee332c1 4700#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4701static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4702 unsigned long zone_type,
7960aedd
ZY
4703 unsigned long node_start_pfn,
4704 unsigned long node_end_pfn,
c713216d
MG
4705 unsigned long *zones_size)
4706{
4707 return zones_size[zone_type];
4708}
4709
6ea6e688 4710static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4711 unsigned long zone_type,
7960aedd
ZY
4712 unsigned long node_start_pfn,
4713 unsigned long node_end_pfn,
c713216d
MG
4714 unsigned long *zholes_size)
4715{
4716 if (!zholes_size)
4717 return 0;
4718
4719 return zholes_size[zone_type];
4720}
20e6926d 4721
0ee332c1 4722#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4723
a3142c8e 4724static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4725 unsigned long node_start_pfn,
4726 unsigned long node_end_pfn,
4727 unsigned long *zones_size,
4728 unsigned long *zholes_size)
c713216d
MG
4729{
4730 unsigned long realtotalpages, totalpages = 0;
4731 enum zone_type i;
4732
4733 for (i = 0; i < MAX_NR_ZONES; i++)
4734 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4735 node_start_pfn,
4736 node_end_pfn,
4737 zones_size);
c713216d
MG
4738 pgdat->node_spanned_pages = totalpages;
4739
4740 realtotalpages = totalpages;
4741 for (i = 0; i < MAX_NR_ZONES; i++)
4742 realtotalpages -=
4743 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4744 node_start_pfn, node_end_pfn,
4745 zholes_size);
c713216d
MG
4746 pgdat->node_present_pages = realtotalpages;
4747 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4748 realtotalpages);
4749}
4750
835c134e
MG
4751#ifndef CONFIG_SPARSEMEM
4752/*
4753 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4754 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4755 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4756 * round what is now in bits to nearest long in bits, then return it in
4757 * bytes.
4758 */
7c45512d 4759static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4760{
4761 unsigned long usemapsize;
4762
7c45512d 4763 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4764 usemapsize = roundup(zonesize, pageblock_nr_pages);
4765 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4766 usemapsize *= NR_PAGEBLOCK_BITS;
4767 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4768
4769 return usemapsize / 8;
4770}
4771
4772static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4773 struct zone *zone,
4774 unsigned long zone_start_pfn,
4775 unsigned long zonesize)
835c134e 4776{
7c45512d 4777 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4778 zone->pageblock_flags = NULL;
58a01a45 4779 if (usemapsize)
6782832e
SS
4780 zone->pageblock_flags =
4781 memblock_virt_alloc_node_nopanic(usemapsize,
4782 pgdat->node_id);
835c134e
MG
4783}
4784#else
7c45512d
LT
4785static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4786 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4787#endif /* CONFIG_SPARSEMEM */
4788
d9c23400 4789#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4790
d9c23400 4791/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4792void __paginginit set_pageblock_order(void)
d9c23400 4793{
955c1cd7
AM
4794 unsigned int order;
4795
d9c23400
MG
4796 /* Check that pageblock_nr_pages has not already been setup */
4797 if (pageblock_order)
4798 return;
4799
955c1cd7
AM
4800 if (HPAGE_SHIFT > PAGE_SHIFT)
4801 order = HUGETLB_PAGE_ORDER;
4802 else
4803 order = MAX_ORDER - 1;
4804
d9c23400
MG
4805 /*
4806 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4807 * This value may be variable depending on boot parameters on IA64 and
4808 * powerpc.
d9c23400
MG
4809 */
4810 pageblock_order = order;
4811}
4812#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4813
ba72cb8c
MG
4814/*
4815 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4816 * is unused as pageblock_order is set at compile-time. See
4817 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4818 * the kernel config
ba72cb8c 4819 */
15ca220e 4820void __paginginit set_pageblock_order(void)
ba72cb8c 4821{
ba72cb8c 4822}
d9c23400
MG
4823
4824#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4825
01cefaef
JL
4826static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4827 unsigned long present_pages)
4828{
4829 unsigned long pages = spanned_pages;
4830
4831 /*
4832 * Provide a more accurate estimation if there are holes within
4833 * the zone and SPARSEMEM is in use. If there are holes within the
4834 * zone, each populated memory region may cost us one or two extra
4835 * memmap pages due to alignment because memmap pages for each
4836 * populated regions may not naturally algined on page boundary.
4837 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4838 */
4839 if (spanned_pages > present_pages + (present_pages >> 4) &&
4840 IS_ENABLED(CONFIG_SPARSEMEM))
4841 pages = present_pages;
4842
4843 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4844}
4845
1da177e4
LT
4846/*
4847 * Set up the zone data structures:
4848 * - mark all pages reserved
4849 * - mark all memory queues empty
4850 * - clear the memory bitmaps
6527af5d
MK
4851 *
4852 * NOTE: pgdat should get zeroed by caller.
1da177e4 4853 */
b5a0e011 4854static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4855 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4856 unsigned long *zones_size, unsigned long *zholes_size)
4857{
2f1b6248 4858 enum zone_type j;
ed8ece2e 4859 int nid = pgdat->node_id;
1da177e4 4860 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4861 int ret;
1da177e4 4862
208d54e5 4863 pgdat_resize_init(pgdat);
8177a420
AA
4864#ifdef CONFIG_NUMA_BALANCING
4865 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4866 pgdat->numabalancing_migrate_nr_pages = 0;
4867 pgdat->numabalancing_migrate_next_window = jiffies;
4868#endif
1da177e4 4869 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4870 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 4871 pgdat_page_ext_init(pgdat);
5f63b720 4872
1da177e4
LT
4873 for (j = 0; j < MAX_NR_ZONES; j++) {
4874 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4875 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4876
7960aedd
ZY
4877 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4878 node_end_pfn, zones_size);
9feedc9d 4879 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4880 node_start_pfn,
4881 node_end_pfn,
c713216d 4882 zholes_size);
1da177e4 4883
0e0b864e 4884 /*
9feedc9d 4885 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4886 * is used by this zone for memmap. This affects the watermark
4887 * and per-cpu initialisations
4888 */
01cefaef 4889 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
4890 if (!is_highmem_idx(j)) {
4891 if (freesize >= memmap_pages) {
4892 freesize -= memmap_pages;
4893 if (memmap_pages)
4894 printk(KERN_DEBUG
4895 " %s zone: %lu pages used for memmap\n",
4896 zone_names[j], memmap_pages);
4897 } else
4898 printk(KERN_WARNING
4899 " %s zone: %lu pages exceeds freesize %lu\n",
4900 zone_names[j], memmap_pages, freesize);
4901 }
0e0b864e 4902
6267276f 4903 /* Account for reserved pages */
9feedc9d
JL
4904 if (j == 0 && freesize > dma_reserve) {
4905 freesize -= dma_reserve;
d903ef9f 4906 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4907 zone_names[0], dma_reserve);
0e0b864e
MG
4908 }
4909
98d2b0eb 4910 if (!is_highmem_idx(j))
9feedc9d 4911 nr_kernel_pages += freesize;
01cefaef
JL
4912 /* Charge for highmem memmap if there are enough kernel pages */
4913 else if (nr_kernel_pages > memmap_pages * 2)
4914 nr_kernel_pages -= memmap_pages;
9feedc9d 4915 nr_all_pages += freesize;
1da177e4
LT
4916
4917 zone->spanned_pages = size;
306f2e9e 4918 zone->present_pages = realsize;
9feedc9d
JL
4919 /*
4920 * Set an approximate value for lowmem here, it will be adjusted
4921 * when the bootmem allocator frees pages into the buddy system.
4922 * And all highmem pages will be managed by the buddy system.
4923 */
4924 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4925#ifdef CONFIG_NUMA
d5f541ed 4926 zone->node = nid;
9feedc9d 4927 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4928 / 100;
9feedc9d 4929 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4930#endif
1da177e4
LT
4931 zone->name = zone_names[j];
4932 spin_lock_init(&zone->lock);
4933 spin_lock_init(&zone->lru_lock);
bdc8cb98 4934 zone_seqlock_init(zone);
1da177e4 4935 zone->zone_pgdat = pgdat;
ed8ece2e 4936 zone_pcp_init(zone);
81c0a2bb
JW
4937
4938 /* For bootup, initialized properly in watermark setup */
4939 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4940
bea8c150 4941 lruvec_init(&zone->lruvec);
1da177e4
LT
4942 if (!size)
4943 continue;
4944
955c1cd7 4945 set_pageblock_order();
7c45512d 4946 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4947 ret = init_currently_empty_zone(zone, zone_start_pfn,
4948 size, MEMMAP_EARLY);
718127cc 4949 BUG_ON(ret);
76cdd58e 4950 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4951 zone_start_pfn += size;
1da177e4
LT
4952 }
4953}
4954
577a32f6 4955static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4956{
1da177e4
LT
4957 /* Skip empty nodes */
4958 if (!pgdat->node_spanned_pages)
4959 return;
4960
d41dee36 4961#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4962 /* ia64 gets its own node_mem_map, before this, without bootmem */
4963 if (!pgdat->node_mem_map) {
e984bb43 4964 unsigned long size, start, end;
d41dee36
AW
4965 struct page *map;
4966
e984bb43
BP
4967 /*
4968 * The zone's endpoints aren't required to be MAX_ORDER
4969 * aligned but the node_mem_map endpoints must be in order
4970 * for the buddy allocator to function correctly.
4971 */
4972 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4973 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4974 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4975 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4976 map = alloc_remap(pgdat->node_id, size);
4977 if (!map)
6782832e
SS
4978 map = memblock_virt_alloc_node_nopanic(size,
4979 pgdat->node_id);
e984bb43 4980 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4981 }
12d810c1 4982#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4983 /*
4984 * With no DISCONTIG, the global mem_map is just set as node 0's
4985 */
c713216d 4986 if (pgdat == NODE_DATA(0)) {
1da177e4 4987 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4988#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4989 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4990 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4991#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4992 }
1da177e4 4993#endif
d41dee36 4994#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4995}
4996
9109fb7b
JW
4997void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4998 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4999{
9109fb7b 5000 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5001 unsigned long start_pfn = 0;
5002 unsigned long end_pfn = 0;
9109fb7b 5003
88fdf75d 5004 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5005 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5006
1da177e4
LT
5007 pgdat->node_id = nid;
5008 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5009#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5010 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8b375f64
LC
5011 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
5012 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
5013#endif
5014 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5015 zones_size, zholes_size);
1da177e4
LT
5016
5017 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5018#ifdef CONFIG_FLAT_NODE_MEM_MAP
5019 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5020 nid, (unsigned long)pgdat,
5021 (unsigned long)pgdat->node_mem_map);
5022#endif
1da177e4 5023
7960aedd
ZY
5024 free_area_init_core(pgdat, start_pfn, end_pfn,
5025 zones_size, zholes_size);
1da177e4
LT
5026}
5027
0ee332c1 5028#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5029
5030#if MAX_NUMNODES > 1
5031/*
5032 * Figure out the number of possible node ids.
5033 */
f9872caf 5034void __init setup_nr_node_ids(void)
418508c1
MS
5035{
5036 unsigned int node;
5037 unsigned int highest = 0;
5038
5039 for_each_node_mask(node, node_possible_map)
5040 highest = node;
5041 nr_node_ids = highest + 1;
5042}
418508c1
MS
5043#endif
5044
1e01979c
TH
5045/**
5046 * node_map_pfn_alignment - determine the maximum internode alignment
5047 *
5048 * This function should be called after node map is populated and sorted.
5049 * It calculates the maximum power of two alignment which can distinguish
5050 * all the nodes.
5051 *
5052 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5053 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5054 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5055 * shifted, 1GiB is enough and this function will indicate so.
5056 *
5057 * This is used to test whether pfn -> nid mapping of the chosen memory
5058 * model has fine enough granularity to avoid incorrect mapping for the
5059 * populated node map.
5060 *
5061 * Returns the determined alignment in pfn's. 0 if there is no alignment
5062 * requirement (single node).
5063 */
5064unsigned long __init node_map_pfn_alignment(void)
5065{
5066 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5067 unsigned long start, end, mask;
1e01979c 5068 int last_nid = -1;
c13291a5 5069 int i, nid;
1e01979c 5070
c13291a5 5071 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5072 if (!start || last_nid < 0 || last_nid == nid) {
5073 last_nid = nid;
5074 last_end = end;
5075 continue;
5076 }
5077
5078 /*
5079 * Start with a mask granular enough to pin-point to the
5080 * start pfn and tick off bits one-by-one until it becomes
5081 * too coarse to separate the current node from the last.
5082 */
5083 mask = ~((1 << __ffs(start)) - 1);
5084 while (mask && last_end <= (start & (mask << 1)))
5085 mask <<= 1;
5086
5087 /* accumulate all internode masks */
5088 accl_mask |= mask;
5089 }
5090
5091 /* convert mask to number of pages */
5092 return ~accl_mask + 1;
5093}
5094
a6af2bc3 5095/* Find the lowest pfn for a node */
b69a7288 5096static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5097{
a6af2bc3 5098 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5099 unsigned long start_pfn;
5100 int i;
1abbfb41 5101
c13291a5
TH
5102 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5103 min_pfn = min(min_pfn, start_pfn);
c713216d 5104
a6af2bc3
MG
5105 if (min_pfn == ULONG_MAX) {
5106 printk(KERN_WARNING
2bc0d261 5107 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5108 return 0;
5109 }
5110
5111 return min_pfn;
c713216d
MG
5112}
5113
5114/**
5115 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5116 *
5117 * It returns the minimum PFN based on information provided via
7d018176 5118 * memblock_set_node().
c713216d
MG
5119 */
5120unsigned long __init find_min_pfn_with_active_regions(void)
5121{
5122 return find_min_pfn_for_node(MAX_NUMNODES);
5123}
5124
37b07e41
LS
5125/*
5126 * early_calculate_totalpages()
5127 * Sum pages in active regions for movable zone.
4b0ef1fe 5128 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5129 */
484f51f8 5130static unsigned long __init early_calculate_totalpages(void)
7e63efef 5131{
7e63efef 5132 unsigned long totalpages = 0;
c13291a5
TH
5133 unsigned long start_pfn, end_pfn;
5134 int i, nid;
5135
5136 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5137 unsigned long pages = end_pfn - start_pfn;
7e63efef 5138
37b07e41
LS
5139 totalpages += pages;
5140 if (pages)
4b0ef1fe 5141 node_set_state(nid, N_MEMORY);
37b07e41 5142 }
b8af2941 5143 return totalpages;
7e63efef
MG
5144}
5145
2a1e274a
MG
5146/*
5147 * Find the PFN the Movable zone begins in each node. Kernel memory
5148 * is spread evenly between nodes as long as the nodes have enough
5149 * memory. When they don't, some nodes will have more kernelcore than
5150 * others
5151 */
b224ef85 5152static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5153{
5154 int i, nid;
5155 unsigned long usable_startpfn;
5156 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5157 /* save the state before borrow the nodemask */
4b0ef1fe 5158 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5159 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5160 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5161 struct memblock_region *r;
b2f3eebe
TC
5162
5163 /* Need to find movable_zone earlier when movable_node is specified. */
5164 find_usable_zone_for_movable();
5165
5166 /*
5167 * If movable_node is specified, ignore kernelcore and movablecore
5168 * options.
5169 */
5170 if (movable_node_is_enabled()) {
136199f0
EM
5171 for_each_memblock(memory, r) {
5172 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5173 continue;
5174
136199f0 5175 nid = r->nid;
b2f3eebe 5176
136199f0 5177 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5178 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5179 min(usable_startpfn, zone_movable_pfn[nid]) :
5180 usable_startpfn;
5181 }
5182
5183 goto out2;
5184 }
2a1e274a 5185
7e63efef 5186 /*
b2f3eebe 5187 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5188 * kernelcore that corresponds so that memory usable for
5189 * any allocation type is evenly spread. If both kernelcore
5190 * and movablecore are specified, then the value of kernelcore
5191 * will be used for required_kernelcore if it's greater than
5192 * what movablecore would have allowed.
5193 */
5194 if (required_movablecore) {
7e63efef
MG
5195 unsigned long corepages;
5196
5197 /*
5198 * Round-up so that ZONE_MOVABLE is at least as large as what
5199 * was requested by the user
5200 */
5201 required_movablecore =
5202 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5203 corepages = totalpages - required_movablecore;
5204
5205 required_kernelcore = max(required_kernelcore, corepages);
5206 }
5207
20e6926d
YL
5208 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5209 if (!required_kernelcore)
66918dcd 5210 goto out;
2a1e274a
MG
5211
5212 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5213 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5214
5215restart:
5216 /* Spread kernelcore memory as evenly as possible throughout nodes */
5217 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5218 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5219 unsigned long start_pfn, end_pfn;
5220
2a1e274a
MG
5221 /*
5222 * Recalculate kernelcore_node if the division per node
5223 * now exceeds what is necessary to satisfy the requested
5224 * amount of memory for the kernel
5225 */
5226 if (required_kernelcore < kernelcore_node)
5227 kernelcore_node = required_kernelcore / usable_nodes;
5228
5229 /*
5230 * As the map is walked, we track how much memory is usable
5231 * by the kernel using kernelcore_remaining. When it is
5232 * 0, the rest of the node is usable by ZONE_MOVABLE
5233 */
5234 kernelcore_remaining = kernelcore_node;
5235
5236 /* Go through each range of PFNs within this node */
c13291a5 5237 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5238 unsigned long size_pages;
5239
c13291a5 5240 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5241 if (start_pfn >= end_pfn)
5242 continue;
5243
5244 /* Account for what is only usable for kernelcore */
5245 if (start_pfn < usable_startpfn) {
5246 unsigned long kernel_pages;
5247 kernel_pages = min(end_pfn, usable_startpfn)
5248 - start_pfn;
5249
5250 kernelcore_remaining -= min(kernel_pages,
5251 kernelcore_remaining);
5252 required_kernelcore -= min(kernel_pages,
5253 required_kernelcore);
5254
5255 /* Continue if range is now fully accounted */
5256 if (end_pfn <= usable_startpfn) {
5257
5258 /*
5259 * Push zone_movable_pfn to the end so
5260 * that if we have to rebalance
5261 * kernelcore across nodes, we will
5262 * not double account here
5263 */
5264 zone_movable_pfn[nid] = end_pfn;
5265 continue;
5266 }
5267 start_pfn = usable_startpfn;
5268 }
5269
5270 /*
5271 * The usable PFN range for ZONE_MOVABLE is from
5272 * start_pfn->end_pfn. Calculate size_pages as the
5273 * number of pages used as kernelcore
5274 */
5275 size_pages = end_pfn - start_pfn;
5276 if (size_pages > kernelcore_remaining)
5277 size_pages = kernelcore_remaining;
5278 zone_movable_pfn[nid] = start_pfn + size_pages;
5279
5280 /*
5281 * Some kernelcore has been met, update counts and
5282 * break if the kernelcore for this node has been
b8af2941 5283 * satisfied
2a1e274a
MG
5284 */
5285 required_kernelcore -= min(required_kernelcore,
5286 size_pages);
5287 kernelcore_remaining -= size_pages;
5288 if (!kernelcore_remaining)
5289 break;
5290 }
5291 }
5292
5293 /*
5294 * If there is still required_kernelcore, we do another pass with one
5295 * less node in the count. This will push zone_movable_pfn[nid] further
5296 * along on the nodes that still have memory until kernelcore is
b8af2941 5297 * satisfied
2a1e274a
MG
5298 */
5299 usable_nodes--;
5300 if (usable_nodes && required_kernelcore > usable_nodes)
5301 goto restart;
5302
b2f3eebe 5303out2:
2a1e274a
MG
5304 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5305 for (nid = 0; nid < MAX_NUMNODES; nid++)
5306 zone_movable_pfn[nid] =
5307 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5308
20e6926d 5309out:
66918dcd 5310 /* restore the node_state */
4b0ef1fe 5311 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5312}
5313
4b0ef1fe
LJ
5314/* Any regular or high memory on that node ? */
5315static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5316{
37b07e41
LS
5317 enum zone_type zone_type;
5318
4b0ef1fe
LJ
5319 if (N_MEMORY == N_NORMAL_MEMORY)
5320 return;
5321
5322 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5323 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5324 if (populated_zone(zone)) {
4b0ef1fe
LJ
5325 node_set_state(nid, N_HIGH_MEMORY);
5326 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5327 zone_type <= ZONE_NORMAL)
5328 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5329 break;
5330 }
37b07e41 5331 }
37b07e41
LS
5332}
5333
c713216d
MG
5334/**
5335 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5336 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5337 *
5338 * This will call free_area_init_node() for each active node in the system.
7d018176 5339 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5340 * zone in each node and their holes is calculated. If the maximum PFN
5341 * between two adjacent zones match, it is assumed that the zone is empty.
5342 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5343 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5344 * starts where the previous one ended. For example, ZONE_DMA32 starts
5345 * at arch_max_dma_pfn.
5346 */
5347void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5348{
c13291a5
TH
5349 unsigned long start_pfn, end_pfn;
5350 int i, nid;
a6af2bc3 5351
c713216d
MG
5352 /* Record where the zone boundaries are */
5353 memset(arch_zone_lowest_possible_pfn, 0,
5354 sizeof(arch_zone_lowest_possible_pfn));
5355 memset(arch_zone_highest_possible_pfn, 0,
5356 sizeof(arch_zone_highest_possible_pfn));
5357 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5358 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5359 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5360 if (i == ZONE_MOVABLE)
5361 continue;
c713216d
MG
5362 arch_zone_lowest_possible_pfn[i] =
5363 arch_zone_highest_possible_pfn[i-1];
5364 arch_zone_highest_possible_pfn[i] =
5365 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5366 }
2a1e274a
MG
5367 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5368 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5369
5370 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5371 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5372 find_zone_movable_pfns_for_nodes();
c713216d 5373
c713216d 5374 /* Print out the zone ranges */
f88dfff5 5375 pr_info("Zone ranges:\n");
2a1e274a
MG
5376 for (i = 0; i < MAX_NR_ZONES; i++) {
5377 if (i == ZONE_MOVABLE)
5378 continue;
f88dfff5 5379 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5380 if (arch_zone_lowest_possible_pfn[i] ==
5381 arch_zone_highest_possible_pfn[i])
f88dfff5 5382 pr_cont("empty\n");
72f0ba02 5383 else
f88dfff5 5384 pr_cont("[mem %0#10lx-%0#10lx]\n",
a62e2f4f
BH
5385 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5386 (arch_zone_highest_possible_pfn[i]
5387 << PAGE_SHIFT) - 1);
2a1e274a
MG
5388 }
5389
5390 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5391 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5392 for (i = 0; i < MAX_NUMNODES; i++) {
5393 if (zone_movable_pfn[i])
f88dfff5 5394 pr_info(" Node %d: %#010lx\n", i,
a62e2f4f 5395 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5396 }
c713216d 5397
f2d52fe5 5398 /* Print out the early node map */
f88dfff5 5399 pr_info("Early memory node ranges\n");
c13291a5 5400 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
f88dfff5 5401 pr_info(" node %3d: [mem %#010lx-%#010lx]\n", nid,
a62e2f4f 5402 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5403
5404 /* Initialise every node */
708614e6 5405 mminit_verify_pageflags_layout();
8ef82866 5406 setup_nr_node_ids();
c713216d
MG
5407 for_each_online_node(nid) {
5408 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5409 free_area_init_node(nid, NULL,
c713216d 5410 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5411
5412 /* Any memory on that node */
5413 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5414 node_set_state(nid, N_MEMORY);
5415 check_for_memory(pgdat, nid);
c713216d
MG
5416 }
5417}
2a1e274a 5418
7e63efef 5419static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5420{
5421 unsigned long long coremem;
5422 if (!p)
5423 return -EINVAL;
5424
5425 coremem = memparse(p, &p);
7e63efef 5426 *core = coremem >> PAGE_SHIFT;
2a1e274a 5427
7e63efef 5428 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5429 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5430
5431 return 0;
5432}
ed7ed365 5433
7e63efef
MG
5434/*
5435 * kernelcore=size sets the amount of memory for use for allocations that
5436 * cannot be reclaimed or migrated.
5437 */
5438static int __init cmdline_parse_kernelcore(char *p)
5439{
5440 return cmdline_parse_core(p, &required_kernelcore);
5441}
5442
5443/*
5444 * movablecore=size sets the amount of memory for use for allocations that
5445 * can be reclaimed or migrated.
5446 */
5447static int __init cmdline_parse_movablecore(char *p)
5448{
5449 return cmdline_parse_core(p, &required_movablecore);
5450}
5451
ed7ed365 5452early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5453early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5454
0ee332c1 5455#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5456
c3d5f5f0
JL
5457void adjust_managed_page_count(struct page *page, long count)
5458{
5459 spin_lock(&managed_page_count_lock);
5460 page_zone(page)->managed_pages += count;
5461 totalram_pages += count;
3dcc0571
JL
5462#ifdef CONFIG_HIGHMEM
5463 if (PageHighMem(page))
5464 totalhigh_pages += count;
5465#endif
c3d5f5f0
JL
5466 spin_unlock(&managed_page_count_lock);
5467}
3dcc0571 5468EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5469
11199692 5470unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5471{
11199692
JL
5472 void *pos;
5473 unsigned long pages = 0;
69afade7 5474
11199692
JL
5475 start = (void *)PAGE_ALIGN((unsigned long)start);
5476 end = (void *)((unsigned long)end & PAGE_MASK);
5477 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5478 if ((unsigned int)poison <= 0xFF)
11199692
JL
5479 memset(pos, poison, PAGE_SIZE);
5480 free_reserved_page(virt_to_page(pos));
69afade7
JL
5481 }
5482
5483 if (pages && s)
11199692 5484 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5485 s, pages << (PAGE_SHIFT - 10), start, end);
5486
5487 return pages;
5488}
11199692 5489EXPORT_SYMBOL(free_reserved_area);
69afade7 5490
cfa11e08
JL
5491#ifdef CONFIG_HIGHMEM
5492void free_highmem_page(struct page *page)
5493{
5494 __free_reserved_page(page);
5495 totalram_pages++;
7b4b2a0d 5496 page_zone(page)->managed_pages++;
cfa11e08
JL
5497 totalhigh_pages++;
5498}
5499#endif
5500
7ee3d4e8
JL
5501
5502void __init mem_init_print_info(const char *str)
5503{
5504 unsigned long physpages, codesize, datasize, rosize, bss_size;
5505 unsigned long init_code_size, init_data_size;
5506
5507 physpages = get_num_physpages();
5508 codesize = _etext - _stext;
5509 datasize = _edata - _sdata;
5510 rosize = __end_rodata - __start_rodata;
5511 bss_size = __bss_stop - __bss_start;
5512 init_data_size = __init_end - __init_begin;
5513 init_code_size = _einittext - _sinittext;
5514
5515 /*
5516 * Detect special cases and adjust section sizes accordingly:
5517 * 1) .init.* may be embedded into .data sections
5518 * 2) .init.text.* may be out of [__init_begin, __init_end],
5519 * please refer to arch/tile/kernel/vmlinux.lds.S.
5520 * 3) .rodata.* may be embedded into .text or .data sections.
5521 */
5522#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5523 do { \
5524 if (start <= pos && pos < end && size > adj) \
5525 size -= adj; \
5526 } while (0)
7ee3d4e8
JL
5527
5528 adj_init_size(__init_begin, __init_end, init_data_size,
5529 _sinittext, init_code_size);
5530 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5531 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5532 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5533 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5534
5535#undef adj_init_size
5536
f88dfff5 5537 pr_info("Memory: %luK/%luK available "
7ee3d4e8 5538 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 5539 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
5540#ifdef CONFIG_HIGHMEM
5541 ", %luK highmem"
5542#endif
5543 "%s%s)\n",
5544 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5545 codesize >> 10, datasize >> 10, rosize >> 10,
5546 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
5547 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5548 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
5549#ifdef CONFIG_HIGHMEM
5550 totalhigh_pages << (PAGE_SHIFT-10),
5551#endif
5552 str ? ", " : "", str ? str : "");
5553}
5554
0e0b864e 5555/**
88ca3b94
RD
5556 * set_dma_reserve - set the specified number of pages reserved in the first zone
5557 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5558 *
5559 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5560 * In the DMA zone, a significant percentage may be consumed by kernel image
5561 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5562 * function may optionally be used to account for unfreeable pages in the
5563 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5564 * smaller per-cpu batchsize.
0e0b864e
MG
5565 */
5566void __init set_dma_reserve(unsigned long new_dma_reserve)
5567{
5568 dma_reserve = new_dma_reserve;
5569}
5570
1da177e4
LT
5571void __init free_area_init(unsigned long *zones_size)
5572{
9109fb7b 5573 free_area_init_node(0, zones_size,
1da177e4
LT
5574 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5575}
1da177e4 5576
1da177e4
LT
5577static int page_alloc_cpu_notify(struct notifier_block *self,
5578 unsigned long action, void *hcpu)
5579{
5580 int cpu = (unsigned long)hcpu;
1da177e4 5581
8bb78442 5582 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5583 lru_add_drain_cpu(cpu);
9f8f2172
CL
5584 drain_pages(cpu);
5585
5586 /*
5587 * Spill the event counters of the dead processor
5588 * into the current processors event counters.
5589 * This artificially elevates the count of the current
5590 * processor.
5591 */
f8891e5e 5592 vm_events_fold_cpu(cpu);
9f8f2172
CL
5593
5594 /*
5595 * Zero the differential counters of the dead processor
5596 * so that the vm statistics are consistent.
5597 *
5598 * This is only okay since the processor is dead and cannot
5599 * race with what we are doing.
5600 */
2bb921e5 5601 cpu_vm_stats_fold(cpu);
1da177e4
LT
5602 }
5603 return NOTIFY_OK;
5604}
1da177e4
LT
5605
5606void __init page_alloc_init(void)
5607{
5608 hotcpu_notifier(page_alloc_cpu_notify, 0);
5609}
5610
cb45b0e9
HA
5611/*
5612 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5613 * or min_free_kbytes changes.
5614 */
5615static void calculate_totalreserve_pages(void)
5616{
5617 struct pglist_data *pgdat;
5618 unsigned long reserve_pages = 0;
2f6726e5 5619 enum zone_type i, j;
cb45b0e9
HA
5620
5621 for_each_online_pgdat(pgdat) {
5622 for (i = 0; i < MAX_NR_ZONES; i++) {
5623 struct zone *zone = pgdat->node_zones + i;
3484b2de 5624 long max = 0;
cb45b0e9
HA
5625
5626 /* Find valid and maximum lowmem_reserve in the zone */
5627 for (j = i; j < MAX_NR_ZONES; j++) {
5628 if (zone->lowmem_reserve[j] > max)
5629 max = zone->lowmem_reserve[j];
5630 }
5631
41858966
MG
5632 /* we treat the high watermark as reserved pages. */
5633 max += high_wmark_pages(zone);
cb45b0e9 5634
b40da049
JL
5635 if (max > zone->managed_pages)
5636 max = zone->managed_pages;
cb45b0e9 5637 reserve_pages += max;
ab8fabd4
JW
5638 /*
5639 * Lowmem reserves are not available to
5640 * GFP_HIGHUSER page cache allocations and
5641 * kswapd tries to balance zones to their high
5642 * watermark. As a result, neither should be
5643 * regarded as dirtyable memory, to prevent a
5644 * situation where reclaim has to clean pages
5645 * in order to balance the zones.
5646 */
5647 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5648 }
5649 }
ab8fabd4 5650 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5651 totalreserve_pages = reserve_pages;
5652}
5653
1da177e4
LT
5654/*
5655 * setup_per_zone_lowmem_reserve - called whenever
5656 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5657 * has a correct pages reserved value, so an adequate number of
5658 * pages are left in the zone after a successful __alloc_pages().
5659 */
5660static void setup_per_zone_lowmem_reserve(void)
5661{
5662 struct pglist_data *pgdat;
2f6726e5 5663 enum zone_type j, idx;
1da177e4 5664
ec936fc5 5665 for_each_online_pgdat(pgdat) {
1da177e4
LT
5666 for (j = 0; j < MAX_NR_ZONES; j++) {
5667 struct zone *zone = pgdat->node_zones + j;
b40da049 5668 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5669
5670 zone->lowmem_reserve[j] = 0;
5671
2f6726e5
CL
5672 idx = j;
5673 while (idx) {
1da177e4
LT
5674 struct zone *lower_zone;
5675
2f6726e5
CL
5676 idx--;
5677
1da177e4
LT
5678 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5679 sysctl_lowmem_reserve_ratio[idx] = 1;
5680
5681 lower_zone = pgdat->node_zones + idx;
b40da049 5682 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5683 sysctl_lowmem_reserve_ratio[idx];
b40da049 5684 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5685 }
5686 }
5687 }
cb45b0e9
HA
5688
5689 /* update totalreserve_pages */
5690 calculate_totalreserve_pages();
1da177e4
LT
5691}
5692
cfd3da1e 5693static void __setup_per_zone_wmarks(void)
1da177e4
LT
5694{
5695 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5696 unsigned long lowmem_pages = 0;
5697 struct zone *zone;
5698 unsigned long flags;
5699
5700 /* Calculate total number of !ZONE_HIGHMEM pages */
5701 for_each_zone(zone) {
5702 if (!is_highmem(zone))
b40da049 5703 lowmem_pages += zone->managed_pages;
1da177e4
LT
5704 }
5705
5706 for_each_zone(zone) {
ac924c60
AM
5707 u64 tmp;
5708
1125b4e3 5709 spin_lock_irqsave(&zone->lock, flags);
b40da049 5710 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5711 do_div(tmp, lowmem_pages);
1da177e4
LT
5712 if (is_highmem(zone)) {
5713 /*
669ed175
NP
5714 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5715 * need highmem pages, so cap pages_min to a small
5716 * value here.
5717 *
41858966 5718 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5719 * deltas controls asynch page reclaim, and so should
5720 * not be capped for highmem.
1da177e4 5721 */
90ae8d67 5722 unsigned long min_pages;
1da177e4 5723
b40da049 5724 min_pages = zone->managed_pages / 1024;
90ae8d67 5725 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5726 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5727 } else {
669ed175
NP
5728 /*
5729 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5730 * proportionate to the zone's size.
5731 */
41858966 5732 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5733 }
5734
41858966
MG
5735 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5736 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5737
81c0a2bb 5738 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
5739 high_wmark_pages(zone) - low_wmark_pages(zone) -
5740 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 5741
56fd56b8 5742 setup_zone_migrate_reserve(zone);
1125b4e3 5743 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5744 }
cb45b0e9
HA
5745
5746 /* update totalreserve_pages */
5747 calculate_totalreserve_pages();
1da177e4
LT
5748}
5749
cfd3da1e
MG
5750/**
5751 * setup_per_zone_wmarks - called when min_free_kbytes changes
5752 * or when memory is hot-{added|removed}
5753 *
5754 * Ensures that the watermark[min,low,high] values for each zone are set
5755 * correctly with respect to min_free_kbytes.
5756 */
5757void setup_per_zone_wmarks(void)
5758{
5759 mutex_lock(&zonelists_mutex);
5760 __setup_per_zone_wmarks();
5761 mutex_unlock(&zonelists_mutex);
5762}
5763
55a4462a 5764/*
556adecb
RR
5765 * The inactive anon list should be small enough that the VM never has to
5766 * do too much work, but large enough that each inactive page has a chance
5767 * to be referenced again before it is swapped out.
5768 *
5769 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5770 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5771 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5772 * the anonymous pages are kept on the inactive list.
5773 *
5774 * total target max
5775 * memory ratio inactive anon
5776 * -------------------------------------
5777 * 10MB 1 5MB
5778 * 100MB 1 50MB
5779 * 1GB 3 250MB
5780 * 10GB 10 0.9GB
5781 * 100GB 31 3GB
5782 * 1TB 101 10GB
5783 * 10TB 320 32GB
5784 */
1b79acc9 5785static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5786{
96cb4df5 5787 unsigned int gb, ratio;
556adecb 5788
96cb4df5 5789 /* Zone size in gigabytes */
b40da049 5790 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5791 if (gb)
556adecb 5792 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5793 else
5794 ratio = 1;
556adecb 5795
96cb4df5
MK
5796 zone->inactive_ratio = ratio;
5797}
556adecb 5798
839a4fcc 5799static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5800{
5801 struct zone *zone;
5802
5803 for_each_zone(zone)
5804 calculate_zone_inactive_ratio(zone);
556adecb
RR
5805}
5806
1da177e4
LT
5807/*
5808 * Initialise min_free_kbytes.
5809 *
5810 * For small machines we want it small (128k min). For large machines
5811 * we want it large (64MB max). But it is not linear, because network
5812 * bandwidth does not increase linearly with machine size. We use
5813 *
b8af2941 5814 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5815 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5816 *
5817 * which yields
5818 *
5819 * 16MB: 512k
5820 * 32MB: 724k
5821 * 64MB: 1024k
5822 * 128MB: 1448k
5823 * 256MB: 2048k
5824 * 512MB: 2896k
5825 * 1024MB: 4096k
5826 * 2048MB: 5792k
5827 * 4096MB: 8192k
5828 * 8192MB: 11584k
5829 * 16384MB: 16384k
5830 */
1b79acc9 5831int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5832{
5833 unsigned long lowmem_kbytes;
5f12733e 5834 int new_min_free_kbytes;
1da177e4
LT
5835
5836 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5837 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5838
5839 if (new_min_free_kbytes > user_min_free_kbytes) {
5840 min_free_kbytes = new_min_free_kbytes;
5841 if (min_free_kbytes < 128)
5842 min_free_kbytes = 128;
5843 if (min_free_kbytes > 65536)
5844 min_free_kbytes = 65536;
5845 } else {
5846 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5847 new_min_free_kbytes, user_min_free_kbytes);
5848 }
bc75d33f 5849 setup_per_zone_wmarks();
a6cccdc3 5850 refresh_zone_stat_thresholds();
1da177e4 5851 setup_per_zone_lowmem_reserve();
556adecb 5852 setup_per_zone_inactive_ratio();
1da177e4
LT
5853 return 0;
5854}
bc75d33f 5855module_init(init_per_zone_wmark_min)
1da177e4
LT
5856
5857/*
b8af2941 5858 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5859 * that we can call two helper functions whenever min_free_kbytes
5860 * changes.
5861 */
cccad5b9 5862int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5863 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5864{
da8c757b
HP
5865 int rc;
5866
5867 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5868 if (rc)
5869 return rc;
5870
5f12733e
MH
5871 if (write) {
5872 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5873 setup_per_zone_wmarks();
5f12733e 5874 }
1da177e4
LT
5875 return 0;
5876}
5877
9614634f 5878#ifdef CONFIG_NUMA
cccad5b9 5879int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5880 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5881{
5882 struct zone *zone;
5883 int rc;
5884
8d65af78 5885 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5886 if (rc)
5887 return rc;
5888
5889 for_each_zone(zone)
b40da049 5890 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5891 sysctl_min_unmapped_ratio) / 100;
5892 return 0;
5893}
0ff38490 5894
cccad5b9 5895int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5896 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5897{
5898 struct zone *zone;
5899 int rc;
5900
8d65af78 5901 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5902 if (rc)
5903 return rc;
5904
5905 for_each_zone(zone)
b40da049 5906 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5907 sysctl_min_slab_ratio) / 100;
5908 return 0;
5909}
9614634f
CL
5910#endif
5911
1da177e4
LT
5912/*
5913 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5914 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5915 * whenever sysctl_lowmem_reserve_ratio changes.
5916 *
5917 * The reserve ratio obviously has absolutely no relation with the
41858966 5918 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5919 * if in function of the boot time zone sizes.
5920 */
cccad5b9 5921int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5922 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5923{
8d65af78 5924 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5925 setup_per_zone_lowmem_reserve();
5926 return 0;
5927}
5928
8ad4b1fb
RS
5929/*
5930 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5931 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5932 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5933 */
cccad5b9 5934int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5935 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5936{
5937 struct zone *zone;
7cd2b0a3 5938 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
5939 int ret;
5940
7cd2b0a3
DR
5941 mutex_lock(&pcp_batch_high_lock);
5942 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5943
8d65af78 5944 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
5945 if (!write || ret < 0)
5946 goto out;
5947
5948 /* Sanity checking to avoid pcp imbalance */
5949 if (percpu_pagelist_fraction &&
5950 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5951 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5952 ret = -EINVAL;
5953 goto out;
5954 }
5955
5956 /* No change? */
5957 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5958 goto out;
c8e251fa 5959
364df0eb 5960 for_each_populated_zone(zone) {
7cd2b0a3
DR
5961 unsigned int cpu;
5962
22a7f12b 5963 for_each_possible_cpu(cpu)
7cd2b0a3
DR
5964 pageset_set_high_and_batch(zone,
5965 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 5966 }
7cd2b0a3 5967out:
c8e251fa 5968 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 5969 return ret;
8ad4b1fb
RS
5970}
5971
f034b5d4 5972int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5973
5974#ifdef CONFIG_NUMA
5975static int __init set_hashdist(char *str)
5976{
5977 if (!str)
5978 return 0;
5979 hashdist = simple_strtoul(str, &str, 0);
5980 return 1;
5981}
5982__setup("hashdist=", set_hashdist);
5983#endif
5984
5985/*
5986 * allocate a large system hash table from bootmem
5987 * - it is assumed that the hash table must contain an exact power-of-2
5988 * quantity of entries
5989 * - limit is the number of hash buckets, not the total allocation size
5990 */
5991void *__init alloc_large_system_hash(const char *tablename,
5992 unsigned long bucketsize,
5993 unsigned long numentries,
5994 int scale,
5995 int flags,
5996 unsigned int *_hash_shift,
5997 unsigned int *_hash_mask,
31fe62b9
TB
5998 unsigned long low_limit,
5999 unsigned long high_limit)
1da177e4 6000{
31fe62b9 6001 unsigned long long max = high_limit;
1da177e4
LT
6002 unsigned long log2qty, size;
6003 void *table = NULL;
6004
6005 /* allow the kernel cmdline to have a say */
6006 if (!numentries) {
6007 /* round applicable memory size up to nearest megabyte */
04903664 6008 numentries = nr_kernel_pages;
a7e83318
JZ
6009
6010 /* It isn't necessary when PAGE_SIZE >= 1MB */
6011 if (PAGE_SHIFT < 20)
6012 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6013
6014 /* limit to 1 bucket per 2^scale bytes of low memory */
6015 if (scale > PAGE_SHIFT)
6016 numentries >>= (scale - PAGE_SHIFT);
6017 else
6018 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6019
6020 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6021 if (unlikely(flags & HASH_SMALL)) {
6022 /* Makes no sense without HASH_EARLY */
6023 WARN_ON(!(flags & HASH_EARLY));
6024 if (!(numentries >> *_hash_shift)) {
6025 numentries = 1UL << *_hash_shift;
6026 BUG_ON(!numentries);
6027 }
6028 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6029 numentries = PAGE_SIZE / bucketsize;
1da177e4 6030 }
6e692ed3 6031 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6032
6033 /* limit allocation size to 1/16 total memory by default */
6034 if (max == 0) {
6035 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6036 do_div(max, bucketsize);
6037 }
074b8517 6038 max = min(max, 0x80000000ULL);
1da177e4 6039
31fe62b9
TB
6040 if (numentries < low_limit)
6041 numentries = low_limit;
1da177e4
LT
6042 if (numentries > max)
6043 numentries = max;
6044
f0d1b0b3 6045 log2qty = ilog2(numentries);
1da177e4
LT
6046
6047 do {
6048 size = bucketsize << log2qty;
6049 if (flags & HASH_EARLY)
6782832e 6050 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6051 else if (hashdist)
6052 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6053 else {
1037b83b
ED
6054 /*
6055 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6056 * some pages at the end of hash table which
6057 * alloc_pages_exact() automatically does
1037b83b 6058 */
264ef8a9 6059 if (get_order(size) < MAX_ORDER) {
a1dd268c 6060 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6061 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6062 }
1da177e4
LT
6063 }
6064 } while (!table && size > PAGE_SIZE && --log2qty);
6065
6066 if (!table)
6067 panic("Failed to allocate %s hash table\n", tablename);
6068
f241e660 6069 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6070 tablename,
f241e660 6071 (1UL << log2qty),
f0d1b0b3 6072 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6073 size);
6074
6075 if (_hash_shift)
6076 *_hash_shift = log2qty;
6077 if (_hash_mask)
6078 *_hash_mask = (1 << log2qty) - 1;
6079
6080 return table;
6081}
a117e66e 6082
835c134e
MG
6083/* Return a pointer to the bitmap storing bits affecting a block of pages */
6084static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6085 unsigned long pfn)
6086{
6087#ifdef CONFIG_SPARSEMEM
6088 return __pfn_to_section(pfn)->pageblock_flags;
6089#else
6090 return zone->pageblock_flags;
6091#endif /* CONFIG_SPARSEMEM */
6092}
6093
6094static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6095{
6096#ifdef CONFIG_SPARSEMEM
6097 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6098 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6099#else
c060f943 6100 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6101 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6102#endif /* CONFIG_SPARSEMEM */
6103}
6104
6105/**
1aab4d77 6106 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6107 * @page: The page within the block of interest
1aab4d77
RD
6108 * @pfn: The target page frame number
6109 * @end_bitidx: The last bit of interest to retrieve
6110 * @mask: mask of bits that the caller is interested in
6111 *
6112 * Return: pageblock_bits flags
835c134e 6113 */
dc4b0caf 6114unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6115 unsigned long end_bitidx,
6116 unsigned long mask)
835c134e
MG
6117{
6118 struct zone *zone;
6119 unsigned long *bitmap;
dc4b0caf 6120 unsigned long bitidx, word_bitidx;
e58469ba 6121 unsigned long word;
835c134e
MG
6122
6123 zone = page_zone(page);
835c134e
MG
6124 bitmap = get_pageblock_bitmap(zone, pfn);
6125 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6126 word_bitidx = bitidx / BITS_PER_LONG;
6127 bitidx &= (BITS_PER_LONG-1);
835c134e 6128
e58469ba
MG
6129 word = bitmap[word_bitidx];
6130 bitidx += end_bitidx;
6131 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6132}
6133
6134/**
dc4b0caf 6135 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6136 * @page: The page within the block of interest
835c134e 6137 * @flags: The flags to set
1aab4d77
RD
6138 * @pfn: The target page frame number
6139 * @end_bitidx: The last bit of interest
6140 * @mask: mask of bits that the caller is interested in
835c134e 6141 */
dc4b0caf
MG
6142void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6143 unsigned long pfn,
e58469ba
MG
6144 unsigned long end_bitidx,
6145 unsigned long mask)
835c134e
MG
6146{
6147 struct zone *zone;
6148 unsigned long *bitmap;
dc4b0caf 6149 unsigned long bitidx, word_bitidx;
e58469ba
MG
6150 unsigned long old_word, word;
6151
6152 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6153
6154 zone = page_zone(page);
835c134e
MG
6155 bitmap = get_pageblock_bitmap(zone, pfn);
6156 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6157 word_bitidx = bitidx / BITS_PER_LONG;
6158 bitidx &= (BITS_PER_LONG-1);
6159
309381fe 6160 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6161
e58469ba
MG
6162 bitidx += end_bitidx;
6163 mask <<= (BITS_PER_LONG - bitidx - 1);
6164 flags <<= (BITS_PER_LONG - bitidx - 1);
6165
6166 word = ACCESS_ONCE(bitmap[word_bitidx]);
6167 for (;;) {
6168 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6169 if (word == old_word)
6170 break;
6171 word = old_word;
6172 }
835c134e 6173}
a5d76b54
KH
6174
6175/*
80934513
MK
6176 * This function checks whether pageblock includes unmovable pages or not.
6177 * If @count is not zero, it is okay to include less @count unmovable pages
6178 *
b8af2941 6179 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6180 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6181 * expect this function should be exact.
a5d76b54 6182 */
b023f468
WC
6183bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6184 bool skip_hwpoisoned_pages)
49ac8255
KH
6185{
6186 unsigned long pfn, iter, found;
47118af0
MN
6187 int mt;
6188
49ac8255
KH
6189 /*
6190 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6191 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6192 */
6193 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6194 return false;
47118af0
MN
6195 mt = get_pageblock_migratetype(page);
6196 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6197 return false;
49ac8255
KH
6198
6199 pfn = page_to_pfn(page);
6200 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6201 unsigned long check = pfn + iter;
6202
29723fcc 6203 if (!pfn_valid_within(check))
49ac8255 6204 continue;
29723fcc 6205
49ac8255 6206 page = pfn_to_page(check);
c8721bbb
NH
6207
6208 /*
6209 * Hugepages are not in LRU lists, but they're movable.
6210 * We need not scan over tail pages bacause we don't
6211 * handle each tail page individually in migration.
6212 */
6213 if (PageHuge(page)) {
6214 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6215 continue;
6216 }
6217
97d255c8
MK
6218 /*
6219 * We can't use page_count without pin a page
6220 * because another CPU can free compound page.
6221 * This check already skips compound tails of THP
6222 * because their page->_count is zero at all time.
6223 */
6224 if (!atomic_read(&page->_count)) {
49ac8255
KH
6225 if (PageBuddy(page))
6226 iter += (1 << page_order(page)) - 1;
6227 continue;
6228 }
97d255c8 6229
b023f468
WC
6230 /*
6231 * The HWPoisoned page may be not in buddy system, and
6232 * page_count() is not 0.
6233 */
6234 if (skip_hwpoisoned_pages && PageHWPoison(page))
6235 continue;
6236
49ac8255
KH
6237 if (!PageLRU(page))
6238 found++;
6239 /*
6b4f7799
JW
6240 * If there are RECLAIMABLE pages, we need to check
6241 * it. But now, memory offline itself doesn't call
6242 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6243 */
6244 /*
6245 * If the page is not RAM, page_count()should be 0.
6246 * we don't need more check. This is an _used_ not-movable page.
6247 *
6248 * The problematic thing here is PG_reserved pages. PG_reserved
6249 * is set to both of a memory hole page and a _used_ kernel
6250 * page at boot.
6251 */
6252 if (found > count)
80934513 6253 return true;
49ac8255 6254 }
80934513 6255 return false;
49ac8255
KH
6256}
6257
6258bool is_pageblock_removable_nolock(struct page *page)
6259{
656a0706
MH
6260 struct zone *zone;
6261 unsigned long pfn;
687875fb
MH
6262
6263 /*
6264 * We have to be careful here because we are iterating over memory
6265 * sections which are not zone aware so we might end up outside of
6266 * the zone but still within the section.
656a0706
MH
6267 * We have to take care about the node as well. If the node is offline
6268 * its NODE_DATA will be NULL - see page_zone.
687875fb 6269 */
656a0706
MH
6270 if (!node_online(page_to_nid(page)))
6271 return false;
6272
6273 zone = page_zone(page);
6274 pfn = page_to_pfn(page);
108bcc96 6275 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6276 return false;
6277
b023f468 6278 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6279}
0c0e6195 6280
041d3a8c
MN
6281#ifdef CONFIG_CMA
6282
6283static unsigned long pfn_max_align_down(unsigned long pfn)
6284{
6285 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6286 pageblock_nr_pages) - 1);
6287}
6288
6289static unsigned long pfn_max_align_up(unsigned long pfn)
6290{
6291 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6292 pageblock_nr_pages));
6293}
6294
041d3a8c 6295/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6296static int __alloc_contig_migrate_range(struct compact_control *cc,
6297 unsigned long start, unsigned long end)
041d3a8c
MN
6298{
6299 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6300 unsigned long nr_reclaimed;
041d3a8c
MN
6301 unsigned long pfn = start;
6302 unsigned int tries = 0;
6303 int ret = 0;
6304
be49a6e1 6305 migrate_prep();
041d3a8c 6306
bb13ffeb 6307 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6308 if (fatal_signal_pending(current)) {
6309 ret = -EINTR;
6310 break;
6311 }
6312
bb13ffeb
MG
6313 if (list_empty(&cc->migratepages)) {
6314 cc->nr_migratepages = 0;
edc2ca61 6315 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6316 if (!pfn) {
6317 ret = -EINTR;
6318 break;
6319 }
6320 tries = 0;
6321 } else if (++tries == 5) {
6322 ret = ret < 0 ? ret : -EBUSY;
6323 break;
6324 }
6325
beb51eaa
MK
6326 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6327 &cc->migratepages);
6328 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6329
9c620e2b 6330 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6331 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6332 }
2a6f5124
SP
6333 if (ret < 0) {
6334 putback_movable_pages(&cc->migratepages);
6335 return ret;
6336 }
6337 return 0;
041d3a8c
MN
6338}
6339
6340/**
6341 * alloc_contig_range() -- tries to allocate given range of pages
6342 * @start: start PFN to allocate
6343 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6344 * @migratetype: migratetype of the underlaying pageblocks (either
6345 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6346 * in range must have the same migratetype and it must
6347 * be either of the two.
041d3a8c
MN
6348 *
6349 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6350 * aligned, however it's the caller's responsibility to guarantee that
6351 * we are the only thread that changes migrate type of pageblocks the
6352 * pages fall in.
6353 *
6354 * The PFN range must belong to a single zone.
6355 *
6356 * Returns zero on success or negative error code. On success all
6357 * pages which PFN is in [start, end) are allocated for the caller and
6358 * need to be freed with free_contig_range().
6359 */
0815f3d8
MN
6360int alloc_contig_range(unsigned long start, unsigned long end,
6361 unsigned migratetype)
041d3a8c 6362{
041d3a8c
MN
6363 unsigned long outer_start, outer_end;
6364 int ret = 0, order;
6365
bb13ffeb
MG
6366 struct compact_control cc = {
6367 .nr_migratepages = 0,
6368 .order = -1,
6369 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6370 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6371 .ignore_skip_hint = true,
6372 };
6373 INIT_LIST_HEAD(&cc.migratepages);
6374
041d3a8c
MN
6375 /*
6376 * What we do here is we mark all pageblocks in range as
6377 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6378 * have different sizes, and due to the way page allocator
6379 * work, we align the range to biggest of the two pages so
6380 * that page allocator won't try to merge buddies from
6381 * different pageblocks and change MIGRATE_ISOLATE to some
6382 * other migration type.
6383 *
6384 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6385 * migrate the pages from an unaligned range (ie. pages that
6386 * we are interested in). This will put all the pages in
6387 * range back to page allocator as MIGRATE_ISOLATE.
6388 *
6389 * When this is done, we take the pages in range from page
6390 * allocator removing them from the buddy system. This way
6391 * page allocator will never consider using them.
6392 *
6393 * This lets us mark the pageblocks back as
6394 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6395 * aligned range but not in the unaligned, original range are
6396 * put back to page allocator so that buddy can use them.
6397 */
6398
6399 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6400 pfn_max_align_up(end), migratetype,
6401 false);
041d3a8c 6402 if (ret)
86a595f9 6403 return ret;
041d3a8c 6404
bb13ffeb 6405 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6406 if (ret)
6407 goto done;
6408
6409 /*
6410 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6411 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6412 * more, all pages in [start, end) are free in page allocator.
6413 * What we are going to do is to allocate all pages from
6414 * [start, end) (that is remove them from page allocator).
6415 *
6416 * The only problem is that pages at the beginning and at the
6417 * end of interesting range may be not aligned with pages that
6418 * page allocator holds, ie. they can be part of higher order
6419 * pages. Because of this, we reserve the bigger range and
6420 * once this is done free the pages we are not interested in.
6421 *
6422 * We don't have to hold zone->lock here because the pages are
6423 * isolated thus they won't get removed from buddy.
6424 */
6425
6426 lru_add_drain_all();
510f5507 6427 drain_all_pages(cc.zone);
041d3a8c
MN
6428
6429 order = 0;
6430 outer_start = start;
6431 while (!PageBuddy(pfn_to_page(outer_start))) {
6432 if (++order >= MAX_ORDER) {
6433 ret = -EBUSY;
6434 goto done;
6435 }
6436 outer_start &= ~0UL << order;
6437 }
6438
6439 /* Make sure the range is really isolated. */
b023f468 6440 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6441 pr_info("%s: [%lx, %lx) PFNs busy\n",
6442 __func__, outer_start, end);
041d3a8c
MN
6443 ret = -EBUSY;
6444 goto done;
6445 }
6446
49f223a9 6447 /* Grab isolated pages from freelists. */
bb13ffeb 6448 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6449 if (!outer_end) {
6450 ret = -EBUSY;
6451 goto done;
6452 }
6453
6454 /* Free head and tail (if any) */
6455 if (start != outer_start)
6456 free_contig_range(outer_start, start - outer_start);
6457 if (end != outer_end)
6458 free_contig_range(end, outer_end - end);
6459
6460done:
6461 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6462 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6463 return ret;
6464}
6465
6466void free_contig_range(unsigned long pfn, unsigned nr_pages)
6467{
bcc2b02f
MS
6468 unsigned int count = 0;
6469
6470 for (; nr_pages--; pfn++) {
6471 struct page *page = pfn_to_page(pfn);
6472
6473 count += page_count(page) != 1;
6474 __free_page(page);
6475 }
6476 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6477}
6478#endif
6479
4ed7e022 6480#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6481/*
6482 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6483 * page high values need to be recalulated.
6484 */
4ed7e022
JL
6485void __meminit zone_pcp_update(struct zone *zone)
6486{
0a647f38 6487 unsigned cpu;
c8e251fa 6488 mutex_lock(&pcp_batch_high_lock);
0a647f38 6489 for_each_possible_cpu(cpu)
169f6c19
CS
6490 pageset_set_high_and_batch(zone,
6491 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6492 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6493}
6494#endif
6495
340175b7
JL
6496void zone_pcp_reset(struct zone *zone)
6497{
6498 unsigned long flags;
5a883813
MK
6499 int cpu;
6500 struct per_cpu_pageset *pset;
340175b7
JL
6501
6502 /* avoid races with drain_pages() */
6503 local_irq_save(flags);
6504 if (zone->pageset != &boot_pageset) {
5a883813
MK
6505 for_each_online_cpu(cpu) {
6506 pset = per_cpu_ptr(zone->pageset, cpu);
6507 drain_zonestat(zone, pset);
6508 }
340175b7
JL
6509 free_percpu(zone->pageset);
6510 zone->pageset = &boot_pageset;
6511 }
6512 local_irq_restore(flags);
6513}
6514
6dcd73d7 6515#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6516/*
6517 * All pages in the range must be isolated before calling this.
6518 */
6519void
6520__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6521{
6522 struct page *page;
6523 struct zone *zone;
7aeb09f9 6524 unsigned int order, i;
0c0e6195
KH
6525 unsigned long pfn;
6526 unsigned long flags;
6527 /* find the first valid pfn */
6528 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6529 if (pfn_valid(pfn))
6530 break;
6531 if (pfn == end_pfn)
6532 return;
6533 zone = page_zone(pfn_to_page(pfn));
6534 spin_lock_irqsave(&zone->lock, flags);
6535 pfn = start_pfn;
6536 while (pfn < end_pfn) {
6537 if (!pfn_valid(pfn)) {
6538 pfn++;
6539 continue;
6540 }
6541 page = pfn_to_page(pfn);
b023f468
WC
6542 /*
6543 * The HWPoisoned page may be not in buddy system, and
6544 * page_count() is not 0.
6545 */
6546 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6547 pfn++;
6548 SetPageReserved(page);
6549 continue;
6550 }
6551
0c0e6195
KH
6552 BUG_ON(page_count(page));
6553 BUG_ON(!PageBuddy(page));
6554 order = page_order(page);
6555#ifdef CONFIG_DEBUG_VM
6556 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6557 pfn, 1 << order, end_pfn);
6558#endif
6559 list_del(&page->lru);
6560 rmv_page_order(page);
6561 zone->free_area[order].nr_free--;
0c0e6195
KH
6562 for (i = 0; i < (1 << order); i++)
6563 SetPageReserved((page+i));
6564 pfn += (1 << order);
6565 }
6566 spin_unlock_irqrestore(&zone->lock, flags);
6567}
6568#endif
8d22ba1b
WF
6569
6570#ifdef CONFIG_MEMORY_FAILURE
6571bool is_free_buddy_page(struct page *page)
6572{
6573 struct zone *zone = page_zone(page);
6574 unsigned long pfn = page_to_pfn(page);
6575 unsigned long flags;
7aeb09f9 6576 unsigned int order;
8d22ba1b
WF
6577
6578 spin_lock_irqsave(&zone->lock, flags);
6579 for (order = 0; order < MAX_ORDER; order++) {
6580 struct page *page_head = page - (pfn & ((1 << order) - 1));
6581
6582 if (PageBuddy(page_head) && page_order(page_head) >= order)
6583 break;
6584 }
6585 spin_unlock_irqrestore(&zone->lock, flags);
6586
6587 return order < MAX_ORDER;
6588}
6589#endif