]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm: remove free_page_mlock
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
ac924c60 63#include <asm/div64.h>
1da177e4
LT
64#include "internal.h"
65
72812019
LS
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
7aac7898
LS
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
1da177e4 82/*
13808910 83 * Array of node states.
1da177e4 84 */
13808910
CL
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92#endif
93 [N_CPU] = { { [0] = 1UL } },
94#endif /* NUMA */
95};
96EXPORT_SYMBOL(node_states);
97
6c231b7b 98unsigned long totalram_pages __read_mostly;
cb45b0e9 99unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
100/*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106unsigned long dirty_balance_reserve __read_mostly;
107
1b76b02f 108int percpu_pagelist_fraction;
dcce284a 109gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 110
452aa699
RW
111#ifdef CONFIG_PM_SLEEP
112/*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
c9e664f1
RW
120
121static gfp_t saved_gfp_mask;
122
123void pm_restore_gfp_mask(void)
452aa699
RW
124{
125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
452aa699
RW
130}
131
c9e664f1 132void pm_restrict_gfp_mask(void)
452aa699 133{
452aa699 134 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 138}
f90ac398
MG
139
140bool pm_suspended_storage(void)
141{
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145}
452aa699
RW
146#endif /* CONFIG_PM_SLEEP */
147
d9c23400
MG
148#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149int pageblock_order __read_mostly;
150#endif
151
d98c7a09 152static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 153
1da177e4
LT
154/*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
1da177e4 164 */
2f1b6248 165int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 166#ifdef CONFIG_ZONE_DMA
2f1b6248 167 256,
4b51d669 168#endif
fb0e7942 169#ifdef CONFIG_ZONE_DMA32
2f1b6248 170 256,
fb0e7942 171#endif
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 32,
e53ef38d 174#endif
2a1e274a 175 32,
2f1b6248 176};
1da177e4
LT
177
178EXPORT_SYMBOL(totalram_pages);
1da177e4 179
15ad7cdc 180static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 "DMA",
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 "DMA32",
fb0e7942 186#endif
2f1b6248 187 "Normal",
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 "HighMem",
e53ef38d 190#endif
2a1e274a 191 "Movable",
2f1b6248
CL
192};
193
1da177e4
LT
194int min_free_kbytes = 1024;
195
2c85f51d
JB
196static unsigned long __meminitdata nr_kernel_pages;
197static unsigned long __meminitdata nr_all_pages;
a3142c8e 198static unsigned long __meminitdata dma_reserve;
1da177e4 199
0ee332c1
TH
200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __initdata required_kernelcore;
204static unsigned long __initdata required_movablecore;
205static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208int movable_zone;
209EXPORT_SYMBOL(movable_zone);
210#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 211
418508c1
MS
212#if MAX_NUMNODES > 1
213int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 214int nr_online_nodes __read_mostly = 1;
418508c1 215EXPORT_SYMBOL(nr_node_ids);
62bc62a8 216EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
217#endif
218
9ef9acb0
MG
219int page_group_by_mobility_disabled __read_mostly;
220
702d1a6e
MK
221/*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
ee6f509c 226void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 227{
49255c61
MG
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
b2a0ac88
MG
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234}
235
7f33d49a
RW
236bool oom_killer_disabled __read_mostly;
237
13e7444b 238#ifdef CONFIG_DEBUG_VM
c6a57e19 239static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 240{
bdc8cb98
DH
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
c6a57e19 244
bdc8cb98
DH
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
c6a57e19
DH
254}
255
256static int page_is_consistent(struct zone *zone, struct page *page)
257{
14e07298 258 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 259 return 0;
1da177e4 260 if (zone != page_zone(page))
c6a57e19
DH
261 return 0;
262
263 return 1;
264}
265/*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268static int bad_range(struct zone *zone, struct page *page)
269{
270 if (page_outside_zone_boundaries(zone, page))
1da177e4 271 return 1;
c6a57e19
DH
272 if (!page_is_consistent(zone, page))
273 return 1;
274
1da177e4
LT
275 return 0;
276}
13e7444b
NP
277#else
278static inline int bad_range(struct zone *zone, struct page *page)
279{
280 return 0;
281}
282#endif
283
224abf92 284static void bad_page(struct page *page)
1da177e4 285{
d936cf9b
HD
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
2a7684a2
WF
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
ef2b4b95 292 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
293 return;
294 }
295
d936cf9b
HD
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
1e9e6365
HD
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
1e9e6365 316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 317 current->comm, page_to_pfn(page));
718a3821 318 dump_page(page);
3dc14741 319
4f31888c 320 print_modules();
1da177e4 321 dump_stack();
d936cf9b 322out:
8cc3b392 323 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 324 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 325 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
326}
327
1da177e4
LT
328/*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
6416b9fa
WSH
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
1da177e4 337 *
41d78ba5
HD
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
1da177e4 341 */
d98c7a09
HD
342
343static void free_compound_page(struct page *page)
344{
d85f3385 345 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
346}
347
01ad1c08 348void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
349{
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
18229df5 358 __SetPageTail(p);
58a84aa9 359 set_page_count(p, 0);
18229df5
AW
360 p->first_page = page;
361 }
362}
363
59ff4216 364/* update __split_huge_page_refcount if you change this function */
8cc3b392 365static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
366{
367 int i;
368 int nr_pages = 1 << order;
8cc3b392 369 int bad = 0;
1da177e4 370
8cc3b392
HD
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
224abf92 373 bad_page(page);
8cc3b392
HD
374 bad++;
375 }
1da177e4 376
6d777953 377 __ClearPageHead(page);
8cc3b392 378
18229df5
AW
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
1da177e4 381
e713a21d 382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 383 bad_page(page);
8cc3b392
HD
384 bad++;
385 }
d85f3385 386 __ClearPageTail(p);
1da177e4 387 }
8cc3b392
HD
388
389 return bad;
1da177e4 390}
1da177e4 391
17cf4406
NP
392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393{
394 int i;
395
6626c5d5
AM
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
725d704e 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403}
404
c0a32fc5
SG
405#ifdef CONFIG_DEBUG_PAGEALLOC
406unsigned int _debug_guardpage_minorder;
407
408static int __init debug_guardpage_minorder_setup(char *buf)
409{
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419}
420__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422static inline void set_page_guard_flag(struct page *page)
423{
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425}
426
427static inline void clear_page_guard_flag(struct page *page)
428{
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430}
431#else
432static inline void set_page_guard_flag(struct page *page) { }
433static inline void clear_page_guard_flag(struct page *page) { }
434#endif
435
6aa3001b
AM
436static inline void set_page_order(struct page *page, int order)
437{
4c21e2f2 438 set_page_private(page, order);
676165a8 439 __SetPageBuddy(page);
1da177e4
LT
440}
441
442static inline void rmv_page_order(struct page *page)
443{
676165a8 444 __ClearPageBuddy(page);
4c21e2f2 445 set_page_private(page, 0);
1da177e4
LT
446}
447
448/*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
d6e05edc 463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 464 */
1da177e4 465static inline unsigned long
43506fad 466__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 467{
43506fad 468 return page_idx ^ (1 << order);
1da177e4
LT
469}
470
471/*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
13e7444b 474 * (a) the buddy is not in a hole &&
676165a8 475 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
676165a8 478 *
5f24ce5f
AA
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 481 *
676165a8 482 * For recording page's order, we use page_private(page).
1da177e4 483 */
cb2b95e1
AW
484static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
1da177e4 486{
14e07298 487 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 488 return 0;
13e7444b 489
cb2b95e1
AW
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
c0a32fc5
SG
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
cb2b95e1 498 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 499 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 500 return 1;
676165a8 501 }
6aa3001b 502 return 0;
1da177e4
LT
503}
504
505/*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 519 * order is recorded in page_private(page) field.
1da177e4 520 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
1da177e4 523 * If a block is freed, and its buddy is also free, then this
5f63b720 524 * triggers coalescing into a block of larger size.
1da177e4
LT
525 *
526 * -- wli
527 */
528
48db57f8 529static inline void __free_one_page(struct page *page,
ed0ae21d
MG
530 struct zone *zone, unsigned int order,
531 int migratetype)
1da177e4
LT
532{
533 unsigned long page_idx;
6dda9d55 534 unsigned long combined_idx;
43506fad 535 unsigned long uninitialized_var(buddy_idx);
6dda9d55 536 struct page *buddy;
1da177e4 537
224abf92 538 if (unlikely(PageCompound(page)))
8cc3b392
HD
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
1da177e4 541
ed0ae21d
MG
542 VM_BUG_ON(migratetype == -1);
543
1da177e4
LT
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
f2260e6b 546 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 547 VM_BUG_ON(bad_range(zone, page));
1da177e4 548
1da177e4 549 while (order < MAX_ORDER-1) {
43506fad
KC
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
cb2b95e1 552 if (!page_is_buddy(page, buddy, order))
3c82d0ce 553 break;
c0a32fc5
SG
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
d1ce749a
BZ
561 __mod_zone_freepage_state(zone, 1 << order,
562 migratetype);
c0a32fc5
SG
563 } else {
564 list_del(&buddy->lru);
565 zone->free_area[order].nr_free--;
566 rmv_page_order(buddy);
567 }
43506fad 568 combined_idx = buddy_idx & page_idx;
1da177e4
LT
569 page = page + (combined_idx - page_idx);
570 page_idx = combined_idx;
571 order++;
572 }
573 set_page_order(page, order);
6dda9d55
CZ
574
575 /*
576 * If this is not the largest possible page, check if the buddy
577 * of the next-highest order is free. If it is, it's possible
578 * that pages are being freed that will coalesce soon. In case,
579 * that is happening, add the free page to the tail of the list
580 * so it's less likely to be used soon and more likely to be merged
581 * as a higher order page
582 */
b7f50cfa 583 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 584 struct page *higher_page, *higher_buddy;
43506fad
KC
585 combined_idx = buddy_idx & page_idx;
586 higher_page = page + (combined_idx - page_idx);
587 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 588 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
589 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
590 list_add_tail(&page->lru,
591 &zone->free_area[order].free_list[migratetype]);
592 goto out;
593 }
594 }
595
596 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
597out:
1da177e4
LT
598 zone->free_area[order].nr_free++;
599}
600
224abf92 601static inline int free_pages_check(struct page *page)
1da177e4 602{
92be2e33
NP
603 if (unlikely(page_mapcount(page) |
604 (page->mapping != NULL) |
a3af9c38 605 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
606 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
607 (mem_cgroup_bad_page_check(page)))) {
224abf92 608 bad_page(page);
79f4b7bf 609 return 1;
8cc3b392 610 }
79f4b7bf
HD
611 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
612 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
613 return 0;
1da177e4
LT
614}
615
616/*
5f8dcc21 617 * Frees a number of pages from the PCP lists
1da177e4 618 * Assumes all pages on list are in same zone, and of same order.
207f36ee 619 * count is the number of pages to free.
1da177e4
LT
620 *
621 * If the zone was previously in an "all pages pinned" state then look to
622 * see if this freeing clears that state.
623 *
624 * And clear the zone's pages_scanned counter, to hold off the "all pages are
625 * pinned" detection logic.
626 */
5f8dcc21
MG
627static void free_pcppages_bulk(struct zone *zone, int count,
628 struct per_cpu_pages *pcp)
1da177e4 629{
5f8dcc21 630 int migratetype = 0;
a6f9edd6 631 int batch_free = 0;
72853e29 632 int to_free = count;
5f8dcc21 633
c54ad30c 634 spin_lock(&zone->lock);
93e4a89a 635 zone->all_unreclaimable = 0;
1da177e4 636 zone->pages_scanned = 0;
f2260e6b 637
72853e29 638 while (to_free) {
48db57f8 639 struct page *page;
5f8dcc21
MG
640 struct list_head *list;
641
642 /*
a6f9edd6
MG
643 * Remove pages from lists in a round-robin fashion. A
644 * batch_free count is maintained that is incremented when an
645 * empty list is encountered. This is so more pages are freed
646 * off fuller lists instead of spinning excessively around empty
647 * lists
5f8dcc21
MG
648 */
649 do {
a6f9edd6 650 batch_free++;
5f8dcc21
MG
651 if (++migratetype == MIGRATE_PCPTYPES)
652 migratetype = 0;
653 list = &pcp->lists[migratetype];
654 } while (list_empty(list));
48db57f8 655
1d16871d
NK
656 /* This is the only non-empty list. Free them all. */
657 if (batch_free == MIGRATE_PCPTYPES)
658 batch_free = to_free;
659
a6f9edd6 660 do {
770c8aaa
BZ
661 int mt; /* migratetype of the to-be-freed page */
662
a6f9edd6
MG
663 page = list_entry(list->prev, struct page, lru);
664 /* must delete as __free_one_page list manipulates */
665 list_del(&page->lru);
b12c4ad1 666 mt = get_freepage_migratetype(page);
a7016235 667 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
668 __free_one_page(page, zone, 0, mt);
669 trace_mm_page_pcpu_drain(page, 0, mt);
d1ce749a
BZ
670 if (is_migrate_cma(mt))
671 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
72853e29 672 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 673 }
72853e29 674 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 675 spin_unlock(&zone->lock);
1da177e4
LT
676}
677
ed0ae21d
MG
678static void free_one_page(struct zone *zone, struct page *page, int order,
679 int migratetype)
1da177e4 680{
006d22d9 681 spin_lock(&zone->lock);
93e4a89a 682 zone->all_unreclaimable = 0;
006d22d9 683 zone->pages_scanned = 0;
f2260e6b 684
ed0ae21d 685 __free_one_page(page, zone, order, migratetype);
2139cbe6 686 if (unlikely(migratetype != MIGRATE_ISOLATE))
d1ce749a 687 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 688 spin_unlock(&zone->lock);
48db57f8
NP
689}
690
ec95f53a 691static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 692{
1da177e4 693 int i;
8cc3b392 694 int bad = 0;
1da177e4 695
b413d48a 696 trace_mm_page_free(page, order);
b1eeab67
VN
697 kmemcheck_free_shadow(page, order);
698
8dd60a3a
AA
699 if (PageAnon(page))
700 page->mapping = NULL;
701 for (i = 0; i < (1 << order); i++)
702 bad += free_pages_check(page + i);
8cc3b392 703 if (bad)
ec95f53a 704 return false;
689bcebf 705
3ac7fe5a 706 if (!PageHighMem(page)) {
9858db50 707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
708 debug_check_no_obj_freed(page_address(page),
709 PAGE_SIZE << order);
710 }
dafb1367 711 arch_free_page(page, order);
48db57f8 712 kernel_map_pages(page, 1 << order, 0);
dafb1367 713
ec95f53a
KM
714 return true;
715}
716
717static void __free_pages_ok(struct page *page, unsigned int order)
718{
719 unsigned long flags;
95e34412 720 int migratetype;
ec95f53a
KM
721
722 if (!free_pages_prepare(page, order))
723 return;
724
c54ad30c 725 local_irq_save(flags);
f8891e5e 726 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
727 migratetype = get_pageblock_migratetype(page);
728 set_freepage_migratetype(page, migratetype);
729 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 730 local_irq_restore(flags);
1da177e4
LT
731}
732
af370fb8 733void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 734{
c3993076
JW
735 unsigned int nr_pages = 1 << order;
736 unsigned int loop;
a226f6c8 737
c3993076
JW
738 prefetchw(page);
739 for (loop = 0; loop < nr_pages; loop++) {
740 struct page *p = &page[loop];
741
742 if (loop + 1 < nr_pages)
743 prefetchw(p + 1);
744 __ClearPageReserved(p);
745 set_page_count(p, 0);
a226f6c8 746 }
c3993076
JW
747
748 set_page_refcounted(page);
749 __free_pages(page, order);
a226f6c8
DH
750}
751
47118af0
MN
752#ifdef CONFIG_CMA
753/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
754void __init init_cma_reserved_pageblock(struct page *page)
755{
756 unsigned i = pageblock_nr_pages;
757 struct page *p = page;
758
759 do {
760 __ClearPageReserved(p);
761 set_page_count(p, 0);
762 } while (++p, --i);
763
764 set_page_refcounted(page);
765 set_pageblock_migratetype(page, MIGRATE_CMA);
766 __free_pages(page, pageblock_order);
767 totalram_pages += pageblock_nr_pages;
768}
769#endif
1da177e4
LT
770
771/*
772 * The order of subdivision here is critical for the IO subsystem.
773 * Please do not alter this order without good reasons and regression
774 * testing. Specifically, as large blocks of memory are subdivided,
775 * the order in which smaller blocks are delivered depends on the order
776 * they're subdivided in this function. This is the primary factor
777 * influencing the order in which pages are delivered to the IO
778 * subsystem according to empirical testing, and this is also justified
779 * by considering the behavior of a buddy system containing a single
780 * large block of memory acted on by a series of small allocations.
781 * This behavior is a critical factor in sglist merging's success.
782 *
783 * -- wli
784 */
085cc7d5 785static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
786 int low, int high, struct free_area *area,
787 int migratetype)
1da177e4
LT
788{
789 unsigned long size = 1 << high;
790
791 while (high > low) {
792 area--;
793 high--;
794 size >>= 1;
725d704e 795 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
796
797#ifdef CONFIG_DEBUG_PAGEALLOC
798 if (high < debug_guardpage_minorder()) {
799 /*
800 * Mark as guard pages (or page), that will allow to
801 * merge back to allocator when buddy will be freed.
802 * Corresponding page table entries will not be touched,
803 * pages will stay not present in virtual address space
804 */
805 INIT_LIST_HEAD(&page[size].lru);
806 set_page_guard_flag(&page[size]);
807 set_page_private(&page[size], high);
808 /* Guard pages are not available for any usage */
d1ce749a
BZ
809 __mod_zone_freepage_state(zone, -(1 << high),
810 migratetype);
c0a32fc5
SG
811 continue;
812 }
813#endif
b2a0ac88 814 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
815 area->nr_free++;
816 set_page_order(&page[size], high);
817 }
1da177e4
LT
818}
819
1da177e4
LT
820/*
821 * This page is about to be returned from the page allocator
822 */
2a7684a2 823static inline int check_new_page(struct page *page)
1da177e4 824{
92be2e33
NP
825 if (unlikely(page_mapcount(page) |
826 (page->mapping != NULL) |
a3af9c38 827 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
828 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
829 (mem_cgroup_bad_page_check(page)))) {
224abf92 830 bad_page(page);
689bcebf 831 return 1;
8cc3b392 832 }
2a7684a2
WF
833 return 0;
834}
835
836static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
837{
838 int i;
839
840 for (i = 0; i < (1 << order); i++) {
841 struct page *p = page + i;
842 if (unlikely(check_new_page(p)))
843 return 1;
844 }
689bcebf 845
4c21e2f2 846 set_page_private(page, 0);
7835e98b 847 set_page_refcounted(page);
cc102509
NP
848
849 arch_alloc_page(page, order);
1da177e4 850 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
851
852 if (gfp_flags & __GFP_ZERO)
853 prep_zero_page(page, order, gfp_flags);
854
855 if (order && (gfp_flags & __GFP_COMP))
856 prep_compound_page(page, order);
857
689bcebf 858 return 0;
1da177e4
LT
859}
860
56fd56b8
MG
861/*
862 * Go through the free lists for the given migratetype and remove
863 * the smallest available page from the freelists
864 */
728ec980
MG
865static inline
866struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
867 int migratetype)
868{
869 unsigned int current_order;
870 struct free_area * area;
871 struct page *page;
872
873 /* Find a page of the appropriate size in the preferred list */
874 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
875 area = &(zone->free_area[current_order]);
876 if (list_empty(&area->free_list[migratetype]))
877 continue;
878
879 page = list_entry(area->free_list[migratetype].next,
880 struct page, lru);
881 list_del(&page->lru);
882 rmv_page_order(page);
883 area->nr_free--;
56fd56b8
MG
884 expand(zone, page, order, current_order, area, migratetype);
885 return page;
886 }
887
888 return NULL;
889}
890
891
b2a0ac88
MG
892/*
893 * This array describes the order lists are fallen back to when
894 * the free lists for the desirable migrate type are depleted
895 */
47118af0
MN
896static int fallbacks[MIGRATE_TYPES][4] = {
897 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
898 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
899#ifdef CONFIG_CMA
900 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
901 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
902#else
903 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
904#endif
6d4a4916
MN
905 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
906 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
907};
908
c361be55
MG
909/*
910 * Move the free pages in a range to the free lists of the requested type.
d9c23400 911 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
912 * boundary. If alignment is required, use move_freepages_block()
913 */
435b405c 914int move_freepages(struct zone *zone,
b69a7288
AB
915 struct page *start_page, struct page *end_page,
916 int migratetype)
c361be55
MG
917{
918 struct page *page;
919 unsigned long order;
d100313f 920 int pages_moved = 0;
c361be55
MG
921
922#ifndef CONFIG_HOLES_IN_ZONE
923 /*
924 * page_zone is not safe to call in this context when
925 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
926 * anyway as we check zone boundaries in move_freepages_block().
927 * Remove at a later date when no bug reports exist related to
ac0e5b7a 928 * grouping pages by mobility
c361be55
MG
929 */
930 BUG_ON(page_zone(start_page) != page_zone(end_page));
931#endif
932
933 for (page = start_page; page <= end_page;) {
344c790e
AL
934 /* Make sure we are not inadvertently changing nodes */
935 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
936
c361be55
MG
937 if (!pfn_valid_within(page_to_pfn(page))) {
938 page++;
939 continue;
940 }
941
942 if (!PageBuddy(page)) {
943 page++;
944 continue;
945 }
946
947 order = page_order(page);
84be48d8
KS
948 list_move(&page->lru,
949 &zone->free_area[order].free_list[migratetype]);
95e34412 950 set_freepage_migratetype(page, migratetype);
c361be55 951 page += 1 << order;
d100313f 952 pages_moved += 1 << order;
c361be55
MG
953 }
954
d100313f 955 return pages_moved;
c361be55
MG
956}
957
ee6f509c 958int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 959 int migratetype)
c361be55
MG
960{
961 unsigned long start_pfn, end_pfn;
962 struct page *start_page, *end_page;
963
964 start_pfn = page_to_pfn(page);
d9c23400 965 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 966 start_page = pfn_to_page(start_pfn);
d9c23400
MG
967 end_page = start_page + pageblock_nr_pages - 1;
968 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
969
970 /* Do not cross zone boundaries */
971 if (start_pfn < zone->zone_start_pfn)
972 start_page = page;
973 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
974 return 0;
975
976 return move_freepages(zone, start_page, end_page, migratetype);
977}
978
2f66a68f
MG
979static void change_pageblock_range(struct page *pageblock_page,
980 int start_order, int migratetype)
981{
982 int nr_pageblocks = 1 << (start_order - pageblock_order);
983
984 while (nr_pageblocks--) {
985 set_pageblock_migratetype(pageblock_page, migratetype);
986 pageblock_page += pageblock_nr_pages;
987 }
988}
989
b2a0ac88 990/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
991static inline struct page *
992__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
993{
994 struct free_area * area;
995 int current_order;
996 struct page *page;
997 int migratetype, i;
998
999 /* Find the largest possible block of pages in the other list */
1000 for (current_order = MAX_ORDER-1; current_order >= order;
1001 --current_order) {
6d4a4916 1002 for (i = 0;; i++) {
b2a0ac88
MG
1003 migratetype = fallbacks[start_migratetype][i];
1004
56fd56b8
MG
1005 /* MIGRATE_RESERVE handled later if necessary */
1006 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1007 break;
e010487d 1008
b2a0ac88
MG
1009 area = &(zone->free_area[current_order]);
1010 if (list_empty(&area->free_list[migratetype]))
1011 continue;
1012
1013 page = list_entry(area->free_list[migratetype].next,
1014 struct page, lru);
1015 area->nr_free--;
1016
1017 /*
c361be55 1018 * If breaking a large block of pages, move all free
46dafbca
MG
1019 * pages to the preferred allocation list. If falling
1020 * back for a reclaimable kernel allocation, be more
25985edc 1021 * aggressive about taking ownership of free pages
47118af0
MN
1022 *
1023 * On the other hand, never change migration
1024 * type of MIGRATE_CMA pageblocks nor move CMA
1025 * pages on different free lists. We don't
1026 * want unmovable pages to be allocated from
1027 * MIGRATE_CMA areas.
b2a0ac88 1028 */
47118af0
MN
1029 if (!is_migrate_cma(migratetype) &&
1030 (unlikely(current_order >= pageblock_order / 2) ||
1031 start_migratetype == MIGRATE_RECLAIMABLE ||
1032 page_group_by_mobility_disabled)) {
1033 int pages;
46dafbca
MG
1034 pages = move_freepages_block(zone, page,
1035 start_migratetype);
1036
1037 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1038 if (pages >= (1 << (pageblock_order-1)) ||
1039 page_group_by_mobility_disabled)
46dafbca
MG
1040 set_pageblock_migratetype(page,
1041 start_migratetype);
1042
b2a0ac88 1043 migratetype = start_migratetype;
c361be55 1044 }
b2a0ac88
MG
1045
1046 /* Remove the page from the freelists */
1047 list_del(&page->lru);
1048 rmv_page_order(page);
b2a0ac88 1049
2f66a68f 1050 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1051 if (current_order >= pageblock_order &&
1052 !is_migrate_cma(migratetype))
2f66a68f 1053 change_pageblock_range(page, current_order,
b2a0ac88
MG
1054 start_migratetype);
1055
47118af0
MN
1056 expand(zone, page, order, current_order, area,
1057 is_migrate_cma(migratetype)
1058 ? migratetype : start_migratetype);
e0fff1bd
MG
1059
1060 trace_mm_page_alloc_extfrag(page, order, current_order,
1061 start_migratetype, migratetype);
1062
b2a0ac88
MG
1063 return page;
1064 }
1065 }
1066
728ec980 1067 return NULL;
b2a0ac88
MG
1068}
1069
56fd56b8 1070/*
1da177e4
LT
1071 * Do the hard work of removing an element from the buddy allocator.
1072 * Call me with the zone->lock already held.
1073 */
b2a0ac88
MG
1074static struct page *__rmqueue(struct zone *zone, unsigned int order,
1075 int migratetype)
1da177e4 1076{
1da177e4
LT
1077 struct page *page;
1078
728ec980 1079retry_reserve:
56fd56b8 1080 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1081
728ec980 1082 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1083 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1084
728ec980
MG
1085 /*
1086 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1087 * is used because __rmqueue_smallest is an inline function
1088 * and we want just one call site
1089 */
1090 if (!page) {
1091 migratetype = MIGRATE_RESERVE;
1092 goto retry_reserve;
1093 }
1094 }
1095
0d3d062a 1096 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1097 return page;
1da177e4
LT
1098}
1099
5f63b720 1100/*
1da177e4
LT
1101 * Obtain a specified number of elements from the buddy allocator, all under
1102 * a single hold of the lock, for efficiency. Add them to the supplied list.
1103 * Returns the number of new pages which were placed at *list.
1104 */
5f63b720 1105static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1106 unsigned long count, struct list_head *list,
e084b2d9 1107 int migratetype, int cold)
1da177e4 1108{
47118af0 1109 int mt = migratetype, i;
5f63b720 1110
c54ad30c 1111 spin_lock(&zone->lock);
1da177e4 1112 for (i = 0; i < count; ++i) {
b2a0ac88 1113 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1114 if (unlikely(page == NULL))
1da177e4 1115 break;
81eabcbe
MG
1116
1117 /*
1118 * Split buddy pages returned by expand() are received here
1119 * in physical page order. The page is added to the callers and
1120 * list and the list head then moves forward. From the callers
1121 * perspective, the linked list is ordered by page number in
1122 * some conditions. This is useful for IO devices that can
1123 * merge IO requests if the physical pages are ordered
1124 * properly.
1125 */
e084b2d9
MG
1126 if (likely(cold == 0))
1127 list_add(&page->lru, list);
1128 else
1129 list_add_tail(&page->lru, list);
47118af0
MN
1130 if (IS_ENABLED(CONFIG_CMA)) {
1131 mt = get_pageblock_migratetype(page);
1132 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1133 mt = migratetype;
1134 }
b12c4ad1 1135 set_freepage_migratetype(page, mt);
81eabcbe 1136 list = &page->lru;
d1ce749a
BZ
1137 if (is_migrate_cma(mt))
1138 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1139 -(1 << order));
1da177e4 1140 }
f2260e6b 1141 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1142 spin_unlock(&zone->lock);
085cc7d5 1143 return i;
1da177e4
LT
1144}
1145
4ae7c039 1146#ifdef CONFIG_NUMA
8fce4d8e 1147/*
4037d452
CL
1148 * Called from the vmstat counter updater to drain pagesets of this
1149 * currently executing processor on remote nodes after they have
1150 * expired.
1151 *
879336c3
CL
1152 * Note that this function must be called with the thread pinned to
1153 * a single processor.
8fce4d8e 1154 */
4037d452 1155void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1156{
4ae7c039 1157 unsigned long flags;
4037d452 1158 int to_drain;
4ae7c039 1159
4037d452
CL
1160 local_irq_save(flags);
1161 if (pcp->count >= pcp->batch)
1162 to_drain = pcp->batch;
1163 else
1164 to_drain = pcp->count;
2a13515c
KM
1165 if (to_drain > 0) {
1166 free_pcppages_bulk(zone, to_drain, pcp);
1167 pcp->count -= to_drain;
1168 }
4037d452 1169 local_irq_restore(flags);
4ae7c039
CL
1170}
1171#endif
1172
9f8f2172
CL
1173/*
1174 * Drain pages of the indicated processor.
1175 *
1176 * The processor must either be the current processor and the
1177 * thread pinned to the current processor or a processor that
1178 * is not online.
1179 */
1180static void drain_pages(unsigned int cpu)
1da177e4 1181{
c54ad30c 1182 unsigned long flags;
1da177e4 1183 struct zone *zone;
1da177e4 1184
ee99c71c 1185 for_each_populated_zone(zone) {
1da177e4 1186 struct per_cpu_pageset *pset;
3dfa5721 1187 struct per_cpu_pages *pcp;
1da177e4 1188
99dcc3e5
CL
1189 local_irq_save(flags);
1190 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1191
1192 pcp = &pset->pcp;
2ff754fa
DR
1193 if (pcp->count) {
1194 free_pcppages_bulk(zone, pcp->count, pcp);
1195 pcp->count = 0;
1196 }
3dfa5721 1197 local_irq_restore(flags);
1da177e4
LT
1198 }
1199}
1da177e4 1200
9f8f2172
CL
1201/*
1202 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1203 */
1204void drain_local_pages(void *arg)
1205{
1206 drain_pages(smp_processor_id());
1207}
1208
1209/*
74046494
GBY
1210 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1211 *
1212 * Note that this code is protected against sending an IPI to an offline
1213 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1214 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1215 * nothing keeps CPUs from showing up after we populated the cpumask and
1216 * before the call to on_each_cpu_mask().
9f8f2172
CL
1217 */
1218void drain_all_pages(void)
1219{
74046494
GBY
1220 int cpu;
1221 struct per_cpu_pageset *pcp;
1222 struct zone *zone;
1223
1224 /*
1225 * Allocate in the BSS so we wont require allocation in
1226 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1227 */
1228 static cpumask_t cpus_with_pcps;
1229
1230 /*
1231 * We don't care about racing with CPU hotplug event
1232 * as offline notification will cause the notified
1233 * cpu to drain that CPU pcps and on_each_cpu_mask
1234 * disables preemption as part of its processing
1235 */
1236 for_each_online_cpu(cpu) {
1237 bool has_pcps = false;
1238 for_each_populated_zone(zone) {
1239 pcp = per_cpu_ptr(zone->pageset, cpu);
1240 if (pcp->pcp.count) {
1241 has_pcps = true;
1242 break;
1243 }
1244 }
1245 if (has_pcps)
1246 cpumask_set_cpu(cpu, &cpus_with_pcps);
1247 else
1248 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1249 }
1250 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1251}
1252
296699de 1253#ifdef CONFIG_HIBERNATION
1da177e4
LT
1254
1255void mark_free_pages(struct zone *zone)
1256{
f623f0db
RW
1257 unsigned long pfn, max_zone_pfn;
1258 unsigned long flags;
b2a0ac88 1259 int order, t;
1da177e4
LT
1260 struct list_head *curr;
1261
1262 if (!zone->spanned_pages)
1263 return;
1264
1265 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1266
1267 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1269 if (pfn_valid(pfn)) {
1270 struct page *page = pfn_to_page(pfn);
1271
7be98234
RW
1272 if (!swsusp_page_is_forbidden(page))
1273 swsusp_unset_page_free(page);
f623f0db 1274 }
1da177e4 1275
b2a0ac88
MG
1276 for_each_migratetype_order(order, t) {
1277 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1278 unsigned long i;
1da177e4 1279
f623f0db
RW
1280 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1281 for (i = 0; i < (1UL << order); i++)
7be98234 1282 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1283 }
b2a0ac88 1284 }
1da177e4
LT
1285 spin_unlock_irqrestore(&zone->lock, flags);
1286}
e2c55dc8 1287#endif /* CONFIG_PM */
1da177e4 1288
1da177e4
LT
1289/*
1290 * Free a 0-order page
fc91668e 1291 * cold == 1 ? free a cold page : free a hot page
1da177e4 1292 */
fc91668e 1293void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1294{
1295 struct zone *zone = page_zone(page);
1296 struct per_cpu_pages *pcp;
1297 unsigned long flags;
5f8dcc21 1298 int migratetype;
1da177e4 1299
ec95f53a 1300 if (!free_pages_prepare(page, 0))
689bcebf
HD
1301 return;
1302
5f8dcc21 1303 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1304 set_freepage_migratetype(page, migratetype);
1da177e4 1305 local_irq_save(flags);
f8891e5e 1306 __count_vm_event(PGFREE);
da456f14 1307
5f8dcc21
MG
1308 /*
1309 * We only track unmovable, reclaimable and movable on pcp lists.
1310 * Free ISOLATE pages back to the allocator because they are being
1311 * offlined but treat RESERVE as movable pages so we can get those
1312 * areas back if necessary. Otherwise, we may have to free
1313 * excessively into the page allocator
1314 */
1315 if (migratetype >= MIGRATE_PCPTYPES) {
1316 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1317 free_one_page(zone, page, 0, migratetype);
1318 goto out;
1319 }
1320 migratetype = MIGRATE_MOVABLE;
1321 }
1322
99dcc3e5 1323 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1324 if (cold)
5f8dcc21 1325 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1326 else
5f8dcc21 1327 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1328 pcp->count++;
48db57f8 1329 if (pcp->count >= pcp->high) {
5f8dcc21 1330 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1331 pcp->count -= pcp->batch;
1332 }
5f8dcc21
MG
1333
1334out:
1da177e4 1335 local_irq_restore(flags);
1da177e4
LT
1336}
1337
cc59850e
KK
1338/*
1339 * Free a list of 0-order pages
1340 */
1341void free_hot_cold_page_list(struct list_head *list, int cold)
1342{
1343 struct page *page, *next;
1344
1345 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1346 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1347 free_hot_cold_page(page, cold);
1348 }
1349}
1350
8dfcc9ba
NP
1351/*
1352 * split_page takes a non-compound higher-order page, and splits it into
1353 * n (1<<order) sub-pages: page[0..n]
1354 * Each sub-page must be freed individually.
1355 *
1356 * Note: this is probably too low level an operation for use in drivers.
1357 * Please consult with lkml before using this in your driver.
1358 */
1359void split_page(struct page *page, unsigned int order)
1360{
1361 int i;
1362
725d704e
NP
1363 VM_BUG_ON(PageCompound(page));
1364 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1365
1366#ifdef CONFIG_KMEMCHECK
1367 /*
1368 * Split shadow pages too, because free(page[0]) would
1369 * otherwise free the whole shadow.
1370 */
1371 if (kmemcheck_page_is_tracked(page))
1372 split_page(virt_to_page(page[0].shadow), order);
1373#endif
1374
7835e98b
NP
1375 for (i = 1; i < (1 << order); i++)
1376 set_page_refcounted(page + i);
8dfcc9ba 1377}
8dfcc9ba 1378
748446bb 1379/*
1fb3f8ca
MG
1380 * Similar to the split_page family of functions except that the page
1381 * required at the given order and being isolated now to prevent races
1382 * with parallel allocators
748446bb 1383 */
1fb3f8ca 1384int capture_free_page(struct page *page, int alloc_order, int migratetype)
748446bb
MG
1385{
1386 unsigned int order;
1387 unsigned long watermark;
1388 struct zone *zone;
2139cbe6 1389 int mt;
748446bb
MG
1390
1391 BUG_ON(!PageBuddy(page));
1392
1393 zone = page_zone(page);
1394 order = page_order(page);
1395
1396 /* Obey watermarks as if the page was being allocated */
1397 watermark = low_wmark_pages(zone) + (1 << order);
1398 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1399 return 0;
1400
1401 /* Remove page from free list */
1402 list_del(&page->lru);
1403 zone->free_area[order].nr_free--;
1404 rmv_page_order(page);
2139cbe6
BZ
1405
1406 mt = get_pageblock_migratetype(page);
1407 if (unlikely(mt != MIGRATE_ISOLATE))
d1ce749a 1408 __mod_zone_freepage_state(zone, -(1UL << order), mt);
748446bb 1409
1fb3f8ca
MG
1410 if (alloc_order != order)
1411 expand(zone, page, alloc_order, order,
1412 &zone->free_area[order], migratetype);
748446bb 1413
1fb3f8ca 1414 /* Set the pageblock if the captured page is at least a pageblock */
748446bb
MG
1415 if (order >= pageblock_order - 1) {
1416 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1417 for (; page < endpage; page += pageblock_nr_pages) {
1418 int mt = get_pageblock_migratetype(page);
1419 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1420 set_pageblock_migratetype(page,
1421 MIGRATE_MOVABLE);
1422 }
748446bb
MG
1423 }
1424
1fb3f8ca
MG
1425 return 1UL << order;
1426}
1427
1428/*
1429 * Similar to split_page except the page is already free. As this is only
1430 * being used for migration, the migratetype of the block also changes.
1431 * As this is called with interrupts disabled, the caller is responsible
1432 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1433 * are enabled.
1434 *
1435 * Note: this is probably too low level an operation for use in drivers.
1436 * Please consult with lkml before using this in your driver.
1437 */
1438int split_free_page(struct page *page)
1439{
1440 unsigned int order;
1441 int nr_pages;
1442
1443 BUG_ON(!PageBuddy(page));
1444 order = page_order(page);
1445
1446 nr_pages = capture_free_page(page, order, 0);
1447 if (!nr_pages)
1448 return 0;
1449
1450 /* Split into individual pages */
1451 set_page_refcounted(page);
1452 split_page(page, order);
1453 return nr_pages;
748446bb
MG
1454}
1455
1da177e4
LT
1456/*
1457 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1458 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1459 * or two.
1460 */
0a15c3e9
MG
1461static inline
1462struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1463 struct zone *zone, int order, gfp_t gfp_flags,
1464 int migratetype)
1da177e4
LT
1465{
1466 unsigned long flags;
689bcebf 1467 struct page *page;
1da177e4
LT
1468 int cold = !!(gfp_flags & __GFP_COLD);
1469
689bcebf 1470again:
48db57f8 1471 if (likely(order == 0)) {
1da177e4 1472 struct per_cpu_pages *pcp;
5f8dcc21 1473 struct list_head *list;
1da177e4 1474
1da177e4 1475 local_irq_save(flags);
99dcc3e5
CL
1476 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1477 list = &pcp->lists[migratetype];
5f8dcc21 1478 if (list_empty(list)) {
535131e6 1479 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1480 pcp->batch, list,
e084b2d9 1481 migratetype, cold);
5f8dcc21 1482 if (unlikely(list_empty(list)))
6fb332fa 1483 goto failed;
535131e6 1484 }
b92a6edd 1485
5f8dcc21
MG
1486 if (cold)
1487 page = list_entry(list->prev, struct page, lru);
1488 else
1489 page = list_entry(list->next, struct page, lru);
1490
b92a6edd
MG
1491 list_del(&page->lru);
1492 pcp->count--;
7fb1d9fc 1493 } else {
dab48dab
AM
1494 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1495 /*
1496 * __GFP_NOFAIL is not to be used in new code.
1497 *
1498 * All __GFP_NOFAIL callers should be fixed so that they
1499 * properly detect and handle allocation failures.
1500 *
1501 * We most definitely don't want callers attempting to
4923abf9 1502 * allocate greater than order-1 page units with
dab48dab
AM
1503 * __GFP_NOFAIL.
1504 */
4923abf9 1505 WARN_ON_ONCE(order > 1);
dab48dab 1506 }
1da177e4 1507 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1508 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1509 spin_unlock(&zone->lock);
1510 if (!page)
1511 goto failed;
d1ce749a
BZ
1512 __mod_zone_freepage_state(zone, -(1 << order),
1513 get_pageblock_migratetype(page));
1da177e4
LT
1514 }
1515
f8891e5e 1516 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1517 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1518 local_irq_restore(flags);
1da177e4 1519
725d704e 1520 VM_BUG_ON(bad_range(zone, page));
17cf4406 1521 if (prep_new_page(page, order, gfp_flags))
a74609fa 1522 goto again;
1da177e4 1523 return page;
a74609fa
NP
1524
1525failed:
1526 local_irq_restore(flags);
a74609fa 1527 return NULL;
1da177e4
LT
1528}
1529
933e312e
AM
1530#ifdef CONFIG_FAIL_PAGE_ALLOC
1531
b2588c4b 1532static struct {
933e312e
AM
1533 struct fault_attr attr;
1534
1535 u32 ignore_gfp_highmem;
1536 u32 ignore_gfp_wait;
54114994 1537 u32 min_order;
933e312e
AM
1538} fail_page_alloc = {
1539 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1540 .ignore_gfp_wait = 1,
1541 .ignore_gfp_highmem = 1,
54114994 1542 .min_order = 1,
933e312e
AM
1543};
1544
1545static int __init setup_fail_page_alloc(char *str)
1546{
1547 return setup_fault_attr(&fail_page_alloc.attr, str);
1548}
1549__setup("fail_page_alloc=", setup_fail_page_alloc);
1550
deaf386e 1551static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1552{
54114994 1553 if (order < fail_page_alloc.min_order)
deaf386e 1554 return false;
933e312e 1555 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1556 return false;
933e312e 1557 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1558 return false;
933e312e 1559 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1560 return false;
933e312e
AM
1561
1562 return should_fail(&fail_page_alloc.attr, 1 << order);
1563}
1564
1565#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1566
1567static int __init fail_page_alloc_debugfs(void)
1568{
f4ae40a6 1569 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1570 struct dentry *dir;
933e312e 1571
dd48c085
AM
1572 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1573 &fail_page_alloc.attr);
1574 if (IS_ERR(dir))
1575 return PTR_ERR(dir);
933e312e 1576
b2588c4b
AM
1577 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1578 &fail_page_alloc.ignore_gfp_wait))
1579 goto fail;
1580 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1581 &fail_page_alloc.ignore_gfp_highmem))
1582 goto fail;
1583 if (!debugfs_create_u32("min-order", mode, dir,
1584 &fail_page_alloc.min_order))
1585 goto fail;
1586
1587 return 0;
1588fail:
dd48c085 1589 debugfs_remove_recursive(dir);
933e312e 1590
b2588c4b 1591 return -ENOMEM;
933e312e
AM
1592}
1593
1594late_initcall(fail_page_alloc_debugfs);
1595
1596#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1597
1598#else /* CONFIG_FAIL_PAGE_ALLOC */
1599
deaf386e 1600static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1601{
deaf386e 1602 return false;
933e312e
AM
1603}
1604
1605#endif /* CONFIG_FAIL_PAGE_ALLOC */
1606
1da177e4 1607/*
88f5acf8 1608 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1609 * of the allocation.
1610 */
88f5acf8
MG
1611static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1612 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1613{
1614 /* free_pages my go negative - that's OK */
d23ad423 1615 long min = mark;
2cfed075 1616 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4
LT
1617 int o;
1618
df0a6daa 1619 free_pages -= (1 << order) - 1;
7fb1d9fc 1620 if (alloc_flags & ALLOC_HIGH)
1da177e4 1621 min -= min / 2;
7fb1d9fc 1622 if (alloc_flags & ALLOC_HARDER)
1da177e4 1623 min -= min / 4;
d95ea5d1
BZ
1624#ifdef CONFIG_CMA
1625 /* If allocation can't use CMA areas don't use free CMA pages */
1626 if (!(alloc_flags & ALLOC_CMA))
1627 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1628#endif
2cfed075 1629 if (free_pages <= min + lowmem_reserve)
88f5acf8 1630 return false;
1da177e4
LT
1631 for (o = 0; o < order; o++) {
1632 /* At the next order, this order's pages become unavailable */
1633 free_pages -= z->free_area[o].nr_free << o;
1634
1635 /* Require fewer higher order pages to be free */
1636 min >>= 1;
1637
1638 if (free_pages <= min)
88f5acf8 1639 return false;
1da177e4 1640 }
88f5acf8
MG
1641 return true;
1642}
1643
702d1a6e
MK
1644#ifdef CONFIG_MEMORY_ISOLATION
1645static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1646{
1647 if (unlikely(zone->nr_pageblock_isolate))
1648 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1649 return 0;
1650}
1651#else
1652static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1653{
1654 return 0;
1655}
1656#endif
1657
88f5acf8
MG
1658bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1659 int classzone_idx, int alloc_flags)
1660{
1661 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1662 zone_page_state(z, NR_FREE_PAGES));
1663}
1664
1665bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1666 int classzone_idx, int alloc_flags)
1667{
1668 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1669
1670 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1671 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1672
702d1a6e
MK
1673 /*
1674 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1675 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1676 * sleep although it could do so. But this is more desirable for memory
1677 * hotplug than sleeping which can cause a livelock in the direct
1678 * reclaim path.
1679 */
1680 free_pages -= nr_zone_isolate_freepages(z);
88f5acf8
MG
1681 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1682 free_pages);
1da177e4
LT
1683}
1684
9276b1bc
PJ
1685#ifdef CONFIG_NUMA
1686/*
1687 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1688 * skip over zones that are not allowed by the cpuset, or that have
1689 * been recently (in last second) found to be nearly full. See further
1690 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1691 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1692 *
1693 * If the zonelist cache is present in the passed in zonelist, then
1694 * returns a pointer to the allowed node mask (either the current
37b07e41 1695 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1696 *
1697 * If the zonelist cache is not available for this zonelist, does
1698 * nothing and returns NULL.
1699 *
1700 * If the fullzones BITMAP in the zonelist cache is stale (more than
1701 * a second since last zap'd) then we zap it out (clear its bits.)
1702 *
1703 * We hold off even calling zlc_setup, until after we've checked the
1704 * first zone in the zonelist, on the theory that most allocations will
1705 * be satisfied from that first zone, so best to examine that zone as
1706 * quickly as we can.
1707 */
1708static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1709{
1710 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1711 nodemask_t *allowednodes; /* zonelist_cache approximation */
1712
1713 zlc = zonelist->zlcache_ptr;
1714 if (!zlc)
1715 return NULL;
1716
f05111f5 1717 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1718 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1719 zlc->last_full_zap = jiffies;
1720 }
1721
1722 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1723 &cpuset_current_mems_allowed :
37b07e41 1724 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1725 return allowednodes;
1726}
1727
1728/*
1729 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1730 * if it is worth looking at further for free memory:
1731 * 1) Check that the zone isn't thought to be full (doesn't have its
1732 * bit set in the zonelist_cache fullzones BITMAP).
1733 * 2) Check that the zones node (obtained from the zonelist_cache
1734 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1735 * Return true (non-zero) if zone is worth looking at further, or
1736 * else return false (zero) if it is not.
1737 *
1738 * This check -ignores- the distinction between various watermarks,
1739 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1740 * found to be full for any variation of these watermarks, it will
1741 * be considered full for up to one second by all requests, unless
1742 * we are so low on memory on all allowed nodes that we are forced
1743 * into the second scan of the zonelist.
1744 *
1745 * In the second scan we ignore this zonelist cache and exactly
1746 * apply the watermarks to all zones, even it is slower to do so.
1747 * We are low on memory in the second scan, and should leave no stone
1748 * unturned looking for a free page.
1749 */
dd1a239f 1750static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1751 nodemask_t *allowednodes)
1752{
1753 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1754 int i; /* index of *z in zonelist zones */
1755 int n; /* node that zone *z is on */
1756
1757 zlc = zonelist->zlcache_ptr;
1758 if (!zlc)
1759 return 1;
1760
dd1a239f 1761 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1762 n = zlc->z_to_n[i];
1763
1764 /* This zone is worth trying if it is allowed but not full */
1765 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1766}
1767
1768/*
1769 * Given 'z' scanning a zonelist, set the corresponding bit in
1770 * zlc->fullzones, so that subsequent attempts to allocate a page
1771 * from that zone don't waste time re-examining it.
1772 */
dd1a239f 1773static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1774{
1775 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1776 int i; /* index of *z in zonelist zones */
1777
1778 zlc = zonelist->zlcache_ptr;
1779 if (!zlc)
1780 return;
1781
dd1a239f 1782 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1783
1784 set_bit(i, zlc->fullzones);
1785}
1786
76d3fbf8
MG
1787/*
1788 * clear all zones full, called after direct reclaim makes progress so that
1789 * a zone that was recently full is not skipped over for up to a second
1790 */
1791static void zlc_clear_zones_full(struct zonelist *zonelist)
1792{
1793 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1794
1795 zlc = zonelist->zlcache_ptr;
1796 if (!zlc)
1797 return;
1798
1799 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1800}
1801
9276b1bc
PJ
1802#else /* CONFIG_NUMA */
1803
1804static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1805{
1806 return NULL;
1807}
1808
dd1a239f 1809static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1810 nodemask_t *allowednodes)
1811{
1812 return 1;
1813}
1814
dd1a239f 1815static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1816{
1817}
76d3fbf8
MG
1818
1819static void zlc_clear_zones_full(struct zonelist *zonelist)
1820{
1821}
9276b1bc
PJ
1822#endif /* CONFIG_NUMA */
1823
7fb1d9fc 1824/*
0798e519 1825 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1826 * a page.
1827 */
1828static struct page *
19770b32 1829get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1830 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1831 struct zone *preferred_zone, int migratetype)
753ee728 1832{
dd1a239f 1833 struct zoneref *z;
7fb1d9fc 1834 struct page *page = NULL;
54a6eb5c 1835 int classzone_idx;
5117f45d 1836 struct zone *zone;
9276b1bc
PJ
1837 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1838 int zlc_active = 0; /* set if using zonelist_cache */
1839 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1840
19770b32 1841 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1842zonelist_scan:
7fb1d9fc 1843 /*
9276b1bc 1844 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1845 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1846 */
19770b32
MG
1847 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1848 high_zoneidx, nodemask) {
9276b1bc
PJ
1849 if (NUMA_BUILD && zlc_active &&
1850 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1851 continue;
7fb1d9fc 1852 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1853 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1854 continue;
a756cf59
JW
1855 /*
1856 * When allocating a page cache page for writing, we
1857 * want to get it from a zone that is within its dirty
1858 * limit, such that no single zone holds more than its
1859 * proportional share of globally allowed dirty pages.
1860 * The dirty limits take into account the zone's
1861 * lowmem reserves and high watermark so that kswapd
1862 * should be able to balance it without having to
1863 * write pages from its LRU list.
1864 *
1865 * This may look like it could increase pressure on
1866 * lower zones by failing allocations in higher zones
1867 * before they are full. But the pages that do spill
1868 * over are limited as the lower zones are protected
1869 * by this very same mechanism. It should not become
1870 * a practical burden to them.
1871 *
1872 * XXX: For now, allow allocations to potentially
1873 * exceed the per-zone dirty limit in the slowpath
1874 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1875 * which is important when on a NUMA setup the allowed
1876 * zones are together not big enough to reach the
1877 * global limit. The proper fix for these situations
1878 * will require awareness of zones in the
1879 * dirty-throttling and the flusher threads.
1880 */
1881 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1882 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1883 goto this_zone_full;
7fb1d9fc 1884
41858966 1885 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1886 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1887 unsigned long mark;
fa5e084e
MG
1888 int ret;
1889
41858966 1890 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1891 if (zone_watermark_ok(zone, order, mark,
1892 classzone_idx, alloc_flags))
1893 goto try_this_zone;
1894
cd38b115
MG
1895 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1896 /*
1897 * we do zlc_setup if there are multiple nodes
1898 * and before considering the first zone allowed
1899 * by the cpuset.
1900 */
1901 allowednodes = zlc_setup(zonelist, alloc_flags);
1902 zlc_active = 1;
1903 did_zlc_setup = 1;
1904 }
1905
fa5e084e
MG
1906 if (zone_reclaim_mode == 0)
1907 goto this_zone_full;
1908
cd38b115
MG
1909 /*
1910 * As we may have just activated ZLC, check if the first
1911 * eligible zone has failed zone_reclaim recently.
1912 */
1913 if (NUMA_BUILD && zlc_active &&
1914 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1915 continue;
1916
fa5e084e
MG
1917 ret = zone_reclaim(zone, gfp_mask, order);
1918 switch (ret) {
1919 case ZONE_RECLAIM_NOSCAN:
1920 /* did not scan */
cd38b115 1921 continue;
fa5e084e
MG
1922 case ZONE_RECLAIM_FULL:
1923 /* scanned but unreclaimable */
cd38b115 1924 continue;
fa5e084e
MG
1925 default:
1926 /* did we reclaim enough */
1927 if (!zone_watermark_ok(zone, order, mark,
1928 classzone_idx, alloc_flags))
9276b1bc 1929 goto this_zone_full;
0798e519 1930 }
7fb1d9fc
RS
1931 }
1932
fa5e084e 1933try_this_zone:
3dd28266
MG
1934 page = buffered_rmqueue(preferred_zone, zone, order,
1935 gfp_mask, migratetype);
0798e519 1936 if (page)
7fb1d9fc 1937 break;
9276b1bc
PJ
1938this_zone_full:
1939 if (NUMA_BUILD)
1940 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1941 }
9276b1bc
PJ
1942
1943 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1944 /* Disable zlc cache for second zonelist scan */
1945 zlc_active = 0;
1946 goto zonelist_scan;
1947 }
b121186a
AS
1948
1949 if (page)
1950 /*
1951 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1952 * necessary to allocate the page. The expectation is
1953 * that the caller is taking steps that will free more
1954 * memory. The caller should avoid the page being used
1955 * for !PFMEMALLOC purposes.
1956 */
1957 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1958
7fb1d9fc 1959 return page;
753ee728
MH
1960}
1961
29423e77
DR
1962/*
1963 * Large machines with many possible nodes should not always dump per-node
1964 * meminfo in irq context.
1965 */
1966static inline bool should_suppress_show_mem(void)
1967{
1968 bool ret = false;
1969
1970#if NODES_SHIFT > 8
1971 ret = in_interrupt();
1972#endif
1973 return ret;
1974}
1975
a238ab5b
DH
1976static DEFINE_RATELIMIT_STATE(nopage_rs,
1977 DEFAULT_RATELIMIT_INTERVAL,
1978 DEFAULT_RATELIMIT_BURST);
1979
1980void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1981{
a238ab5b
DH
1982 unsigned int filter = SHOW_MEM_FILTER_NODES;
1983
c0a32fc5
SG
1984 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1985 debug_guardpage_minorder() > 0)
a238ab5b
DH
1986 return;
1987
1988 /*
1989 * This documents exceptions given to allocations in certain
1990 * contexts that are allowed to allocate outside current's set
1991 * of allowed nodes.
1992 */
1993 if (!(gfp_mask & __GFP_NOMEMALLOC))
1994 if (test_thread_flag(TIF_MEMDIE) ||
1995 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1996 filter &= ~SHOW_MEM_FILTER_NODES;
1997 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1998 filter &= ~SHOW_MEM_FILTER_NODES;
1999
2000 if (fmt) {
3ee9a4f0
JP
2001 struct va_format vaf;
2002 va_list args;
2003
a238ab5b 2004 va_start(args, fmt);
3ee9a4f0
JP
2005
2006 vaf.fmt = fmt;
2007 vaf.va = &args;
2008
2009 pr_warn("%pV", &vaf);
2010
a238ab5b
DH
2011 va_end(args);
2012 }
2013
3ee9a4f0
JP
2014 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2015 current->comm, order, gfp_mask);
a238ab5b
DH
2016
2017 dump_stack();
2018 if (!should_suppress_show_mem())
2019 show_mem(filter);
2020}
2021
11e33f6a
MG
2022static inline int
2023should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2024 unsigned long did_some_progress,
11e33f6a 2025 unsigned long pages_reclaimed)
1da177e4 2026{
11e33f6a
MG
2027 /* Do not loop if specifically requested */
2028 if (gfp_mask & __GFP_NORETRY)
2029 return 0;
1da177e4 2030
f90ac398
MG
2031 /* Always retry if specifically requested */
2032 if (gfp_mask & __GFP_NOFAIL)
2033 return 1;
2034
2035 /*
2036 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2037 * making forward progress without invoking OOM. Suspend also disables
2038 * storage devices so kswapd will not help. Bail if we are suspending.
2039 */
2040 if (!did_some_progress && pm_suspended_storage())
2041 return 0;
2042
11e33f6a
MG
2043 /*
2044 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2045 * means __GFP_NOFAIL, but that may not be true in other
2046 * implementations.
2047 */
2048 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2049 return 1;
2050
2051 /*
2052 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2053 * specified, then we retry until we no longer reclaim any pages
2054 * (above), or we've reclaimed an order of pages at least as
2055 * large as the allocation's order. In both cases, if the
2056 * allocation still fails, we stop retrying.
2057 */
2058 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2059 return 1;
cf40bd16 2060
11e33f6a
MG
2061 return 0;
2062}
933e312e 2063
11e33f6a
MG
2064static inline struct page *
2065__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2066 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2067 nodemask_t *nodemask, struct zone *preferred_zone,
2068 int migratetype)
11e33f6a
MG
2069{
2070 struct page *page;
2071
2072 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2073 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2074 schedule_timeout_uninterruptible(1);
1da177e4
LT
2075 return NULL;
2076 }
6b1de916 2077
11e33f6a
MG
2078 /*
2079 * Go through the zonelist yet one more time, keep very high watermark
2080 * here, this is only to catch a parallel oom killing, we must fail if
2081 * we're still under heavy pressure.
2082 */
2083 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2084 order, zonelist, high_zoneidx,
5117f45d 2085 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2086 preferred_zone, migratetype);
7fb1d9fc 2087 if (page)
11e33f6a
MG
2088 goto out;
2089
4365a567
KH
2090 if (!(gfp_mask & __GFP_NOFAIL)) {
2091 /* The OOM killer will not help higher order allocs */
2092 if (order > PAGE_ALLOC_COSTLY_ORDER)
2093 goto out;
03668b3c
DR
2094 /* The OOM killer does not needlessly kill tasks for lowmem */
2095 if (high_zoneidx < ZONE_NORMAL)
2096 goto out;
4365a567
KH
2097 /*
2098 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2099 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2100 * The caller should handle page allocation failure by itself if
2101 * it specifies __GFP_THISNODE.
2102 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2103 */
2104 if (gfp_mask & __GFP_THISNODE)
2105 goto out;
2106 }
11e33f6a 2107 /* Exhausted what can be done so it's blamo time */
08ab9b10 2108 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2109
2110out:
2111 clear_zonelist_oom(zonelist, gfp_mask);
2112 return page;
2113}
2114
56de7263
MG
2115#ifdef CONFIG_COMPACTION
2116/* Try memory compaction for high-order allocations before reclaim */
2117static struct page *
2118__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2119 struct zonelist *zonelist, enum zone_type high_zoneidx,
2120 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2121 int migratetype, bool sync_migration,
c67fe375 2122 bool *contended_compaction, bool *deferred_compaction,
66199712 2123 unsigned long *did_some_progress)
56de7263 2124{
1fb3f8ca 2125 struct page *page = NULL;
56de7263 2126
66199712 2127 if (!order)
56de7263
MG
2128 return NULL;
2129
aff62249 2130 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2131 *deferred_compaction = true;
2132 return NULL;
2133 }
2134
c06b1fca 2135 current->flags |= PF_MEMALLOC;
56de7263 2136 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2137 nodemask, sync_migration,
1fb3f8ca 2138 contended_compaction, &page);
c06b1fca 2139 current->flags &= ~PF_MEMALLOC;
56de7263 2140
1fb3f8ca
MG
2141 /* If compaction captured a page, prep and use it */
2142 if (page) {
2143 prep_new_page(page, order, gfp_mask);
2144 goto got_page;
2145 }
2146
2147 if (*did_some_progress != COMPACT_SKIPPED) {
56de7263
MG
2148 /* Page migration frees to the PCP lists but we want merging */
2149 drain_pages(get_cpu());
2150 put_cpu();
2151
2152 page = get_page_from_freelist(gfp_mask, nodemask,
2153 order, zonelist, high_zoneidx,
cfd19c5a
MG
2154 alloc_flags & ~ALLOC_NO_WATERMARKS,
2155 preferred_zone, migratetype);
56de7263 2156 if (page) {
1fb3f8ca 2157got_page:
62997027 2158 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2159 preferred_zone->compact_considered = 0;
2160 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2161 if (order >= preferred_zone->compact_order_failed)
2162 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2163 count_vm_event(COMPACTSUCCESS);
2164 return page;
2165 }
2166
2167 /*
2168 * It's bad if compaction run occurs and fails.
2169 * The most likely reason is that pages exist,
2170 * but not enough to satisfy watermarks.
2171 */
2172 count_vm_event(COMPACTFAIL);
66199712
MG
2173
2174 /*
2175 * As async compaction considers a subset of pageblocks, only
2176 * defer if the failure was a sync compaction failure.
2177 */
2178 if (sync_migration)
aff62249 2179 defer_compaction(preferred_zone, order);
56de7263
MG
2180
2181 cond_resched();
2182 }
2183
2184 return NULL;
2185}
2186#else
2187static inline struct page *
2188__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2189 struct zonelist *zonelist, enum zone_type high_zoneidx,
2190 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2191 int migratetype, bool sync_migration,
c67fe375 2192 bool *contended_compaction, bool *deferred_compaction,
66199712 2193 unsigned long *did_some_progress)
56de7263
MG
2194{
2195 return NULL;
2196}
2197#endif /* CONFIG_COMPACTION */
2198
bba90710
MS
2199/* Perform direct synchronous page reclaim */
2200static int
2201__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2202 nodemask_t *nodemask)
11e33f6a 2203{
11e33f6a 2204 struct reclaim_state reclaim_state;
bba90710 2205 int progress;
11e33f6a
MG
2206
2207 cond_resched();
2208
2209 /* We now go into synchronous reclaim */
2210 cpuset_memory_pressure_bump();
c06b1fca 2211 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2212 lockdep_set_current_reclaim_state(gfp_mask);
2213 reclaim_state.reclaimed_slab = 0;
c06b1fca 2214 current->reclaim_state = &reclaim_state;
11e33f6a 2215
bba90710 2216 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2217
c06b1fca 2218 current->reclaim_state = NULL;
11e33f6a 2219 lockdep_clear_current_reclaim_state();
c06b1fca 2220 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2221
2222 cond_resched();
2223
bba90710
MS
2224 return progress;
2225}
2226
2227/* The really slow allocator path where we enter direct reclaim */
2228static inline struct page *
2229__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2230 struct zonelist *zonelist, enum zone_type high_zoneidx,
2231 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2232 int migratetype, unsigned long *did_some_progress)
2233{
2234 struct page *page = NULL;
2235 bool drained = false;
2236
2237 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2238 nodemask);
9ee493ce
MG
2239 if (unlikely(!(*did_some_progress)))
2240 return NULL;
11e33f6a 2241
76d3fbf8
MG
2242 /* After successful reclaim, reconsider all zones for allocation */
2243 if (NUMA_BUILD)
2244 zlc_clear_zones_full(zonelist);
2245
9ee493ce
MG
2246retry:
2247 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2248 zonelist, high_zoneidx,
cfd19c5a
MG
2249 alloc_flags & ~ALLOC_NO_WATERMARKS,
2250 preferred_zone, migratetype);
9ee493ce
MG
2251
2252 /*
2253 * If an allocation failed after direct reclaim, it could be because
2254 * pages are pinned on the per-cpu lists. Drain them and try again
2255 */
2256 if (!page && !drained) {
2257 drain_all_pages();
2258 drained = true;
2259 goto retry;
2260 }
2261
11e33f6a
MG
2262 return page;
2263}
2264
1da177e4 2265/*
11e33f6a
MG
2266 * This is called in the allocator slow-path if the allocation request is of
2267 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2268 */
11e33f6a
MG
2269static inline struct page *
2270__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2271 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2272 nodemask_t *nodemask, struct zone *preferred_zone,
2273 int migratetype)
11e33f6a
MG
2274{
2275 struct page *page;
2276
2277 do {
2278 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2279 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2280 preferred_zone, migratetype);
11e33f6a
MG
2281
2282 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2283 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2284 } while (!page && (gfp_mask & __GFP_NOFAIL));
2285
2286 return page;
2287}
2288
2289static inline
2290void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2291 enum zone_type high_zoneidx,
2292 enum zone_type classzone_idx)
1da177e4 2293{
dd1a239f
MG
2294 struct zoneref *z;
2295 struct zone *zone;
1da177e4 2296
11e33f6a 2297 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2298 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2299}
cf40bd16 2300
341ce06f
PZ
2301static inline int
2302gfp_to_alloc_flags(gfp_t gfp_mask)
2303{
341ce06f
PZ
2304 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2305 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2306
a56f57ff 2307 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2308 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2309
341ce06f
PZ
2310 /*
2311 * The caller may dip into page reserves a bit more if the caller
2312 * cannot run direct reclaim, or if the caller has realtime scheduling
2313 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2314 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2315 */
e6223a3b 2316 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2317
341ce06f 2318 if (!wait) {
5c3240d9
AA
2319 /*
2320 * Not worth trying to allocate harder for
2321 * __GFP_NOMEMALLOC even if it can't schedule.
2322 */
2323 if (!(gfp_mask & __GFP_NOMEMALLOC))
2324 alloc_flags |= ALLOC_HARDER;
523b9458 2325 /*
341ce06f
PZ
2326 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2327 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2328 */
341ce06f 2329 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2330 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2331 alloc_flags |= ALLOC_HARDER;
2332
b37f1dd0
MG
2333 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2334 if (gfp_mask & __GFP_MEMALLOC)
2335 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2336 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2337 alloc_flags |= ALLOC_NO_WATERMARKS;
2338 else if (!in_interrupt() &&
2339 ((current->flags & PF_MEMALLOC) ||
2340 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2341 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2342 }
d95ea5d1
BZ
2343#ifdef CONFIG_CMA
2344 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2345 alloc_flags |= ALLOC_CMA;
2346#endif
341ce06f
PZ
2347 return alloc_flags;
2348}
2349
072bb0aa
MG
2350bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2351{
b37f1dd0 2352 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2353}
2354
11e33f6a
MG
2355static inline struct page *
2356__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2357 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2358 nodemask_t *nodemask, struct zone *preferred_zone,
2359 int migratetype)
11e33f6a
MG
2360{
2361 const gfp_t wait = gfp_mask & __GFP_WAIT;
2362 struct page *page = NULL;
2363 int alloc_flags;
2364 unsigned long pages_reclaimed = 0;
2365 unsigned long did_some_progress;
77f1fe6b 2366 bool sync_migration = false;
66199712 2367 bool deferred_compaction = false;
c67fe375 2368 bool contended_compaction = false;
1da177e4 2369
72807a74
MG
2370 /*
2371 * In the slowpath, we sanity check order to avoid ever trying to
2372 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2373 * be using allocators in order of preference for an area that is
2374 * too large.
2375 */
1fc28b70
MG
2376 if (order >= MAX_ORDER) {
2377 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2378 return NULL;
1fc28b70 2379 }
1da177e4 2380
952f3b51
CL
2381 /*
2382 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2383 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2384 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2385 * using a larger set of nodes after it has established that the
2386 * allowed per node queues are empty and that nodes are
2387 * over allocated.
2388 */
2389 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2390 goto nopage;
2391
cc4a6851 2392restart:
c6543459
RR
2393 wake_all_kswapd(order, zonelist, high_zoneidx,
2394 zone_idx(preferred_zone));
1da177e4 2395
9bf2229f 2396 /*
7fb1d9fc
RS
2397 * OK, we're below the kswapd watermark and have kicked background
2398 * reclaim. Now things get more complex, so set up alloc_flags according
2399 * to how we want to proceed.
9bf2229f 2400 */
341ce06f 2401 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2402
f33261d7
DR
2403 /*
2404 * Find the true preferred zone if the allocation is unconstrained by
2405 * cpusets.
2406 */
2407 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2408 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2409 &preferred_zone);
2410
cfa54a0f 2411rebalance:
341ce06f 2412 /* This is the last chance, in general, before the goto nopage. */
19770b32 2413 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2414 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2415 preferred_zone, migratetype);
7fb1d9fc
RS
2416 if (page)
2417 goto got_pg;
1da177e4 2418
11e33f6a 2419 /* Allocate without watermarks if the context allows */
341ce06f 2420 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2421 /*
2422 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2423 * the allocation is high priority and these type of
2424 * allocations are system rather than user orientated
2425 */
2426 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2427
341ce06f
PZ
2428 page = __alloc_pages_high_priority(gfp_mask, order,
2429 zonelist, high_zoneidx, nodemask,
2430 preferred_zone, migratetype);
cfd19c5a 2431 if (page) {
341ce06f 2432 goto got_pg;
cfd19c5a 2433 }
1da177e4
LT
2434 }
2435
2436 /* Atomic allocations - we can't balance anything */
2437 if (!wait)
2438 goto nopage;
2439
341ce06f 2440 /* Avoid recursion of direct reclaim */
c06b1fca 2441 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2442 goto nopage;
2443
6583bb64
DR
2444 /* Avoid allocations with no watermarks from looping endlessly */
2445 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2446 goto nopage;
2447
77f1fe6b
MG
2448 /*
2449 * Try direct compaction. The first pass is asynchronous. Subsequent
2450 * attempts after direct reclaim are synchronous
2451 */
56de7263
MG
2452 page = __alloc_pages_direct_compact(gfp_mask, order,
2453 zonelist, high_zoneidx,
2454 nodemask,
2455 alloc_flags, preferred_zone,
66199712 2456 migratetype, sync_migration,
c67fe375 2457 &contended_compaction,
66199712
MG
2458 &deferred_compaction,
2459 &did_some_progress);
56de7263
MG
2460 if (page)
2461 goto got_pg;
c6a140bf 2462 sync_migration = true;
56de7263 2463
66199712
MG
2464 /*
2465 * If compaction is deferred for high-order allocations, it is because
2466 * sync compaction recently failed. In this is the case and the caller
c67fe375
MG
2467 * requested a movable allocation that does not heavily disrupt the
2468 * system then fail the allocation instead of entering direct reclaim.
66199712 2469 */
c67fe375 2470 if ((deferred_compaction || contended_compaction) &&
c6543459 2471 (gfp_mask & (__GFP_MOVABLE|__GFP_REPEAT)) == __GFP_MOVABLE)
66199712
MG
2472 goto nopage;
2473
11e33f6a
MG
2474 /* Try direct reclaim and then allocating */
2475 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2476 zonelist, high_zoneidx,
2477 nodemask,
5117f45d 2478 alloc_flags, preferred_zone,
3dd28266 2479 migratetype, &did_some_progress);
11e33f6a
MG
2480 if (page)
2481 goto got_pg;
1da177e4 2482
e33c3b5e 2483 /*
11e33f6a
MG
2484 * If we failed to make any progress reclaiming, then we are
2485 * running out of options and have to consider going OOM
e33c3b5e 2486 */
11e33f6a
MG
2487 if (!did_some_progress) {
2488 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2489 if (oom_killer_disabled)
2490 goto nopage;
29fd66d2
DR
2491 /* Coredumps can quickly deplete all memory reserves */
2492 if ((current->flags & PF_DUMPCORE) &&
2493 !(gfp_mask & __GFP_NOFAIL))
2494 goto nopage;
11e33f6a
MG
2495 page = __alloc_pages_may_oom(gfp_mask, order,
2496 zonelist, high_zoneidx,
3dd28266
MG
2497 nodemask, preferred_zone,
2498 migratetype);
11e33f6a
MG
2499 if (page)
2500 goto got_pg;
1da177e4 2501
03668b3c
DR
2502 if (!(gfp_mask & __GFP_NOFAIL)) {
2503 /*
2504 * The oom killer is not called for high-order
2505 * allocations that may fail, so if no progress
2506 * is being made, there are no other options and
2507 * retrying is unlikely to help.
2508 */
2509 if (order > PAGE_ALLOC_COSTLY_ORDER)
2510 goto nopage;
2511 /*
2512 * The oom killer is not called for lowmem
2513 * allocations to prevent needlessly killing
2514 * innocent tasks.
2515 */
2516 if (high_zoneidx < ZONE_NORMAL)
2517 goto nopage;
2518 }
e2c55dc8 2519
ff0ceb9d
DR
2520 goto restart;
2521 }
1da177e4
LT
2522 }
2523
11e33f6a 2524 /* Check if we should retry the allocation */
a41f24ea 2525 pages_reclaimed += did_some_progress;
f90ac398
MG
2526 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2527 pages_reclaimed)) {
11e33f6a 2528 /* Wait for some write requests to complete then retry */
0e093d99 2529 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2530 goto rebalance;
3e7d3449
MG
2531 } else {
2532 /*
2533 * High-order allocations do not necessarily loop after
2534 * direct reclaim and reclaim/compaction depends on compaction
2535 * being called after reclaim so call directly if necessary
2536 */
2537 page = __alloc_pages_direct_compact(gfp_mask, order,
2538 zonelist, high_zoneidx,
2539 nodemask,
2540 alloc_flags, preferred_zone,
66199712 2541 migratetype, sync_migration,
c67fe375 2542 &contended_compaction,
66199712
MG
2543 &deferred_compaction,
2544 &did_some_progress);
3e7d3449
MG
2545 if (page)
2546 goto got_pg;
1da177e4
LT
2547 }
2548
2549nopage:
a238ab5b 2550 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2551 return page;
1da177e4 2552got_pg:
b1eeab67
VN
2553 if (kmemcheck_enabled)
2554 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2555
072bb0aa 2556 return page;
1da177e4 2557}
11e33f6a
MG
2558
2559/*
2560 * This is the 'heart' of the zoned buddy allocator.
2561 */
2562struct page *
2563__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2564 struct zonelist *zonelist, nodemask_t *nodemask)
2565{
2566 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2567 struct zone *preferred_zone;
cc9a6c87 2568 struct page *page = NULL;
3dd28266 2569 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2570 unsigned int cpuset_mems_cookie;
d95ea5d1 2571 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
11e33f6a 2572
dcce284a
BH
2573 gfp_mask &= gfp_allowed_mask;
2574
11e33f6a
MG
2575 lockdep_trace_alloc(gfp_mask);
2576
2577 might_sleep_if(gfp_mask & __GFP_WAIT);
2578
2579 if (should_fail_alloc_page(gfp_mask, order))
2580 return NULL;
2581
2582 /*
2583 * Check the zones suitable for the gfp_mask contain at least one
2584 * valid zone. It's possible to have an empty zonelist as a result
2585 * of GFP_THISNODE and a memoryless node
2586 */
2587 if (unlikely(!zonelist->_zonerefs->zone))
2588 return NULL;
2589
cc9a6c87
MG
2590retry_cpuset:
2591 cpuset_mems_cookie = get_mems_allowed();
2592
5117f45d 2593 /* The preferred zone is used for statistics later */
f33261d7
DR
2594 first_zones_zonelist(zonelist, high_zoneidx,
2595 nodemask ? : &cpuset_current_mems_allowed,
2596 &preferred_zone);
cc9a6c87
MG
2597 if (!preferred_zone)
2598 goto out;
5117f45d 2599
d95ea5d1
BZ
2600#ifdef CONFIG_CMA
2601 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2602 alloc_flags |= ALLOC_CMA;
2603#endif
5117f45d 2604 /* First allocation attempt */
11e33f6a 2605 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2606 zonelist, high_zoneidx, alloc_flags,
3dd28266 2607 preferred_zone, migratetype);
11e33f6a
MG
2608 if (unlikely(!page))
2609 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2610 zonelist, high_zoneidx, nodemask,
3dd28266 2611 preferred_zone, migratetype);
11e33f6a 2612
4b4f278c 2613 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2614
2615out:
2616 /*
2617 * When updating a task's mems_allowed, it is possible to race with
2618 * parallel threads in such a way that an allocation can fail while
2619 * the mask is being updated. If a page allocation is about to fail,
2620 * check if the cpuset changed during allocation and if so, retry.
2621 */
2622 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2623 goto retry_cpuset;
2624
11e33f6a 2625 return page;
1da177e4 2626}
d239171e 2627EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2628
2629/*
2630 * Common helper functions.
2631 */
920c7a5d 2632unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2633{
945a1113
AM
2634 struct page *page;
2635
2636 /*
2637 * __get_free_pages() returns a 32-bit address, which cannot represent
2638 * a highmem page
2639 */
2640 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2641
1da177e4
LT
2642 page = alloc_pages(gfp_mask, order);
2643 if (!page)
2644 return 0;
2645 return (unsigned long) page_address(page);
2646}
1da177e4
LT
2647EXPORT_SYMBOL(__get_free_pages);
2648
920c7a5d 2649unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2650{
945a1113 2651 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2652}
1da177e4
LT
2653EXPORT_SYMBOL(get_zeroed_page);
2654
920c7a5d 2655void __free_pages(struct page *page, unsigned int order)
1da177e4 2656{
b5810039 2657 if (put_page_testzero(page)) {
1da177e4 2658 if (order == 0)
fc91668e 2659 free_hot_cold_page(page, 0);
1da177e4
LT
2660 else
2661 __free_pages_ok(page, order);
2662 }
2663}
2664
2665EXPORT_SYMBOL(__free_pages);
2666
920c7a5d 2667void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2668{
2669 if (addr != 0) {
725d704e 2670 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2671 __free_pages(virt_to_page((void *)addr), order);
2672 }
2673}
2674
2675EXPORT_SYMBOL(free_pages);
2676
ee85c2e1
AK
2677static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2678{
2679 if (addr) {
2680 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2681 unsigned long used = addr + PAGE_ALIGN(size);
2682
2683 split_page(virt_to_page((void *)addr), order);
2684 while (used < alloc_end) {
2685 free_page(used);
2686 used += PAGE_SIZE;
2687 }
2688 }
2689 return (void *)addr;
2690}
2691
2be0ffe2
TT
2692/**
2693 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2694 * @size: the number of bytes to allocate
2695 * @gfp_mask: GFP flags for the allocation
2696 *
2697 * This function is similar to alloc_pages(), except that it allocates the
2698 * minimum number of pages to satisfy the request. alloc_pages() can only
2699 * allocate memory in power-of-two pages.
2700 *
2701 * This function is also limited by MAX_ORDER.
2702 *
2703 * Memory allocated by this function must be released by free_pages_exact().
2704 */
2705void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2706{
2707 unsigned int order = get_order(size);
2708 unsigned long addr;
2709
2710 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2711 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2712}
2713EXPORT_SYMBOL(alloc_pages_exact);
2714
ee85c2e1
AK
2715/**
2716 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2717 * pages on a node.
b5e6ab58 2718 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2719 * @size: the number of bytes to allocate
2720 * @gfp_mask: GFP flags for the allocation
2721 *
2722 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2723 * back.
2724 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2725 * but is not exact.
2726 */
2727void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2728{
2729 unsigned order = get_order(size);
2730 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2731 if (!p)
2732 return NULL;
2733 return make_alloc_exact((unsigned long)page_address(p), order, size);
2734}
2735EXPORT_SYMBOL(alloc_pages_exact_nid);
2736
2be0ffe2
TT
2737/**
2738 * free_pages_exact - release memory allocated via alloc_pages_exact()
2739 * @virt: the value returned by alloc_pages_exact.
2740 * @size: size of allocation, same value as passed to alloc_pages_exact().
2741 *
2742 * Release the memory allocated by a previous call to alloc_pages_exact.
2743 */
2744void free_pages_exact(void *virt, size_t size)
2745{
2746 unsigned long addr = (unsigned long)virt;
2747 unsigned long end = addr + PAGE_ALIGN(size);
2748
2749 while (addr < end) {
2750 free_page(addr);
2751 addr += PAGE_SIZE;
2752 }
2753}
2754EXPORT_SYMBOL(free_pages_exact);
2755
1da177e4
LT
2756static unsigned int nr_free_zone_pages(int offset)
2757{
dd1a239f 2758 struct zoneref *z;
54a6eb5c
MG
2759 struct zone *zone;
2760
e310fd43 2761 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2762 unsigned int sum = 0;
2763
0e88460d 2764 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2765
54a6eb5c 2766 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2767 unsigned long size = zone->present_pages;
41858966 2768 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2769 if (size > high)
2770 sum += size - high;
1da177e4
LT
2771 }
2772
2773 return sum;
2774}
2775
2776/*
2777 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2778 */
2779unsigned int nr_free_buffer_pages(void)
2780{
af4ca457 2781 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2782}
c2f1a551 2783EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2784
2785/*
2786 * Amount of free RAM allocatable within all zones
2787 */
2788unsigned int nr_free_pagecache_pages(void)
2789{
2a1e274a 2790 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2791}
08e0f6a9
CL
2792
2793static inline void show_node(struct zone *zone)
1da177e4 2794{
08e0f6a9 2795 if (NUMA_BUILD)
25ba77c1 2796 printk("Node %d ", zone_to_nid(zone));
1da177e4 2797}
1da177e4 2798
1da177e4
LT
2799void si_meminfo(struct sysinfo *val)
2800{
2801 val->totalram = totalram_pages;
2802 val->sharedram = 0;
d23ad423 2803 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2804 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2805 val->totalhigh = totalhigh_pages;
2806 val->freehigh = nr_free_highpages();
1da177e4
LT
2807 val->mem_unit = PAGE_SIZE;
2808}
2809
2810EXPORT_SYMBOL(si_meminfo);
2811
2812#ifdef CONFIG_NUMA
2813void si_meminfo_node(struct sysinfo *val, int nid)
2814{
2815 pg_data_t *pgdat = NODE_DATA(nid);
2816
2817 val->totalram = pgdat->node_present_pages;
d23ad423 2818 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2819#ifdef CONFIG_HIGHMEM
1da177e4 2820 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2821 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2822 NR_FREE_PAGES);
98d2b0eb
CL
2823#else
2824 val->totalhigh = 0;
2825 val->freehigh = 0;
2826#endif
1da177e4
LT
2827 val->mem_unit = PAGE_SIZE;
2828}
2829#endif
2830
ddd588b5 2831/*
7bf02ea2
DR
2832 * Determine whether the node should be displayed or not, depending on whether
2833 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2834 */
7bf02ea2 2835bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2836{
2837 bool ret = false;
cc9a6c87 2838 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2839
2840 if (!(flags & SHOW_MEM_FILTER_NODES))
2841 goto out;
2842
cc9a6c87
MG
2843 do {
2844 cpuset_mems_cookie = get_mems_allowed();
2845 ret = !node_isset(nid, cpuset_current_mems_allowed);
2846 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2847out:
2848 return ret;
2849}
2850
1da177e4
LT
2851#define K(x) ((x) << (PAGE_SHIFT-10))
2852
2853/*
2854 * Show free area list (used inside shift_scroll-lock stuff)
2855 * We also calculate the percentage fragmentation. We do this by counting the
2856 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2857 * Suppresses nodes that are not allowed by current's cpuset if
2858 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2859 */
7bf02ea2 2860void show_free_areas(unsigned int filter)
1da177e4 2861{
c7241913 2862 int cpu;
1da177e4
LT
2863 struct zone *zone;
2864
ee99c71c 2865 for_each_populated_zone(zone) {
7bf02ea2 2866 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2867 continue;
c7241913
JS
2868 show_node(zone);
2869 printk("%s per-cpu:\n", zone->name);
1da177e4 2870
6b482c67 2871 for_each_online_cpu(cpu) {
1da177e4
LT
2872 struct per_cpu_pageset *pageset;
2873
99dcc3e5 2874 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2875
3dfa5721
CL
2876 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2877 cpu, pageset->pcp.high,
2878 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2879 }
2880 }
2881
a731286d
KM
2882 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2883 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2884 " unevictable:%lu"
b76146ed 2885 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2886 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
2887 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2888 " free_cma:%lu\n",
4f98a2fe 2889 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2890 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2891 global_page_state(NR_ISOLATED_ANON),
2892 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2893 global_page_state(NR_INACTIVE_FILE),
a731286d 2894 global_page_state(NR_ISOLATED_FILE),
7b854121 2895 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2896 global_page_state(NR_FILE_DIRTY),
ce866b34 2897 global_page_state(NR_WRITEBACK),
fd39fc85 2898 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2899 global_page_state(NR_FREE_PAGES),
3701b033
KM
2900 global_page_state(NR_SLAB_RECLAIMABLE),
2901 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2902 global_page_state(NR_FILE_MAPPED),
4b02108a 2903 global_page_state(NR_SHMEM),
a25700a5 2904 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
2905 global_page_state(NR_BOUNCE),
2906 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 2907
ee99c71c 2908 for_each_populated_zone(zone) {
1da177e4
LT
2909 int i;
2910
7bf02ea2 2911 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2912 continue;
1da177e4
LT
2913 show_node(zone);
2914 printk("%s"
2915 " free:%lukB"
2916 " min:%lukB"
2917 " low:%lukB"
2918 " high:%lukB"
4f98a2fe
RR
2919 " active_anon:%lukB"
2920 " inactive_anon:%lukB"
2921 " active_file:%lukB"
2922 " inactive_file:%lukB"
7b854121 2923 " unevictable:%lukB"
a731286d
KM
2924 " isolated(anon):%lukB"
2925 " isolated(file):%lukB"
1da177e4 2926 " present:%lukB"
4a0aa73f
KM
2927 " mlocked:%lukB"
2928 " dirty:%lukB"
2929 " writeback:%lukB"
2930 " mapped:%lukB"
4b02108a 2931 " shmem:%lukB"
4a0aa73f
KM
2932 " slab_reclaimable:%lukB"
2933 " slab_unreclaimable:%lukB"
c6a7f572 2934 " kernel_stack:%lukB"
4a0aa73f
KM
2935 " pagetables:%lukB"
2936 " unstable:%lukB"
2937 " bounce:%lukB"
d1ce749a 2938 " free_cma:%lukB"
4a0aa73f 2939 " writeback_tmp:%lukB"
1da177e4
LT
2940 " pages_scanned:%lu"
2941 " all_unreclaimable? %s"
2942 "\n",
2943 zone->name,
88f5acf8 2944 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2945 K(min_wmark_pages(zone)),
2946 K(low_wmark_pages(zone)),
2947 K(high_wmark_pages(zone)),
4f98a2fe
RR
2948 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2949 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2950 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2951 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2952 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2953 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2954 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2955 K(zone->present_pages),
4a0aa73f
KM
2956 K(zone_page_state(zone, NR_MLOCK)),
2957 K(zone_page_state(zone, NR_FILE_DIRTY)),
2958 K(zone_page_state(zone, NR_WRITEBACK)),
2959 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2960 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2961 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2962 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2963 zone_page_state(zone, NR_KERNEL_STACK) *
2964 THREAD_SIZE / 1024,
4a0aa73f
KM
2965 K(zone_page_state(zone, NR_PAGETABLE)),
2966 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2967 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 2968 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 2969 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2970 zone->pages_scanned,
93e4a89a 2971 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2972 );
2973 printk("lowmem_reserve[]:");
2974 for (i = 0; i < MAX_NR_ZONES; i++)
2975 printk(" %lu", zone->lowmem_reserve[i]);
2976 printk("\n");
2977 }
2978
ee99c71c 2979 for_each_populated_zone(zone) {
8f9de51a 2980 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2981
7bf02ea2 2982 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2983 continue;
1da177e4
LT
2984 show_node(zone);
2985 printk("%s: ", zone->name);
1da177e4
LT
2986
2987 spin_lock_irqsave(&zone->lock, flags);
2988 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2989 nr[order] = zone->free_area[order].nr_free;
2990 total += nr[order] << order;
1da177e4
LT
2991 }
2992 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2993 for (order = 0; order < MAX_ORDER; order++)
2994 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2995 printk("= %lukB\n", K(total));
2996 }
2997
e6f3602d
LW
2998 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2999
1da177e4
LT
3000 show_swap_cache_info();
3001}
3002
19770b32
MG
3003static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3004{
3005 zoneref->zone = zone;
3006 zoneref->zone_idx = zone_idx(zone);
3007}
3008
1da177e4
LT
3009/*
3010 * Builds allocation fallback zone lists.
1a93205b
CL
3011 *
3012 * Add all populated zones of a node to the zonelist.
1da177e4 3013 */
f0c0b2b8
KH
3014static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3015 int nr_zones, enum zone_type zone_type)
1da177e4 3016{
1a93205b
CL
3017 struct zone *zone;
3018
98d2b0eb 3019 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3020 zone_type++;
02a68a5e
CL
3021
3022 do {
2f6726e5 3023 zone_type--;
070f8032 3024 zone = pgdat->node_zones + zone_type;
1a93205b 3025 if (populated_zone(zone)) {
dd1a239f
MG
3026 zoneref_set_zone(zone,
3027 &zonelist->_zonerefs[nr_zones++]);
070f8032 3028 check_highest_zone(zone_type);
1da177e4 3029 }
02a68a5e 3030
2f6726e5 3031 } while (zone_type);
070f8032 3032 return nr_zones;
1da177e4
LT
3033}
3034
f0c0b2b8
KH
3035
3036/*
3037 * zonelist_order:
3038 * 0 = automatic detection of better ordering.
3039 * 1 = order by ([node] distance, -zonetype)
3040 * 2 = order by (-zonetype, [node] distance)
3041 *
3042 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3043 * the same zonelist. So only NUMA can configure this param.
3044 */
3045#define ZONELIST_ORDER_DEFAULT 0
3046#define ZONELIST_ORDER_NODE 1
3047#define ZONELIST_ORDER_ZONE 2
3048
3049/* zonelist order in the kernel.
3050 * set_zonelist_order() will set this to NODE or ZONE.
3051 */
3052static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3053static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3054
3055
1da177e4 3056#ifdef CONFIG_NUMA
f0c0b2b8
KH
3057/* The value user specified ....changed by config */
3058static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3059/* string for sysctl */
3060#define NUMA_ZONELIST_ORDER_LEN 16
3061char numa_zonelist_order[16] = "default";
3062
3063/*
3064 * interface for configure zonelist ordering.
3065 * command line option "numa_zonelist_order"
3066 * = "[dD]efault - default, automatic configuration.
3067 * = "[nN]ode - order by node locality, then by zone within node
3068 * = "[zZ]one - order by zone, then by locality within zone
3069 */
3070
3071static int __parse_numa_zonelist_order(char *s)
3072{
3073 if (*s == 'd' || *s == 'D') {
3074 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3075 } else if (*s == 'n' || *s == 'N') {
3076 user_zonelist_order = ZONELIST_ORDER_NODE;
3077 } else if (*s == 'z' || *s == 'Z') {
3078 user_zonelist_order = ZONELIST_ORDER_ZONE;
3079 } else {
3080 printk(KERN_WARNING
3081 "Ignoring invalid numa_zonelist_order value: "
3082 "%s\n", s);
3083 return -EINVAL;
3084 }
3085 return 0;
3086}
3087
3088static __init int setup_numa_zonelist_order(char *s)
3089{
ecb256f8
VL
3090 int ret;
3091
3092 if (!s)
3093 return 0;
3094
3095 ret = __parse_numa_zonelist_order(s);
3096 if (ret == 0)
3097 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3098
3099 return ret;
f0c0b2b8
KH
3100}
3101early_param("numa_zonelist_order", setup_numa_zonelist_order);
3102
3103/*
3104 * sysctl handler for numa_zonelist_order
3105 */
3106int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3107 void __user *buffer, size_t *length,
f0c0b2b8
KH
3108 loff_t *ppos)
3109{
3110 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3111 int ret;
443c6f14 3112 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3113
443c6f14 3114 mutex_lock(&zl_order_mutex);
f0c0b2b8 3115 if (write)
443c6f14 3116 strcpy(saved_string, (char*)table->data);
8d65af78 3117 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3118 if (ret)
443c6f14 3119 goto out;
f0c0b2b8
KH
3120 if (write) {
3121 int oldval = user_zonelist_order;
3122 if (__parse_numa_zonelist_order((char*)table->data)) {
3123 /*
3124 * bogus value. restore saved string
3125 */
3126 strncpy((char*)table->data, saved_string,
3127 NUMA_ZONELIST_ORDER_LEN);
3128 user_zonelist_order = oldval;
4eaf3f64
HL
3129 } else if (oldval != user_zonelist_order) {
3130 mutex_lock(&zonelists_mutex);
9adb62a5 3131 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3132 mutex_unlock(&zonelists_mutex);
3133 }
f0c0b2b8 3134 }
443c6f14
AK
3135out:
3136 mutex_unlock(&zl_order_mutex);
3137 return ret;
f0c0b2b8
KH
3138}
3139
3140
62bc62a8 3141#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3142static int node_load[MAX_NUMNODES];
3143
1da177e4 3144/**
4dc3b16b 3145 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3146 * @node: node whose fallback list we're appending
3147 * @used_node_mask: nodemask_t of already used nodes
3148 *
3149 * We use a number of factors to determine which is the next node that should
3150 * appear on a given node's fallback list. The node should not have appeared
3151 * already in @node's fallback list, and it should be the next closest node
3152 * according to the distance array (which contains arbitrary distance values
3153 * from each node to each node in the system), and should also prefer nodes
3154 * with no CPUs, since presumably they'll have very little allocation pressure
3155 * on them otherwise.
3156 * It returns -1 if no node is found.
3157 */
f0c0b2b8 3158static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3159{
4cf808eb 3160 int n, val;
1da177e4
LT
3161 int min_val = INT_MAX;
3162 int best_node = -1;
a70f7302 3163 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3164
4cf808eb
LT
3165 /* Use the local node if we haven't already */
3166 if (!node_isset(node, *used_node_mask)) {
3167 node_set(node, *used_node_mask);
3168 return node;
3169 }
1da177e4 3170
37b07e41 3171 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
3172
3173 /* Don't want a node to appear more than once */
3174 if (node_isset(n, *used_node_mask))
3175 continue;
3176
1da177e4
LT
3177 /* Use the distance array to find the distance */
3178 val = node_distance(node, n);
3179
4cf808eb
LT
3180 /* Penalize nodes under us ("prefer the next node") */
3181 val += (n < node);
3182
1da177e4 3183 /* Give preference to headless and unused nodes */
a70f7302
RR
3184 tmp = cpumask_of_node(n);
3185 if (!cpumask_empty(tmp))
1da177e4
LT
3186 val += PENALTY_FOR_NODE_WITH_CPUS;
3187
3188 /* Slight preference for less loaded node */
3189 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3190 val += node_load[n];
3191
3192 if (val < min_val) {
3193 min_val = val;
3194 best_node = n;
3195 }
3196 }
3197
3198 if (best_node >= 0)
3199 node_set(best_node, *used_node_mask);
3200
3201 return best_node;
3202}
3203
f0c0b2b8
KH
3204
3205/*
3206 * Build zonelists ordered by node and zones within node.
3207 * This results in maximum locality--normal zone overflows into local
3208 * DMA zone, if any--but risks exhausting DMA zone.
3209 */
3210static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3211{
f0c0b2b8 3212 int j;
1da177e4 3213 struct zonelist *zonelist;
f0c0b2b8 3214
54a6eb5c 3215 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3216 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3217 ;
3218 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3219 MAX_NR_ZONES - 1);
dd1a239f
MG
3220 zonelist->_zonerefs[j].zone = NULL;
3221 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3222}
3223
523b9458
CL
3224/*
3225 * Build gfp_thisnode zonelists
3226 */
3227static void build_thisnode_zonelists(pg_data_t *pgdat)
3228{
523b9458
CL
3229 int j;
3230 struct zonelist *zonelist;
3231
54a6eb5c
MG
3232 zonelist = &pgdat->node_zonelists[1];
3233 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3234 zonelist->_zonerefs[j].zone = NULL;
3235 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3236}
3237
f0c0b2b8
KH
3238/*
3239 * Build zonelists ordered by zone and nodes within zones.
3240 * This results in conserving DMA zone[s] until all Normal memory is
3241 * exhausted, but results in overflowing to remote node while memory
3242 * may still exist in local DMA zone.
3243 */
3244static int node_order[MAX_NUMNODES];
3245
3246static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3247{
f0c0b2b8
KH
3248 int pos, j, node;
3249 int zone_type; /* needs to be signed */
3250 struct zone *z;
3251 struct zonelist *zonelist;
3252
54a6eb5c
MG
3253 zonelist = &pgdat->node_zonelists[0];
3254 pos = 0;
3255 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3256 for (j = 0; j < nr_nodes; j++) {
3257 node = node_order[j];
3258 z = &NODE_DATA(node)->node_zones[zone_type];
3259 if (populated_zone(z)) {
dd1a239f
MG
3260 zoneref_set_zone(z,
3261 &zonelist->_zonerefs[pos++]);
54a6eb5c 3262 check_highest_zone(zone_type);
f0c0b2b8
KH
3263 }
3264 }
f0c0b2b8 3265 }
dd1a239f
MG
3266 zonelist->_zonerefs[pos].zone = NULL;
3267 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3268}
3269
3270static int default_zonelist_order(void)
3271{
3272 int nid, zone_type;
3273 unsigned long low_kmem_size,total_size;
3274 struct zone *z;
3275 int average_size;
3276 /*
88393161 3277 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3278 * If they are really small and used heavily, the system can fall
3279 * into OOM very easily.
e325c90f 3280 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3281 */
3282 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3283 low_kmem_size = 0;
3284 total_size = 0;
3285 for_each_online_node(nid) {
3286 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3287 z = &NODE_DATA(nid)->node_zones[zone_type];
3288 if (populated_zone(z)) {
3289 if (zone_type < ZONE_NORMAL)
3290 low_kmem_size += z->present_pages;
3291 total_size += z->present_pages;
e325c90f
DR
3292 } else if (zone_type == ZONE_NORMAL) {
3293 /*
3294 * If any node has only lowmem, then node order
3295 * is preferred to allow kernel allocations
3296 * locally; otherwise, they can easily infringe
3297 * on other nodes when there is an abundance of
3298 * lowmem available to allocate from.
3299 */
3300 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3301 }
3302 }
3303 }
3304 if (!low_kmem_size || /* there are no DMA area. */
3305 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3306 return ZONELIST_ORDER_NODE;
3307 /*
3308 * look into each node's config.
3309 * If there is a node whose DMA/DMA32 memory is very big area on
3310 * local memory, NODE_ORDER may be suitable.
3311 */
37b07e41
LS
3312 average_size = total_size /
3313 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
3314 for_each_online_node(nid) {
3315 low_kmem_size = 0;
3316 total_size = 0;
3317 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3318 z = &NODE_DATA(nid)->node_zones[zone_type];
3319 if (populated_zone(z)) {
3320 if (zone_type < ZONE_NORMAL)
3321 low_kmem_size += z->present_pages;
3322 total_size += z->present_pages;
3323 }
3324 }
3325 if (low_kmem_size &&
3326 total_size > average_size && /* ignore small node */
3327 low_kmem_size > total_size * 70/100)
3328 return ZONELIST_ORDER_NODE;
3329 }
3330 return ZONELIST_ORDER_ZONE;
3331}
3332
3333static void set_zonelist_order(void)
3334{
3335 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3336 current_zonelist_order = default_zonelist_order();
3337 else
3338 current_zonelist_order = user_zonelist_order;
3339}
3340
3341static void build_zonelists(pg_data_t *pgdat)
3342{
3343 int j, node, load;
3344 enum zone_type i;
1da177e4 3345 nodemask_t used_mask;
f0c0b2b8
KH
3346 int local_node, prev_node;
3347 struct zonelist *zonelist;
3348 int order = current_zonelist_order;
1da177e4
LT
3349
3350 /* initialize zonelists */
523b9458 3351 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3352 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3353 zonelist->_zonerefs[0].zone = NULL;
3354 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3355 }
3356
3357 /* NUMA-aware ordering of nodes */
3358 local_node = pgdat->node_id;
62bc62a8 3359 load = nr_online_nodes;
1da177e4
LT
3360 prev_node = local_node;
3361 nodes_clear(used_mask);
f0c0b2b8 3362
f0c0b2b8
KH
3363 memset(node_order, 0, sizeof(node_order));
3364 j = 0;
3365
1da177e4 3366 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
3367 int distance = node_distance(local_node, node);
3368
3369 /*
3370 * If another node is sufficiently far away then it is better
3371 * to reclaim pages in a zone before going off node.
3372 */
3373 if (distance > RECLAIM_DISTANCE)
3374 zone_reclaim_mode = 1;
3375
1da177e4
LT
3376 /*
3377 * We don't want to pressure a particular node.
3378 * So adding penalty to the first node in same
3379 * distance group to make it round-robin.
3380 */
9eeff239 3381 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
3382 node_load[node] = load;
3383
1da177e4
LT
3384 prev_node = node;
3385 load--;
f0c0b2b8
KH
3386 if (order == ZONELIST_ORDER_NODE)
3387 build_zonelists_in_node_order(pgdat, node);
3388 else
3389 node_order[j++] = node; /* remember order */
3390 }
1da177e4 3391
f0c0b2b8
KH
3392 if (order == ZONELIST_ORDER_ZONE) {
3393 /* calculate node order -- i.e., DMA last! */
3394 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3395 }
523b9458
CL
3396
3397 build_thisnode_zonelists(pgdat);
1da177e4
LT
3398}
3399
9276b1bc 3400/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3401static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3402{
54a6eb5c
MG
3403 struct zonelist *zonelist;
3404 struct zonelist_cache *zlc;
dd1a239f 3405 struct zoneref *z;
9276b1bc 3406
54a6eb5c
MG
3407 zonelist = &pgdat->node_zonelists[0];
3408 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3409 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3410 for (z = zonelist->_zonerefs; z->zone; z++)
3411 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3412}
3413
7aac7898
LS
3414#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3415/*
3416 * Return node id of node used for "local" allocations.
3417 * I.e., first node id of first zone in arg node's generic zonelist.
3418 * Used for initializing percpu 'numa_mem', which is used primarily
3419 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3420 */
3421int local_memory_node(int node)
3422{
3423 struct zone *zone;
3424
3425 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3426 gfp_zone(GFP_KERNEL),
3427 NULL,
3428 &zone);
3429 return zone->node;
3430}
3431#endif
f0c0b2b8 3432
1da177e4
LT
3433#else /* CONFIG_NUMA */
3434
f0c0b2b8
KH
3435static void set_zonelist_order(void)
3436{
3437 current_zonelist_order = ZONELIST_ORDER_ZONE;
3438}
3439
3440static void build_zonelists(pg_data_t *pgdat)
1da177e4 3441{
19655d34 3442 int node, local_node;
54a6eb5c
MG
3443 enum zone_type j;
3444 struct zonelist *zonelist;
1da177e4
LT
3445
3446 local_node = pgdat->node_id;
1da177e4 3447
54a6eb5c
MG
3448 zonelist = &pgdat->node_zonelists[0];
3449 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3450
54a6eb5c
MG
3451 /*
3452 * Now we build the zonelist so that it contains the zones
3453 * of all the other nodes.
3454 * We don't want to pressure a particular node, so when
3455 * building the zones for node N, we make sure that the
3456 * zones coming right after the local ones are those from
3457 * node N+1 (modulo N)
3458 */
3459 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3460 if (!node_online(node))
3461 continue;
3462 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3463 MAX_NR_ZONES - 1);
1da177e4 3464 }
54a6eb5c
MG
3465 for (node = 0; node < local_node; node++) {
3466 if (!node_online(node))
3467 continue;
3468 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3469 MAX_NR_ZONES - 1);
3470 }
3471
dd1a239f
MG
3472 zonelist->_zonerefs[j].zone = NULL;
3473 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3474}
3475
9276b1bc 3476/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3477static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3478{
54a6eb5c 3479 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3480}
3481
1da177e4
LT
3482#endif /* CONFIG_NUMA */
3483
99dcc3e5
CL
3484/*
3485 * Boot pageset table. One per cpu which is going to be used for all
3486 * zones and all nodes. The parameters will be set in such a way
3487 * that an item put on a list will immediately be handed over to
3488 * the buddy list. This is safe since pageset manipulation is done
3489 * with interrupts disabled.
3490 *
3491 * The boot_pagesets must be kept even after bootup is complete for
3492 * unused processors and/or zones. They do play a role for bootstrapping
3493 * hotplugged processors.
3494 *
3495 * zoneinfo_show() and maybe other functions do
3496 * not check if the processor is online before following the pageset pointer.
3497 * Other parts of the kernel may not check if the zone is available.
3498 */
3499static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3500static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3501static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3502
4eaf3f64
HL
3503/*
3504 * Global mutex to protect against size modification of zonelists
3505 * as well as to serialize pageset setup for the new populated zone.
3506 */
3507DEFINE_MUTEX(zonelists_mutex);
3508
9b1a4d38 3509/* return values int ....just for stop_machine() */
4ed7e022 3510static int __build_all_zonelists(void *data)
1da177e4 3511{
6811378e 3512 int nid;
99dcc3e5 3513 int cpu;
9adb62a5 3514 pg_data_t *self = data;
9276b1bc 3515
7f9cfb31
BL
3516#ifdef CONFIG_NUMA
3517 memset(node_load, 0, sizeof(node_load));
3518#endif
9adb62a5
JL
3519
3520 if (self && !node_online(self->node_id)) {
3521 build_zonelists(self);
3522 build_zonelist_cache(self);
3523 }
3524
9276b1bc 3525 for_each_online_node(nid) {
7ea1530a
CL
3526 pg_data_t *pgdat = NODE_DATA(nid);
3527
3528 build_zonelists(pgdat);
3529 build_zonelist_cache(pgdat);
9276b1bc 3530 }
99dcc3e5
CL
3531
3532 /*
3533 * Initialize the boot_pagesets that are going to be used
3534 * for bootstrapping processors. The real pagesets for
3535 * each zone will be allocated later when the per cpu
3536 * allocator is available.
3537 *
3538 * boot_pagesets are used also for bootstrapping offline
3539 * cpus if the system is already booted because the pagesets
3540 * are needed to initialize allocators on a specific cpu too.
3541 * F.e. the percpu allocator needs the page allocator which
3542 * needs the percpu allocator in order to allocate its pagesets
3543 * (a chicken-egg dilemma).
3544 */
7aac7898 3545 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3546 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3547
7aac7898
LS
3548#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3549 /*
3550 * We now know the "local memory node" for each node--
3551 * i.e., the node of the first zone in the generic zonelist.
3552 * Set up numa_mem percpu variable for on-line cpus. During
3553 * boot, only the boot cpu should be on-line; we'll init the
3554 * secondary cpus' numa_mem as they come on-line. During
3555 * node/memory hotplug, we'll fixup all on-line cpus.
3556 */
3557 if (cpu_online(cpu))
3558 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3559#endif
3560 }
3561
6811378e
YG
3562 return 0;
3563}
3564
4eaf3f64
HL
3565/*
3566 * Called with zonelists_mutex held always
3567 * unless system_state == SYSTEM_BOOTING.
3568 */
9adb62a5 3569void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3570{
f0c0b2b8
KH
3571 set_zonelist_order();
3572
6811378e 3573 if (system_state == SYSTEM_BOOTING) {
423b41d7 3574 __build_all_zonelists(NULL);
68ad8df4 3575 mminit_verify_zonelist();
6811378e
YG
3576 cpuset_init_current_mems_allowed();
3577 } else {
183ff22b 3578 /* we have to stop all cpus to guarantee there is no user
6811378e 3579 of zonelist */
e9959f0f 3580#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3581 if (zone)
3582 setup_zone_pageset(zone);
e9959f0f 3583#endif
9adb62a5 3584 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3585 /* cpuset refresh routine should be here */
3586 }
bd1e22b8 3587 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3588 /*
3589 * Disable grouping by mobility if the number of pages in the
3590 * system is too low to allow the mechanism to work. It would be
3591 * more accurate, but expensive to check per-zone. This check is
3592 * made on memory-hotadd so a system can start with mobility
3593 * disabled and enable it later
3594 */
d9c23400 3595 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3596 page_group_by_mobility_disabled = 1;
3597 else
3598 page_group_by_mobility_disabled = 0;
3599
3600 printk("Built %i zonelists in %s order, mobility grouping %s. "
3601 "Total pages: %ld\n",
62bc62a8 3602 nr_online_nodes,
f0c0b2b8 3603 zonelist_order_name[current_zonelist_order],
9ef9acb0 3604 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3605 vm_total_pages);
3606#ifdef CONFIG_NUMA
3607 printk("Policy zone: %s\n", zone_names[policy_zone]);
3608#endif
1da177e4
LT
3609}
3610
3611/*
3612 * Helper functions to size the waitqueue hash table.
3613 * Essentially these want to choose hash table sizes sufficiently
3614 * large so that collisions trying to wait on pages are rare.
3615 * But in fact, the number of active page waitqueues on typical
3616 * systems is ridiculously low, less than 200. So this is even
3617 * conservative, even though it seems large.
3618 *
3619 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3620 * waitqueues, i.e. the size of the waitq table given the number of pages.
3621 */
3622#define PAGES_PER_WAITQUEUE 256
3623
cca448fe 3624#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3625static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3626{
3627 unsigned long size = 1;
3628
3629 pages /= PAGES_PER_WAITQUEUE;
3630
3631 while (size < pages)
3632 size <<= 1;
3633
3634 /*
3635 * Once we have dozens or even hundreds of threads sleeping
3636 * on IO we've got bigger problems than wait queue collision.
3637 * Limit the size of the wait table to a reasonable size.
3638 */
3639 size = min(size, 4096UL);
3640
3641 return max(size, 4UL);
3642}
cca448fe
YG
3643#else
3644/*
3645 * A zone's size might be changed by hot-add, so it is not possible to determine
3646 * a suitable size for its wait_table. So we use the maximum size now.
3647 *
3648 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3649 *
3650 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3651 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3652 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3653 *
3654 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3655 * or more by the traditional way. (See above). It equals:
3656 *
3657 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3658 * ia64(16K page size) : = ( 8G + 4M)byte.
3659 * powerpc (64K page size) : = (32G +16M)byte.
3660 */
3661static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3662{
3663 return 4096UL;
3664}
3665#endif
1da177e4
LT
3666
3667/*
3668 * This is an integer logarithm so that shifts can be used later
3669 * to extract the more random high bits from the multiplicative
3670 * hash function before the remainder is taken.
3671 */
3672static inline unsigned long wait_table_bits(unsigned long size)
3673{
3674 return ffz(~size);
3675}
3676
3677#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3678
6d3163ce
AH
3679/*
3680 * Check if a pageblock contains reserved pages
3681 */
3682static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3683{
3684 unsigned long pfn;
3685
3686 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3687 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3688 return 1;
3689 }
3690 return 0;
3691}
3692
56fd56b8 3693/*
d9c23400 3694 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3695 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3696 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3697 * higher will lead to a bigger reserve which will get freed as contiguous
3698 * blocks as reclaim kicks in
3699 */
3700static void setup_zone_migrate_reserve(struct zone *zone)
3701{
6d3163ce 3702 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3703 struct page *page;
78986a67
MG
3704 unsigned long block_migratetype;
3705 int reserve;
56fd56b8 3706
d0215638
MH
3707 /*
3708 * Get the start pfn, end pfn and the number of blocks to reserve
3709 * We have to be careful to be aligned to pageblock_nr_pages to
3710 * make sure that we always check pfn_valid for the first page in
3711 * the block.
3712 */
56fd56b8
MG
3713 start_pfn = zone->zone_start_pfn;
3714 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3715 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3716 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3717 pageblock_order;
56fd56b8 3718
78986a67
MG
3719 /*
3720 * Reserve blocks are generally in place to help high-order atomic
3721 * allocations that are short-lived. A min_free_kbytes value that
3722 * would result in more than 2 reserve blocks for atomic allocations
3723 * is assumed to be in place to help anti-fragmentation for the
3724 * future allocation of hugepages at runtime.
3725 */
3726 reserve = min(2, reserve);
3727
d9c23400 3728 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3729 if (!pfn_valid(pfn))
3730 continue;
3731 page = pfn_to_page(pfn);
3732
344c790e
AL
3733 /* Watch out for overlapping nodes */
3734 if (page_to_nid(page) != zone_to_nid(zone))
3735 continue;
3736
56fd56b8
MG
3737 block_migratetype = get_pageblock_migratetype(page);
3738
938929f1
MG
3739 /* Only test what is necessary when the reserves are not met */
3740 if (reserve > 0) {
3741 /*
3742 * Blocks with reserved pages will never free, skip
3743 * them.
3744 */
3745 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3746 if (pageblock_is_reserved(pfn, block_end_pfn))
3747 continue;
56fd56b8 3748
938929f1
MG
3749 /* If this block is reserved, account for it */
3750 if (block_migratetype == MIGRATE_RESERVE) {
3751 reserve--;
3752 continue;
3753 }
3754
3755 /* Suitable for reserving if this block is movable */
3756 if (block_migratetype == MIGRATE_MOVABLE) {
3757 set_pageblock_migratetype(page,
3758 MIGRATE_RESERVE);
3759 move_freepages_block(zone, page,
3760 MIGRATE_RESERVE);
3761 reserve--;
3762 continue;
3763 }
56fd56b8
MG
3764 }
3765
3766 /*
3767 * If the reserve is met and this is a previous reserved block,
3768 * take it back
3769 */
3770 if (block_migratetype == MIGRATE_RESERVE) {
3771 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3772 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3773 }
3774 }
3775}
ac0e5b7a 3776
1da177e4
LT
3777/*
3778 * Initially all pages are reserved - free ones are freed
3779 * up by free_all_bootmem() once the early boot process is
3780 * done. Non-atomic initialization, single-pass.
3781 */
c09b4240 3782void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3783 unsigned long start_pfn, enum memmap_context context)
1da177e4 3784{
1da177e4 3785 struct page *page;
29751f69
AW
3786 unsigned long end_pfn = start_pfn + size;
3787 unsigned long pfn;
86051ca5 3788 struct zone *z;
1da177e4 3789
22b31eec
HD
3790 if (highest_memmap_pfn < end_pfn - 1)
3791 highest_memmap_pfn = end_pfn - 1;
3792
86051ca5 3793 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3794 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3795 /*
3796 * There can be holes in boot-time mem_map[]s
3797 * handed to this function. They do not
3798 * exist on hotplugged memory.
3799 */
3800 if (context == MEMMAP_EARLY) {
3801 if (!early_pfn_valid(pfn))
3802 continue;
3803 if (!early_pfn_in_nid(pfn, nid))
3804 continue;
3805 }
d41dee36
AW
3806 page = pfn_to_page(pfn);
3807 set_page_links(page, zone, nid, pfn);
708614e6 3808 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3809 init_page_count(page);
1da177e4
LT
3810 reset_page_mapcount(page);
3811 SetPageReserved(page);
b2a0ac88
MG
3812 /*
3813 * Mark the block movable so that blocks are reserved for
3814 * movable at startup. This will force kernel allocations
3815 * to reserve their blocks rather than leaking throughout
3816 * the address space during boot when many long-lived
56fd56b8
MG
3817 * kernel allocations are made. Later some blocks near
3818 * the start are marked MIGRATE_RESERVE by
3819 * setup_zone_migrate_reserve()
86051ca5
KH
3820 *
3821 * bitmap is created for zone's valid pfn range. but memmap
3822 * can be created for invalid pages (for alignment)
3823 * check here not to call set_pageblock_migratetype() against
3824 * pfn out of zone.
b2a0ac88 3825 */
86051ca5
KH
3826 if ((z->zone_start_pfn <= pfn)
3827 && (pfn < z->zone_start_pfn + z->spanned_pages)
3828 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3829 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3830
1da177e4
LT
3831 INIT_LIST_HEAD(&page->lru);
3832#ifdef WANT_PAGE_VIRTUAL
3833 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3834 if (!is_highmem_idx(zone))
3212c6be 3835 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3836#endif
1da177e4
LT
3837 }
3838}
3839
1e548deb 3840static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3841{
b2a0ac88
MG
3842 int order, t;
3843 for_each_migratetype_order(order, t) {
3844 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3845 zone->free_area[order].nr_free = 0;
3846 }
3847}
3848
3849#ifndef __HAVE_ARCH_MEMMAP_INIT
3850#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3851 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3852#endif
3853
4ed7e022 3854static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3855{
3a6be87f 3856#ifdef CONFIG_MMU
e7c8d5c9
CL
3857 int batch;
3858
3859 /*
3860 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3861 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3862 *
3863 * OK, so we don't know how big the cache is. So guess.
3864 */
3865 batch = zone->present_pages / 1024;
ba56e91c
SR
3866 if (batch * PAGE_SIZE > 512 * 1024)
3867 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3868 batch /= 4; /* We effectively *= 4 below */
3869 if (batch < 1)
3870 batch = 1;
3871
3872 /*
0ceaacc9
NP
3873 * Clamp the batch to a 2^n - 1 value. Having a power
3874 * of 2 value was found to be more likely to have
3875 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3876 *
0ceaacc9
NP
3877 * For example if 2 tasks are alternately allocating
3878 * batches of pages, one task can end up with a lot
3879 * of pages of one half of the possible page colors
3880 * and the other with pages of the other colors.
e7c8d5c9 3881 */
9155203a 3882 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3883
e7c8d5c9 3884 return batch;
3a6be87f
DH
3885
3886#else
3887 /* The deferral and batching of frees should be suppressed under NOMMU
3888 * conditions.
3889 *
3890 * The problem is that NOMMU needs to be able to allocate large chunks
3891 * of contiguous memory as there's no hardware page translation to
3892 * assemble apparent contiguous memory from discontiguous pages.
3893 *
3894 * Queueing large contiguous runs of pages for batching, however,
3895 * causes the pages to actually be freed in smaller chunks. As there
3896 * can be a significant delay between the individual batches being
3897 * recycled, this leads to the once large chunks of space being
3898 * fragmented and becoming unavailable for high-order allocations.
3899 */
3900 return 0;
3901#endif
e7c8d5c9
CL
3902}
3903
b69a7288 3904static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3905{
3906 struct per_cpu_pages *pcp;
5f8dcc21 3907 int migratetype;
2caaad41 3908
1c6fe946
MD
3909 memset(p, 0, sizeof(*p));
3910
3dfa5721 3911 pcp = &p->pcp;
2caaad41 3912 pcp->count = 0;
2caaad41
CL
3913 pcp->high = 6 * batch;
3914 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3915 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3916 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3917}
3918
8ad4b1fb
RS
3919/*
3920 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3921 * to the value high for the pageset p.
3922 */
3923
3924static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3925 unsigned long high)
3926{
3927 struct per_cpu_pages *pcp;
3928
3dfa5721 3929 pcp = &p->pcp;
8ad4b1fb
RS
3930 pcp->high = high;
3931 pcp->batch = max(1UL, high/4);
3932 if ((high/4) > (PAGE_SHIFT * 8))
3933 pcp->batch = PAGE_SHIFT * 8;
3934}
3935
4ed7e022 3936static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
3937{
3938 int cpu;
3939
3940 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3941
3942 for_each_possible_cpu(cpu) {
3943 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3944
3945 setup_pageset(pcp, zone_batchsize(zone));
3946
3947 if (percpu_pagelist_fraction)
3948 setup_pagelist_highmark(pcp,
3949 (zone->present_pages /
3950 percpu_pagelist_fraction));
3951 }
3952}
3953
2caaad41 3954/*
99dcc3e5
CL
3955 * Allocate per cpu pagesets and initialize them.
3956 * Before this call only boot pagesets were available.
e7c8d5c9 3957 */
99dcc3e5 3958void __init setup_per_cpu_pageset(void)
e7c8d5c9 3959{
99dcc3e5 3960 struct zone *zone;
e7c8d5c9 3961
319774e2
WF
3962 for_each_populated_zone(zone)
3963 setup_zone_pageset(zone);
e7c8d5c9
CL
3964}
3965
577a32f6 3966static noinline __init_refok
cca448fe 3967int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3968{
3969 int i;
3970 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3971 size_t alloc_size;
ed8ece2e
DH
3972
3973 /*
3974 * The per-page waitqueue mechanism uses hashed waitqueues
3975 * per zone.
3976 */
02b694de
YG
3977 zone->wait_table_hash_nr_entries =
3978 wait_table_hash_nr_entries(zone_size_pages);
3979 zone->wait_table_bits =
3980 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3981 alloc_size = zone->wait_table_hash_nr_entries
3982 * sizeof(wait_queue_head_t);
3983
cd94b9db 3984 if (!slab_is_available()) {
cca448fe 3985 zone->wait_table = (wait_queue_head_t *)
8f389a99 3986 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
3987 } else {
3988 /*
3989 * This case means that a zone whose size was 0 gets new memory
3990 * via memory hot-add.
3991 * But it may be the case that a new node was hot-added. In
3992 * this case vmalloc() will not be able to use this new node's
3993 * memory - this wait_table must be initialized to use this new
3994 * node itself as well.
3995 * To use this new node's memory, further consideration will be
3996 * necessary.
3997 */
8691f3a7 3998 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3999 }
4000 if (!zone->wait_table)
4001 return -ENOMEM;
ed8ece2e 4002
02b694de 4003 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4004 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4005
4006 return 0;
ed8ece2e
DH
4007}
4008
c09b4240 4009static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4010{
99dcc3e5
CL
4011 /*
4012 * per cpu subsystem is not up at this point. The following code
4013 * relies on the ability of the linker to provide the
4014 * offset of a (static) per cpu variable into the per cpu area.
4015 */
4016 zone->pageset = &boot_pageset;
ed8ece2e 4017
f5335c0f 4018 if (zone->present_pages)
99dcc3e5
CL
4019 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4020 zone->name, zone->present_pages,
4021 zone_batchsize(zone));
ed8ece2e
DH
4022}
4023
4ed7e022 4024int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4025 unsigned long zone_start_pfn,
a2f3aa02
DH
4026 unsigned long size,
4027 enum memmap_context context)
ed8ece2e
DH
4028{
4029 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4030 int ret;
4031 ret = zone_wait_table_init(zone, size);
4032 if (ret)
4033 return ret;
ed8ece2e
DH
4034 pgdat->nr_zones = zone_idx(zone) + 1;
4035
ed8ece2e
DH
4036 zone->zone_start_pfn = zone_start_pfn;
4037
708614e6
MG
4038 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4039 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4040 pgdat->node_id,
4041 (unsigned long)zone_idx(zone),
4042 zone_start_pfn, (zone_start_pfn + size));
4043
1e548deb 4044 zone_init_free_lists(zone);
718127cc
YG
4045
4046 return 0;
ed8ece2e
DH
4047}
4048
0ee332c1 4049#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4050#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4051/*
4052 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4053 * Architectures may implement their own version but if add_active_range()
4054 * was used and there are no special requirements, this is a convenient
4055 * alternative
4056 */
f2dbcfa7 4057int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4058{
c13291a5
TH
4059 unsigned long start_pfn, end_pfn;
4060 int i, nid;
c713216d 4061
c13291a5 4062 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 4063 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 4064 return nid;
cc2559bc
KH
4065 /* This is a memory hole */
4066 return -1;
c713216d
MG
4067}
4068#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4069
f2dbcfa7
KH
4070int __meminit early_pfn_to_nid(unsigned long pfn)
4071{
cc2559bc
KH
4072 int nid;
4073
4074 nid = __early_pfn_to_nid(pfn);
4075 if (nid >= 0)
4076 return nid;
4077 /* just returns 0 */
4078 return 0;
f2dbcfa7
KH
4079}
4080
cc2559bc
KH
4081#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4082bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4083{
4084 int nid;
4085
4086 nid = __early_pfn_to_nid(pfn);
4087 if (nid >= 0 && nid != node)
4088 return false;
4089 return true;
4090}
4091#endif
f2dbcfa7 4092
c713216d
MG
4093/**
4094 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4095 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4096 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4097 *
4098 * If an architecture guarantees that all ranges registered with
4099 * add_active_ranges() contain no holes and may be freed, this
4100 * this function may be used instead of calling free_bootmem() manually.
4101 */
c13291a5 4102void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4103{
c13291a5
TH
4104 unsigned long start_pfn, end_pfn;
4105 int i, this_nid;
edbe7d23 4106
c13291a5
TH
4107 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4108 start_pfn = min(start_pfn, max_low_pfn);
4109 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4110
c13291a5
TH
4111 if (start_pfn < end_pfn)
4112 free_bootmem_node(NODE_DATA(this_nid),
4113 PFN_PHYS(start_pfn),
4114 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4115 }
edbe7d23 4116}
edbe7d23 4117
c713216d
MG
4118/**
4119 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4120 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4121 *
4122 * If an architecture guarantees that all ranges registered with
4123 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4124 * function may be used instead of calling memory_present() manually.
c713216d
MG
4125 */
4126void __init sparse_memory_present_with_active_regions(int nid)
4127{
c13291a5
TH
4128 unsigned long start_pfn, end_pfn;
4129 int i, this_nid;
c713216d 4130
c13291a5
TH
4131 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4132 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4133}
4134
4135/**
4136 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4137 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4138 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4139 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4140 *
4141 * It returns the start and end page frame of a node based on information
4142 * provided by an arch calling add_active_range(). If called for a node
4143 * with no available memory, a warning is printed and the start and end
88ca3b94 4144 * PFNs will be 0.
c713216d 4145 */
a3142c8e 4146void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4147 unsigned long *start_pfn, unsigned long *end_pfn)
4148{
c13291a5 4149 unsigned long this_start_pfn, this_end_pfn;
c713216d 4150 int i;
c13291a5 4151
c713216d
MG
4152 *start_pfn = -1UL;
4153 *end_pfn = 0;
4154
c13291a5
TH
4155 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4156 *start_pfn = min(*start_pfn, this_start_pfn);
4157 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4158 }
4159
633c0666 4160 if (*start_pfn == -1UL)
c713216d 4161 *start_pfn = 0;
c713216d
MG
4162}
4163
2a1e274a
MG
4164/*
4165 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4166 * assumption is made that zones within a node are ordered in monotonic
4167 * increasing memory addresses so that the "highest" populated zone is used
4168 */
b69a7288 4169static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4170{
4171 int zone_index;
4172 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4173 if (zone_index == ZONE_MOVABLE)
4174 continue;
4175
4176 if (arch_zone_highest_possible_pfn[zone_index] >
4177 arch_zone_lowest_possible_pfn[zone_index])
4178 break;
4179 }
4180
4181 VM_BUG_ON(zone_index == -1);
4182 movable_zone = zone_index;
4183}
4184
4185/*
4186 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4187 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4188 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4189 * in each node depending on the size of each node and how evenly kernelcore
4190 * is distributed. This helper function adjusts the zone ranges
4191 * provided by the architecture for a given node by using the end of the
4192 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4193 * zones within a node are in order of monotonic increases memory addresses
4194 */
b69a7288 4195static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4196 unsigned long zone_type,
4197 unsigned long node_start_pfn,
4198 unsigned long node_end_pfn,
4199 unsigned long *zone_start_pfn,
4200 unsigned long *zone_end_pfn)
4201{
4202 /* Only adjust if ZONE_MOVABLE is on this node */
4203 if (zone_movable_pfn[nid]) {
4204 /* Size ZONE_MOVABLE */
4205 if (zone_type == ZONE_MOVABLE) {
4206 *zone_start_pfn = zone_movable_pfn[nid];
4207 *zone_end_pfn = min(node_end_pfn,
4208 arch_zone_highest_possible_pfn[movable_zone]);
4209
4210 /* Adjust for ZONE_MOVABLE starting within this range */
4211 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4212 *zone_end_pfn > zone_movable_pfn[nid]) {
4213 *zone_end_pfn = zone_movable_pfn[nid];
4214
4215 /* Check if this whole range is within ZONE_MOVABLE */
4216 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4217 *zone_start_pfn = *zone_end_pfn;
4218 }
4219}
4220
c713216d
MG
4221/*
4222 * Return the number of pages a zone spans in a node, including holes
4223 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4224 */
6ea6e688 4225static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4226 unsigned long zone_type,
4227 unsigned long *ignored)
4228{
4229 unsigned long node_start_pfn, node_end_pfn;
4230 unsigned long zone_start_pfn, zone_end_pfn;
4231
4232 /* Get the start and end of the node and zone */
4233 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4234 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4235 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4236 adjust_zone_range_for_zone_movable(nid, zone_type,
4237 node_start_pfn, node_end_pfn,
4238 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4239
4240 /* Check that this node has pages within the zone's required range */
4241 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4242 return 0;
4243
4244 /* Move the zone boundaries inside the node if necessary */
4245 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4246 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4247
4248 /* Return the spanned pages */
4249 return zone_end_pfn - zone_start_pfn;
4250}
4251
4252/*
4253 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4254 * then all holes in the requested range will be accounted for.
c713216d 4255 */
32996250 4256unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4257 unsigned long range_start_pfn,
4258 unsigned long range_end_pfn)
4259{
96e907d1
TH
4260 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4261 unsigned long start_pfn, end_pfn;
4262 int i;
c713216d 4263
96e907d1
TH
4264 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4265 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4266 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4267 nr_absent -= end_pfn - start_pfn;
c713216d 4268 }
96e907d1 4269 return nr_absent;
c713216d
MG
4270}
4271
4272/**
4273 * absent_pages_in_range - Return number of page frames in holes within a range
4274 * @start_pfn: The start PFN to start searching for holes
4275 * @end_pfn: The end PFN to stop searching for holes
4276 *
88ca3b94 4277 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4278 */
4279unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4280 unsigned long end_pfn)
4281{
4282 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4283}
4284
4285/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4286static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4287 unsigned long zone_type,
4288 unsigned long *ignored)
4289{
96e907d1
TH
4290 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4291 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4292 unsigned long node_start_pfn, node_end_pfn;
4293 unsigned long zone_start_pfn, zone_end_pfn;
4294
4295 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4296 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4297 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4298
2a1e274a
MG
4299 adjust_zone_range_for_zone_movable(nid, zone_type,
4300 node_start_pfn, node_end_pfn,
4301 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4302 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4303}
0e0b864e 4304
0ee332c1 4305#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4306static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4307 unsigned long zone_type,
4308 unsigned long *zones_size)
4309{
4310 return zones_size[zone_type];
4311}
4312
6ea6e688 4313static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4314 unsigned long zone_type,
4315 unsigned long *zholes_size)
4316{
4317 if (!zholes_size)
4318 return 0;
4319
4320 return zholes_size[zone_type];
4321}
0e0b864e 4322
0ee332c1 4323#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4324
a3142c8e 4325static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4326 unsigned long *zones_size, unsigned long *zholes_size)
4327{
4328 unsigned long realtotalpages, totalpages = 0;
4329 enum zone_type i;
4330
4331 for (i = 0; i < MAX_NR_ZONES; i++)
4332 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4333 zones_size);
4334 pgdat->node_spanned_pages = totalpages;
4335
4336 realtotalpages = totalpages;
4337 for (i = 0; i < MAX_NR_ZONES; i++)
4338 realtotalpages -=
4339 zone_absent_pages_in_node(pgdat->node_id, i,
4340 zholes_size);
4341 pgdat->node_present_pages = realtotalpages;
4342 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4343 realtotalpages);
4344}
4345
835c134e
MG
4346#ifndef CONFIG_SPARSEMEM
4347/*
4348 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4349 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4350 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4351 * round what is now in bits to nearest long in bits, then return it in
4352 * bytes.
4353 */
4354static unsigned long __init usemap_size(unsigned long zonesize)
4355{
4356 unsigned long usemapsize;
4357
d9c23400
MG
4358 usemapsize = roundup(zonesize, pageblock_nr_pages);
4359 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4360 usemapsize *= NR_PAGEBLOCK_BITS;
4361 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4362
4363 return usemapsize / 8;
4364}
4365
4366static void __init setup_usemap(struct pglist_data *pgdat,
4367 struct zone *zone, unsigned long zonesize)
4368{
4369 unsigned long usemapsize = usemap_size(zonesize);
4370 zone->pageblock_flags = NULL;
58a01a45 4371 if (usemapsize)
8f389a99
YL
4372 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4373 usemapsize);
835c134e
MG
4374}
4375#else
fa9f90be 4376static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4377 struct zone *zone, unsigned long zonesize) {}
4378#endif /* CONFIG_SPARSEMEM */
4379
d9c23400 4380#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4381
d9c23400 4382/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4383void __init set_pageblock_order(void)
d9c23400 4384{
955c1cd7
AM
4385 unsigned int order;
4386
d9c23400
MG
4387 /* Check that pageblock_nr_pages has not already been setup */
4388 if (pageblock_order)
4389 return;
4390
955c1cd7
AM
4391 if (HPAGE_SHIFT > PAGE_SHIFT)
4392 order = HUGETLB_PAGE_ORDER;
4393 else
4394 order = MAX_ORDER - 1;
4395
d9c23400
MG
4396 /*
4397 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4398 * This value may be variable depending on boot parameters on IA64 and
4399 * powerpc.
d9c23400
MG
4400 */
4401 pageblock_order = order;
4402}
4403#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4404
ba72cb8c
MG
4405/*
4406 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4407 * is unused as pageblock_order is set at compile-time. See
4408 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4409 * the kernel config
ba72cb8c 4410 */
ca57df79 4411void __init set_pageblock_order(void)
ba72cb8c 4412{
ba72cb8c 4413}
d9c23400
MG
4414
4415#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4416
1da177e4
LT
4417/*
4418 * Set up the zone data structures:
4419 * - mark all pages reserved
4420 * - mark all memory queues empty
4421 * - clear the memory bitmaps
6527af5d
MK
4422 *
4423 * NOTE: pgdat should get zeroed by caller.
1da177e4 4424 */
b5a0e011 4425static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4426 unsigned long *zones_size, unsigned long *zholes_size)
4427{
2f1b6248 4428 enum zone_type j;
ed8ece2e 4429 int nid = pgdat->node_id;
1da177e4 4430 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4431 int ret;
1da177e4 4432
208d54e5 4433 pgdat_resize_init(pgdat);
1da177e4 4434 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4435 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4436 pgdat_page_cgroup_init(pgdat);
5f63b720 4437
1da177e4
LT
4438 for (j = 0; j < MAX_NR_ZONES; j++) {
4439 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4440 unsigned long size, realsize, memmap_pages;
1da177e4 4441
c713216d
MG
4442 size = zone_spanned_pages_in_node(nid, j, zones_size);
4443 realsize = size - zone_absent_pages_in_node(nid, j,
4444 zholes_size);
1da177e4 4445
0e0b864e
MG
4446 /*
4447 * Adjust realsize so that it accounts for how much memory
4448 * is used by this zone for memmap. This affects the watermark
4449 * and per-cpu initialisations
4450 */
f7232154
JW
4451 memmap_pages =
4452 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4453 if (realsize >= memmap_pages) {
4454 realsize -= memmap_pages;
5594c8c8
YL
4455 if (memmap_pages)
4456 printk(KERN_DEBUG
4457 " %s zone: %lu pages used for memmap\n",
4458 zone_names[j], memmap_pages);
0e0b864e
MG
4459 } else
4460 printk(KERN_WARNING
4461 " %s zone: %lu pages exceeds realsize %lu\n",
4462 zone_names[j], memmap_pages, realsize);
4463
6267276f
CL
4464 /* Account for reserved pages */
4465 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4466 realsize -= dma_reserve;
d903ef9f 4467 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4468 zone_names[0], dma_reserve);
0e0b864e
MG
4469 }
4470
98d2b0eb 4471 if (!is_highmem_idx(j))
1da177e4
LT
4472 nr_kernel_pages += realsize;
4473 nr_all_pages += realsize;
4474
4475 zone->spanned_pages = size;
4476 zone->present_pages = realsize;
9614634f 4477#ifdef CONFIG_NUMA
d5f541ed 4478 zone->node = nid;
8417bba4 4479 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4480 / 100;
0ff38490 4481 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4482#endif
1da177e4
LT
4483 zone->name = zone_names[j];
4484 spin_lock_init(&zone->lock);
4485 spin_lock_init(&zone->lru_lock);
bdc8cb98 4486 zone_seqlock_init(zone);
1da177e4 4487 zone->zone_pgdat = pgdat;
1da177e4 4488
ed8ece2e 4489 zone_pcp_init(zone);
7f5e86c2 4490 lruvec_init(&zone->lruvec, zone);
1da177e4
LT
4491 if (!size)
4492 continue;
4493
955c1cd7 4494 set_pageblock_order();
835c134e 4495 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4496 ret = init_currently_empty_zone(zone, zone_start_pfn,
4497 size, MEMMAP_EARLY);
718127cc 4498 BUG_ON(ret);
76cdd58e 4499 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4500 zone_start_pfn += size;
1da177e4
LT
4501 }
4502}
4503
577a32f6 4504static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4505{
1da177e4
LT
4506 /* Skip empty nodes */
4507 if (!pgdat->node_spanned_pages)
4508 return;
4509
d41dee36 4510#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4511 /* ia64 gets its own node_mem_map, before this, without bootmem */
4512 if (!pgdat->node_mem_map) {
e984bb43 4513 unsigned long size, start, end;
d41dee36
AW
4514 struct page *map;
4515
e984bb43
BP
4516 /*
4517 * The zone's endpoints aren't required to be MAX_ORDER
4518 * aligned but the node_mem_map endpoints must be in order
4519 * for the buddy allocator to function correctly.
4520 */
4521 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4522 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4523 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4524 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4525 map = alloc_remap(pgdat->node_id, size);
4526 if (!map)
8f389a99 4527 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4528 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4529 }
12d810c1 4530#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4531 /*
4532 * With no DISCONTIG, the global mem_map is just set as node 0's
4533 */
c713216d 4534 if (pgdat == NODE_DATA(0)) {
1da177e4 4535 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4536#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4537 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4538 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4539#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4540 }
1da177e4 4541#endif
d41dee36 4542#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4543}
4544
9109fb7b
JW
4545void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4546 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4547{
9109fb7b
JW
4548 pg_data_t *pgdat = NODE_DATA(nid);
4549
88fdf75d 4550 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4551 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4552
1da177e4
LT
4553 pgdat->node_id = nid;
4554 pgdat->node_start_pfn = node_start_pfn;
c713216d 4555 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4556
4557 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4558#ifdef CONFIG_FLAT_NODE_MEM_MAP
4559 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4560 nid, (unsigned long)pgdat,
4561 (unsigned long)pgdat->node_mem_map);
4562#endif
1da177e4
LT
4563
4564 free_area_init_core(pgdat, zones_size, zholes_size);
4565}
4566
0ee332c1 4567#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4568
4569#if MAX_NUMNODES > 1
4570/*
4571 * Figure out the number of possible node ids.
4572 */
4573static void __init setup_nr_node_ids(void)
4574{
4575 unsigned int node;
4576 unsigned int highest = 0;
4577
4578 for_each_node_mask(node, node_possible_map)
4579 highest = node;
4580 nr_node_ids = highest + 1;
4581}
4582#else
4583static inline void setup_nr_node_ids(void)
4584{
4585}
4586#endif
4587
1e01979c
TH
4588/**
4589 * node_map_pfn_alignment - determine the maximum internode alignment
4590 *
4591 * This function should be called after node map is populated and sorted.
4592 * It calculates the maximum power of two alignment which can distinguish
4593 * all the nodes.
4594 *
4595 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4596 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4597 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4598 * shifted, 1GiB is enough and this function will indicate so.
4599 *
4600 * This is used to test whether pfn -> nid mapping of the chosen memory
4601 * model has fine enough granularity to avoid incorrect mapping for the
4602 * populated node map.
4603 *
4604 * Returns the determined alignment in pfn's. 0 if there is no alignment
4605 * requirement (single node).
4606 */
4607unsigned long __init node_map_pfn_alignment(void)
4608{
4609 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4610 unsigned long start, end, mask;
1e01979c 4611 int last_nid = -1;
c13291a5 4612 int i, nid;
1e01979c 4613
c13291a5 4614 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4615 if (!start || last_nid < 0 || last_nid == nid) {
4616 last_nid = nid;
4617 last_end = end;
4618 continue;
4619 }
4620
4621 /*
4622 * Start with a mask granular enough to pin-point to the
4623 * start pfn and tick off bits one-by-one until it becomes
4624 * too coarse to separate the current node from the last.
4625 */
4626 mask = ~((1 << __ffs(start)) - 1);
4627 while (mask && last_end <= (start & (mask << 1)))
4628 mask <<= 1;
4629
4630 /* accumulate all internode masks */
4631 accl_mask |= mask;
4632 }
4633
4634 /* convert mask to number of pages */
4635 return ~accl_mask + 1;
4636}
4637
a6af2bc3 4638/* Find the lowest pfn for a node */
b69a7288 4639static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4640{
a6af2bc3 4641 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4642 unsigned long start_pfn;
4643 int i;
1abbfb41 4644
c13291a5
TH
4645 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4646 min_pfn = min(min_pfn, start_pfn);
c713216d 4647
a6af2bc3
MG
4648 if (min_pfn == ULONG_MAX) {
4649 printk(KERN_WARNING
2bc0d261 4650 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4651 return 0;
4652 }
4653
4654 return min_pfn;
c713216d
MG
4655}
4656
4657/**
4658 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4659 *
4660 * It returns the minimum PFN based on information provided via
88ca3b94 4661 * add_active_range().
c713216d
MG
4662 */
4663unsigned long __init find_min_pfn_with_active_regions(void)
4664{
4665 return find_min_pfn_for_node(MAX_NUMNODES);
4666}
4667
37b07e41
LS
4668/*
4669 * early_calculate_totalpages()
4670 * Sum pages in active regions for movable zone.
4671 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4672 */
484f51f8 4673static unsigned long __init early_calculate_totalpages(void)
7e63efef 4674{
7e63efef 4675 unsigned long totalpages = 0;
c13291a5
TH
4676 unsigned long start_pfn, end_pfn;
4677 int i, nid;
4678
4679 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4680 unsigned long pages = end_pfn - start_pfn;
7e63efef 4681
37b07e41
LS
4682 totalpages += pages;
4683 if (pages)
c13291a5 4684 node_set_state(nid, N_HIGH_MEMORY);
37b07e41
LS
4685 }
4686 return totalpages;
7e63efef
MG
4687}
4688
2a1e274a
MG
4689/*
4690 * Find the PFN the Movable zone begins in each node. Kernel memory
4691 * is spread evenly between nodes as long as the nodes have enough
4692 * memory. When they don't, some nodes will have more kernelcore than
4693 * others
4694 */
b224ef85 4695static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4696{
4697 int i, nid;
4698 unsigned long usable_startpfn;
4699 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4700 /* save the state before borrow the nodemask */
4701 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4702 unsigned long totalpages = early_calculate_totalpages();
4703 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4704
7e63efef
MG
4705 /*
4706 * If movablecore was specified, calculate what size of
4707 * kernelcore that corresponds so that memory usable for
4708 * any allocation type is evenly spread. If both kernelcore
4709 * and movablecore are specified, then the value of kernelcore
4710 * will be used for required_kernelcore if it's greater than
4711 * what movablecore would have allowed.
4712 */
4713 if (required_movablecore) {
7e63efef
MG
4714 unsigned long corepages;
4715
4716 /*
4717 * Round-up so that ZONE_MOVABLE is at least as large as what
4718 * was requested by the user
4719 */
4720 required_movablecore =
4721 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4722 corepages = totalpages - required_movablecore;
4723
4724 required_kernelcore = max(required_kernelcore, corepages);
4725 }
4726
2a1e274a
MG
4727 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4728 if (!required_kernelcore)
66918dcd 4729 goto out;
2a1e274a
MG
4730
4731 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4732 find_usable_zone_for_movable();
4733 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4734
4735restart:
4736 /* Spread kernelcore memory as evenly as possible throughout nodes */
4737 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4738 for_each_node_state(nid, N_HIGH_MEMORY) {
c13291a5
TH
4739 unsigned long start_pfn, end_pfn;
4740
2a1e274a
MG
4741 /*
4742 * Recalculate kernelcore_node if the division per node
4743 * now exceeds what is necessary to satisfy the requested
4744 * amount of memory for the kernel
4745 */
4746 if (required_kernelcore < kernelcore_node)
4747 kernelcore_node = required_kernelcore / usable_nodes;
4748
4749 /*
4750 * As the map is walked, we track how much memory is usable
4751 * by the kernel using kernelcore_remaining. When it is
4752 * 0, the rest of the node is usable by ZONE_MOVABLE
4753 */
4754 kernelcore_remaining = kernelcore_node;
4755
4756 /* Go through each range of PFNs within this node */
c13291a5 4757 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4758 unsigned long size_pages;
4759
c13291a5 4760 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4761 if (start_pfn >= end_pfn)
4762 continue;
4763
4764 /* Account for what is only usable for kernelcore */
4765 if (start_pfn < usable_startpfn) {
4766 unsigned long kernel_pages;
4767 kernel_pages = min(end_pfn, usable_startpfn)
4768 - start_pfn;
4769
4770 kernelcore_remaining -= min(kernel_pages,
4771 kernelcore_remaining);
4772 required_kernelcore -= min(kernel_pages,
4773 required_kernelcore);
4774
4775 /* Continue if range is now fully accounted */
4776 if (end_pfn <= usable_startpfn) {
4777
4778 /*
4779 * Push zone_movable_pfn to the end so
4780 * that if we have to rebalance
4781 * kernelcore across nodes, we will
4782 * not double account here
4783 */
4784 zone_movable_pfn[nid] = end_pfn;
4785 continue;
4786 }
4787 start_pfn = usable_startpfn;
4788 }
4789
4790 /*
4791 * The usable PFN range for ZONE_MOVABLE is from
4792 * start_pfn->end_pfn. Calculate size_pages as the
4793 * number of pages used as kernelcore
4794 */
4795 size_pages = end_pfn - start_pfn;
4796 if (size_pages > kernelcore_remaining)
4797 size_pages = kernelcore_remaining;
4798 zone_movable_pfn[nid] = start_pfn + size_pages;
4799
4800 /*
4801 * Some kernelcore has been met, update counts and
4802 * break if the kernelcore for this node has been
4803 * satisified
4804 */
4805 required_kernelcore -= min(required_kernelcore,
4806 size_pages);
4807 kernelcore_remaining -= size_pages;
4808 if (!kernelcore_remaining)
4809 break;
4810 }
4811 }
4812
4813 /*
4814 * If there is still required_kernelcore, we do another pass with one
4815 * less node in the count. This will push zone_movable_pfn[nid] further
4816 * along on the nodes that still have memory until kernelcore is
4817 * satisified
4818 */
4819 usable_nodes--;
4820 if (usable_nodes && required_kernelcore > usable_nodes)
4821 goto restart;
4822
4823 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4824 for (nid = 0; nid < MAX_NUMNODES; nid++)
4825 zone_movable_pfn[nid] =
4826 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4827
4828out:
4829 /* restore the node_state */
4830 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4831}
4832
37b07e41 4833/* Any regular memory on that node ? */
4ed7e022 4834static void __init check_for_regular_memory(pg_data_t *pgdat)
37b07e41
LS
4835{
4836#ifdef CONFIG_HIGHMEM
4837 enum zone_type zone_type;
4838
4839 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4840 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4841 if (zone->present_pages) {
37b07e41 4842 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
d0048b0e
BL
4843 break;
4844 }
37b07e41
LS
4845 }
4846#endif
4847}
4848
c713216d
MG
4849/**
4850 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4851 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4852 *
4853 * This will call free_area_init_node() for each active node in the system.
4854 * Using the page ranges provided by add_active_range(), the size of each
4855 * zone in each node and their holes is calculated. If the maximum PFN
4856 * between two adjacent zones match, it is assumed that the zone is empty.
4857 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4858 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4859 * starts where the previous one ended. For example, ZONE_DMA32 starts
4860 * at arch_max_dma_pfn.
4861 */
4862void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4863{
c13291a5
TH
4864 unsigned long start_pfn, end_pfn;
4865 int i, nid;
a6af2bc3 4866
c713216d
MG
4867 /* Record where the zone boundaries are */
4868 memset(arch_zone_lowest_possible_pfn, 0,
4869 sizeof(arch_zone_lowest_possible_pfn));
4870 memset(arch_zone_highest_possible_pfn, 0,
4871 sizeof(arch_zone_highest_possible_pfn));
4872 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4873 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4874 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4875 if (i == ZONE_MOVABLE)
4876 continue;
c713216d
MG
4877 arch_zone_lowest_possible_pfn[i] =
4878 arch_zone_highest_possible_pfn[i-1];
4879 arch_zone_highest_possible_pfn[i] =
4880 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4881 }
2a1e274a
MG
4882 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4883 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4884
4885 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4886 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4887 find_zone_movable_pfns_for_nodes();
c713216d 4888
c713216d 4889 /* Print out the zone ranges */
a62e2f4f 4890 printk("Zone ranges:\n");
2a1e274a
MG
4891 for (i = 0; i < MAX_NR_ZONES; i++) {
4892 if (i == ZONE_MOVABLE)
4893 continue;
155cbfc8 4894 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
4895 if (arch_zone_lowest_possible_pfn[i] ==
4896 arch_zone_highest_possible_pfn[i])
155cbfc8 4897 printk(KERN_CONT "empty\n");
72f0ba02 4898 else
a62e2f4f
BH
4899 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4900 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4901 (arch_zone_highest_possible_pfn[i]
4902 << PAGE_SHIFT) - 1);
2a1e274a
MG
4903 }
4904
4905 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 4906 printk("Movable zone start for each node\n");
2a1e274a
MG
4907 for (i = 0; i < MAX_NUMNODES; i++) {
4908 if (zone_movable_pfn[i])
a62e2f4f
BH
4909 printk(" Node %d: %#010lx\n", i,
4910 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 4911 }
c713216d 4912
f2d52fe5 4913 /* Print out the early node map */
a62e2f4f 4914 printk("Early memory node ranges\n");
c13291a5 4915 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
4916 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4917 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
4918
4919 /* Initialise every node */
708614e6 4920 mminit_verify_pageflags_layout();
8ef82866 4921 setup_nr_node_ids();
c713216d
MG
4922 for_each_online_node(nid) {
4923 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4924 free_area_init_node(nid, NULL,
c713216d 4925 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4926
4927 /* Any memory on that node */
4928 if (pgdat->node_present_pages)
4929 node_set_state(nid, N_HIGH_MEMORY);
4930 check_for_regular_memory(pgdat);
c713216d
MG
4931 }
4932}
2a1e274a 4933
7e63efef 4934static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4935{
4936 unsigned long long coremem;
4937 if (!p)
4938 return -EINVAL;
4939
4940 coremem = memparse(p, &p);
7e63efef 4941 *core = coremem >> PAGE_SHIFT;
2a1e274a 4942
7e63efef 4943 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4944 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4945
4946 return 0;
4947}
ed7ed365 4948
7e63efef
MG
4949/*
4950 * kernelcore=size sets the amount of memory for use for allocations that
4951 * cannot be reclaimed or migrated.
4952 */
4953static int __init cmdline_parse_kernelcore(char *p)
4954{
4955 return cmdline_parse_core(p, &required_kernelcore);
4956}
4957
4958/*
4959 * movablecore=size sets the amount of memory for use for allocations that
4960 * can be reclaimed or migrated.
4961 */
4962static int __init cmdline_parse_movablecore(char *p)
4963{
4964 return cmdline_parse_core(p, &required_movablecore);
4965}
4966
ed7ed365 4967early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4968early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4969
0ee332c1 4970#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4971
0e0b864e 4972/**
88ca3b94
RD
4973 * set_dma_reserve - set the specified number of pages reserved in the first zone
4974 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4975 *
4976 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4977 * In the DMA zone, a significant percentage may be consumed by kernel image
4978 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4979 * function may optionally be used to account for unfreeable pages in the
4980 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4981 * smaller per-cpu batchsize.
0e0b864e
MG
4982 */
4983void __init set_dma_reserve(unsigned long new_dma_reserve)
4984{
4985 dma_reserve = new_dma_reserve;
4986}
4987
1da177e4
LT
4988void __init free_area_init(unsigned long *zones_size)
4989{
9109fb7b 4990 free_area_init_node(0, zones_size,
1da177e4
LT
4991 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4992}
1da177e4 4993
1da177e4
LT
4994static int page_alloc_cpu_notify(struct notifier_block *self,
4995 unsigned long action, void *hcpu)
4996{
4997 int cpu = (unsigned long)hcpu;
1da177e4 4998
8bb78442 4999 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5000 lru_add_drain_cpu(cpu);
9f8f2172
CL
5001 drain_pages(cpu);
5002
5003 /*
5004 * Spill the event counters of the dead processor
5005 * into the current processors event counters.
5006 * This artificially elevates the count of the current
5007 * processor.
5008 */
f8891e5e 5009 vm_events_fold_cpu(cpu);
9f8f2172
CL
5010
5011 /*
5012 * Zero the differential counters of the dead processor
5013 * so that the vm statistics are consistent.
5014 *
5015 * This is only okay since the processor is dead and cannot
5016 * race with what we are doing.
5017 */
2244b95a 5018 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5019 }
5020 return NOTIFY_OK;
5021}
1da177e4
LT
5022
5023void __init page_alloc_init(void)
5024{
5025 hotcpu_notifier(page_alloc_cpu_notify, 0);
5026}
5027
cb45b0e9
HA
5028/*
5029 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5030 * or min_free_kbytes changes.
5031 */
5032static void calculate_totalreserve_pages(void)
5033{
5034 struct pglist_data *pgdat;
5035 unsigned long reserve_pages = 0;
2f6726e5 5036 enum zone_type i, j;
cb45b0e9
HA
5037
5038 for_each_online_pgdat(pgdat) {
5039 for (i = 0; i < MAX_NR_ZONES; i++) {
5040 struct zone *zone = pgdat->node_zones + i;
5041 unsigned long max = 0;
5042
5043 /* Find valid and maximum lowmem_reserve in the zone */
5044 for (j = i; j < MAX_NR_ZONES; j++) {
5045 if (zone->lowmem_reserve[j] > max)
5046 max = zone->lowmem_reserve[j];
5047 }
5048
41858966
MG
5049 /* we treat the high watermark as reserved pages. */
5050 max += high_wmark_pages(zone);
cb45b0e9
HA
5051
5052 if (max > zone->present_pages)
5053 max = zone->present_pages;
5054 reserve_pages += max;
ab8fabd4
JW
5055 /*
5056 * Lowmem reserves are not available to
5057 * GFP_HIGHUSER page cache allocations and
5058 * kswapd tries to balance zones to their high
5059 * watermark. As a result, neither should be
5060 * regarded as dirtyable memory, to prevent a
5061 * situation where reclaim has to clean pages
5062 * in order to balance the zones.
5063 */
5064 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5065 }
5066 }
ab8fabd4 5067 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5068 totalreserve_pages = reserve_pages;
5069}
5070
1da177e4
LT
5071/*
5072 * setup_per_zone_lowmem_reserve - called whenever
5073 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5074 * has a correct pages reserved value, so an adequate number of
5075 * pages are left in the zone after a successful __alloc_pages().
5076 */
5077static void setup_per_zone_lowmem_reserve(void)
5078{
5079 struct pglist_data *pgdat;
2f6726e5 5080 enum zone_type j, idx;
1da177e4 5081
ec936fc5 5082 for_each_online_pgdat(pgdat) {
1da177e4
LT
5083 for (j = 0; j < MAX_NR_ZONES; j++) {
5084 struct zone *zone = pgdat->node_zones + j;
5085 unsigned long present_pages = zone->present_pages;
5086
5087 zone->lowmem_reserve[j] = 0;
5088
2f6726e5
CL
5089 idx = j;
5090 while (idx) {
1da177e4
LT
5091 struct zone *lower_zone;
5092
2f6726e5
CL
5093 idx--;
5094
1da177e4
LT
5095 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5096 sysctl_lowmem_reserve_ratio[idx] = 1;
5097
5098 lower_zone = pgdat->node_zones + idx;
5099 lower_zone->lowmem_reserve[j] = present_pages /
5100 sysctl_lowmem_reserve_ratio[idx];
5101 present_pages += lower_zone->present_pages;
5102 }
5103 }
5104 }
cb45b0e9
HA
5105
5106 /* update totalreserve_pages */
5107 calculate_totalreserve_pages();
1da177e4
LT
5108}
5109
cfd3da1e 5110static void __setup_per_zone_wmarks(void)
1da177e4
LT
5111{
5112 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5113 unsigned long lowmem_pages = 0;
5114 struct zone *zone;
5115 unsigned long flags;
5116
5117 /* Calculate total number of !ZONE_HIGHMEM pages */
5118 for_each_zone(zone) {
5119 if (!is_highmem(zone))
5120 lowmem_pages += zone->present_pages;
5121 }
5122
5123 for_each_zone(zone) {
ac924c60
AM
5124 u64 tmp;
5125
1125b4e3 5126 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5127 tmp = (u64)pages_min * zone->present_pages;
5128 do_div(tmp, lowmem_pages);
1da177e4
LT
5129 if (is_highmem(zone)) {
5130 /*
669ed175
NP
5131 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5132 * need highmem pages, so cap pages_min to a small
5133 * value here.
5134 *
41858966 5135 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5136 * deltas controls asynch page reclaim, and so should
5137 * not be capped for highmem.
1da177e4
LT
5138 */
5139 int min_pages;
5140
5141 min_pages = zone->present_pages / 1024;
5142 if (min_pages < SWAP_CLUSTER_MAX)
5143 min_pages = SWAP_CLUSTER_MAX;
5144 if (min_pages > 128)
5145 min_pages = 128;
41858966 5146 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5147 } else {
669ed175
NP
5148 /*
5149 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5150 * proportionate to the zone's size.
5151 */
41858966 5152 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5153 }
5154
41858966
MG
5155 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5156 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9
MS
5157
5158 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5159 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5160 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5161
56fd56b8 5162 setup_zone_migrate_reserve(zone);
1125b4e3 5163 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5164 }
cb45b0e9
HA
5165
5166 /* update totalreserve_pages */
5167 calculate_totalreserve_pages();
1da177e4
LT
5168}
5169
cfd3da1e
MG
5170/**
5171 * setup_per_zone_wmarks - called when min_free_kbytes changes
5172 * or when memory is hot-{added|removed}
5173 *
5174 * Ensures that the watermark[min,low,high] values for each zone are set
5175 * correctly with respect to min_free_kbytes.
5176 */
5177void setup_per_zone_wmarks(void)
5178{
5179 mutex_lock(&zonelists_mutex);
5180 __setup_per_zone_wmarks();
5181 mutex_unlock(&zonelists_mutex);
5182}
5183
55a4462a 5184/*
556adecb
RR
5185 * The inactive anon list should be small enough that the VM never has to
5186 * do too much work, but large enough that each inactive page has a chance
5187 * to be referenced again before it is swapped out.
5188 *
5189 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5190 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5191 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5192 * the anonymous pages are kept on the inactive list.
5193 *
5194 * total target max
5195 * memory ratio inactive anon
5196 * -------------------------------------
5197 * 10MB 1 5MB
5198 * 100MB 1 50MB
5199 * 1GB 3 250MB
5200 * 10GB 10 0.9GB
5201 * 100GB 31 3GB
5202 * 1TB 101 10GB
5203 * 10TB 320 32GB
5204 */
1b79acc9 5205static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5206{
96cb4df5 5207 unsigned int gb, ratio;
556adecb 5208
96cb4df5
MK
5209 /* Zone size in gigabytes */
5210 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5211 if (gb)
556adecb 5212 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5213 else
5214 ratio = 1;
556adecb 5215
96cb4df5
MK
5216 zone->inactive_ratio = ratio;
5217}
556adecb 5218
839a4fcc 5219static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5220{
5221 struct zone *zone;
5222
5223 for_each_zone(zone)
5224 calculate_zone_inactive_ratio(zone);
556adecb
RR
5225}
5226
1da177e4
LT
5227/*
5228 * Initialise min_free_kbytes.
5229 *
5230 * For small machines we want it small (128k min). For large machines
5231 * we want it large (64MB max). But it is not linear, because network
5232 * bandwidth does not increase linearly with machine size. We use
5233 *
5234 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5235 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5236 *
5237 * which yields
5238 *
5239 * 16MB: 512k
5240 * 32MB: 724k
5241 * 64MB: 1024k
5242 * 128MB: 1448k
5243 * 256MB: 2048k
5244 * 512MB: 2896k
5245 * 1024MB: 4096k
5246 * 2048MB: 5792k
5247 * 4096MB: 8192k
5248 * 8192MB: 11584k
5249 * 16384MB: 16384k
5250 */
1b79acc9 5251int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5252{
5253 unsigned long lowmem_kbytes;
5254
5255 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5256
5257 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5258 if (min_free_kbytes < 128)
5259 min_free_kbytes = 128;
5260 if (min_free_kbytes > 65536)
5261 min_free_kbytes = 65536;
bc75d33f 5262 setup_per_zone_wmarks();
a6cccdc3 5263 refresh_zone_stat_thresholds();
1da177e4 5264 setup_per_zone_lowmem_reserve();
556adecb 5265 setup_per_zone_inactive_ratio();
1da177e4
LT
5266 return 0;
5267}
bc75d33f 5268module_init(init_per_zone_wmark_min)
1da177e4
LT
5269
5270/*
5271 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5272 * that we can call two helper functions whenever min_free_kbytes
5273 * changes.
5274 */
5275int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5276 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5277{
8d65af78 5278 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5279 if (write)
bc75d33f 5280 setup_per_zone_wmarks();
1da177e4
LT
5281 return 0;
5282}
5283
9614634f
CL
5284#ifdef CONFIG_NUMA
5285int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5286 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5287{
5288 struct zone *zone;
5289 int rc;
5290
8d65af78 5291 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5292 if (rc)
5293 return rc;
5294
5295 for_each_zone(zone)
8417bba4 5296 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5297 sysctl_min_unmapped_ratio) / 100;
5298 return 0;
5299}
0ff38490
CL
5300
5301int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5302 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5303{
5304 struct zone *zone;
5305 int rc;
5306
8d65af78 5307 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5308 if (rc)
5309 return rc;
5310
5311 for_each_zone(zone)
5312 zone->min_slab_pages = (zone->present_pages *
5313 sysctl_min_slab_ratio) / 100;
5314 return 0;
5315}
9614634f
CL
5316#endif
5317
1da177e4
LT
5318/*
5319 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5320 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5321 * whenever sysctl_lowmem_reserve_ratio changes.
5322 *
5323 * The reserve ratio obviously has absolutely no relation with the
41858966 5324 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5325 * if in function of the boot time zone sizes.
5326 */
5327int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5328 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5329{
8d65af78 5330 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5331 setup_per_zone_lowmem_reserve();
5332 return 0;
5333}
5334
8ad4b1fb
RS
5335/*
5336 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5337 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5338 * can have before it gets flushed back to buddy allocator.
5339 */
5340
5341int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5342 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5343{
5344 struct zone *zone;
5345 unsigned int cpu;
5346 int ret;
5347
8d65af78 5348 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5349 if (!write || (ret < 0))
8ad4b1fb 5350 return ret;
364df0eb 5351 for_each_populated_zone(zone) {
99dcc3e5 5352 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5353 unsigned long high;
5354 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5355 setup_pagelist_highmark(
5356 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5357 }
5358 }
5359 return 0;
5360}
5361
f034b5d4 5362int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5363
5364#ifdef CONFIG_NUMA
5365static int __init set_hashdist(char *str)
5366{
5367 if (!str)
5368 return 0;
5369 hashdist = simple_strtoul(str, &str, 0);
5370 return 1;
5371}
5372__setup("hashdist=", set_hashdist);
5373#endif
5374
5375/*
5376 * allocate a large system hash table from bootmem
5377 * - it is assumed that the hash table must contain an exact power-of-2
5378 * quantity of entries
5379 * - limit is the number of hash buckets, not the total allocation size
5380 */
5381void *__init alloc_large_system_hash(const char *tablename,
5382 unsigned long bucketsize,
5383 unsigned long numentries,
5384 int scale,
5385 int flags,
5386 unsigned int *_hash_shift,
5387 unsigned int *_hash_mask,
31fe62b9
TB
5388 unsigned long low_limit,
5389 unsigned long high_limit)
1da177e4 5390{
31fe62b9 5391 unsigned long long max = high_limit;
1da177e4
LT
5392 unsigned long log2qty, size;
5393 void *table = NULL;
5394
5395 /* allow the kernel cmdline to have a say */
5396 if (!numentries) {
5397 /* round applicable memory size up to nearest megabyte */
04903664 5398 numentries = nr_kernel_pages;
1da177e4
LT
5399 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5400 numentries >>= 20 - PAGE_SHIFT;
5401 numentries <<= 20 - PAGE_SHIFT;
5402
5403 /* limit to 1 bucket per 2^scale bytes of low memory */
5404 if (scale > PAGE_SHIFT)
5405 numentries >>= (scale - PAGE_SHIFT);
5406 else
5407 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5408
5409 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5410 if (unlikely(flags & HASH_SMALL)) {
5411 /* Makes no sense without HASH_EARLY */
5412 WARN_ON(!(flags & HASH_EARLY));
5413 if (!(numentries >> *_hash_shift)) {
5414 numentries = 1UL << *_hash_shift;
5415 BUG_ON(!numentries);
5416 }
5417 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5418 numentries = PAGE_SIZE / bucketsize;
1da177e4 5419 }
6e692ed3 5420 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5421
5422 /* limit allocation size to 1/16 total memory by default */
5423 if (max == 0) {
5424 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5425 do_div(max, bucketsize);
5426 }
074b8517 5427 max = min(max, 0x80000000ULL);
1da177e4 5428
31fe62b9
TB
5429 if (numentries < low_limit)
5430 numentries = low_limit;
1da177e4
LT
5431 if (numentries > max)
5432 numentries = max;
5433
f0d1b0b3 5434 log2qty = ilog2(numentries);
1da177e4
LT
5435
5436 do {
5437 size = bucketsize << log2qty;
5438 if (flags & HASH_EARLY)
74768ed8 5439 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5440 else if (hashdist)
5441 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5442 else {
1037b83b
ED
5443 /*
5444 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5445 * some pages at the end of hash table which
5446 * alloc_pages_exact() automatically does
1037b83b 5447 */
264ef8a9 5448 if (get_order(size) < MAX_ORDER) {
a1dd268c 5449 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5450 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5451 }
1da177e4
LT
5452 }
5453 } while (!table && size > PAGE_SIZE && --log2qty);
5454
5455 if (!table)
5456 panic("Failed to allocate %s hash table\n", tablename);
5457
f241e660 5458 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5459 tablename,
f241e660 5460 (1UL << log2qty),
f0d1b0b3 5461 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5462 size);
5463
5464 if (_hash_shift)
5465 *_hash_shift = log2qty;
5466 if (_hash_mask)
5467 *_hash_mask = (1 << log2qty) - 1;
5468
5469 return table;
5470}
a117e66e 5471
835c134e
MG
5472/* Return a pointer to the bitmap storing bits affecting a block of pages */
5473static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5474 unsigned long pfn)
5475{
5476#ifdef CONFIG_SPARSEMEM
5477 return __pfn_to_section(pfn)->pageblock_flags;
5478#else
5479 return zone->pageblock_flags;
5480#endif /* CONFIG_SPARSEMEM */
5481}
5482
5483static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5484{
5485#ifdef CONFIG_SPARSEMEM
5486 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5487 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5488#else
5489 pfn = pfn - zone->zone_start_pfn;
d9c23400 5490 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5491#endif /* CONFIG_SPARSEMEM */
5492}
5493
5494/**
d9c23400 5495 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5496 * @page: The page within the block of interest
5497 * @start_bitidx: The first bit of interest to retrieve
5498 * @end_bitidx: The last bit of interest
5499 * returns pageblock_bits flags
5500 */
5501unsigned long get_pageblock_flags_group(struct page *page,
5502 int start_bitidx, int end_bitidx)
5503{
5504 struct zone *zone;
5505 unsigned long *bitmap;
5506 unsigned long pfn, bitidx;
5507 unsigned long flags = 0;
5508 unsigned long value = 1;
5509
5510 zone = page_zone(page);
5511 pfn = page_to_pfn(page);
5512 bitmap = get_pageblock_bitmap(zone, pfn);
5513 bitidx = pfn_to_bitidx(zone, pfn);
5514
5515 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5516 if (test_bit(bitidx + start_bitidx, bitmap))
5517 flags |= value;
6220ec78 5518
835c134e
MG
5519 return flags;
5520}
5521
5522/**
d9c23400 5523 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5524 * @page: The page within the block of interest
5525 * @start_bitidx: The first bit of interest
5526 * @end_bitidx: The last bit of interest
5527 * @flags: The flags to set
5528 */
5529void set_pageblock_flags_group(struct page *page, unsigned long flags,
5530 int start_bitidx, int end_bitidx)
5531{
5532 struct zone *zone;
5533 unsigned long *bitmap;
5534 unsigned long pfn, bitidx;
5535 unsigned long value = 1;
5536
5537 zone = page_zone(page);
5538 pfn = page_to_pfn(page);
5539 bitmap = get_pageblock_bitmap(zone, pfn);
5540 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5541 VM_BUG_ON(pfn < zone->zone_start_pfn);
5542 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5543
5544 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5545 if (flags & value)
5546 __set_bit(bitidx + start_bitidx, bitmap);
5547 else
5548 __clear_bit(bitidx + start_bitidx, bitmap);
5549}
a5d76b54
KH
5550
5551/*
80934513
MK
5552 * This function checks whether pageblock includes unmovable pages or not.
5553 * If @count is not zero, it is okay to include less @count unmovable pages
5554 *
5555 * PageLRU check wihtout isolation or lru_lock could race so that
5556 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5557 * expect this function should be exact.
a5d76b54 5558 */
ee6f509c 5559bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
49ac8255
KH
5560{
5561 unsigned long pfn, iter, found;
47118af0
MN
5562 int mt;
5563
49ac8255
KH
5564 /*
5565 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5566 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5567 */
5568 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5569 return false;
47118af0
MN
5570 mt = get_pageblock_migratetype(page);
5571 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5572 return false;
49ac8255
KH
5573
5574 pfn = page_to_pfn(page);
5575 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5576 unsigned long check = pfn + iter;
5577
29723fcc 5578 if (!pfn_valid_within(check))
49ac8255 5579 continue;
29723fcc 5580
49ac8255 5581 page = pfn_to_page(check);
97d255c8
MK
5582 /*
5583 * We can't use page_count without pin a page
5584 * because another CPU can free compound page.
5585 * This check already skips compound tails of THP
5586 * because their page->_count is zero at all time.
5587 */
5588 if (!atomic_read(&page->_count)) {
49ac8255
KH
5589 if (PageBuddy(page))
5590 iter += (1 << page_order(page)) - 1;
5591 continue;
5592 }
97d255c8 5593
49ac8255
KH
5594 if (!PageLRU(page))
5595 found++;
5596 /*
5597 * If there are RECLAIMABLE pages, we need to check it.
5598 * But now, memory offline itself doesn't call shrink_slab()
5599 * and it still to be fixed.
5600 */
5601 /*
5602 * If the page is not RAM, page_count()should be 0.
5603 * we don't need more check. This is an _used_ not-movable page.
5604 *
5605 * The problematic thing here is PG_reserved pages. PG_reserved
5606 * is set to both of a memory hole page and a _used_ kernel
5607 * page at boot.
5608 */
5609 if (found > count)
80934513 5610 return true;
49ac8255 5611 }
80934513 5612 return false;
49ac8255
KH
5613}
5614
5615bool is_pageblock_removable_nolock(struct page *page)
5616{
656a0706
MH
5617 struct zone *zone;
5618 unsigned long pfn;
687875fb
MH
5619
5620 /*
5621 * We have to be careful here because we are iterating over memory
5622 * sections which are not zone aware so we might end up outside of
5623 * the zone but still within the section.
656a0706
MH
5624 * We have to take care about the node as well. If the node is offline
5625 * its NODE_DATA will be NULL - see page_zone.
687875fb 5626 */
656a0706
MH
5627 if (!node_online(page_to_nid(page)))
5628 return false;
5629
5630 zone = page_zone(page);
5631 pfn = page_to_pfn(page);
5632 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5633 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5634 return false;
5635
ee6f509c 5636 return !has_unmovable_pages(zone, page, 0);
a5d76b54 5637}
0c0e6195 5638
041d3a8c
MN
5639#ifdef CONFIG_CMA
5640
5641static unsigned long pfn_max_align_down(unsigned long pfn)
5642{
5643 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5644 pageblock_nr_pages) - 1);
5645}
5646
5647static unsigned long pfn_max_align_up(unsigned long pfn)
5648{
5649 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5650 pageblock_nr_pages));
5651}
5652
041d3a8c 5653/* [start, end) must belong to a single zone. */
bb13ffeb
MG
5654static int __alloc_contig_migrate_range(struct compact_control *cc,
5655 unsigned long start, unsigned long end)
041d3a8c
MN
5656{
5657 /* This function is based on compact_zone() from compaction.c. */
5658
5659 unsigned long pfn = start;
5660 unsigned int tries = 0;
5661 int ret = 0;
5662
041d3a8c
MN
5663 migrate_prep_local();
5664
bb13ffeb 5665 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
5666 if (fatal_signal_pending(current)) {
5667 ret = -EINTR;
5668 break;
5669 }
5670
bb13ffeb
MG
5671 if (list_empty(&cc->migratepages)) {
5672 cc->nr_migratepages = 0;
5673 pfn = isolate_migratepages_range(cc->zone, cc,
041d3a8c
MN
5674 pfn, end);
5675 if (!pfn) {
5676 ret = -EINTR;
5677 break;
5678 }
5679 tries = 0;
5680 } else if (++tries == 5) {
5681 ret = ret < 0 ? ret : -EBUSY;
5682 break;
5683 }
5684
bb13ffeb 5685 reclaim_clean_pages_from_list(cc->zone, &cc->migratepages);
02c6de8d 5686
bb13ffeb 5687 ret = migrate_pages(&cc->migratepages,
723a0644 5688 alloc_migrate_target,
58f42fd5 5689 0, false, MIGRATE_SYNC);
041d3a8c
MN
5690 }
5691
bb13ffeb 5692 putback_lru_pages(&cc->migratepages);
041d3a8c
MN
5693 return ret > 0 ? 0 : ret;
5694}
5695
49f223a9
MS
5696/*
5697 * Update zone's cma pages counter used for watermark level calculation.
5698 */
5699static inline void __update_cma_watermarks(struct zone *zone, int count)
5700{
5701 unsigned long flags;
5702 spin_lock_irqsave(&zone->lock, flags);
5703 zone->min_cma_pages += count;
5704 spin_unlock_irqrestore(&zone->lock, flags);
5705 setup_per_zone_wmarks();
5706}
5707
5708/*
5709 * Trigger memory pressure bump to reclaim some pages in order to be able to
5710 * allocate 'count' pages in single page units. Does similar work as
5711 *__alloc_pages_slowpath() function.
5712 */
5713static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5714{
5715 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5716 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5717 int did_some_progress = 0;
5718 int order = 1;
5719
5720 /*
5721 * Increase level of watermarks to force kswapd do his job
5722 * to stabilise at new watermark level.
5723 */
5724 __update_cma_watermarks(zone, count);
5725
5726 /* Obey watermarks as if the page was being allocated */
5727 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5728 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5729
5730 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5731 NULL);
5732 if (!did_some_progress) {
5733 /* Exhausted what can be done so it's blamo time */
5734 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5735 }
5736 }
5737
5738 /* Restore original watermark levels. */
5739 __update_cma_watermarks(zone, -count);
5740
5741 return count;
5742}
5743
041d3a8c
MN
5744/**
5745 * alloc_contig_range() -- tries to allocate given range of pages
5746 * @start: start PFN to allocate
5747 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5748 * @migratetype: migratetype of the underlaying pageblocks (either
5749 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5750 * in range must have the same migratetype and it must
5751 * be either of the two.
041d3a8c
MN
5752 *
5753 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5754 * aligned, however it's the caller's responsibility to guarantee that
5755 * we are the only thread that changes migrate type of pageblocks the
5756 * pages fall in.
5757 *
5758 * The PFN range must belong to a single zone.
5759 *
5760 * Returns zero on success or negative error code. On success all
5761 * pages which PFN is in [start, end) are allocated for the caller and
5762 * need to be freed with free_contig_range().
5763 */
0815f3d8
MN
5764int alloc_contig_range(unsigned long start, unsigned long end,
5765 unsigned migratetype)
041d3a8c
MN
5766{
5767 struct zone *zone = page_zone(pfn_to_page(start));
5768 unsigned long outer_start, outer_end;
5769 int ret = 0, order;
5770
bb13ffeb
MG
5771 struct compact_control cc = {
5772 .nr_migratepages = 0,
5773 .order = -1,
5774 .zone = page_zone(pfn_to_page(start)),
5775 .sync = true,
5776 .ignore_skip_hint = true,
5777 };
5778 INIT_LIST_HEAD(&cc.migratepages);
5779
041d3a8c
MN
5780 /*
5781 * What we do here is we mark all pageblocks in range as
5782 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5783 * have different sizes, and due to the way page allocator
5784 * work, we align the range to biggest of the two pages so
5785 * that page allocator won't try to merge buddies from
5786 * different pageblocks and change MIGRATE_ISOLATE to some
5787 * other migration type.
5788 *
5789 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5790 * migrate the pages from an unaligned range (ie. pages that
5791 * we are interested in). This will put all the pages in
5792 * range back to page allocator as MIGRATE_ISOLATE.
5793 *
5794 * When this is done, we take the pages in range from page
5795 * allocator removing them from the buddy system. This way
5796 * page allocator will never consider using them.
5797 *
5798 * This lets us mark the pageblocks back as
5799 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5800 * aligned range but not in the unaligned, original range are
5801 * put back to page allocator so that buddy can use them.
5802 */
5803
5804 ret = start_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5805 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5806 if (ret)
5807 goto done;
5808
bb13ffeb 5809 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
5810 if (ret)
5811 goto done;
5812
5813 /*
5814 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5815 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5816 * more, all pages in [start, end) are free in page allocator.
5817 * What we are going to do is to allocate all pages from
5818 * [start, end) (that is remove them from page allocator).
5819 *
5820 * The only problem is that pages at the beginning and at the
5821 * end of interesting range may be not aligned with pages that
5822 * page allocator holds, ie. they can be part of higher order
5823 * pages. Because of this, we reserve the bigger range and
5824 * once this is done free the pages we are not interested in.
5825 *
5826 * We don't have to hold zone->lock here because the pages are
5827 * isolated thus they won't get removed from buddy.
5828 */
5829
5830 lru_add_drain_all();
5831 drain_all_pages();
5832
5833 order = 0;
5834 outer_start = start;
5835 while (!PageBuddy(pfn_to_page(outer_start))) {
5836 if (++order >= MAX_ORDER) {
5837 ret = -EBUSY;
5838 goto done;
5839 }
5840 outer_start &= ~0UL << order;
5841 }
5842
5843 /* Make sure the range is really isolated. */
5844 if (test_pages_isolated(outer_start, end)) {
5845 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5846 outer_start, end);
5847 ret = -EBUSY;
5848 goto done;
5849 }
5850
49f223a9
MS
5851 /*
5852 * Reclaim enough pages to make sure that contiguous allocation
5853 * will not starve the system.
5854 */
5855 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5856
5857 /* Grab isolated pages from freelists. */
bb13ffeb 5858 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
5859 if (!outer_end) {
5860 ret = -EBUSY;
5861 goto done;
5862 }
5863
5864 /* Free head and tail (if any) */
5865 if (start != outer_start)
5866 free_contig_range(outer_start, start - outer_start);
5867 if (end != outer_end)
5868 free_contig_range(end, outer_end - end);
5869
5870done:
5871 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5872 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5873 return ret;
5874}
5875
5876void free_contig_range(unsigned long pfn, unsigned nr_pages)
5877{
5878 for (; nr_pages--; ++pfn)
5879 __free_page(pfn_to_page(pfn));
5880}
5881#endif
5882
4ed7e022
JL
5883#ifdef CONFIG_MEMORY_HOTPLUG
5884static int __meminit __zone_pcp_update(void *data)
5885{
5886 struct zone *zone = data;
5887 int cpu;
5888 unsigned long batch = zone_batchsize(zone), flags;
5889
5890 for_each_possible_cpu(cpu) {
5891 struct per_cpu_pageset *pset;
5892 struct per_cpu_pages *pcp;
5893
5894 pset = per_cpu_ptr(zone->pageset, cpu);
5895 pcp = &pset->pcp;
5896
5897 local_irq_save(flags);
5898 if (pcp->count > 0)
5899 free_pcppages_bulk(zone, pcp->count, pcp);
5900 setup_pageset(pset, batch);
5901 local_irq_restore(flags);
5902 }
5903 return 0;
5904}
5905
5906void __meminit zone_pcp_update(struct zone *zone)
5907{
5908 stop_machine(__zone_pcp_update, zone, NULL);
5909}
5910#endif
5911
0c0e6195 5912#ifdef CONFIG_MEMORY_HOTREMOVE
340175b7
JL
5913void zone_pcp_reset(struct zone *zone)
5914{
5915 unsigned long flags;
5916
5917 /* avoid races with drain_pages() */
5918 local_irq_save(flags);
5919 if (zone->pageset != &boot_pageset) {
5920 free_percpu(zone->pageset);
5921 zone->pageset = &boot_pageset;
5922 }
5923 local_irq_restore(flags);
5924}
5925
0c0e6195
KH
5926/*
5927 * All pages in the range must be isolated before calling this.
5928 */
5929void
5930__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5931{
5932 struct page *page;
5933 struct zone *zone;
5934 int order, i;
5935 unsigned long pfn;
5936 unsigned long flags;
5937 /* find the first valid pfn */
5938 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5939 if (pfn_valid(pfn))
5940 break;
5941 if (pfn == end_pfn)
5942 return;
5943 zone = page_zone(pfn_to_page(pfn));
5944 spin_lock_irqsave(&zone->lock, flags);
5945 pfn = start_pfn;
5946 while (pfn < end_pfn) {
5947 if (!pfn_valid(pfn)) {
5948 pfn++;
5949 continue;
5950 }
5951 page = pfn_to_page(pfn);
5952 BUG_ON(page_count(page));
5953 BUG_ON(!PageBuddy(page));
5954 order = page_order(page);
5955#ifdef CONFIG_DEBUG_VM
5956 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5957 pfn, 1 << order, end_pfn);
5958#endif
5959 list_del(&page->lru);
5960 rmv_page_order(page);
5961 zone->free_area[order].nr_free--;
5962 __mod_zone_page_state(zone, NR_FREE_PAGES,
5963 - (1UL << order));
5964 for (i = 0; i < (1 << order); i++)
5965 SetPageReserved((page+i));
5966 pfn += (1 << order);
5967 }
5968 spin_unlock_irqrestore(&zone->lock, flags);
5969}
5970#endif
8d22ba1b
WF
5971
5972#ifdef CONFIG_MEMORY_FAILURE
5973bool is_free_buddy_page(struct page *page)
5974{
5975 struct zone *zone = page_zone(page);
5976 unsigned long pfn = page_to_pfn(page);
5977 unsigned long flags;
5978 int order;
5979
5980 spin_lock_irqsave(&zone->lock, flags);
5981 for (order = 0; order < MAX_ORDER; order++) {
5982 struct page *page_head = page - (pfn & ((1 << order) - 1));
5983
5984 if (PageBuddy(page_head) && page_order(page_head) >= order)
5985 break;
5986 }
5987 spin_unlock_irqrestore(&zone->lock, flags);
5988
5989 return order < MAX_ORDER;
5990}
5991#endif
718a3821 5992
51300cef 5993static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
5994 {1UL << PG_locked, "locked" },
5995 {1UL << PG_error, "error" },
5996 {1UL << PG_referenced, "referenced" },
5997 {1UL << PG_uptodate, "uptodate" },
5998 {1UL << PG_dirty, "dirty" },
5999 {1UL << PG_lru, "lru" },
6000 {1UL << PG_active, "active" },
6001 {1UL << PG_slab, "slab" },
6002 {1UL << PG_owner_priv_1, "owner_priv_1" },
6003 {1UL << PG_arch_1, "arch_1" },
6004 {1UL << PG_reserved, "reserved" },
6005 {1UL << PG_private, "private" },
6006 {1UL << PG_private_2, "private_2" },
6007 {1UL << PG_writeback, "writeback" },
6008#ifdef CONFIG_PAGEFLAGS_EXTENDED
6009 {1UL << PG_head, "head" },
6010 {1UL << PG_tail, "tail" },
6011#else
6012 {1UL << PG_compound, "compound" },
6013#endif
6014 {1UL << PG_swapcache, "swapcache" },
6015 {1UL << PG_mappedtodisk, "mappedtodisk" },
6016 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6017 {1UL << PG_swapbacked, "swapbacked" },
6018 {1UL << PG_unevictable, "unevictable" },
6019#ifdef CONFIG_MMU
6020 {1UL << PG_mlocked, "mlocked" },
6021#endif
6022#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6023 {1UL << PG_uncached, "uncached" },
6024#endif
6025#ifdef CONFIG_MEMORY_FAILURE
6026 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6027#endif
6028#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6029 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6030#endif
718a3821
WF
6031};
6032
6033static void dump_page_flags(unsigned long flags)
6034{
6035 const char *delim = "";
6036 unsigned long mask;
6037 int i;
6038
51300cef 6039 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6040
718a3821
WF
6041 printk(KERN_ALERT "page flags: %#lx(", flags);
6042
6043 /* remove zone id */
6044 flags &= (1UL << NR_PAGEFLAGS) - 1;
6045
51300cef 6046 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6047
6048 mask = pageflag_names[i].mask;
6049 if ((flags & mask) != mask)
6050 continue;
6051
6052 flags &= ~mask;
6053 printk("%s%s", delim, pageflag_names[i].name);
6054 delim = "|";
6055 }
6056
6057 /* check for left over flags */
6058 if (flags)
6059 printk("%s%#lx", delim, flags);
6060
6061 printk(")\n");
6062}
6063
6064void dump_page(struct page *page)
6065{
6066 printk(KERN_ALERT
6067 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6068 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6069 page->mapping, page->index);
6070 dump_page_flags(page->flags);
f212ad7c 6071 mem_cgroup_print_bad_page(page);
718a3821 6072}
7f1290f2
JW
6073
6074/* reset zone->present_pages */
6075void reset_zone_present_pages(void)
6076{
6077 struct zone *z;
6078 int i, nid;
6079
6080 for_each_node_state(nid, N_HIGH_MEMORY) {
6081 for (i = 0; i < MAX_NR_ZONES; i++) {
6082 z = NODE_DATA(nid)->node_zones + i;
6083 z->present_pages = 0;
6084 }
6085 }
6086}
6087
6088/* calculate zone's present pages in buddy system */
6089void fixup_zone_present_pages(int nid, unsigned long start_pfn,
6090 unsigned long end_pfn)
6091{
6092 struct zone *z;
6093 unsigned long zone_start_pfn, zone_end_pfn;
6094 int i;
6095
6096 for (i = 0; i < MAX_NR_ZONES; i++) {
6097 z = NODE_DATA(nid)->node_zones + i;
6098 zone_start_pfn = z->zone_start_pfn;
6099 zone_end_pfn = zone_start_pfn + z->spanned_pages;
6100
6101 /* if the two regions intersect */
6102 if (!(zone_start_pfn >= end_pfn || zone_end_pfn <= start_pfn))
6103 z->present_pages += min(end_pfn, zone_end_pfn) -
6104 max(start_pfn, zone_start_pfn);
6105 }
6106}