]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm/vmalloc.c: enhance vm_map_ram() comment
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
c0a32fc5 61#include <linux/page-debug-flags.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
72
72812019
LS
73#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74DEFINE_PER_CPU(int, numa_node);
75EXPORT_PER_CPU_SYMBOL(numa_node);
76#endif
77
7aac7898
LS
78#ifdef CONFIG_HAVE_MEMORYLESS_NODES
79/*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87#endif
88
1da177e4 89/*
13808910 90 * Array of node states.
1da177e4 91 */
13808910
CL
92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95#ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97#ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
99#endif
100#ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
102#endif
103 [N_CPU] = { { [0] = 1UL } },
104#endif /* NUMA */
105};
106EXPORT_SYMBOL(node_states);
107
c3d5f5f0
JL
108/* Protect totalram_pages and zone->managed_pages */
109static DEFINE_SPINLOCK(managed_page_count_lock);
110
6c231b7b 111unsigned long totalram_pages __read_mostly;
cb45b0e9 112unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
113/*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119unsigned long dirty_balance_reserve __read_mostly;
120
1b76b02f 121int percpu_pagelist_fraction;
dcce284a 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 123
452aa699
RW
124#ifdef CONFIG_PM_SLEEP
125/*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
c9e664f1
RW
133
134static gfp_t saved_gfp_mask;
135
136void pm_restore_gfp_mask(void)
452aa699
RW
137{
138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
452aa699
RW
143}
144
c9e664f1 145void pm_restrict_gfp_mask(void)
452aa699 146{
452aa699 147 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 151}
f90ac398
MG
152
153bool pm_suspended_storage(void)
154{
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158}
452aa699
RW
159#endif /* CONFIG_PM_SLEEP */
160
d9c23400
MG
161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162int pageblock_order __read_mostly;
163#endif
164
d98c7a09 165static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 166
1da177e4
LT
167/*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
1da177e4 177 */
2f1b6248 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 179#ifdef CONFIG_ZONE_DMA
2f1b6248 180 256,
4b51d669 181#endif
fb0e7942 182#ifdef CONFIG_ZONE_DMA32
2f1b6248 183 256,
fb0e7942 184#endif
e53ef38d 185#ifdef CONFIG_HIGHMEM
2a1e274a 186 32,
e53ef38d 187#endif
2a1e274a 188 32,
2f1b6248 189};
1da177e4
LT
190
191EXPORT_SYMBOL(totalram_pages);
1da177e4 192
15ad7cdc 193static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248 195 "DMA",
4b51d669 196#endif
fb0e7942 197#ifdef CONFIG_ZONE_DMA32
2f1b6248 198 "DMA32",
fb0e7942 199#endif
2f1b6248 200 "Normal",
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 "HighMem",
e53ef38d 203#endif
2a1e274a 204 "Movable",
2f1b6248
CL
205};
206
1da177e4 207int min_free_kbytes = 1024;
42aa83cb 208int user_min_free_kbytes = -1;
1da177e4 209
2c85f51d
JB
210static unsigned long __meminitdata nr_kernel_pages;
211static unsigned long __meminitdata nr_all_pages;
a3142c8e 212static unsigned long __meminitdata dma_reserve;
1da177e4 213
0ee332c1
TH
214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __initdata required_kernelcore;
218static unsigned long __initdata required_movablecore;
219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222int movable_zone;
223EXPORT_SYMBOL(movable_zone);
224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 225
418508c1
MS
226#if MAX_NUMNODES > 1
227int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 228int nr_online_nodes __read_mostly = 1;
418508c1 229EXPORT_SYMBOL(nr_node_ids);
62bc62a8 230EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
231#endif
232
9ef9acb0
MG
233int page_group_by_mobility_disabled __read_mostly;
234
ee6f509c 235void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 236{
5d0f3f72
KM
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
239 migratetype = MIGRATE_UNMOVABLE;
240
b2a0ac88
MG
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243}
244
7f33d49a
RW
245bool oom_killer_disabled __read_mostly;
246
13e7444b 247#ifdef CONFIG_DEBUG_VM
c6a57e19 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 249{
bdc8cb98
DH
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 253 unsigned long sp, start_pfn;
c6a57e19 254
bdc8cb98
DH
255 do {
256 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
108bcc96 259 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
b5e6a5a2
CS
263 if (ret)
264 pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 pfn, start_pfn, start_pfn + sp);
266
bdc8cb98 267 return ret;
c6a57e19
DH
268}
269
270static int page_is_consistent(struct zone *zone, struct page *page)
271{
14e07298 272 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 273 return 0;
1da177e4 274 if (zone != page_zone(page))
c6a57e19
DH
275 return 0;
276
277 return 1;
278}
279/*
280 * Temporary debugging check for pages not lying within a given zone.
281 */
282static int bad_range(struct zone *zone, struct page *page)
283{
284 if (page_outside_zone_boundaries(zone, page))
1da177e4 285 return 1;
c6a57e19
DH
286 if (!page_is_consistent(zone, page))
287 return 1;
288
1da177e4
LT
289 return 0;
290}
13e7444b
NP
291#else
292static inline int bad_range(struct zone *zone, struct page *page)
293{
294 return 0;
295}
296#endif
297
f0b791a3 298static void bad_page(struct page *page, char *reason, unsigned long bad_flags)
1da177e4 299{
d936cf9b
HD
300 static unsigned long resume;
301 static unsigned long nr_shown;
302 static unsigned long nr_unshown;
303
2a7684a2
WF
304 /* Don't complain about poisoned pages */
305 if (PageHWPoison(page)) {
22b751c3 306 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
307 return;
308 }
309
d936cf9b
HD
310 /*
311 * Allow a burst of 60 reports, then keep quiet for that minute;
312 * or allow a steady drip of one report per second.
313 */
314 if (nr_shown == 60) {
315 if (time_before(jiffies, resume)) {
316 nr_unshown++;
317 goto out;
318 }
319 if (nr_unshown) {
1e9e6365
HD
320 printk(KERN_ALERT
321 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
322 nr_unshown);
323 nr_unshown = 0;
324 }
325 nr_shown = 0;
326 }
327 if (nr_shown++ == 0)
328 resume = jiffies + 60 * HZ;
329
1e9e6365 330 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 331 current->comm, page_to_pfn(page));
f0b791a3 332 dump_page_badflags(page, reason, bad_flags);
3dc14741 333
4f31888c 334 print_modules();
1da177e4 335 dump_stack();
d936cf9b 336out:
8cc3b392 337 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 338 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 339 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
340}
341
1da177e4
LT
342/*
343 * Higher-order pages are called "compound pages". They are structured thusly:
344 *
345 * The first PAGE_SIZE page is called the "head page".
346 *
347 * The remaining PAGE_SIZE pages are called "tail pages".
348 *
6416b9fa
WSH
349 * All pages have PG_compound set. All tail pages have their ->first_page
350 * pointing at the head page.
1da177e4 351 *
41d78ba5
HD
352 * The first tail page's ->lru.next holds the address of the compound page's
353 * put_page() function. Its ->lru.prev holds the order of allocation.
354 * This usage means that zero-order pages may not be compound.
1da177e4 355 */
d98c7a09
HD
356
357static void free_compound_page(struct page *page)
358{
d85f3385 359 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
360}
361
01ad1c08 362void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
363{
364 int i;
365 int nr_pages = 1 << order;
366
367 set_compound_page_dtor(page, free_compound_page);
368 set_compound_order(page, order);
369 __SetPageHead(page);
370 for (i = 1; i < nr_pages; i++) {
371 struct page *p = page + i;
58a84aa9 372 set_page_count(p, 0);
18229df5 373 p->first_page = page;
668f9abb
DR
374 /* Make sure p->first_page is always valid for PageTail() */
375 smp_wmb();
376 __SetPageTail(p);
18229df5
AW
377 }
378}
379
59ff4216 380/* update __split_huge_page_refcount if you change this function */
8cc3b392 381static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
382{
383 int i;
384 int nr_pages = 1 << order;
8cc3b392 385 int bad = 0;
1da177e4 386
0bb2c763 387 if (unlikely(compound_order(page) != order)) {
f0b791a3 388 bad_page(page, "wrong compound order", 0);
8cc3b392
HD
389 bad++;
390 }
1da177e4 391
6d777953 392 __ClearPageHead(page);
8cc3b392 393
18229df5
AW
394 for (i = 1; i < nr_pages; i++) {
395 struct page *p = page + i;
1da177e4 396
f0b791a3
DH
397 if (unlikely(!PageTail(p))) {
398 bad_page(page, "PageTail not set", 0);
399 bad++;
400 } else if (unlikely(p->first_page != page)) {
401 bad_page(page, "first_page not consistent", 0);
8cc3b392
HD
402 bad++;
403 }
d85f3385 404 __ClearPageTail(p);
1da177e4 405 }
8cc3b392
HD
406
407 return bad;
1da177e4 408}
1da177e4 409
17cf4406
NP
410static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
411{
412 int i;
413
6626c5d5
AM
414 /*
415 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
416 * and __GFP_HIGHMEM from hard or soft interrupt context.
417 */
725d704e 418 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
419 for (i = 0; i < (1 << order); i++)
420 clear_highpage(page + i);
421}
422
c0a32fc5
SG
423#ifdef CONFIG_DEBUG_PAGEALLOC
424unsigned int _debug_guardpage_minorder;
425
426static int __init debug_guardpage_minorder_setup(char *buf)
427{
428 unsigned long res;
429
430 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
431 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
432 return 0;
433 }
434 _debug_guardpage_minorder = res;
435 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
436 return 0;
437}
438__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
439
440static inline void set_page_guard_flag(struct page *page)
441{
442 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
443}
444
445static inline void clear_page_guard_flag(struct page *page)
446{
447 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
448}
449#else
450static inline void set_page_guard_flag(struct page *page) { }
451static inline void clear_page_guard_flag(struct page *page) { }
452#endif
453
6aa3001b
AM
454static inline void set_page_order(struct page *page, int order)
455{
4c21e2f2 456 set_page_private(page, order);
676165a8 457 __SetPageBuddy(page);
1da177e4
LT
458}
459
460static inline void rmv_page_order(struct page *page)
461{
676165a8 462 __ClearPageBuddy(page);
4c21e2f2 463 set_page_private(page, 0);
1da177e4
LT
464}
465
466/*
467 * Locate the struct page for both the matching buddy in our
468 * pair (buddy1) and the combined O(n+1) page they form (page).
469 *
470 * 1) Any buddy B1 will have an order O twin B2 which satisfies
471 * the following equation:
472 * B2 = B1 ^ (1 << O)
473 * For example, if the starting buddy (buddy2) is #8 its order
474 * 1 buddy is #10:
475 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
476 *
477 * 2) Any buddy B will have an order O+1 parent P which
478 * satisfies the following equation:
479 * P = B & ~(1 << O)
480 *
d6e05edc 481 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 482 */
1da177e4 483static inline unsigned long
43506fad 484__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 485{
43506fad 486 return page_idx ^ (1 << order);
1da177e4
LT
487}
488
489/*
490 * This function checks whether a page is free && is the buddy
491 * we can do coalesce a page and its buddy if
13e7444b 492 * (a) the buddy is not in a hole &&
676165a8 493 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
494 * (c) a page and its buddy have the same order &&
495 * (d) a page and its buddy are in the same zone.
676165a8 496 *
cf6fe945
WSH
497 * For recording whether a page is in the buddy system, we set ->_mapcount
498 * PAGE_BUDDY_MAPCOUNT_VALUE.
499 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
500 * serialized by zone->lock.
1da177e4 501 *
676165a8 502 * For recording page's order, we use page_private(page).
1da177e4 503 */
cb2b95e1
AW
504static inline int page_is_buddy(struct page *page, struct page *buddy,
505 int order)
1da177e4 506{
14e07298 507 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 508 return 0;
13e7444b 509
cb2b95e1
AW
510 if (page_zone_id(page) != page_zone_id(buddy))
511 return 0;
512
c0a32fc5 513 if (page_is_guard(buddy) && page_order(buddy) == order) {
309381fe 514 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
c0a32fc5
SG
515 return 1;
516 }
517
cb2b95e1 518 if (PageBuddy(buddy) && page_order(buddy) == order) {
309381fe 519 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
6aa3001b 520 return 1;
676165a8 521 }
6aa3001b 522 return 0;
1da177e4
LT
523}
524
525/*
526 * Freeing function for a buddy system allocator.
527 *
528 * The concept of a buddy system is to maintain direct-mapped table
529 * (containing bit values) for memory blocks of various "orders".
530 * The bottom level table contains the map for the smallest allocatable
531 * units of memory (here, pages), and each level above it describes
532 * pairs of units from the levels below, hence, "buddies".
533 * At a high level, all that happens here is marking the table entry
534 * at the bottom level available, and propagating the changes upward
535 * as necessary, plus some accounting needed to play nicely with other
536 * parts of the VM system.
537 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
538 * free pages of length of (1 << order) and marked with _mapcount
539 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
540 * field.
1da177e4 541 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
542 * other. That is, if we allocate a small block, and both were
543 * free, the remainder of the region must be split into blocks.
1da177e4 544 * If a block is freed, and its buddy is also free, then this
5f63b720 545 * triggers coalescing into a block of larger size.
1da177e4 546 *
6d49e352 547 * -- nyc
1da177e4
LT
548 */
549
48db57f8 550static inline void __free_one_page(struct page *page,
ed0ae21d
MG
551 struct zone *zone, unsigned int order,
552 int migratetype)
1da177e4
LT
553{
554 unsigned long page_idx;
6dda9d55 555 unsigned long combined_idx;
43506fad 556 unsigned long uninitialized_var(buddy_idx);
6dda9d55 557 struct page *buddy;
1da177e4 558
d29bb978
CS
559 VM_BUG_ON(!zone_is_initialized(zone));
560
224abf92 561 if (unlikely(PageCompound(page)))
8cc3b392
HD
562 if (unlikely(destroy_compound_page(page, order)))
563 return;
1da177e4 564
ed0ae21d
MG
565 VM_BUG_ON(migratetype == -1);
566
1da177e4
LT
567 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
568
309381fe
SL
569 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
570 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 571
1da177e4 572 while (order < MAX_ORDER-1) {
43506fad
KC
573 buddy_idx = __find_buddy_index(page_idx, order);
574 buddy = page + (buddy_idx - page_idx);
cb2b95e1 575 if (!page_is_buddy(page, buddy, order))
3c82d0ce 576 break;
c0a32fc5
SG
577 /*
578 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
579 * merge with it and move up one order.
580 */
581 if (page_is_guard(buddy)) {
582 clear_page_guard_flag(buddy);
583 set_page_private(page, 0);
d1ce749a
BZ
584 __mod_zone_freepage_state(zone, 1 << order,
585 migratetype);
c0a32fc5
SG
586 } else {
587 list_del(&buddy->lru);
588 zone->free_area[order].nr_free--;
589 rmv_page_order(buddy);
590 }
43506fad 591 combined_idx = buddy_idx & page_idx;
1da177e4
LT
592 page = page + (combined_idx - page_idx);
593 page_idx = combined_idx;
594 order++;
595 }
596 set_page_order(page, order);
6dda9d55
CZ
597
598 /*
599 * If this is not the largest possible page, check if the buddy
600 * of the next-highest order is free. If it is, it's possible
601 * that pages are being freed that will coalesce soon. In case,
602 * that is happening, add the free page to the tail of the list
603 * so it's less likely to be used soon and more likely to be merged
604 * as a higher order page
605 */
b7f50cfa 606 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 607 struct page *higher_page, *higher_buddy;
43506fad
KC
608 combined_idx = buddy_idx & page_idx;
609 higher_page = page + (combined_idx - page_idx);
610 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 611 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
612 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
613 list_add_tail(&page->lru,
614 &zone->free_area[order].free_list[migratetype]);
615 goto out;
616 }
617 }
618
619 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
620out:
1da177e4
LT
621 zone->free_area[order].nr_free++;
622}
623
224abf92 624static inline int free_pages_check(struct page *page)
1da177e4 625{
f0b791a3
DH
626 char *bad_reason = NULL;
627 unsigned long bad_flags = 0;
628
629 if (unlikely(page_mapcount(page)))
630 bad_reason = "nonzero mapcount";
631 if (unlikely(page->mapping != NULL))
632 bad_reason = "non-NULL mapping";
633 if (unlikely(atomic_read(&page->_count) != 0))
634 bad_reason = "nonzero _count";
635 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
636 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
637 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
638 }
639 if (unlikely(mem_cgroup_bad_page_check(page)))
640 bad_reason = "cgroup check failed";
641 if (unlikely(bad_reason)) {
642 bad_page(page, bad_reason, bad_flags);
79f4b7bf 643 return 1;
8cc3b392 644 }
90572890 645 page_cpupid_reset_last(page);
79f4b7bf
HD
646 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
647 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
648 return 0;
1da177e4
LT
649}
650
651/*
5f8dcc21 652 * Frees a number of pages from the PCP lists
1da177e4 653 * Assumes all pages on list are in same zone, and of same order.
207f36ee 654 * count is the number of pages to free.
1da177e4
LT
655 *
656 * If the zone was previously in an "all pages pinned" state then look to
657 * see if this freeing clears that state.
658 *
659 * And clear the zone's pages_scanned counter, to hold off the "all pages are
660 * pinned" detection logic.
661 */
5f8dcc21
MG
662static void free_pcppages_bulk(struct zone *zone, int count,
663 struct per_cpu_pages *pcp)
1da177e4 664{
5f8dcc21 665 int migratetype = 0;
a6f9edd6 666 int batch_free = 0;
72853e29 667 int to_free = count;
5f8dcc21 668
c54ad30c 669 spin_lock(&zone->lock);
1da177e4 670 zone->pages_scanned = 0;
f2260e6b 671
72853e29 672 while (to_free) {
48db57f8 673 struct page *page;
5f8dcc21
MG
674 struct list_head *list;
675
676 /*
a6f9edd6
MG
677 * Remove pages from lists in a round-robin fashion. A
678 * batch_free count is maintained that is incremented when an
679 * empty list is encountered. This is so more pages are freed
680 * off fuller lists instead of spinning excessively around empty
681 * lists
5f8dcc21
MG
682 */
683 do {
a6f9edd6 684 batch_free++;
5f8dcc21
MG
685 if (++migratetype == MIGRATE_PCPTYPES)
686 migratetype = 0;
687 list = &pcp->lists[migratetype];
688 } while (list_empty(list));
48db57f8 689
1d16871d
NK
690 /* This is the only non-empty list. Free them all. */
691 if (batch_free == MIGRATE_PCPTYPES)
692 batch_free = to_free;
693
a6f9edd6 694 do {
770c8aaa
BZ
695 int mt; /* migratetype of the to-be-freed page */
696
a6f9edd6
MG
697 page = list_entry(list->prev, struct page, lru);
698 /* must delete as __free_one_page list manipulates */
699 list_del(&page->lru);
b12c4ad1 700 mt = get_freepage_migratetype(page);
a7016235 701 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
702 __free_one_page(page, zone, 0, mt);
703 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 704 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
705 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
706 if (is_migrate_cma(mt))
707 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
708 }
72853e29 709 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 710 }
c54ad30c 711 spin_unlock(&zone->lock);
1da177e4
LT
712}
713
ed0ae21d
MG
714static void free_one_page(struct zone *zone, struct page *page, int order,
715 int migratetype)
1da177e4 716{
006d22d9 717 spin_lock(&zone->lock);
006d22d9 718 zone->pages_scanned = 0;
f2260e6b 719
ed0ae21d 720 __free_one_page(page, zone, order, migratetype);
194159fb 721 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 722 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 723 spin_unlock(&zone->lock);
48db57f8
NP
724}
725
ec95f53a 726static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 727{
1da177e4 728 int i;
8cc3b392 729 int bad = 0;
1da177e4 730
b413d48a 731 trace_mm_page_free(page, order);
b1eeab67
VN
732 kmemcheck_free_shadow(page, order);
733
8dd60a3a
AA
734 if (PageAnon(page))
735 page->mapping = NULL;
736 for (i = 0; i < (1 << order); i++)
737 bad += free_pages_check(page + i);
8cc3b392 738 if (bad)
ec95f53a 739 return false;
689bcebf 740
3ac7fe5a 741 if (!PageHighMem(page)) {
b8af2941
PK
742 debug_check_no_locks_freed(page_address(page),
743 PAGE_SIZE << order);
3ac7fe5a
TG
744 debug_check_no_obj_freed(page_address(page),
745 PAGE_SIZE << order);
746 }
dafb1367 747 arch_free_page(page, order);
48db57f8 748 kernel_map_pages(page, 1 << order, 0);
dafb1367 749
ec95f53a
KM
750 return true;
751}
752
753static void __free_pages_ok(struct page *page, unsigned int order)
754{
755 unsigned long flags;
95e34412 756 int migratetype;
ec95f53a
KM
757
758 if (!free_pages_prepare(page, order))
759 return;
760
c54ad30c 761 local_irq_save(flags);
f8891e5e 762 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
763 migratetype = get_pageblock_migratetype(page);
764 set_freepage_migratetype(page, migratetype);
765 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 766 local_irq_restore(flags);
1da177e4
LT
767}
768
170a5a7e 769void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 770{
c3993076 771 unsigned int nr_pages = 1 << order;
e2d0bd2b 772 struct page *p = page;
c3993076 773 unsigned int loop;
a226f6c8 774
e2d0bd2b
YL
775 prefetchw(p);
776 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
777 prefetchw(p + 1);
c3993076
JW
778 __ClearPageReserved(p);
779 set_page_count(p, 0);
a226f6c8 780 }
e2d0bd2b
YL
781 __ClearPageReserved(p);
782 set_page_count(p, 0);
c3993076 783
e2d0bd2b 784 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
785 set_page_refcounted(page);
786 __free_pages(page, order);
a226f6c8
DH
787}
788
47118af0 789#ifdef CONFIG_CMA
9cf510a5 790/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
791void __init init_cma_reserved_pageblock(struct page *page)
792{
793 unsigned i = pageblock_nr_pages;
794 struct page *p = page;
795
796 do {
797 __ClearPageReserved(p);
798 set_page_count(p, 0);
799 } while (++p, --i);
800
801 set_page_refcounted(page);
802 set_pageblock_migratetype(page, MIGRATE_CMA);
803 __free_pages(page, pageblock_order);
3dcc0571 804 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
805}
806#endif
1da177e4
LT
807
808/*
809 * The order of subdivision here is critical for the IO subsystem.
810 * Please do not alter this order without good reasons and regression
811 * testing. Specifically, as large blocks of memory are subdivided,
812 * the order in which smaller blocks are delivered depends on the order
813 * they're subdivided in this function. This is the primary factor
814 * influencing the order in which pages are delivered to the IO
815 * subsystem according to empirical testing, and this is also justified
816 * by considering the behavior of a buddy system containing a single
817 * large block of memory acted on by a series of small allocations.
818 * This behavior is a critical factor in sglist merging's success.
819 *
6d49e352 820 * -- nyc
1da177e4 821 */
085cc7d5 822static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
823 int low, int high, struct free_area *area,
824 int migratetype)
1da177e4
LT
825{
826 unsigned long size = 1 << high;
827
828 while (high > low) {
829 area--;
830 high--;
831 size >>= 1;
309381fe 832 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5
SG
833
834#ifdef CONFIG_DEBUG_PAGEALLOC
835 if (high < debug_guardpage_minorder()) {
836 /*
837 * Mark as guard pages (or page), that will allow to
838 * merge back to allocator when buddy will be freed.
839 * Corresponding page table entries will not be touched,
840 * pages will stay not present in virtual address space
841 */
842 INIT_LIST_HEAD(&page[size].lru);
843 set_page_guard_flag(&page[size]);
844 set_page_private(&page[size], high);
845 /* Guard pages are not available for any usage */
d1ce749a
BZ
846 __mod_zone_freepage_state(zone, -(1 << high),
847 migratetype);
c0a32fc5
SG
848 continue;
849 }
850#endif
b2a0ac88 851 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
852 area->nr_free++;
853 set_page_order(&page[size], high);
854 }
1da177e4
LT
855}
856
1da177e4
LT
857/*
858 * This page is about to be returned from the page allocator
859 */
2a7684a2 860static inline int check_new_page(struct page *page)
1da177e4 861{
f0b791a3
DH
862 char *bad_reason = NULL;
863 unsigned long bad_flags = 0;
864
865 if (unlikely(page_mapcount(page)))
866 bad_reason = "nonzero mapcount";
867 if (unlikely(page->mapping != NULL))
868 bad_reason = "non-NULL mapping";
869 if (unlikely(atomic_read(&page->_count) != 0))
870 bad_reason = "nonzero _count";
871 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
872 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
873 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
874 }
875 if (unlikely(mem_cgroup_bad_page_check(page)))
876 bad_reason = "cgroup check failed";
877 if (unlikely(bad_reason)) {
878 bad_page(page, bad_reason, bad_flags);
689bcebf 879 return 1;
8cc3b392 880 }
2a7684a2
WF
881 return 0;
882}
883
884static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
885{
886 int i;
887
888 for (i = 0; i < (1 << order); i++) {
889 struct page *p = page + i;
890 if (unlikely(check_new_page(p)))
891 return 1;
892 }
689bcebf 893
4c21e2f2 894 set_page_private(page, 0);
7835e98b 895 set_page_refcounted(page);
cc102509
NP
896
897 arch_alloc_page(page, order);
1da177e4 898 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
899
900 if (gfp_flags & __GFP_ZERO)
901 prep_zero_page(page, order, gfp_flags);
902
903 if (order && (gfp_flags & __GFP_COMP))
904 prep_compound_page(page, order);
905
689bcebf 906 return 0;
1da177e4
LT
907}
908
56fd56b8
MG
909/*
910 * Go through the free lists for the given migratetype and remove
911 * the smallest available page from the freelists
912 */
728ec980
MG
913static inline
914struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
915 int migratetype)
916{
917 unsigned int current_order;
b8af2941 918 struct free_area *area;
56fd56b8
MG
919 struct page *page;
920
921 /* Find a page of the appropriate size in the preferred list */
922 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
923 area = &(zone->free_area[current_order]);
924 if (list_empty(&area->free_list[migratetype]))
925 continue;
926
927 page = list_entry(area->free_list[migratetype].next,
928 struct page, lru);
929 list_del(&page->lru);
930 rmv_page_order(page);
931 area->nr_free--;
56fd56b8
MG
932 expand(zone, page, order, current_order, area, migratetype);
933 return page;
934 }
935
936 return NULL;
937}
938
939
b2a0ac88
MG
940/*
941 * This array describes the order lists are fallen back to when
942 * the free lists for the desirable migrate type are depleted
943 */
47118af0
MN
944static int fallbacks[MIGRATE_TYPES][4] = {
945 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
946 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
947#ifdef CONFIG_CMA
948 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
949 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
950#else
951 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
952#endif
6d4a4916 953 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 954#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 955 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 956#endif
b2a0ac88
MG
957};
958
c361be55
MG
959/*
960 * Move the free pages in a range to the free lists of the requested type.
d9c23400 961 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
962 * boundary. If alignment is required, use move_freepages_block()
963 */
435b405c 964int move_freepages(struct zone *zone,
b69a7288
AB
965 struct page *start_page, struct page *end_page,
966 int migratetype)
c361be55
MG
967{
968 struct page *page;
969 unsigned long order;
d100313f 970 int pages_moved = 0;
c361be55
MG
971
972#ifndef CONFIG_HOLES_IN_ZONE
973 /*
974 * page_zone is not safe to call in this context when
975 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
976 * anyway as we check zone boundaries in move_freepages_block().
977 * Remove at a later date when no bug reports exist related to
ac0e5b7a 978 * grouping pages by mobility
c361be55
MG
979 */
980 BUG_ON(page_zone(start_page) != page_zone(end_page));
981#endif
982
983 for (page = start_page; page <= end_page;) {
344c790e 984 /* Make sure we are not inadvertently changing nodes */
309381fe 985 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 986
c361be55
MG
987 if (!pfn_valid_within(page_to_pfn(page))) {
988 page++;
989 continue;
990 }
991
992 if (!PageBuddy(page)) {
993 page++;
994 continue;
995 }
996
997 order = page_order(page);
84be48d8
KS
998 list_move(&page->lru,
999 &zone->free_area[order].free_list[migratetype]);
95e34412 1000 set_freepage_migratetype(page, migratetype);
c361be55 1001 page += 1 << order;
d100313f 1002 pages_moved += 1 << order;
c361be55
MG
1003 }
1004
d100313f 1005 return pages_moved;
c361be55
MG
1006}
1007
ee6f509c 1008int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1009 int migratetype)
c361be55
MG
1010{
1011 unsigned long start_pfn, end_pfn;
1012 struct page *start_page, *end_page;
1013
1014 start_pfn = page_to_pfn(page);
d9c23400 1015 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1016 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1017 end_page = start_page + pageblock_nr_pages - 1;
1018 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1019
1020 /* Do not cross zone boundaries */
108bcc96 1021 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1022 start_page = page;
108bcc96 1023 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1024 return 0;
1025
1026 return move_freepages(zone, start_page, end_page, migratetype);
1027}
1028
2f66a68f
MG
1029static void change_pageblock_range(struct page *pageblock_page,
1030 int start_order, int migratetype)
1031{
1032 int nr_pageblocks = 1 << (start_order - pageblock_order);
1033
1034 while (nr_pageblocks--) {
1035 set_pageblock_migratetype(pageblock_page, migratetype);
1036 pageblock_page += pageblock_nr_pages;
1037 }
1038}
1039
fef903ef
SB
1040/*
1041 * If breaking a large block of pages, move all free pages to the preferred
1042 * allocation list. If falling back for a reclaimable kernel allocation, be
1043 * more aggressive about taking ownership of free pages.
1044 *
1045 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1046 * nor move CMA pages to different free lists. We don't want unmovable pages
1047 * to be allocated from MIGRATE_CMA areas.
1048 *
1049 * Returns the new migratetype of the pageblock (or the same old migratetype
1050 * if it was unchanged).
1051 */
1052static int try_to_steal_freepages(struct zone *zone, struct page *page,
1053 int start_type, int fallback_type)
1054{
1055 int current_order = page_order(page);
1056
0cbef29a
KM
1057 /*
1058 * When borrowing from MIGRATE_CMA, we need to release the excess
1059 * buddy pages to CMA itself.
1060 */
fef903ef
SB
1061 if (is_migrate_cma(fallback_type))
1062 return fallback_type;
1063
1064 /* Take ownership for orders >= pageblock_order */
1065 if (current_order >= pageblock_order) {
1066 change_pageblock_range(page, current_order, start_type);
1067 return start_type;
1068 }
1069
1070 if (current_order >= pageblock_order / 2 ||
1071 start_type == MIGRATE_RECLAIMABLE ||
1072 page_group_by_mobility_disabled) {
1073 int pages;
1074
1075 pages = move_freepages_block(zone, page, start_type);
1076
1077 /* Claim the whole block if over half of it is free */
1078 if (pages >= (1 << (pageblock_order-1)) ||
1079 page_group_by_mobility_disabled) {
1080
1081 set_pageblock_migratetype(page, start_type);
1082 return start_type;
1083 }
1084
1085 }
1086
1087 return fallback_type;
1088}
1089
b2a0ac88 1090/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1091static inline struct page *
1092__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 1093{
b8af2941 1094 struct free_area *area;
b2a0ac88
MG
1095 int current_order;
1096 struct page *page;
fef903ef 1097 int migratetype, new_type, i;
b2a0ac88
MG
1098
1099 /* Find the largest possible block of pages in the other list */
1100 for (current_order = MAX_ORDER-1; current_order >= order;
1101 --current_order) {
6d4a4916 1102 for (i = 0;; i++) {
b2a0ac88
MG
1103 migratetype = fallbacks[start_migratetype][i];
1104
56fd56b8
MG
1105 /* MIGRATE_RESERVE handled later if necessary */
1106 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1107 break;
e010487d 1108
b2a0ac88
MG
1109 area = &(zone->free_area[current_order]);
1110 if (list_empty(&area->free_list[migratetype]))
1111 continue;
1112
1113 page = list_entry(area->free_list[migratetype].next,
1114 struct page, lru);
1115 area->nr_free--;
1116
fef903ef
SB
1117 new_type = try_to_steal_freepages(zone, page,
1118 start_migratetype,
1119 migratetype);
b2a0ac88
MG
1120
1121 /* Remove the page from the freelists */
1122 list_del(&page->lru);
1123 rmv_page_order(page);
b2a0ac88 1124
47118af0 1125 expand(zone, page, order, current_order, area,
0cbef29a 1126 new_type);
e0fff1bd 1127
52c8f6a5
KM
1128 trace_mm_page_alloc_extfrag(page, order, current_order,
1129 start_migratetype, migratetype, new_type);
e0fff1bd 1130
b2a0ac88
MG
1131 return page;
1132 }
1133 }
1134
728ec980 1135 return NULL;
b2a0ac88
MG
1136}
1137
56fd56b8 1138/*
1da177e4
LT
1139 * Do the hard work of removing an element from the buddy allocator.
1140 * Call me with the zone->lock already held.
1141 */
b2a0ac88
MG
1142static struct page *__rmqueue(struct zone *zone, unsigned int order,
1143 int migratetype)
1da177e4 1144{
1da177e4
LT
1145 struct page *page;
1146
728ec980 1147retry_reserve:
56fd56b8 1148 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1149
728ec980 1150 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1151 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1152
728ec980
MG
1153 /*
1154 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1155 * is used because __rmqueue_smallest is an inline function
1156 * and we want just one call site
1157 */
1158 if (!page) {
1159 migratetype = MIGRATE_RESERVE;
1160 goto retry_reserve;
1161 }
1162 }
1163
0d3d062a 1164 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1165 return page;
1da177e4
LT
1166}
1167
5f63b720 1168/*
1da177e4
LT
1169 * Obtain a specified number of elements from the buddy allocator, all under
1170 * a single hold of the lock, for efficiency. Add them to the supplied list.
1171 * Returns the number of new pages which were placed at *list.
1172 */
5f63b720 1173static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1174 unsigned long count, struct list_head *list,
e084b2d9 1175 int migratetype, int cold)
1da177e4 1176{
47118af0 1177 int mt = migratetype, i;
5f63b720 1178
c54ad30c 1179 spin_lock(&zone->lock);
1da177e4 1180 for (i = 0; i < count; ++i) {
b2a0ac88 1181 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1182 if (unlikely(page == NULL))
1da177e4 1183 break;
81eabcbe
MG
1184
1185 /*
1186 * Split buddy pages returned by expand() are received here
1187 * in physical page order. The page is added to the callers and
1188 * list and the list head then moves forward. From the callers
1189 * perspective, the linked list is ordered by page number in
1190 * some conditions. This is useful for IO devices that can
1191 * merge IO requests if the physical pages are ordered
1192 * properly.
1193 */
e084b2d9
MG
1194 if (likely(cold == 0))
1195 list_add(&page->lru, list);
1196 else
1197 list_add_tail(&page->lru, list);
47118af0
MN
1198 if (IS_ENABLED(CONFIG_CMA)) {
1199 mt = get_pageblock_migratetype(page);
194159fb 1200 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
47118af0
MN
1201 mt = migratetype;
1202 }
b12c4ad1 1203 set_freepage_migratetype(page, mt);
81eabcbe 1204 list = &page->lru;
d1ce749a
BZ
1205 if (is_migrate_cma(mt))
1206 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1207 -(1 << order));
1da177e4 1208 }
f2260e6b 1209 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1210 spin_unlock(&zone->lock);
085cc7d5 1211 return i;
1da177e4
LT
1212}
1213
4ae7c039 1214#ifdef CONFIG_NUMA
8fce4d8e 1215/*
4037d452
CL
1216 * Called from the vmstat counter updater to drain pagesets of this
1217 * currently executing processor on remote nodes after they have
1218 * expired.
1219 *
879336c3
CL
1220 * Note that this function must be called with the thread pinned to
1221 * a single processor.
8fce4d8e 1222 */
4037d452 1223void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1224{
4ae7c039 1225 unsigned long flags;
4037d452 1226 int to_drain;
998d39cb 1227 unsigned long batch;
4ae7c039 1228
4037d452 1229 local_irq_save(flags);
998d39cb
CS
1230 batch = ACCESS_ONCE(pcp->batch);
1231 if (pcp->count >= batch)
1232 to_drain = batch;
4037d452
CL
1233 else
1234 to_drain = pcp->count;
2a13515c
KM
1235 if (to_drain > 0) {
1236 free_pcppages_bulk(zone, to_drain, pcp);
1237 pcp->count -= to_drain;
1238 }
4037d452 1239 local_irq_restore(flags);
4ae7c039 1240}
27329369
JW
1241static bool gfp_thisnode_allocation(gfp_t gfp_mask)
1242{
1243 return (gfp_mask & GFP_THISNODE) == GFP_THISNODE;
1244}
1245#else
1246static bool gfp_thisnode_allocation(gfp_t gfp_mask)
1247{
1248 return false;
1249}
4ae7c039
CL
1250#endif
1251
9f8f2172
CL
1252/*
1253 * Drain pages of the indicated processor.
1254 *
1255 * The processor must either be the current processor and the
1256 * thread pinned to the current processor or a processor that
1257 * is not online.
1258 */
1259static void drain_pages(unsigned int cpu)
1da177e4 1260{
c54ad30c 1261 unsigned long flags;
1da177e4 1262 struct zone *zone;
1da177e4 1263
ee99c71c 1264 for_each_populated_zone(zone) {
1da177e4 1265 struct per_cpu_pageset *pset;
3dfa5721 1266 struct per_cpu_pages *pcp;
1da177e4 1267
99dcc3e5
CL
1268 local_irq_save(flags);
1269 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1270
1271 pcp = &pset->pcp;
2ff754fa
DR
1272 if (pcp->count) {
1273 free_pcppages_bulk(zone, pcp->count, pcp);
1274 pcp->count = 0;
1275 }
3dfa5721 1276 local_irq_restore(flags);
1da177e4
LT
1277 }
1278}
1da177e4 1279
9f8f2172
CL
1280/*
1281 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1282 */
1283void drain_local_pages(void *arg)
1284{
1285 drain_pages(smp_processor_id());
1286}
1287
1288/*
74046494
GBY
1289 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1290 *
1291 * Note that this code is protected against sending an IPI to an offline
1292 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1293 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1294 * nothing keeps CPUs from showing up after we populated the cpumask and
1295 * before the call to on_each_cpu_mask().
9f8f2172
CL
1296 */
1297void drain_all_pages(void)
1298{
74046494
GBY
1299 int cpu;
1300 struct per_cpu_pageset *pcp;
1301 struct zone *zone;
1302
1303 /*
1304 * Allocate in the BSS so we wont require allocation in
1305 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1306 */
1307 static cpumask_t cpus_with_pcps;
1308
1309 /*
1310 * We don't care about racing with CPU hotplug event
1311 * as offline notification will cause the notified
1312 * cpu to drain that CPU pcps and on_each_cpu_mask
1313 * disables preemption as part of its processing
1314 */
1315 for_each_online_cpu(cpu) {
1316 bool has_pcps = false;
1317 for_each_populated_zone(zone) {
1318 pcp = per_cpu_ptr(zone->pageset, cpu);
1319 if (pcp->pcp.count) {
1320 has_pcps = true;
1321 break;
1322 }
1323 }
1324 if (has_pcps)
1325 cpumask_set_cpu(cpu, &cpus_with_pcps);
1326 else
1327 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1328 }
1329 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1330}
1331
296699de 1332#ifdef CONFIG_HIBERNATION
1da177e4
LT
1333
1334void mark_free_pages(struct zone *zone)
1335{
f623f0db
RW
1336 unsigned long pfn, max_zone_pfn;
1337 unsigned long flags;
b2a0ac88 1338 int order, t;
1da177e4
LT
1339 struct list_head *curr;
1340
8080fc03 1341 if (zone_is_empty(zone))
1da177e4
LT
1342 return;
1343
1344 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1345
108bcc96 1346 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1347 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1348 if (pfn_valid(pfn)) {
1349 struct page *page = pfn_to_page(pfn);
1350
7be98234
RW
1351 if (!swsusp_page_is_forbidden(page))
1352 swsusp_unset_page_free(page);
f623f0db 1353 }
1da177e4 1354
b2a0ac88
MG
1355 for_each_migratetype_order(order, t) {
1356 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1357 unsigned long i;
1da177e4 1358
f623f0db
RW
1359 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1360 for (i = 0; i < (1UL << order); i++)
7be98234 1361 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1362 }
b2a0ac88 1363 }
1da177e4
LT
1364 spin_unlock_irqrestore(&zone->lock, flags);
1365}
e2c55dc8 1366#endif /* CONFIG_PM */
1da177e4 1367
1da177e4
LT
1368/*
1369 * Free a 0-order page
fc91668e 1370 * cold == 1 ? free a cold page : free a hot page
1da177e4 1371 */
fc91668e 1372void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1373{
1374 struct zone *zone = page_zone(page);
1375 struct per_cpu_pages *pcp;
1376 unsigned long flags;
5f8dcc21 1377 int migratetype;
1da177e4 1378
ec95f53a 1379 if (!free_pages_prepare(page, 0))
689bcebf
HD
1380 return;
1381
5f8dcc21 1382 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1383 set_freepage_migratetype(page, migratetype);
1da177e4 1384 local_irq_save(flags);
f8891e5e 1385 __count_vm_event(PGFREE);
da456f14 1386
5f8dcc21
MG
1387 /*
1388 * We only track unmovable, reclaimable and movable on pcp lists.
1389 * Free ISOLATE pages back to the allocator because they are being
1390 * offlined but treat RESERVE as movable pages so we can get those
1391 * areas back if necessary. Otherwise, we may have to free
1392 * excessively into the page allocator
1393 */
1394 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1395 if (unlikely(is_migrate_isolate(migratetype))) {
5f8dcc21
MG
1396 free_one_page(zone, page, 0, migratetype);
1397 goto out;
1398 }
1399 migratetype = MIGRATE_MOVABLE;
1400 }
1401
99dcc3e5 1402 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1403 if (cold)
5f8dcc21 1404 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1405 else
5f8dcc21 1406 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1407 pcp->count++;
48db57f8 1408 if (pcp->count >= pcp->high) {
998d39cb
CS
1409 unsigned long batch = ACCESS_ONCE(pcp->batch);
1410 free_pcppages_bulk(zone, batch, pcp);
1411 pcp->count -= batch;
48db57f8 1412 }
5f8dcc21
MG
1413
1414out:
1da177e4 1415 local_irq_restore(flags);
1da177e4
LT
1416}
1417
cc59850e
KK
1418/*
1419 * Free a list of 0-order pages
1420 */
1421void free_hot_cold_page_list(struct list_head *list, int cold)
1422{
1423 struct page *page, *next;
1424
1425 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1426 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1427 free_hot_cold_page(page, cold);
1428 }
1429}
1430
8dfcc9ba
NP
1431/*
1432 * split_page takes a non-compound higher-order page, and splits it into
1433 * n (1<<order) sub-pages: page[0..n]
1434 * Each sub-page must be freed individually.
1435 *
1436 * Note: this is probably too low level an operation for use in drivers.
1437 * Please consult with lkml before using this in your driver.
1438 */
1439void split_page(struct page *page, unsigned int order)
1440{
1441 int i;
1442
309381fe
SL
1443 VM_BUG_ON_PAGE(PageCompound(page), page);
1444 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1445
1446#ifdef CONFIG_KMEMCHECK
1447 /*
1448 * Split shadow pages too, because free(page[0]) would
1449 * otherwise free the whole shadow.
1450 */
1451 if (kmemcheck_page_is_tracked(page))
1452 split_page(virt_to_page(page[0].shadow), order);
1453#endif
1454
7835e98b
NP
1455 for (i = 1; i < (1 << order); i++)
1456 set_page_refcounted(page + i);
8dfcc9ba 1457}
5853ff23 1458EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1459
8fb74b9f 1460static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1461{
748446bb
MG
1462 unsigned long watermark;
1463 struct zone *zone;
2139cbe6 1464 int mt;
748446bb
MG
1465
1466 BUG_ON(!PageBuddy(page));
1467
1468 zone = page_zone(page);
2e30abd1 1469 mt = get_pageblock_migratetype(page);
748446bb 1470
194159fb 1471 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1472 /* Obey watermarks as if the page was being allocated */
1473 watermark = low_wmark_pages(zone) + (1 << order);
1474 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1475 return 0;
1476
8fb74b9f 1477 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1478 }
748446bb
MG
1479
1480 /* Remove page from free list */
1481 list_del(&page->lru);
1482 zone->free_area[order].nr_free--;
1483 rmv_page_order(page);
2139cbe6 1484
8fb74b9f 1485 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1486 if (order >= pageblock_order - 1) {
1487 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1488 for (; page < endpage; page += pageblock_nr_pages) {
1489 int mt = get_pageblock_migratetype(page);
194159fb 1490 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1491 set_pageblock_migratetype(page,
1492 MIGRATE_MOVABLE);
1493 }
748446bb
MG
1494 }
1495
8fb74b9f 1496 return 1UL << order;
1fb3f8ca
MG
1497}
1498
1499/*
1500 * Similar to split_page except the page is already free. As this is only
1501 * being used for migration, the migratetype of the block also changes.
1502 * As this is called with interrupts disabled, the caller is responsible
1503 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1504 * are enabled.
1505 *
1506 * Note: this is probably too low level an operation for use in drivers.
1507 * Please consult with lkml before using this in your driver.
1508 */
1509int split_free_page(struct page *page)
1510{
1511 unsigned int order;
1512 int nr_pages;
1513
1fb3f8ca
MG
1514 order = page_order(page);
1515
8fb74b9f 1516 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1517 if (!nr_pages)
1518 return 0;
1519
1520 /* Split into individual pages */
1521 set_page_refcounted(page);
1522 split_page(page, order);
1523 return nr_pages;
748446bb
MG
1524}
1525
1da177e4
LT
1526/*
1527 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1528 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1529 * or two.
1530 */
0a15c3e9
MG
1531static inline
1532struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1533 struct zone *zone, int order, gfp_t gfp_flags,
1534 int migratetype)
1da177e4
LT
1535{
1536 unsigned long flags;
689bcebf 1537 struct page *page;
1da177e4
LT
1538 int cold = !!(gfp_flags & __GFP_COLD);
1539
689bcebf 1540again:
48db57f8 1541 if (likely(order == 0)) {
1da177e4 1542 struct per_cpu_pages *pcp;
5f8dcc21 1543 struct list_head *list;
1da177e4 1544
1da177e4 1545 local_irq_save(flags);
99dcc3e5
CL
1546 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1547 list = &pcp->lists[migratetype];
5f8dcc21 1548 if (list_empty(list)) {
535131e6 1549 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1550 pcp->batch, list,
e084b2d9 1551 migratetype, cold);
5f8dcc21 1552 if (unlikely(list_empty(list)))
6fb332fa 1553 goto failed;
535131e6 1554 }
b92a6edd 1555
5f8dcc21
MG
1556 if (cold)
1557 page = list_entry(list->prev, struct page, lru);
1558 else
1559 page = list_entry(list->next, struct page, lru);
1560
b92a6edd
MG
1561 list_del(&page->lru);
1562 pcp->count--;
7fb1d9fc 1563 } else {
dab48dab
AM
1564 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1565 /*
1566 * __GFP_NOFAIL is not to be used in new code.
1567 *
1568 * All __GFP_NOFAIL callers should be fixed so that they
1569 * properly detect and handle allocation failures.
1570 *
1571 * We most definitely don't want callers attempting to
4923abf9 1572 * allocate greater than order-1 page units with
dab48dab
AM
1573 * __GFP_NOFAIL.
1574 */
4923abf9 1575 WARN_ON_ONCE(order > 1);
dab48dab 1576 }
1da177e4 1577 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1578 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1579 spin_unlock(&zone->lock);
1580 if (!page)
1581 goto failed;
d1ce749a
BZ
1582 __mod_zone_freepage_state(zone, -(1 << order),
1583 get_pageblock_migratetype(page));
1da177e4
LT
1584 }
1585
27329369
JW
1586 /*
1587 * NOTE: GFP_THISNODE allocations do not partake in the kswapd
1588 * aging protocol, so they can't be fair.
1589 */
1590 if (!gfp_thisnode_allocation(gfp_flags))
1591 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1592
f8891e5e 1593 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1594 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1595 local_irq_restore(flags);
1da177e4 1596
309381fe 1597 VM_BUG_ON_PAGE(bad_range(zone, page), page);
17cf4406 1598 if (prep_new_page(page, order, gfp_flags))
a74609fa 1599 goto again;
1da177e4 1600 return page;
a74609fa
NP
1601
1602failed:
1603 local_irq_restore(flags);
a74609fa 1604 return NULL;
1da177e4
LT
1605}
1606
933e312e
AM
1607#ifdef CONFIG_FAIL_PAGE_ALLOC
1608
b2588c4b 1609static struct {
933e312e
AM
1610 struct fault_attr attr;
1611
1612 u32 ignore_gfp_highmem;
1613 u32 ignore_gfp_wait;
54114994 1614 u32 min_order;
933e312e
AM
1615} fail_page_alloc = {
1616 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1617 .ignore_gfp_wait = 1,
1618 .ignore_gfp_highmem = 1,
54114994 1619 .min_order = 1,
933e312e
AM
1620};
1621
1622static int __init setup_fail_page_alloc(char *str)
1623{
1624 return setup_fault_attr(&fail_page_alloc.attr, str);
1625}
1626__setup("fail_page_alloc=", setup_fail_page_alloc);
1627
deaf386e 1628static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1629{
54114994 1630 if (order < fail_page_alloc.min_order)
deaf386e 1631 return false;
933e312e 1632 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1633 return false;
933e312e 1634 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1635 return false;
933e312e 1636 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1637 return false;
933e312e
AM
1638
1639 return should_fail(&fail_page_alloc.attr, 1 << order);
1640}
1641
1642#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1643
1644static int __init fail_page_alloc_debugfs(void)
1645{
f4ae40a6 1646 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1647 struct dentry *dir;
933e312e 1648
dd48c085
AM
1649 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1650 &fail_page_alloc.attr);
1651 if (IS_ERR(dir))
1652 return PTR_ERR(dir);
933e312e 1653
b2588c4b
AM
1654 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1655 &fail_page_alloc.ignore_gfp_wait))
1656 goto fail;
1657 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1658 &fail_page_alloc.ignore_gfp_highmem))
1659 goto fail;
1660 if (!debugfs_create_u32("min-order", mode, dir,
1661 &fail_page_alloc.min_order))
1662 goto fail;
1663
1664 return 0;
1665fail:
dd48c085 1666 debugfs_remove_recursive(dir);
933e312e 1667
b2588c4b 1668 return -ENOMEM;
933e312e
AM
1669}
1670
1671late_initcall(fail_page_alloc_debugfs);
1672
1673#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1674
1675#else /* CONFIG_FAIL_PAGE_ALLOC */
1676
deaf386e 1677static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1678{
deaf386e 1679 return false;
933e312e
AM
1680}
1681
1682#endif /* CONFIG_FAIL_PAGE_ALLOC */
1683
1da177e4 1684/*
88f5acf8 1685 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1686 * of the allocation.
1687 */
88f5acf8
MG
1688static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1689 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1690{
1691 /* free_pages my go negative - that's OK */
d23ad423 1692 long min = mark;
2cfed075 1693 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4 1694 int o;
026b0814 1695 long free_cma = 0;
1da177e4 1696
df0a6daa 1697 free_pages -= (1 << order) - 1;
7fb1d9fc 1698 if (alloc_flags & ALLOC_HIGH)
1da177e4 1699 min -= min / 2;
7fb1d9fc 1700 if (alloc_flags & ALLOC_HARDER)
1da177e4 1701 min -= min / 4;
d95ea5d1
BZ
1702#ifdef CONFIG_CMA
1703 /* If allocation can't use CMA areas don't use free CMA pages */
1704 if (!(alloc_flags & ALLOC_CMA))
026b0814 1705 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1706#endif
026b0814
TS
1707
1708 if (free_pages - free_cma <= min + lowmem_reserve)
88f5acf8 1709 return false;
1da177e4
LT
1710 for (o = 0; o < order; o++) {
1711 /* At the next order, this order's pages become unavailable */
1712 free_pages -= z->free_area[o].nr_free << o;
1713
1714 /* Require fewer higher order pages to be free */
1715 min >>= 1;
1716
1717 if (free_pages <= min)
88f5acf8 1718 return false;
1da177e4 1719 }
88f5acf8
MG
1720 return true;
1721}
1722
1723bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1724 int classzone_idx, int alloc_flags)
1725{
1726 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1727 zone_page_state(z, NR_FREE_PAGES));
1728}
1729
1730bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1731 int classzone_idx, int alloc_flags)
1732{
1733 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1734
1735 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1736 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1737
1738 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1739 free_pages);
1da177e4
LT
1740}
1741
9276b1bc
PJ
1742#ifdef CONFIG_NUMA
1743/*
1744 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1745 * skip over zones that are not allowed by the cpuset, or that have
1746 * been recently (in last second) found to be nearly full. See further
1747 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1748 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1749 *
a1aeb65a 1750 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1751 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1752 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1753 *
1754 * If the zonelist cache is not available for this zonelist, does
1755 * nothing and returns NULL.
1756 *
1757 * If the fullzones BITMAP in the zonelist cache is stale (more than
1758 * a second since last zap'd) then we zap it out (clear its bits.)
1759 *
1760 * We hold off even calling zlc_setup, until after we've checked the
1761 * first zone in the zonelist, on the theory that most allocations will
1762 * be satisfied from that first zone, so best to examine that zone as
1763 * quickly as we can.
1764 */
1765static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1766{
1767 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1768 nodemask_t *allowednodes; /* zonelist_cache approximation */
1769
1770 zlc = zonelist->zlcache_ptr;
1771 if (!zlc)
1772 return NULL;
1773
f05111f5 1774 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1775 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1776 zlc->last_full_zap = jiffies;
1777 }
1778
1779 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1780 &cpuset_current_mems_allowed :
4b0ef1fe 1781 &node_states[N_MEMORY];
9276b1bc
PJ
1782 return allowednodes;
1783}
1784
1785/*
1786 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1787 * if it is worth looking at further for free memory:
1788 * 1) Check that the zone isn't thought to be full (doesn't have its
1789 * bit set in the zonelist_cache fullzones BITMAP).
1790 * 2) Check that the zones node (obtained from the zonelist_cache
1791 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1792 * Return true (non-zero) if zone is worth looking at further, or
1793 * else return false (zero) if it is not.
1794 *
1795 * This check -ignores- the distinction between various watermarks,
1796 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1797 * found to be full for any variation of these watermarks, it will
1798 * be considered full for up to one second by all requests, unless
1799 * we are so low on memory on all allowed nodes that we are forced
1800 * into the second scan of the zonelist.
1801 *
1802 * In the second scan we ignore this zonelist cache and exactly
1803 * apply the watermarks to all zones, even it is slower to do so.
1804 * We are low on memory in the second scan, and should leave no stone
1805 * unturned looking for a free page.
1806 */
dd1a239f 1807static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1808 nodemask_t *allowednodes)
1809{
1810 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1811 int i; /* index of *z in zonelist zones */
1812 int n; /* node that zone *z is on */
1813
1814 zlc = zonelist->zlcache_ptr;
1815 if (!zlc)
1816 return 1;
1817
dd1a239f 1818 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1819 n = zlc->z_to_n[i];
1820
1821 /* This zone is worth trying if it is allowed but not full */
1822 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1823}
1824
1825/*
1826 * Given 'z' scanning a zonelist, set the corresponding bit in
1827 * zlc->fullzones, so that subsequent attempts to allocate a page
1828 * from that zone don't waste time re-examining it.
1829 */
dd1a239f 1830static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1831{
1832 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1833 int i; /* index of *z in zonelist zones */
1834
1835 zlc = zonelist->zlcache_ptr;
1836 if (!zlc)
1837 return;
1838
dd1a239f 1839 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1840
1841 set_bit(i, zlc->fullzones);
1842}
1843
76d3fbf8
MG
1844/*
1845 * clear all zones full, called after direct reclaim makes progress so that
1846 * a zone that was recently full is not skipped over for up to a second
1847 */
1848static void zlc_clear_zones_full(struct zonelist *zonelist)
1849{
1850 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1851
1852 zlc = zonelist->zlcache_ptr;
1853 if (!zlc)
1854 return;
1855
1856 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1857}
1858
81c0a2bb
JW
1859static bool zone_local(struct zone *local_zone, struct zone *zone)
1860{
fff4068c 1861 return local_zone->node == zone->node;
81c0a2bb
JW
1862}
1863
957f822a
DR
1864static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1865{
1866 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1867}
1868
1869static void __paginginit init_zone_allows_reclaim(int nid)
1870{
1871 int i;
1872
70ef57e6 1873 for_each_node_state(i, N_MEMORY)
6b187d02 1874 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1875 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1876 else
957f822a 1877 zone_reclaim_mode = 1;
957f822a
DR
1878}
1879
9276b1bc
PJ
1880#else /* CONFIG_NUMA */
1881
1882static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1883{
1884 return NULL;
1885}
1886
dd1a239f 1887static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1888 nodemask_t *allowednodes)
1889{
1890 return 1;
1891}
1892
dd1a239f 1893static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1894{
1895}
76d3fbf8
MG
1896
1897static void zlc_clear_zones_full(struct zonelist *zonelist)
1898{
1899}
957f822a 1900
81c0a2bb
JW
1901static bool zone_local(struct zone *local_zone, struct zone *zone)
1902{
1903 return true;
1904}
1905
957f822a
DR
1906static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1907{
1908 return true;
1909}
1910
1911static inline void init_zone_allows_reclaim(int nid)
1912{
1913}
9276b1bc
PJ
1914#endif /* CONFIG_NUMA */
1915
7fb1d9fc 1916/*
0798e519 1917 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1918 * a page.
1919 */
1920static struct page *
19770b32 1921get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1922 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1923 struct zone *preferred_zone, int migratetype)
753ee728 1924{
dd1a239f 1925 struct zoneref *z;
7fb1d9fc 1926 struct page *page = NULL;
54a6eb5c 1927 int classzone_idx;
5117f45d 1928 struct zone *zone;
9276b1bc
PJ
1929 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1930 int zlc_active = 0; /* set if using zonelist_cache */
1931 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1932
19770b32 1933 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1934zonelist_scan:
7fb1d9fc 1935 /*
9276b1bc 1936 * Scan zonelist, looking for a zone with enough free.
3b11f0aa 1937 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
7fb1d9fc 1938 */
19770b32
MG
1939 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1940 high_zoneidx, nodemask) {
e085dbc5
JW
1941 unsigned long mark;
1942
e5adfffc 1943 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1944 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1945 continue;
7fb1d9fc 1946 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1947 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1948 continue;
e085dbc5 1949 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
e66f0972 1950 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
e085dbc5 1951 goto try_this_zone;
81c0a2bb
JW
1952 /*
1953 * Distribute pages in proportion to the individual
1954 * zone size to ensure fair page aging. The zone a
1955 * page was allocated in should have no effect on the
1956 * time the page has in memory before being reclaimed.
1957 *
fff4068c
JW
1958 * Try to stay in local zones in the fastpath. If
1959 * that fails, the slowpath is entered, which will do
1960 * another pass starting with the local zones, but
1961 * ultimately fall back to remote zones that do not
1962 * partake in the fairness round-robin cycle of this
1963 * zonelist.
27329369
JW
1964 *
1965 * NOTE: GFP_THISNODE allocations do not partake in
1966 * the kswapd aging protocol, so they can't be fair.
81c0a2bb 1967 */
27329369
JW
1968 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1969 !gfp_thisnode_allocation(gfp_mask)) {
81c0a2bb
JW
1970 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1971 continue;
fff4068c 1972 if (!zone_local(preferred_zone, zone))
81c0a2bb
JW
1973 continue;
1974 }
a756cf59
JW
1975 /*
1976 * When allocating a page cache page for writing, we
1977 * want to get it from a zone that is within its dirty
1978 * limit, such that no single zone holds more than its
1979 * proportional share of globally allowed dirty pages.
1980 * The dirty limits take into account the zone's
1981 * lowmem reserves and high watermark so that kswapd
1982 * should be able to balance it without having to
1983 * write pages from its LRU list.
1984 *
1985 * This may look like it could increase pressure on
1986 * lower zones by failing allocations in higher zones
1987 * before they are full. But the pages that do spill
1988 * over are limited as the lower zones are protected
1989 * by this very same mechanism. It should not become
1990 * a practical burden to them.
1991 *
1992 * XXX: For now, allow allocations to potentially
1993 * exceed the per-zone dirty limit in the slowpath
1994 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1995 * which is important when on a NUMA setup the allowed
1996 * zones are together not big enough to reach the
1997 * global limit. The proper fix for these situations
1998 * will require awareness of zones in the
1999 * dirty-throttling and the flusher threads.
2000 */
2001 if ((alloc_flags & ALLOC_WMARK_LOW) &&
2002 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
2003 goto this_zone_full;
7fb1d9fc 2004
e085dbc5
JW
2005 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2006 if (!zone_watermark_ok(zone, order, mark,
2007 classzone_idx, alloc_flags)) {
fa5e084e
MG
2008 int ret;
2009
e5adfffc
KS
2010 if (IS_ENABLED(CONFIG_NUMA) &&
2011 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2012 /*
2013 * we do zlc_setup if there are multiple nodes
2014 * and before considering the first zone allowed
2015 * by the cpuset.
2016 */
2017 allowednodes = zlc_setup(zonelist, alloc_flags);
2018 zlc_active = 1;
2019 did_zlc_setup = 1;
2020 }
2021
957f822a
DR
2022 if (zone_reclaim_mode == 0 ||
2023 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
2024 goto this_zone_full;
2025
cd38b115
MG
2026 /*
2027 * As we may have just activated ZLC, check if the first
2028 * eligible zone has failed zone_reclaim recently.
2029 */
e5adfffc 2030 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2031 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2032 continue;
2033
fa5e084e
MG
2034 ret = zone_reclaim(zone, gfp_mask, order);
2035 switch (ret) {
2036 case ZONE_RECLAIM_NOSCAN:
2037 /* did not scan */
cd38b115 2038 continue;
fa5e084e
MG
2039 case ZONE_RECLAIM_FULL:
2040 /* scanned but unreclaimable */
cd38b115 2041 continue;
fa5e084e
MG
2042 default:
2043 /* did we reclaim enough */
fed2719e 2044 if (zone_watermark_ok(zone, order, mark,
fa5e084e 2045 classzone_idx, alloc_flags))
fed2719e
MG
2046 goto try_this_zone;
2047
2048 /*
2049 * Failed to reclaim enough to meet watermark.
2050 * Only mark the zone full if checking the min
2051 * watermark or if we failed to reclaim just
2052 * 1<<order pages or else the page allocator
2053 * fastpath will prematurely mark zones full
2054 * when the watermark is between the low and
2055 * min watermarks.
2056 */
2057 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2058 ret == ZONE_RECLAIM_SOME)
9276b1bc 2059 goto this_zone_full;
fed2719e
MG
2060
2061 continue;
0798e519 2062 }
7fb1d9fc
RS
2063 }
2064
fa5e084e 2065try_this_zone:
3dd28266
MG
2066 page = buffered_rmqueue(preferred_zone, zone, order,
2067 gfp_mask, migratetype);
0798e519 2068 if (page)
7fb1d9fc 2069 break;
9276b1bc 2070this_zone_full:
e5adfffc 2071 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 2072 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2073 }
9276b1bc 2074
e5adfffc 2075 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
2076 /* Disable zlc cache for second zonelist scan */
2077 zlc_active = 0;
2078 goto zonelist_scan;
2079 }
b121186a
AS
2080
2081 if (page)
2082 /*
2083 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2084 * necessary to allocate the page. The expectation is
2085 * that the caller is taking steps that will free more
2086 * memory. The caller should avoid the page being used
2087 * for !PFMEMALLOC purposes.
2088 */
2089 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2090
7fb1d9fc 2091 return page;
753ee728
MH
2092}
2093
29423e77
DR
2094/*
2095 * Large machines with many possible nodes should not always dump per-node
2096 * meminfo in irq context.
2097 */
2098static inline bool should_suppress_show_mem(void)
2099{
2100 bool ret = false;
2101
2102#if NODES_SHIFT > 8
2103 ret = in_interrupt();
2104#endif
2105 return ret;
2106}
2107
a238ab5b
DH
2108static DEFINE_RATELIMIT_STATE(nopage_rs,
2109 DEFAULT_RATELIMIT_INTERVAL,
2110 DEFAULT_RATELIMIT_BURST);
2111
2112void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2113{
a238ab5b
DH
2114 unsigned int filter = SHOW_MEM_FILTER_NODES;
2115
c0a32fc5
SG
2116 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2117 debug_guardpage_minorder() > 0)
a238ab5b
DH
2118 return;
2119
2120 /*
2121 * This documents exceptions given to allocations in certain
2122 * contexts that are allowed to allocate outside current's set
2123 * of allowed nodes.
2124 */
2125 if (!(gfp_mask & __GFP_NOMEMALLOC))
2126 if (test_thread_flag(TIF_MEMDIE) ||
2127 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2128 filter &= ~SHOW_MEM_FILTER_NODES;
2129 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2130 filter &= ~SHOW_MEM_FILTER_NODES;
2131
2132 if (fmt) {
3ee9a4f0
JP
2133 struct va_format vaf;
2134 va_list args;
2135
a238ab5b 2136 va_start(args, fmt);
3ee9a4f0
JP
2137
2138 vaf.fmt = fmt;
2139 vaf.va = &args;
2140
2141 pr_warn("%pV", &vaf);
2142
a238ab5b
DH
2143 va_end(args);
2144 }
2145
3ee9a4f0
JP
2146 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2147 current->comm, order, gfp_mask);
a238ab5b
DH
2148
2149 dump_stack();
2150 if (!should_suppress_show_mem())
2151 show_mem(filter);
2152}
2153
11e33f6a
MG
2154static inline int
2155should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2156 unsigned long did_some_progress,
11e33f6a 2157 unsigned long pages_reclaimed)
1da177e4 2158{
11e33f6a
MG
2159 /* Do not loop if specifically requested */
2160 if (gfp_mask & __GFP_NORETRY)
2161 return 0;
1da177e4 2162
f90ac398
MG
2163 /* Always retry if specifically requested */
2164 if (gfp_mask & __GFP_NOFAIL)
2165 return 1;
2166
2167 /*
2168 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2169 * making forward progress without invoking OOM. Suspend also disables
2170 * storage devices so kswapd will not help. Bail if we are suspending.
2171 */
2172 if (!did_some_progress && pm_suspended_storage())
2173 return 0;
2174
11e33f6a
MG
2175 /*
2176 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2177 * means __GFP_NOFAIL, but that may not be true in other
2178 * implementations.
2179 */
2180 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2181 return 1;
2182
2183 /*
2184 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2185 * specified, then we retry until we no longer reclaim any pages
2186 * (above), or we've reclaimed an order of pages at least as
2187 * large as the allocation's order. In both cases, if the
2188 * allocation still fails, we stop retrying.
2189 */
2190 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2191 return 1;
cf40bd16 2192
11e33f6a
MG
2193 return 0;
2194}
933e312e 2195
11e33f6a
MG
2196static inline struct page *
2197__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2198 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2199 nodemask_t *nodemask, struct zone *preferred_zone,
2200 int migratetype)
11e33f6a
MG
2201{
2202 struct page *page;
2203
2204 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2205 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2206 schedule_timeout_uninterruptible(1);
1da177e4
LT
2207 return NULL;
2208 }
6b1de916 2209
11e33f6a
MG
2210 /*
2211 * Go through the zonelist yet one more time, keep very high watermark
2212 * here, this is only to catch a parallel oom killing, we must fail if
2213 * we're still under heavy pressure.
2214 */
2215 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2216 order, zonelist, high_zoneidx,
5117f45d 2217 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2218 preferred_zone, migratetype);
7fb1d9fc 2219 if (page)
11e33f6a
MG
2220 goto out;
2221
4365a567
KH
2222 if (!(gfp_mask & __GFP_NOFAIL)) {
2223 /* The OOM killer will not help higher order allocs */
2224 if (order > PAGE_ALLOC_COSTLY_ORDER)
2225 goto out;
03668b3c
DR
2226 /* The OOM killer does not needlessly kill tasks for lowmem */
2227 if (high_zoneidx < ZONE_NORMAL)
2228 goto out;
4365a567
KH
2229 /*
2230 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2231 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2232 * The caller should handle page allocation failure by itself if
2233 * it specifies __GFP_THISNODE.
2234 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2235 */
2236 if (gfp_mask & __GFP_THISNODE)
2237 goto out;
2238 }
11e33f6a 2239 /* Exhausted what can be done so it's blamo time */
08ab9b10 2240 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2241
2242out:
2243 clear_zonelist_oom(zonelist, gfp_mask);
2244 return page;
2245}
2246
56de7263
MG
2247#ifdef CONFIG_COMPACTION
2248/* Try memory compaction for high-order allocations before reclaim */
2249static struct page *
2250__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2251 struct zonelist *zonelist, enum zone_type high_zoneidx,
2252 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2253 int migratetype, bool sync_migration,
c67fe375 2254 bool *contended_compaction, bool *deferred_compaction,
66199712 2255 unsigned long *did_some_progress)
56de7263 2256{
66199712 2257 if (!order)
56de7263
MG
2258 return NULL;
2259
aff62249 2260 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2261 *deferred_compaction = true;
2262 return NULL;
2263 }
2264
c06b1fca 2265 current->flags |= PF_MEMALLOC;
56de7263 2266 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2267 nodemask, sync_migration,
8fb74b9f 2268 contended_compaction);
c06b1fca 2269 current->flags &= ~PF_MEMALLOC;
56de7263 2270
1fb3f8ca 2271 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2272 struct page *page;
2273
56de7263
MG
2274 /* Page migration frees to the PCP lists but we want merging */
2275 drain_pages(get_cpu());
2276 put_cpu();
2277
2278 page = get_page_from_freelist(gfp_mask, nodemask,
2279 order, zonelist, high_zoneidx,
cfd19c5a
MG
2280 alloc_flags & ~ALLOC_NO_WATERMARKS,
2281 preferred_zone, migratetype);
56de7263 2282 if (page) {
62997027 2283 preferred_zone->compact_blockskip_flush = false;
de6c60a6 2284 compaction_defer_reset(preferred_zone, order, true);
56de7263
MG
2285 count_vm_event(COMPACTSUCCESS);
2286 return page;
2287 }
2288
2289 /*
2290 * It's bad if compaction run occurs and fails.
2291 * The most likely reason is that pages exist,
2292 * but not enough to satisfy watermarks.
2293 */
2294 count_vm_event(COMPACTFAIL);
66199712
MG
2295
2296 /*
2297 * As async compaction considers a subset of pageblocks, only
2298 * defer if the failure was a sync compaction failure.
2299 */
2300 if (sync_migration)
aff62249 2301 defer_compaction(preferred_zone, order);
56de7263
MG
2302
2303 cond_resched();
2304 }
2305
2306 return NULL;
2307}
2308#else
2309static inline struct page *
2310__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2311 struct zonelist *zonelist, enum zone_type high_zoneidx,
2312 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2313 int migratetype, bool sync_migration,
c67fe375 2314 bool *contended_compaction, bool *deferred_compaction,
66199712 2315 unsigned long *did_some_progress)
56de7263
MG
2316{
2317 return NULL;
2318}
2319#endif /* CONFIG_COMPACTION */
2320
bba90710
MS
2321/* Perform direct synchronous page reclaim */
2322static int
2323__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2324 nodemask_t *nodemask)
11e33f6a 2325{
11e33f6a 2326 struct reclaim_state reclaim_state;
bba90710 2327 int progress;
11e33f6a
MG
2328
2329 cond_resched();
2330
2331 /* We now go into synchronous reclaim */
2332 cpuset_memory_pressure_bump();
c06b1fca 2333 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2334 lockdep_set_current_reclaim_state(gfp_mask);
2335 reclaim_state.reclaimed_slab = 0;
c06b1fca 2336 current->reclaim_state = &reclaim_state;
11e33f6a 2337
bba90710 2338 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2339
c06b1fca 2340 current->reclaim_state = NULL;
11e33f6a 2341 lockdep_clear_current_reclaim_state();
c06b1fca 2342 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2343
2344 cond_resched();
2345
bba90710
MS
2346 return progress;
2347}
2348
2349/* The really slow allocator path where we enter direct reclaim */
2350static inline struct page *
2351__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2352 struct zonelist *zonelist, enum zone_type high_zoneidx,
2353 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2354 int migratetype, unsigned long *did_some_progress)
2355{
2356 struct page *page = NULL;
2357 bool drained = false;
2358
2359 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2360 nodemask);
9ee493ce
MG
2361 if (unlikely(!(*did_some_progress)))
2362 return NULL;
11e33f6a 2363
76d3fbf8 2364 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2365 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2366 zlc_clear_zones_full(zonelist);
2367
9ee493ce
MG
2368retry:
2369 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2370 zonelist, high_zoneidx,
cfd19c5a
MG
2371 alloc_flags & ~ALLOC_NO_WATERMARKS,
2372 preferred_zone, migratetype);
9ee493ce
MG
2373
2374 /*
2375 * If an allocation failed after direct reclaim, it could be because
2376 * pages are pinned on the per-cpu lists. Drain them and try again
2377 */
2378 if (!page && !drained) {
2379 drain_all_pages();
2380 drained = true;
2381 goto retry;
2382 }
2383
11e33f6a
MG
2384 return page;
2385}
2386
1da177e4 2387/*
11e33f6a
MG
2388 * This is called in the allocator slow-path if the allocation request is of
2389 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2390 */
11e33f6a
MG
2391static inline struct page *
2392__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2393 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2394 nodemask_t *nodemask, struct zone *preferred_zone,
2395 int migratetype)
11e33f6a
MG
2396{
2397 struct page *page;
2398
2399 do {
2400 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2401 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2402 preferred_zone, migratetype);
11e33f6a
MG
2403
2404 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2405 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2406 } while (!page && (gfp_mask & __GFP_NOFAIL));
2407
2408 return page;
2409}
2410
81c0a2bb
JW
2411static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
2412 struct zonelist *zonelist,
2413 enum zone_type high_zoneidx,
2414 struct zone *preferred_zone)
1da177e4 2415{
dd1a239f
MG
2416 struct zoneref *z;
2417 struct zone *zone;
1da177e4 2418
81c0a2bb
JW
2419 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2420 if (!(gfp_mask & __GFP_NO_KSWAPD))
2421 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2422 /*
2423 * Only reset the batches of zones that were actually
2424 * considered in the fast path, we don't want to
2425 * thrash fairness information for zones that are not
2426 * actually part of this zonelist's round-robin cycle.
2427 */
fff4068c 2428 if (!zone_local(preferred_zone, zone))
81c0a2bb
JW
2429 continue;
2430 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2431 high_wmark_pages(zone) -
2432 low_wmark_pages(zone) -
2433 zone_page_state(zone, NR_ALLOC_BATCH));
2434 }
11e33f6a 2435}
cf40bd16 2436
341ce06f
PZ
2437static inline int
2438gfp_to_alloc_flags(gfp_t gfp_mask)
2439{
341ce06f
PZ
2440 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2441 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2442
a56f57ff 2443 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2444 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2445
341ce06f
PZ
2446 /*
2447 * The caller may dip into page reserves a bit more if the caller
2448 * cannot run direct reclaim, or if the caller has realtime scheduling
2449 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2450 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2451 */
e6223a3b 2452 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2453
341ce06f 2454 if (!wait) {
5c3240d9
AA
2455 /*
2456 * Not worth trying to allocate harder for
2457 * __GFP_NOMEMALLOC even if it can't schedule.
2458 */
2459 if (!(gfp_mask & __GFP_NOMEMALLOC))
2460 alloc_flags |= ALLOC_HARDER;
523b9458 2461 /*
341ce06f
PZ
2462 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2463 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2464 */
341ce06f 2465 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2466 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2467 alloc_flags |= ALLOC_HARDER;
2468
b37f1dd0
MG
2469 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2470 if (gfp_mask & __GFP_MEMALLOC)
2471 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2472 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2473 alloc_flags |= ALLOC_NO_WATERMARKS;
2474 else if (!in_interrupt() &&
2475 ((current->flags & PF_MEMALLOC) ||
2476 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2477 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2478 }
d95ea5d1
BZ
2479#ifdef CONFIG_CMA
2480 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2481 alloc_flags |= ALLOC_CMA;
2482#endif
341ce06f
PZ
2483 return alloc_flags;
2484}
2485
072bb0aa
MG
2486bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2487{
b37f1dd0 2488 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2489}
2490
11e33f6a
MG
2491static inline struct page *
2492__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2493 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2494 nodemask_t *nodemask, struct zone *preferred_zone,
2495 int migratetype)
11e33f6a
MG
2496{
2497 const gfp_t wait = gfp_mask & __GFP_WAIT;
2498 struct page *page = NULL;
2499 int alloc_flags;
2500 unsigned long pages_reclaimed = 0;
2501 unsigned long did_some_progress;
77f1fe6b 2502 bool sync_migration = false;
66199712 2503 bool deferred_compaction = false;
c67fe375 2504 bool contended_compaction = false;
1da177e4 2505
72807a74
MG
2506 /*
2507 * In the slowpath, we sanity check order to avoid ever trying to
2508 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2509 * be using allocators in order of preference for an area that is
2510 * too large.
2511 */
1fc28b70
MG
2512 if (order >= MAX_ORDER) {
2513 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2514 return NULL;
1fc28b70 2515 }
1da177e4 2516
952f3b51
CL
2517 /*
2518 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2519 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2520 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2521 * using a larger set of nodes after it has established that the
2522 * allowed per node queues are empty and that nodes are
2523 * over allocated.
2524 */
27329369 2525 if (gfp_thisnode_allocation(gfp_mask))
952f3b51
CL
2526 goto nopage;
2527
cc4a6851 2528restart:
81c0a2bb
JW
2529 prepare_slowpath(gfp_mask, order, zonelist,
2530 high_zoneidx, preferred_zone);
1da177e4 2531
9bf2229f 2532 /*
7fb1d9fc
RS
2533 * OK, we're below the kswapd watermark and have kicked background
2534 * reclaim. Now things get more complex, so set up alloc_flags according
2535 * to how we want to proceed.
9bf2229f 2536 */
341ce06f 2537 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2538
f33261d7
DR
2539 /*
2540 * Find the true preferred zone if the allocation is unconstrained by
2541 * cpusets.
2542 */
2543 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2544 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2545 &preferred_zone);
2546
cfa54a0f 2547rebalance:
341ce06f 2548 /* This is the last chance, in general, before the goto nopage. */
19770b32 2549 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2550 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2551 preferred_zone, migratetype);
7fb1d9fc
RS
2552 if (page)
2553 goto got_pg;
1da177e4 2554
11e33f6a 2555 /* Allocate without watermarks if the context allows */
341ce06f 2556 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2557 /*
2558 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2559 * the allocation is high priority and these type of
2560 * allocations are system rather than user orientated
2561 */
2562 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2563
341ce06f
PZ
2564 page = __alloc_pages_high_priority(gfp_mask, order,
2565 zonelist, high_zoneidx, nodemask,
2566 preferred_zone, migratetype);
cfd19c5a 2567 if (page) {
341ce06f 2568 goto got_pg;
cfd19c5a 2569 }
1da177e4
LT
2570 }
2571
2572 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2573 if (!wait) {
2574 /*
2575 * All existing users of the deprecated __GFP_NOFAIL are
2576 * blockable, so warn of any new users that actually allow this
2577 * type of allocation to fail.
2578 */
2579 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2580 goto nopage;
aed0a0e3 2581 }
1da177e4 2582
341ce06f 2583 /* Avoid recursion of direct reclaim */
c06b1fca 2584 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2585 goto nopage;
2586
6583bb64
DR
2587 /* Avoid allocations with no watermarks from looping endlessly */
2588 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2589 goto nopage;
2590
77f1fe6b
MG
2591 /*
2592 * Try direct compaction. The first pass is asynchronous. Subsequent
2593 * attempts after direct reclaim are synchronous
2594 */
56de7263
MG
2595 page = __alloc_pages_direct_compact(gfp_mask, order,
2596 zonelist, high_zoneidx,
2597 nodemask,
2598 alloc_flags, preferred_zone,
66199712 2599 migratetype, sync_migration,
c67fe375 2600 &contended_compaction,
66199712
MG
2601 &deferred_compaction,
2602 &did_some_progress);
56de7263
MG
2603 if (page)
2604 goto got_pg;
c6a140bf 2605 sync_migration = true;
56de7263 2606
31f8d42d
LT
2607 /*
2608 * If compaction is deferred for high-order allocations, it is because
2609 * sync compaction recently failed. In this is the case and the caller
2610 * requested a movable allocation that does not heavily disrupt the
2611 * system then fail the allocation instead of entering direct reclaim.
2612 */
2613 if ((deferred_compaction || contended_compaction) &&
caf49191 2614 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2615 goto nopage;
66199712 2616
11e33f6a
MG
2617 /* Try direct reclaim and then allocating */
2618 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2619 zonelist, high_zoneidx,
2620 nodemask,
5117f45d 2621 alloc_flags, preferred_zone,
3dd28266 2622 migratetype, &did_some_progress);
11e33f6a
MG
2623 if (page)
2624 goto got_pg;
1da177e4 2625
e33c3b5e 2626 /*
11e33f6a
MG
2627 * If we failed to make any progress reclaiming, then we are
2628 * running out of options and have to consider going OOM
e33c3b5e 2629 */
11e33f6a 2630 if (!did_some_progress) {
b9921ecd 2631 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2632 if (oom_killer_disabled)
2633 goto nopage;
29fd66d2
DR
2634 /* Coredumps can quickly deplete all memory reserves */
2635 if ((current->flags & PF_DUMPCORE) &&
2636 !(gfp_mask & __GFP_NOFAIL))
2637 goto nopage;
11e33f6a
MG
2638 page = __alloc_pages_may_oom(gfp_mask, order,
2639 zonelist, high_zoneidx,
3dd28266
MG
2640 nodemask, preferred_zone,
2641 migratetype);
11e33f6a
MG
2642 if (page)
2643 goto got_pg;
1da177e4 2644
03668b3c
DR
2645 if (!(gfp_mask & __GFP_NOFAIL)) {
2646 /*
2647 * The oom killer is not called for high-order
2648 * allocations that may fail, so if no progress
2649 * is being made, there are no other options and
2650 * retrying is unlikely to help.
2651 */
2652 if (order > PAGE_ALLOC_COSTLY_ORDER)
2653 goto nopage;
2654 /*
2655 * The oom killer is not called for lowmem
2656 * allocations to prevent needlessly killing
2657 * innocent tasks.
2658 */
2659 if (high_zoneidx < ZONE_NORMAL)
2660 goto nopage;
2661 }
e2c55dc8 2662
ff0ceb9d
DR
2663 goto restart;
2664 }
1da177e4
LT
2665 }
2666
11e33f6a 2667 /* Check if we should retry the allocation */
a41f24ea 2668 pages_reclaimed += did_some_progress;
f90ac398
MG
2669 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2670 pages_reclaimed)) {
11e33f6a 2671 /* Wait for some write requests to complete then retry */
0e093d99 2672 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2673 goto rebalance;
3e7d3449
MG
2674 } else {
2675 /*
2676 * High-order allocations do not necessarily loop after
2677 * direct reclaim and reclaim/compaction depends on compaction
2678 * being called after reclaim so call directly if necessary
2679 */
2680 page = __alloc_pages_direct_compact(gfp_mask, order,
2681 zonelist, high_zoneidx,
2682 nodemask,
2683 alloc_flags, preferred_zone,
66199712 2684 migratetype, sync_migration,
c67fe375 2685 &contended_compaction,
66199712
MG
2686 &deferred_compaction,
2687 &did_some_progress);
3e7d3449
MG
2688 if (page)
2689 goto got_pg;
1da177e4
LT
2690 }
2691
2692nopage:
a238ab5b 2693 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2694 return page;
1da177e4 2695got_pg:
b1eeab67
VN
2696 if (kmemcheck_enabled)
2697 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2698
072bb0aa 2699 return page;
1da177e4 2700}
11e33f6a
MG
2701
2702/*
2703 * This is the 'heart' of the zoned buddy allocator.
2704 */
2705struct page *
2706__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2707 struct zonelist *zonelist, nodemask_t *nodemask)
2708{
2709 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2710 struct zone *preferred_zone;
cc9a6c87 2711 struct page *page = NULL;
3dd28266 2712 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2713 unsigned int cpuset_mems_cookie;
d95ea5d1 2714 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
6a1a0d3b 2715 struct mem_cgroup *memcg = NULL;
11e33f6a 2716
dcce284a
BH
2717 gfp_mask &= gfp_allowed_mask;
2718
11e33f6a
MG
2719 lockdep_trace_alloc(gfp_mask);
2720
2721 might_sleep_if(gfp_mask & __GFP_WAIT);
2722
2723 if (should_fail_alloc_page(gfp_mask, order))
2724 return NULL;
2725
2726 /*
2727 * Check the zones suitable for the gfp_mask contain at least one
2728 * valid zone. It's possible to have an empty zonelist as a result
2729 * of GFP_THISNODE and a memoryless node
2730 */
2731 if (unlikely(!zonelist->_zonerefs->zone))
2732 return NULL;
2733
6a1a0d3b
GC
2734 /*
2735 * Will only have any effect when __GFP_KMEMCG is set. This is
2736 * verified in the (always inline) callee
2737 */
2738 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2739 return NULL;
2740
cc9a6c87 2741retry_cpuset:
d26914d1 2742 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2743
5117f45d 2744 /* The preferred zone is used for statistics later */
f33261d7
DR
2745 first_zones_zonelist(zonelist, high_zoneidx,
2746 nodemask ? : &cpuset_current_mems_allowed,
2747 &preferred_zone);
cc9a6c87
MG
2748 if (!preferred_zone)
2749 goto out;
5117f45d 2750
d95ea5d1
BZ
2751#ifdef CONFIG_CMA
2752 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2753 alloc_flags |= ALLOC_CMA;
2754#endif
5117f45d 2755 /* First allocation attempt */
11e33f6a 2756 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2757 zonelist, high_zoneidx, alloc_flags,
3dd28266 2758 preferred_zone, migratetype);
21caf2fc
ML
2759 if (unlikely(!page)) {
2760 /*
2761 * Runtime PM, block IO and its error handling path
2762 * can deadlock because I/O on the device might not
2763 * complete.
2764 */
2765 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2766 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2767 zonelist, high_zoneidx, nodemask,
3dd28266 2768 preferred_zone, migratetype);
21caf2fc 2769 }
11e33f6a 2770
4b4f278c 2771 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2772
2773out:
2774 /*
2775 * When updating a task's mems_allowed, it is possible to race with
2776 * parallel threads in such a way that an allocation can fail while
2777 * the mask is being updated. If a page allocation is about to fail,
2778 * check if the cpuset changed during allocation and if so, retry.
2779 */
d26914d1 2780 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2781 goto retry_cpuset;
2782
6a1a0d3b
GC
2783 memcg_kmem_commit_charge(page, memcg, order);
2784
11e33f6a 2785 return page;
1da177e4 2786}
d239171e 2787EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2788
2789/*
2790 * Common helper functions.
2791 */
920c7a5d 2792unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2793{
945a1113
AM
2794 struct page *page;
2795
2796 /*
2797 * __get_free_pages() returns a 32-bit address, which cannot represent
2798 * a highmem page
2799 */
2800 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2801
1da177e4
LT
2802 page = alloc_pages(gfp_mask, order);
2803 if (!page)
2804 return 0;
2805 return (unsigned long) page_address(page);
2806}
1da177e4
LT
2807EXPORT_SYMBOL(__get_free_pages);
2808
920c7a5d 2809unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2810{
945a1113 2811 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2812}
1da177e4
LT
2813EXPORT_SYMBOL(get_zeroed_page);
2814
920c7a5d 2815void __free_pages(struct page *page, unsigned int order)
1da177e4 2816{
b5810039 2817 if (put_page_testzero(page)) {
1da177e4 2818 if (order == 0)
fc91668e 2819 free_hot_cold_page(page, 0);
1da177e4
LT
2820 else
2821 __free_pages_ok(page, order);
2822 }
2823}
2824
2825EXPORT_SYMBOL(__free_pages);
2826
920c7a5d 2827void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2828{
2829 if (addr != 0) {
725d704e 2830 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2831 __free_pages(virt_to_page((void *)addr), order);
2832 }
2833}
2834
2835EXPORT_SYMBOL(free_pages);
2836
6a1a0d3b
GC
2837/*
2838 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2839 * pages allocated with __GFP_KMEMCG.
2840 *
2841 * Those pages are accounted to a particular memcg, embedded in the
2842 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2843 * for that information only to find out that it is NULL for users who have no
2844 * interest in that whatsoever, we provide these functions.
2845 *
2846 * The caller knows better which flags it relies on.
2847 */
2848void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2849{
2850 memcg_kmem_uncharge_pages(page, order);
2851 __free_pages(page, order);
2852}
2853
2854void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2855{
2856 if (addr != 0) {
2857 VM_BUG_ON(!virt_addr_valid((void *)addr));
2858 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2859 }
2860}
2861
ee85c2e1
AK
2862static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2863{
2864 if (addr) {
2865 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2866 unsigned long used = addr + PAGE_ALIGN(size);
2867
2868 split_page(virt_to_page((void *)addr), order);
2869 while (used < alloc_end) {
2870 free_page(used);
2871 used += PAGE_SIZE;
2872 }
2873 }
2874 return (void *)addr;
2875}
2876
2be0ffe2
TT
2877/**
2878 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2879 * @size: the number of bytes to allocate
2880 * @gfp_mask: GFP flags for the allocation
2881 *
2882 * This function is similar to alloc_pages(), except that it allocates the
2883 * minimum number of pages to satisfy the request. alloc_pages() can only
2884 * allocate memory in power-of-two pages.
2885 *
2886 * This function is also limited by MAX_ORDER.
2887 *
2888 * Memory allocated by this function must be released by free_pages_exact().
2889 */
2890void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2891{
2892 unsigned int order = get_order(size);
2893 unsigned long addr;
2894
2895 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2896 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2897}
2898EXPORT_SYMBOL(alloc_pages_exact);
2899
ee85c2e1
AK
2900/**
2901 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2902 * pages on a node.
b5e6ab58 2903 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2904 * @size: the number of bytes to allocate
2905 * @gfp_mask: GFP flags for the allocation
2906 *
2907 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2908 * back.
2909 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2910 * but is not exact.
2911 */
2912void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2913{
2914 unsigned order = get_order(size);
2915 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2916 if (!p)
2917 return NULL;
2918 return make_alloc_exact((unsigned long)page_address(p), order, size);
2919}
2920EXPORT_SYMBOL(alloc_pages_exact_nid);
2921
2be0ffe2
TT
2922/**
2923 * free_pages_exact - release memory allocated via alloc_pages_exact()
2924 * @virt: the value returned by alloc_pages_exact.
2925 * @size: size of allocation, same value as passed to alloc_pages_exact().
2926 *
2927 * Release the memory allocated by a previous call to alloc_pages_exact.
2928 */
2929void free_pages_exact(void *virt, size_t size)
2930{
2931 unsigned long addr = (unsigned long)virt;
2932 unsigned long end = addr + PAGE_ALIGN(size);
2933
2934 while (addr < end) {
2935 free_page(addr);
2936 addr += PAGE_SIZE;
2937 }
2938}
2939EXPORT_SYMBOL(free_pages_exact);
2940
e0fb5815
ZY
2941/**
2942 * nr_free_zone_pages - count number of pages beyond high watermark
2943 * @offset: The zone index of the highest zone
2944 *
2945 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2946 * high watermark within all zones at or below a given zone index. For each
2947 * zone, the number of pages is calculated as:
834405c3 2948 * managed_pages - high_pages
e0fb5815 2949 */
ebec3862 2950static unsigned long nr_free_zone_pages(int offset)
1da177e4 2951{
dd1a239f 2952 struct zoneref *z;
54a6eb5c
MG
2953 struct zone *zone;
2954
e310fd43 2955 /* Just pick one node, since fallback list is circular */
ebec3862 2956 unsigned long sum = 0;
1da177e4 2957
0e88460d 2958 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2959
54a6eb5c 2960 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 2961 unsigned long size = zone->managed_pages;
41858966 2962 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2963 if (size > high)
2964 sum += size - high;
1da177e4
LT
2965 }
2966
2967 return sum;
2968}
2969
e0fb5815
ZY
2970/**
2971 * nr_free_buffer_pages - count number of pages beyond high watermark
2972 *
2973 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2974 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 2975 */
ebec3862 2976unsigned long nr_free_buffer_pages(void)
1da177e4 2977{
af4ca457 2978 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2979}
c2f1a551 2980EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 2981
e0fb5815
ZY
2982/**
2983 * nr_free_pagecache_pages - count number of pages beyond high watermark
2984 *
2985 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2986 * high watermark within all zones.
1da177e4 2987 */
ebec3862 2988unsigned long nr_free_pagecache_pages(void)
1da177e4 2989{
2a1e274a 2990 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2991}
08e0f6a9
CL
2992
2993static inline void show_node(struct zone *zone)
1da177e4 2994{
e5adfffc 2995 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2996 printk("Node %d ", zone_to_nid(zone));
1da177e4 2997}
1da177e4 2998
1da177e4
LT
2999void si_meminfo(struct sysinfo *val)
3000{
3001 val->totalram = totalram_pages;
3002 val->sharedram = 0;
d23ad423 3003 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3004 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3005 val->totalhigh = totalhigh_pages;
3006 val->freehigh = nr_free_highpages();
1da177e4
LT
3007 val->mem_unit = PAGE_SIZE;
3008}
3009
3010EXPORT_SYMBOL(si_meminfo);
3011
3012#ifdef CONFIG_NUMA
3013void si_meminfo_node(struct sysinfo *val, int nid)
3014{
cdd91a77
JL
3015 int zone_type; /* needs to be signed */
3016 unsigned long managed_pages = 0;
1da177e4
LT
3017 pg_data_t *pgdat = NODE_DATA(nid);
3018
cdd91a77
JL
3019 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3020 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3021 val->totalram = managed_pages;
d23ad423 3022 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3023#ifdef CONFIG_HIGHMEM
b40da049 3024 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3025 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3026 NR_FREE_PAGES);
98d2b0eb
CL
3027#else
3028 val->totalhigh = 0;
3029 val->freehigh = 0;
3030#endif
1da177e4
LT
3031 val->mem_unit = PAGE_SIZE;
3032}
3033#endif
3034
ddd588b5 3035/*
7bf02ea2
DR
3036 * Determine whether the node should be displayed or not, depending on whether
3037 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3038 */
7bf02ea2 3039bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3040{
3041 bool ret = false;
cc9a6c87 3042 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3043
3044 if (!(flags & SHOW_MEM_FILTER_NODES))
3045 goto out;
3046
cc9a6c87 3047 do {
d26914d1 3048 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3049 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3050 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3051out:
3052 return ret;
3053}
3054
1da177e4
LT
3055#define K(x) ((x) << (PAGE_SHIFT-10))
3056
377e4f16
RV
3057static void show_migration_types(unsigned char type)
3058{
3059 static const char types[MIGRATE_TYPES] = {
3060 [MIGRATE_UNMOVABLE] = 'U',
3061 [MIGRATE_RECLAIMABLE] = 'E',
3062 [MIGRATE_MOVABLE] = 'M',
3063 [MIGRATE_RESERVE] = 'R',
3064#ifdef CONFIG_CMA
3065 [MIGRATE_CMA] = 'C',
3066#endif
194159fb 3067#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3068 [MIGRATE_ISOLATE] = 'I',
194159fb 3069#endif
377e4f16
RV
3070 };
3071 char tmp[MIGRATE_TYPES + 1];
3072 char *p = tmp;
3073 int i;
3074
3075 for (i = 0; i < MIGRATE_TYPES; i++) {
3076 if (type & (1 << i))
3077 *p++ = types[i];
3078 }
3079
3080 *p = '\0';
3081 printk("(%s) ", tmp);
3082}
3083
1da177e4
LT
3084/*
3085 * Show free area list (used inside shift_scroll-lock stuff)
3086 * We also calculate the percentage fragmentation. We do this by counting the
3087 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3088 * Suppresses nodes that are not allowed by current's cpuset if
3089 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3090 */
7bf02ea2 3091void show_free_areas(unsigned int filter)
1da177e4 3092{
c7241913 3093 int cpu;
1da177e4
LT
3094 struct zone *zone;
3095
ee99c71c 3096 for_each_populated_zone(zone) {
7bf02ea2 3097 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3098 continue;
c7241913
JS
3099 show_node(zone);
3100 printk("%s per-cpu:\n", zone->name);
1da177e4 3101
6b482c67 3102 for_each_online_cpu(cpu) {
1da177e4
LT
3103 struct per_cpu_pageset *pageset;
3104
99dcc3e5 3105 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3106
3dfa5721
CL
3107 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3108 cpu, pageset->pcp.high,
3109 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3110 }
3111 }
3112
a731286d
KM
3113 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3114 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3115 " unevictable:%lu"
b76146ed 3116 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3117 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3118 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3119 " free_cma:%lu\n",
4f98a2fe 3120 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3121 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3122 global_page_state(NR_ISOLATED_ANON),
3123 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3124 global_page_state(NR_INACTIVE_FILE),
a731286d 3125 global_page_state(NR_ISOLATED_FILE),
7b854121 3126 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3127 global_page_state(NR_FILE_DIRTY),
ce866b34 3128 global_page_state(NR_WRITEBACK),
fd39fc85 3129 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3130 global_page_state(NR_FREE_PAGES),
3701b033
KM
3131 global_page_state(NR_SLAB_RECLAIMABLE),
3132 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3133 global_page_state(NR_FILE_MAPPED),
4b02108a 3134 global_page_state(NR_SHMEM),
a25700a5 3135 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3136 global_page_state(NR_BOUNCE),
3137 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3138
ee99c71c 3139 for_each_populated_zone(zone) {
1da177e4
LT
3140 int i;
3141
7bf02ea2 3142 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3143 continue;
1da177e4
LT
3144 show_node(zone);
3145 printk("%s"
3146 " free:%lukB"
3147 " min:%lukB"
3148 " low:%lukB"
3149 " high:%lukB"
4f98a2fe
RR
3150 " active_anon:%lukB"
3151 " inactive_anon:%lukB"
3152 " active_file:%lukB"
3153 " inactive_file:%lukB"
7b854121 3154 " unevictable:%lukB"
a731286d
KM
3155 " isolated(anon):%lukB"
3156 " isolated(file):%lukB"
1da177e4 3157 " present:%lukB"
9feedc9d 3158 " managed:%lukB"
4a0aa73f
KM
3159 " mlocked:%lukB"
3160 " dirty:%lukB"
3161 " writeback:%lukB"
3162 " mapped:%lukB"
4b02108a 3163 " shmem:%lukB"
4a0aa73f
KM
3164 " slab_reclaimable:%lukB"
3165 " slab_unreclaimable:%lukB"
c6a7f572 3166 " kernel_stack:%lukB"
4a0aa73f
KM
3167 " pagetables:%lukB"
3168 " unstable:%lukB"
3169 " bounce:%lukB"
d1ce749a 3170 " free_cma:%lukB"
4a0aa73f 3171 " writeback_tmp:%lukB"
1da177e4
LT
3172 " pages_scanned:%lu"
3173 " all_unreclaimable? %s"
3174 "\n",
3175 zone->name,
88f5acf8 3176 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3177 K(min_wmark_pages(zone)),
3178 K(low_wmark_pages(zone)),
3179 K(high_wmark_pages(zone)),
4f98a2fe
RR
3180 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3181 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3182 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3183 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3184 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3185 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3186 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3187 K(zone->present_pages),
9feedc9d 3188 K(zone->managed_pages),
4a0aa73f
KM
3189 K(zone_page_state(zone, NR_MLOCK)),
3190 K(zone_page_state(zone, NR_FILE_DIRTY)),
3191 K(zone_page_state(zone, NR_WRITEBACK)),
3192 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3193 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3194 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3195 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3196 zone_page_state(zone, NR_KERNEL_STACK) *
3197 THREAD_SIZE / 1024,
4a0aa73f
KM
3198 K(zone_page_state(zone, NR_PAGETABLE)),
3199 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3200 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3201 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3202 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3203 zone->pages_scanned,
6e543d57 3204 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3205 );
3206 printk("lowmem_reserve[]:");
3207 for (i = 0; i < MAX_NR_ZONES; i++)
3208 printk(" %lu", zone->lowmem_reserve[i]);
3209 printk("\n");
3210 }
3211
ee99c71c 3212 for_each_populated_zone(zone) {
b8af2941 3213 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3214 unsigned char types[MAX_ORDER];
1da177e4 3215
7bf02ea2 3216 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3217 continue;
1da177e4
LT
3218 show_node(zone);
3219 printk("%s: ", zone->name);
1da177e4
LT
3220
3221 spin_lock_irqsave(&zone->lock, flags);
3222 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3223 struct free_area *area = &zone->free_area[order];
3224 int type;
3225
3226 nr[order] = area->nr_free;
8f9de51a 3227 total += nr[order] << order;
377e4f16
RV
3228
3229 types[order] = 0;
3230 for (type = 0; type < MIGRATE_TYPES; type++) {
3231 if (!list_empty(&area->free_list[type]))
3232 types[order] |= 1 << type;
3233 }
1da177e4
LT
3234 }
3235 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3236 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3237 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3238 if (nr[order])
3239 show_migration_types(types[order]);
3240 }
1da177e4
LT
3241 printk("= %lukB\n", K(total));
3242 }
3243
949f7ec5
DR
3244 hugetlb_show_meminfo();
3245
e6f3602d
LW
3246 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3247
1da177e4
LT
3248 show_swap_cache_info();
3249}
3250
19770b32
MG
3251static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3252{
3253 zoneref->zone = zone;
3254 zoneref->zone_idx = zone_idx(zone);
3255}
3256
1da177e4
LT
3257/*
3258 * Builds allocation fallback zone lists.
1a93205b
CL
3259 *
3260 * Add all populated zones of a node to the zonelist.
1da177e4 3261 */
f0c0b2b8 3262static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3263 int nr_zones)
1da177e4 3264{
1a93205b 3265 struct zone *zone;
bc732f1d 3266 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3267
3268 do {
2f6726e5 3269 zone_type--;
070f8032 3270 zone = pgdat->node_zones + zone_type;
1a93205b 3271 if (populated_zone(zone)) {
dd1a239f
MG
3272 zoneref_set_zone(zone,
3273 &zonelist->_zonerefs[nr_zones++]);
070f8032 3274 check_highest_zone(zone_type);
1da177e4 3275 }
2f6726e5 3276 } while (zone_type);
bc732f1d 3277
070f8032 3278 return nr_zones;
1da177e4
LT
3279}
3280
f0c0b2b8
KH
3281
3282/*
3283 * zonelist_order:
3284 * 0 = automatic detection of better ordering.
3285 * 1 = order by ([node] distance, -zonetype)
3286 * 2 = order by (-zonetype, [node] distance)
3287 *
3288 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3289 * the same zonelist. So only NUMA can configure this param.
3290 */
3291#define ZONELIST_ORDER_DEFAULT 0
3292#define ZONELIST_ORDER_NODE 1
3293#define ZONELIST_ORDER_ZONE 2
3294
3295/* zonelist order in the kernel.
3296 * set_zonelist_order() will set this to NODE or ZONE.
3297 */
3298static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3299static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3300
3301
1da177e4 3302#ifdef CONFIG_NUMA
f0c0b2b8
KH
3303/* The value user specified ....changed by config */
3304static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3305/* string for sysctl */
3306#define NUMA_ZONELIST_ORDER_LEN 16
3307char numa_zonelist_order[16] = "default";
3308
3309/*
3310 * interface for configure zonelist ordering.
3311 * command line option "numa_zonelist_order"
3312 * = "[dD]efault - default, automatic configuration.
3313 * = "[nN]ode - order by node locality, then by zone within node
3314 * = "[zZ]one - order by zone, then by locality within zone
3315 */
3316
3317static int __parse_numa_zonelist_order(char *s)
3318{
3319 if (*s == 'd' || *s == 'D') {
3320 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3321 } else if (*s == 'n' || *s == 'N') {
3322 user_zonelist_order = ZONELIST_ORDER_NODE;
3323 } else if (*s == 'z' || *s == 'Z') {
3324 user_zonelist_order = ZONELIST_ORDER_ZONE;
3325 } else {
3326 printk(KERN_WARNING
3327 "Ignoring invalid numa_zonelist_order value: "
3328 "%s\n", s);
3329 return -EINVAL;
3330 }
3331 return 0;
3332}
3333
3334static __init int setup_numa_zonelist_order(char *s)
3335{
ecb256f8
VL
3336 int ret;
3337
3338 if (!s)
3339 return 0;
3340
3341 ret = __parse_numa_zonelist_order(s);
3342 if (ret == 0)
3343 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3344
3345 return ret;
f0c0b2b8
KH
3346}
3347early_param("numa_zonelist_order", setup_numa_zonelist_order);
3348
3349/*
3350 * sysctl handler for numa_zonelist_order
3351 */
3352int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3353 void __user *buffer, size_t *length,
f0c0b2b8
KH
3354 loff_t *ppos)
3355{
3356 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3357 int ret;
443c6f14 3358 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3359
443c6f14 3360 mutex_lock(&zl_order_mutex);
dacbde09
CG
3361 if (write) {
3362 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3363 ret = -EINVAL;
3364 goto out;
3365 }
3366 strcpy(saved_string, (char *)table->data);
3367 }
8d65af78 3368 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3369 if (ret)
443c6f14 3370 goto out;
f0c0b2b8
KH
3371 if (write) {
3372 int oldval = user_zonelist_order;
dacbde09
CG
3373
3374 ret = __parse_numa_zonelist_order((char *)table->data);
3375 if (ret) {
f0c0b2b8
KH
3376 /*
3377 * bogus value. restore saved string
3378 */
dacbde09 3379 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3380 NUMA_ZONELIST_ORDER_LEN);
3381 user_zonelist_order = oldval;
4eaf3f64
HL
3382 } else if (oldval != user_zonelist_order) {
3383 mutex_lock(&zonelists_mutex);
9adb62a5 3384 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3385 mutex_unlock(&zonelists_mutex);
3386 }
f0c0b2b8 3387 }
443c6f14
AK
3388out:
3389 mutex_unlock(&zl_order_mutex);
3390 return ret;
f0c0b2b8
KH
3391}
3392
3393
62bc62a8 3394#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3395static int node_load[MAX_NUMNODES];
3396
1da177e4 3397/**
4dc3b16b 3398 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3399 * @node: node whose fallback list we're appending
3400 * @used_node_mask: nodemask_t of already used nodes
3401 *
3402 * We use a number of factors to determine which is the next node that should
3403 * appear on a given node's fallback list. The node should not have appeared
3404 * already in @node's fallback list, and it should be the next closest node
3405 * according to the distance array (which contains arbitrary distance values
3406 * from each node to each node in the system), and should also prefer nodes
3407 * with no CPUs, since presumably they'll have very little allocation pressure
3408 * on them otherwise.
3409 * It returns -1 if no node is found.
3410 */
f0c0b2b8 3411static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3412{
4cf808eb 3413 int n, val;
1da177e4 3414 int min_val = INT_MAX;
00ef2d2f 3415 int best_node = NUMA_NO_NODE;
a70f7302 3416 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3417
4cf808eb
LT
3418 /* Use the local node if we haven't already */
3419 if (!node_isset(node, *used_node_mask)) {
3420 node_set(node, *used_node_mask);
3421 return node;
3422 }
1da177e4 3423
4b0ef1fe 3424 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3425
3426 /* Don't want a node to appear more than once */
3427 if (node_isset(n, *used_node_mask))
3428 continue;
3429
1da177e4
LT
3430 /* Use the distance array to find the distance */
3431 val = node_distance(node, n);
3432
4cf808eb
LT
3433 /* Penalize nodes under us ("prefer the next node") */
3434 val += (n < node);
3435
1da177e4 3436 /* Give preference to headless and unused nodes */
a70f7302
RR
3437 tmp = cpumask_of_node(n);
3438 if (!cpumask_empty(tmp))
1da177e4
LT
3439 val += PENALTY_FOR_NODE_WITH_CPUS;
3440
3441 /* Slight preference for less loaded node */
3442 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3443 val += node_load[n];
3444
3445 if (val < min_val) {
3446 min_val = val;
3447 best_node = n;
3448 }
3449 }
3450
3451 if (best_node >= 0)
3452 node_set(best_node, *used_node_mask);
3453
3454 return best_node;
3455}
3456
f0c0b2b8
KH
3457
3458/*
3459 * Build zonelists ordered by node and zones within node.
3460 * This results in maximum locality--normal zone overflows into local
3461 * DMA zone, if any--but risks exhausting DMA zone.
3462 */
3463static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3464{
f0c0b2b8 3465 int j;
1da177e4 3466 struct zonelist *zonelist;
f0c0b2b8 3467
54a6eb5c 3468 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3469 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3470 ;
bc732f1d 3471 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3472 zonelist->_zonerefs[j].zone = NULL;
3473 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3474}
3475
523b9458
CL
3476/*
3477 * Build gfp_thisnode zonelists
3478 */
3479static void build_thisnode_zonelists(pg_data_t *pgdat)
3480{
523b9458
CL
3481 int j;
3482 struct zonelist *zonelist;
3483
54a6eb5c 3484 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3485 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3486 zonelist->_zonerefs[j].zone = NULL;
3487 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3488}
3489
f0c0b2b8
KH
3490/*
3491 * Build zonelists ordered by zone and nodes within zones.
3492 * This results in conserving DMA zone[s] until all Normal memory is
3493 * exhausted, but results in overflowing to remote node while memory
3494 * may still exist in local DMA zone.
3495 */
3496static int node_order[MAX_NUMNODES];
3497
3498static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3499{
f0c0b2b8
KH
3500 int pos, j, node;
3501 int zone_type; /* needs to be signed */
3502 struct zone *z;
3503 struct zonelist *zonelist;
3504
54a6eb5c
MG
3505 zonelist = &pgdat->node_zonelists[0];
3506 pos = 0;
3507 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3508 for (j = 0; j < nr_nodes; j++) {
3509 node = node_order[j];
3510 z = &NODE_DATA(node)->node_zones[zone_type];
3511 if (populated_zone(z)) {
dd1a239f
MG
3512 zoneref_set_zone(z,
3513 &zonelist->_zonerefs[pos++]);
54a6eb5c 3514 check_highest_zone(zone_type);
f0c0b2b8
KH
3515 }
3516 }
f0c0b2b8 3517 }
dd1a239f
MG
3518 zonelist->_zonerefs[pos].zone = NULL;
3519 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3520}
3521
3522static int default_zonelist_order(void)
3523{
3524 int nid, zone_type;
b8af2941 3525 unsigned long low_kmem_size, total_size;
f0c0b2b8
KH
3526 struct zone *z;
3527 int average_size;
3528 /*
b8af2941 3529 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3530 * If they are really small and used heavily, the system can fall
3531 * into OOM very easily.
e325c90f 3532 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3533 */
3534 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3535 low_kmem_size = 0;
3536 total_size = 0;
3537 for_each_online_node(nid) {
3538 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3539 z = &NODE_DATA(nid)->node_zones[zone_type];
3540 if (populated_zone(z)) {
3541 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3542 low_kmem_size += z->managed_pages;
3543 total_size += z->managed_pages;
e325c90f
DR
3544 } else if (zone_type == ZONE_NORMAL) {
3545 /*
3546 * If any node has only lowmem, then node order
3547 * is preferred to allow kernel allocations
3548 * locally; otherwise, they can easily infringe
3549 * on other nodes when there is an abundance of
3550 * lowmem available to allocate from.
3551 */
3552 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3553 }
3554 }
3555 }
3556 if (!low_kmem_size || /* there are no DMA area. */
3557 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3558 return ZONELIST_ORDER_NODE;
3559 /*
3560 * look into each node's config.
b8af2941
PK
3561 * If there is a node whose DMA/DMA32 memory is very big area on
3562 * local memory, NODE_ORDER may be suitable.
3563 */
37b07e41 3564 average_size = total_size /
4b0ef1fe 3565 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3566 for_each_online_node(nid) {
3567 low_kmem_size = 0;
3568 total_size = 0;
3569 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3570 z = &NODE_DATA(nid)->node_zones[zone_type];
3571 if (populated_zone(z)) {
3572 if (zone_type < ZONE_NORMAL)
3573 low_kmem_size += z->present_pages;
3574 total_size += z->present_pages;
3575 }
3576 }
3577 if (low_kmem_size &&
3578 total_size > average_size && /* ignore small node */
3579 low_kmem_size > total_size * 70/100)
3580 return ZONELIST_ORDER_NODE;
3581 }
3582 return ZONELIST_ORDER_ZONE;
3583}
3584
3585static void set_zonelist_order(void)
3586{
3587 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3588 current_zonelist_order = default_zonelist_order();
3589 else
3590 current_zonelist_order = user_zonelist_order;
3591}
3592
3593static void build_zonelists(pg_data_t *pgdat)
3594{
3595 int j, node, load;
3596 enum zone_type i;
1da177e4 3597 nodemask_t used_mask;
f0c0b2b8
KH
3598 int local_node, prev_node;
3599 struct zonelist *zonelist;
3600 int order = current_zonelist_order;
1da177e4
LT
3601
3602 /* initialize zonelists */
523b9458 3603 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3604 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3605 zonelist->_zonerefs[0].zone = NULL;
3606 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3607 }
3608
3609 /* NUMA-aware ordering of nodes */
3610 local_node = pgdat->node_id;
62bc62a8 3611 load = nr_online_nodes;
1da177e4
LT
3612 prev_node = local_node;
3613 nodes_clear(used_mask);
f0c0b2b8 3614
f0c0b2b8
KH
3615 memset(node_order, 0, sizeof(node_order));
3616 j = 0;
3617
1da177e4
LT
3618 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3619 /*
3620 * We don't want to pressure a particular node.
3621 * So adding penalty to the first node in same
3622 * distance group to make it round-robin.
3623 */
957f822a
DR
3624 if (node_distance(local_node, node) !=
3625 node_distance(local_node, prev_node))
f0c0b2b8
KH
3626 node_load[node] = load;
3627
1da177e4
LT
3628 prev_node = node;
3629 load--;
f0c0b2b8
KH
3630 if (order == ZONELIST_ORDER_NODE)
3631 build_zonelists_in_node_order(pgdat, node);
3632 else
3633 node_order[j++] = node; /* remember order */
3634 }
1da177e4 3635
f0c0b2b8
KH
3636 if (order == ZONELIST_ORDER_ZONE) {
3637 /* calculate node order -- i.e., DMA last! */
3638 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3639 }
523b9458
CL
3640
3641 build_thisnode_zonelists(pgdat);
1da177e4
LT
3642}
3643
9276b1bc 3644/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3645static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3646{
54a6eb5c
MG
3647 struct zonelist *zonelist;
3648 struct zonelist_cache *zlc;
dd1a239f 3649 struct zoneref *z;
9276b1bc 3650
54a6eb5c
MG
3651 zonelist = &pgdat->node_zonelists[0];
3652 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3653 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3654 for (z = zonelist->_zonerefs; z->zone; z++)
3655 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3656}
3657
7aac7898
LS
3658#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3659/*
3660 * Return node id of node used for "local" allocations.
3661 * I.e., first node id of first zone in arg node's generic zonelist.
3662 * Used for initializing percpu 'numa_mem', which is used primarily
3663 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3664 */
3665int local_memory_node(int node)
3666{
3667 struct zone *zone;
3668
3669 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3670 gfp_zone(GFP_KERNEL),
3671 NULL,
3672 &zone);
3673 return zone->node;
3674}
3675#endif
f0c0b2b8 3676
1da177e4
LT
3677#else /* CONFIG_NUMA */
3678
f0c0b2b8
KH
3679static void set_zonelist_order(void)
3680{
3681 current_zonelist_order = ZONELIST_ORDER_ZONE;
3682}
3683
3684static void build_zonelists(pg_data_t *pgdat)
1da177e4 3685{
19655d34 3686 int node, local_node;
54a6eb5c
MG
3687 enum zone_type j;
3688 struct zonelist *zonelist;
1da177e4
LT
3689
3690 local_node = pgdat->node_id;
1da177e4 3691
54a6eb5c 3692 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3693 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3694
54a6eb5c
MG
3695 /*
3696 * Now we build the zonelist so that it contains the zones
3697 * of all the other nodes.
3698 * We don't want to pressure a particular node, so when
3699 * building the zones for node N, we make sure that the
3700 * zones coming right after the local ones are those from
3701 * node N+1 (modulo N)
3702 */
3703 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3704 if (!node_online(node))
3705 continue;
bc732f1d 3706 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3707 }
54a6eb5c
MG
3708 for (node = 0; node < local_node; node++) {
3709 if (!node_online(node))
3710 continue;
bc732f1d 3711 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3712 }
3713
dd1a239f
MG
3714 zonelist->_zonerefs[j].zone = NULL;
3715 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3716}
3717
9276b1bc 3718/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3719static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3720{
54a6eb5c 3721 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3722}
3723
1da177e4
LT
3724#endif /* CONFIG_NUMA */
3725
99dcc3e5
CL
3726/*
3727 * Boot pageset table. One per cpu which is going to be used for all
3728 * zones and all nodes. The parameters will be set in such a way
3729 * that an item put on a list will immediately be handed over to
3730 * the buddy list. This is safe since pageset manipulation is done
3731 * with interrupts disabled.
3732 *
3733 * The boot_pagesets must be kept even after bootup is complete for
3734 * unused processors and/or zones. They do play a role for bootstrapping
3735 * hotplugged processors.
3736 *
3737 * zoneinfo_show() and maybe other functions do
3738 * not check if the processor is online before following the pageset pointer.
3739 * Other parts of the kernel may not check if the zone is available.
3740 */
3741static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3742static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3743static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3744
4eaf3f64
HL
3745/*
3746 * Global mutex to protect against size modification of zonelists
3747 * as well as to serialize pageset setup for the new populated zone.
3748 */
3749DEFINE_MUTEX(zonelists_mutex);
3750
9b1a4d38 3751/* return values int ....just for stop_machine() */
4ed7e022 3752static int __build_all_zonelists(void *data)
1da177e4 3753{
6811378e 3754 int nid;
99dcc3e5 3755 int cpu;
9adb62a5 3756 pg_data_t *self = data;
9276b1bc 3757
7f9cfb31
BL
3758#ifdef CONFIG_NUMA
3759 memset(node_load, 0, sizeof(node_load));
3760#endif
9adb62a5
JL
3761
3762 if (self && !node_online(self->node_id)) {
3763 build_zonelists(self);
3764 build_zonelist_cache(self);
3765 }
3766
9276b1bc 3767 for_each_online_node(nid) {
7ea1530a
CL
3768 pg_data_t *pgdat = NODE_DATA(nid);
3769
3770 build_zonelists(pgdat);
3771 build_zonelist_cache(pgdat);
9276b1bc 3772 }
99dcc3e5
CL
3773
3774 /*
3775 * Initialize the boot_pagesets that are going to be used
3776 * for bootstrapping processors. The real pagesets for
3777 * each zone will be allocated later when the per cpu
3778 * allocator is available.
3779 *
3780 * boot_pagesets are used also for bootstrapping offline
3781 * cpus if the system is already booted because the pagesets
3782 * are needed to initialize allocators on a specific cpu too.
3783 * F.e. the percpu allocator needs the page allocator which
3784 * needs the percpu allocator in order to allocate its pagesets
3785 * (a chicken-egg dilemma).
3786 */
7aac7898 3787 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3788 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3789
7aac7898
LS
3790#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3791 /*
3792 * We now know the "local memory node" for each node--
3793 * i.e., the node of the first zone in the generic zonelist.
3794 * Set up numa_mem percpu variable for on-line cpus. During
3795 * boot, only the boot cpu should be on-line; we'll init the
3796 * secondary cpus' numa_mem as they come on-line. During
3797 * node/memory hotplug, we'll fixup all on-line cpus.
3798 */
3799 if (cpu_online(cpu))
3800 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3801#endif
3802 }
3803
6811378e
YG
3804 return 0;
3805}
3806
4eaf3f64
HL
3807/*
3808 * Called with zonelists_mutex held always
3809 * unless system_state == SYSTEM_BOOTING.
3810 */
9adb62a5 3811void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3812{
f0c0b2b8
KH
3813 set_zonelist_order();
3814
6811378e 3815 if (system_state == SYSTEM_BOOTING) {
423b41d7 3816 __build_all_zonelists(NULL);
68ad8df4 3817 mminit_verify_zonelist();
6811378e
YG
3818 cpuset_init_current_mems_allowed();
3819 } else {
e9959f0f 3820#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3821 if (zone)
3822 setup_zone_pageset(zone);
e9959f0f 3823#endif
dd1895e2
CS
3824 /* we have to stop all cpus to guarantee there is no user
3825 of zonelist */
9adb62a5 3826 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3827 /* cpuset refresh routine should be here */
3828 }
bd1e22b8 3829 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3830 /*
3831 * Disable grouping by mobility if the number of pages in the
3832 * system is too low to allow the mechanism to work. It would be
3833 * more accurate, but expensive to check per-zone. This check is
3834 * made on memory-hotadd so a system can start with mobility
3835 * disabled and enable it later
3836 */
d9c23400 3837 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3838 page_group_by_mobility_disabled = 1;
3839 else
3840 page_group_by_mobility_disabled = 0;
3841
3842 printk("Built %i zonelists in %s order, mobility grouping %s. "
3843 "Total pages: %ld\n",
62bc62a8 3844 nr_online_nodes,
f0c0b2b8 3845 zonelist_order_name[current_zonelist_order],
9ef9acb0 3846 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3847 vm_total_pages);
3848#ifdef CONFIG_NUMA
3849 printk("Policy zone: %s\n", zone_names[policy_zone]);
3850#endif
1da177e4
LT
3851}
3852
3853/*
3854 * Helper functions to size the waitqueue hash table.
3855 * Essentially these want to choose hash table sizes sufficiently
3856 * large so that collisions trying to wait on pages are rare.
3857 * But in fact, the number of active page waitqueues on typical
3858 * systems is ridiculously low, less than 200. So this is even
3859 * conservative, even though it seems large.
3860 *
3861 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3862 * waitqueues, i.e. the size of the waitq table given the number of pages.
3863 */
3864#define PAGES_PER_WAITQUEUE 256
3865
cca448fe 3866#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3867static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3868{
3869 unsigned long size = 1;
3870
3871 pages /= PAGES_PER_WAITQUEUE;
3872
3873 while (size < pages)
3874 size <<= 1;
3875
3876 /*
3877 * Once we have dozens or even hundreds of threads sleeping
3878 * on IO we've got bigger problems than wait queue collision.
3879 * Limit the size of the wait table to a reasonable size.
3880 */
3881 size = min(size, 4096UL);
3882
3883 return max(size, 4UL);
3884}
cca448fe
YG
3885#else
3886/*
3887 * A zone's size might be changed by hot-add, so it is not possible to determine
3888 * a suitable size for its wait_table. So we use the maximum size now.
3889 *
3890 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3891 *
3892 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3893 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3894 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3895 *
3896 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3897 * or more by the traditional way. (See above). It equals:
3898 *
3899 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3900 * ia64(16K page size) : = ( 8G + 4M)byte.
3901 * powerpc (64K page size) : = (32G +16M)byte.
3902 */
3903static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3904{
3905 return 4096UL;
3906}
3907#endif
1da177e4
LT
3908
3909/*
3910 * This is an integer logarithm so that shifts can be used later
3911 * to extract the more random high bits from the multiplicative
3912 * hash function before the remainder is taken.
3913 */
3914static inline unsigned long wait_table_bits(unsigned long size)
3915{
3916 return ffz(~size);
3917}
3918
6d3163ce
AH
3919/*
3920 * Check if a pageblock contains reserved pages
3921 */
3922static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3923{
3924 unsigned long pfn;
3925
3926 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3927 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3928 return 1;
3929 }
3930 return 0;
3931}
3932
56fd56b8 3933/*
d9c23400 3934 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3935 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3936 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3937 * higher will lead to a bigger reserve which will get freed as contiguous
3938 * blocks as reclaim kicks in
3939 */
3940static void setup_zone_migrate_reserve(struct zone *zone)
3941{
6d3163ce 3942 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3943 struct page *page;
78986a67
MG
3944 unsigned long block_migratetype;
3945 int reserve;
943dca1a 3946 int old_reserve;
56fd56b8 3947
d0215638
MH
3948 /*
3949 * Get the start pfn, end pfn and the number of blocks to reserve
3950 * We have to be careful to be aligned to pageblock_nr_pages to
3951 * make sure that we always check pfn_valid for the first page in
3952 * the block.
3953 */
56fd56b8 3954 start_pfn = zone->zone_start_pfn;
108bcc96 3955 end_pfn = zone_end_pfn(zone);
d0215638 3956 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3957 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3958 pageblock_order;
56fd56b8 3959
78986a67
MG
3960 /*
3961 * Reserve blocks are generally in place to help high-order atomic
3962 * allocations that are short-lived. A min_free_kbytes value that
3963 * would result in more than 2 reserve blocks for atomic allocations
3964 * is assumed to be in place to help anti-fragmentation for the
3965 * future allocation of hugepages at runtime.
3966 */
3967 reserve = min(2, reserve);
943dca1a
YI
3968 old_reserve = zone->nr_migrate_reserve_block;
3969
3970 /* When memory hot-add, we almost always need to do nothing */
3971 if (reserve == old_reserve)
3972 return;
3973 zone->nr_migrate_reserve_block = reserve;
78986a67 3974
d9c23400 3975 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3976 if (!pfn_valid(pfn))
3977 continue;
3978 page = pfn_to_page(pfn);
3979
344c790e
AL
3980 /* Watch out for overlapping nodes */
3981 if (page_to_nid(page) != zone_to_nid(zone))
3982 continue;
3983
56fd56b8
MG
3984 block_migratetype = get_pageblock_migratetype(page);
3985
938929f1
MG
3986 /* Only test what is necessary when the reserves are not met */
3987 if (reserve > 0) {
3988 /*
3989 * Blocks with reserved pages will never free, skip
3990 * them.
3991 */
3992 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3993 if (pageblock_is_reserved(pfn, block_end_pfn))
3994 continue;
56fd56b8 3995
938929f1
MG
3996 /* If this block is reserved, account for it */
3997 if (block_migratetype == MIGRATE_RESERVE) {
3998 reserve--;
3999 continue;
4000 }
4001
4002 /* Suitable for reserving if this block is movable */
4003 if (block_migratetype == MIGRATE_MOVABLE) {
4004 set_pageblock_migratetype(page,
4005 MIGRATE_RESERVE);
4006 move_freepages_block(zone, page,
4007 MIGRATE_RESERVE);
4008 reserve--;
4009 continue;
4010 }
943dca1a
YI
4011 } else if (!old_reserve) {
4012 /*
4013 * At boot time we don't need to scan the whole zone
4014 * for turning off MIGRATE_RESERVE.
4015 */
4016 break;
56fd56b8
MG
4017 }
4018
4019 /*
4020 * If the reserve is met and this is a previous reserved block,
4021 * take it back
4022 */
4023 if (block_migratetype == MIGRATE_RESERVE) {
4024 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4025 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4026 }
4027 }
4028}
ac0e5b7a 4029
1da177e4
LT
4030/*
4031 * Initially all pages are reserved - free ones are freed
4032 * up by free_all_bootmem() once the early boot process is
4033 * done. Non-atomic initialization, single-pass.
4034 */
c09b4240 4035void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4036 unsigned long start_pfn, enum memmap_context context)
1da177e4 4037{
1da177e4 4038 struct page *page;
29751f69
AW
4039 unsigned long end_pfn = start_pfn + size;
4040 unsigned long pfn;
86051ca5 4041 struct zone *z;
1da177e4 4042
22b31eec
HD
4043 if (highest_memmap_pfn < end_pfn - 1)
4044 highest_memmap_pfn = end_pfn - 1;
4045
86051ca5 4046 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4047 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4048 /*
4049 * There can be holes in boot-time mem_map[]s
4050 * handed to this function. They do not
4051 * exist on hotplugged memory.
4052 */
4053 if (context == MEMMAP_EARLY) {
4054 if (!early_pfn_valid(pfn))
4055 continue;
4056 if (!early_pfn_in_nid(pfn, nid))
4057 continue;
4058 }
d41dee36
AW
4059 page = pfn_to_page(pfn);
4060 set_page_links(page, zone, nid, pfn);
708614e6 4061 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4062 init_page_count(page);
22b751c3 4063 page_mapcount_reset(page);
90572890 4064 page_cpupid_reset_last(page);
1da177e4 4065 SetPageReserved(page);
b2a0ac88
MG
4066 /*
4067 * Mark the block movable so that blocks are reserved for
4068 * movable at startup. This will force kernel allocations
4069 * to reserve their blocks rather than leaking throughout
4070 * the address space during boot when many long-lived
56fd56b8
MG
4071 * kernel allocations are made. Later some blocks near
4072 * the start are marked MIGRATE_RESERVE by
4073 * setup_zone_migrate_reserve()
86051ca5
KH
4074 *
4075 * bitmap is created for zone's valid pfn range. but memmap
4076 * can be created for invalid pages (for alignment)
4077 * check here not to call set_pageblock_migratetype() against
4078 * pfn out of zone.
b2a0ac88 4079 */
86051ca5 4080 if ((z->zone_start_pfn <= pfn)
108bcc96 4081 && (pfn < zone_end_pfn(z))
86051ca5 4082 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4083 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4084
1da177e4
LT
4085 INIT_LIST_HEAD(&page->lru);
4086#ifdef WANT_PAGE_VIRTUAL
4087 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4088 if (!is_highmem_idx(zone))
3212c6be 4089 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4090#endif
1da177e4
LT
4091 }
4092}
4093
1e548deb 4094static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4095{
b2a0ac88
MG
4096 int order, t;
4097 for_each_migratetype_order(order, t) {
4098 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4099 zone->free_area[order].nr_free = 0;
4100 }
4101}
4102
4103#ifndef __HAVE_ARCH_MEMMAP_INIT
4104#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4105 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4106#endif
4107
4ed7e022 4108static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 4109{
3a6be87f 4110#ifdef CONFIG_MMU
e7c8d5c9
CL
4111 int batch;
4112
4113 /*
4114 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4115 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4116 *
4117 * OK, so we don't know how big the cache is. So guess.
4118 */
b40da049 4119 batch = zone->managed_pages / 1024;
ba56e91c
SR
4120 if (batch * PAGE_SIZE > 512 * 1024)
4121 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4122 batch /= 4; /* We effectively *= 4 below */
4123 if (batch < 1)
4124 batch = 1;
4125
4126 /*
0ceaacc9
NP
4127 * Clamp the batch to a 2^n - 1 value. Having a power
4128 * of 2 value was found to be more likely to have
4129 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4130 *
0ceaacc9
NP
4131 * For example if 2 tasks are alternately allocating
4132 * batches of pages, one task can end up with a lot
4133 * of pages of one half of the possible page colors
4134 * and the other with pages of the other colors.
e7c8d5c9 4135 */
9155203a 4136 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4137
e7c8d5c9 4138 return batch;
3a6be87f
DH
4139
4140#else
4141 /* The deferral and batching of frees should be suppressed under NOMMU
4142 * conditions.
4143 *
4144 * The problem is that NOMMU needs to be able to allocate large chunks
4145 * of contiguous memory as there's no hardware page translation to
4146 * assemble apparent contiguous memory from discontiguous pages.
4147 *
4148 * Queueing large contiguous runs of pages for batching, however,
4149 * causes the pages to actually be freed in smaller chunks. As there
4150 * can be a significant delay between the individual batches being
4151 * recycled, this leads to the once large chunks of space being
4152 * fragmented and becoming unavailable for high-order allocations.
4153 */
4154 return 0;
4155#endif
e7c8d5c9
CL
4156}
4157
8d7a8fa9
CS
4158/*
4159 * pcp->high and pcp->batch values are related and dependent on one another:
4160 * ->batch must never be higher then ->high.
4161 * The following function updates them in a safe manner without read side
4162 * locking.
4163 *
4164 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4165 * those fields changing asynchronously (acording the the above rule).
4166 *
4167 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4168 * outside of boot time (or some other assurance that no concurrent updaters
4169 * exist).
4170 */
4171static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4172 unsigned long batch)
4173{
4174 /* start with a fail safe value for batch */
4175 pcp->batch = 1;
4176 smp_wmb();
4177
4178 /* Update high, then batch, in order */
4179 pcp->high = high;
4180 smp_wmb();
4181
4182 pcp->batch = batch;
4183}
4184
3664033c 4185/* a companion to pageset_set_high() */
4008bab7
CS
4186static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4187{
8d7a8fa9 4188 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4189}
4190
88c90dbc 4191static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4192{
4193 struct per_cpu_pages *pcp;
5f8dcc21 4194 int migratetype;
2caaad41 4195
1c6fe946
MD
4196 memset(p, 0, sizeof(*p));
4197
3dfa5721 4198 pcp = &p->pcp;
2caaad41 4199 pcp->count = 0;
5f8dcc21
MG
4200 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4201 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4202}
4203
88c90dbc
CS
4204static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4205{
4206 pageset_init(p);
4207 pageset_set_batch(p, batch);
4208}
4209
8ad4b1fb 4210/*
3664033c 4211 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4212 * to the value high for the pageset p.
4213 */
3664033c 4214static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4215 unsigned long high)
4216{
8d7a8fa9
CS
4217 unsigned long batch = max(1UL, high / 4);
4218 if ((high / 4) > (PAGE_SHIFT * 8))
4219 batch = PAGE_SHIFT * 8;
8ad4b1fb 4220
8d7a8fa9 4221 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4222}
4223
169f6c19
CS
4224static void __meminit pageset_set_high_and_batch(struct zone *zone,
4225 struct per_cpu_pageset *pcp)
56cef2b8 4226{
56cef2b8 4227 if (percpu_pagelist_fraction)
3664033c 4228 pageset_set_high(pcp,
56cef2b8
CS
4229 (zone->managed_pages /
4230 percpu_pagelist_fraction));
4231 else
4232 pageset_set_batch(pcp, zone_batchsize(zone));
4233}
4234
169f6c19
CS
4235static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4236{
4237 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4238
4239 pageset_init(pcp);
4240 pageset_set_high_and_batch(zone, pcp);
4241}
4242
4ed7e022 4243static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4244{
4245 int cpu;
319774e2 4246 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4247 for_each_possible_cpu(cpu)
4248 zone_pageset_init(zone, cpu);
319774e2
WF
4249}
4250
2caaad41 4251/*
99dcc3e5
CL
4252 * Allocate per cpu pagesets and initialize them.
4253 * Before this call only boot pagesets were available.
e7c8d5c9 4254 */
99dcc3e5 4255void __init setup_per_cpu_pageset(void)
e7c8d5c9 4256{
99dcc3e5 4257 struct zone *zone;
e7c8d5c9 4258
319774e2
WF
4259 for_each_populated_zone(zone)
4260 setup_zone_pageset(zone);
e7c8d5c9
CL
4261}
4262
577a32f6 4263static noinline __init_refok
cca448fe 4264int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4265{
4266 int i;
cca448fe 4267 size_t alloc_size;
ed8ece2e
DH
4268
4269 /*
4270 * The per-page waitqueue mechanism uses hashed waitqueues
4271 * per zone.
4272 */
02b694de
YG
4273 zone->wait_table_hash_nr_entries =
4274 wait_table_hash_nr_entries(zone_size_pages);
4275 zone->wait_table_bits =
4276 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4277 alloc_size = zone->wait_table_hash_nr_entries
4278 * sizeof(wait_queue_head_t);
4279
cd94b9db 4280 if (!slab_is_available()) {
cca448fe 4281 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4282 memblock_virt_alloc_node_nopanic(
4283 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4284 } else {
4285 /*
4286 * This case means that a zone whose size was 0 gets new memory
4287 * via memory hot-add.
4288 * But it may be the case that a new node was hot-added. In
4289 * this case vmalloc() will not be able to use this new node's
4290 * memory - this wait_table must be initialized to use this new
4291 * node itself as well.
4292 * To use this new node's memory, further consideration will be
4293 * necessary.
4294 */
8691f3a7 4295 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4296 }
4297 if (!zone->wait_table)
4298 return -ENOMEM;
ed8ece2e 4299
b8af2941 4300 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4301 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4302
4303 return 0;
ed8ece2e
DH
4304}
4305
c09b4240 4306static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4307{
99dcc3e5
CL
4308 /*
4309 * per cpu subsystem is not up at this point. The following code
4310 * relies on the ability of the linker to provide the
4311 * offset of a (static) per cpu variable into the per cpu area.
4312 */
4313 zone->pageset = &boot_pageset;
ed8ece2e 4314
b38a8725 4315 if (populated_zone(zone))
99dcc3e5
CL
4316 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4317 zone->name, zone->present_pages,
4318 zone_batchsize(zone));
ed8ece2e
DH
4319}
4320
4ed7e022 4321int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4322 unsigned long zone_start_pfn,
a2f3aa02
DH
4323 unsigned long size,
4324 enum memmap_context context)
ed8ece2e
DH
4325{
4326 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4327 int ret;
4328 ret = zone_wait_table_init(zone, size);
4329 if (ret)
4330 return ret;
ed8ece2e
DH
4331 pgdat->nr_zones = zone_idx(zone) + 1;
4332
ed8ece2e
DH
4333 zone->zone_start_pfn = zone_start_pfn;
4334
708614e6
MG
4335 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4336 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4337 pgdat->node_id,
4338 (unsigned long)zone_idx(zone),
4339 zone_start_pfn, (zone_start_pfn + size));
4340
1e548deb 4341 zone_init_free_lists(zone);
718127cc
YG
4342
4343 return 0;
ed8ece2e
DH
4344}
4345
0ee332c1 4346#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4347#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4348/*
4349 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4350 * Architectures may implement their own version but if add_active_range()
4351 * was used and there are no special requirements, this is a convenient
4352 * alternative
4353 */
f2dbcfa7 4354int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4355{
c13291a5 4356 unsigned long start_pfn, end_pfn;
e76b63f8 4357 int nid;
7c243c71
RA
4358 /*
4359 * NOTE: The following SMP-unsafe globals are only used early in boot
4360 * when the kernel is running single-threaded.
4361 */
4362 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4363 static int __meminitdata last_nid;
4364
4365 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4366 return last_nid;
c713216d 4367
e76b63f8
YL
4368 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4369 if (nid != -1) {
4370 last_start_pfn = start_pfn;
4371 last_end_pfn = end_pfn;
4372 last_nid = nid;
4373 }
4374
4375 return nid;
c713216d
MG
4376}
4377#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4378
f2dbcfa7
KH
4379int __meminit early_pfn_to_nid(unsigned long pfn)
4380{
cc2559bc
KH
4381 int nid;
4382
4383 nid = __early_pfn_to_nid(pfn);
4384 if (nid >= 0)
4385 return nid;
4386 /* just returns 0 */
4387 return 0;
f2dbcfa7
KH
4388}
4389
cc2559bc
KH
4390#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4391bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4392{
4393 int nid;
4394
4395 nid = __early_pfn_to_nid(pfn);
4396 if (nid >= 0 && nid != node)
4397 return false;
4398 return true;
4399}
4400#endif
f2dbcfa7 4401
c713216d 4402/**
6782832e 4403 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4404 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4405 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d
MG
4406 *
4407 * If an architecture guarantees that all ranges registered with
4408 * add_active_ranges() contain no holes and may be freed, this
6782832e
SS
4409 * this function may be used instead of calling memblock_free_early_nid()
4410 * manually.
c713216d 4411 */
c13291a5 4412void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4413{
c13291a5
TH
4414 unsigned long start_pfn, end_pfn;
4415 int i, this_nid;
edbe7d23 4416
c13291a5
TH
4417 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4418 start_pfn = min(start_pfn, max_low_pfn);
4419 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4420
c13291a5 4421 if (start_pfn < end_pfn)
6782832e
SS
4422 memblock_free_early_nid(PFN_PHYS(start_pfn),
4423 (end_pfn - start_pfn) << PAGE_SHIFT,
4424 this_nid);
edbe7d23 4425 }
edbe7d23 4426}
edbe7d23 4427
c713216d
MG
4428/**
4429 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4430 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4431 *
4432 * If an architecture guarantees that all ranges registered with
4433 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4434 * function may be used instead of calling memory_present() manually.
c713216d
MG
4435 */
4436void __init sparse_memory_present_with_active_regions(int nid)
4437{
c13291a5
TH
4438 unsigned long start_pfn, end_pfn;
4439 int i, this_nid;
c713216d 4440
c13291a5
TH
4441 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4442 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4443}
4444
4445/**
4446 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4447 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4448 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4449 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4450 *
4451 * It returns the start and end page frame of a node based on information
4452 * provided by an arch calling add_active_range(). If called for a node
4453 * with no available memory, a warning is printed and the start and end
88ca3b94 4454 * PFNs will be 0.
c713216d 4455 */
a3142c8e 4456void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4457 unsigned long *start_pfn, unsigned long *end_pfn)
4458{
c13291a5 4459 unsigned long this_start_pfn, this_end_pfn;
c713216d 4460 int i;
c13291a5 4461
c713216d
MG
4462 *start_pfn = -1UL;
4463 *end_pfn = 0;
4464
c13291a5
TH
4465 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4466 *start_pfn = min(*start_pfn, this_start_pfn);
4467 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4468 }
4469
633c0666 4470 if (*start_pfn == -1UL)
c713216d 4471 *start_pfn = 0;
c713216d
MG
4472}
4473
2a1e274a
MG
4474/*
4475 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4476 * assumption is made that zones within a node are ordered in monotonic
4477 * increasing memory addresses so that the "highest" populated zone is used
4478 */
b69a7288 4479static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4480{
4481 int zone_index;
4482 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4483 if (zone_index == ZONE_MOVABLE)
4484 continue;
4485
4486 if (arch_zone_highest_possible_pfn[zone_index] >
4487 arch_zone_lowest_possible_pfn[zone_index])
4488 break;
4489 }
4490
4491 VM_BUG_ON(zone_index == -1);
4492 movable_zone = zone_index;
4493}
4494
4495/*
4496 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4497 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4498 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4499 * in each node depending on the size of each node and how evenly kernelcore
4500 * is distributed. This helper function adjusts the zone ranges
4501 * provided by the architecture for a given node by using the end of the
4502 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4503 * zones within a node are in order of monotonic increases memory addresses
4504 */
b69a7288 4505static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4506 unsigned long zone_type,
4507 unsigned long node_start_pfn,
4508 unsigned long node_end_pfn,
4509 unsigned long *zone_start_pfn,
4510 unsigned long *zone_end_pfn)
4511{
4512 /* Only adjust if ZONE_MOVABLE is on this node */
4513 if (zone_movable_pfn[nid]) {
4514 /* Size ZONE_MOVABLE */
4515 if (zone_type == ZONE_MOVABLE) {
4516 *zone_start_pfn = zone_movable_pfn[nid];
4517 *zone_end_pfn = min(node_end_pfn,
4518 arch_zone_highest_possible_pfn[movable_zone]);
4519
4520 /* Adjust for ZONE_MOVABLE starting within this range */
4521 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4522 *zone_end_pfn > zone_movable_pfn[nid]) {
4523 *zone_end_pfn = zone_movable_pfn[nid];
4524
4525 /* Check if this whole range is within ZONE_MOVABLE */
4526 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4527 *zone_start_pfn = *zone_end_pfn;
4528 }
4529}
4530
c713216d
MG
4531/*
4532 * Return the number of pages a zone spans in a node, including holes
4533 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4534 */
6ea6e688 4535static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4536 unsigned long zone_type,
7960aedd
ZY
4537 unsigned long node_start_pfn,
4538 unsigned long node_end_pfn,
c713216d
MG
4539 unsigned long *ignored)
4540{
c713216d
MG
4541 unsigned long zone_start_pfn, zone_end_pfn;
4542
7960aedd 4543 /* Get the start and end of the zone */
c713216d
MG
4544 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4545 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4546 adjust_zone_range_for_zone_movable(nid, zone_type,
4547 node_start_pfn, node_end_pfn,
4548 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4549
4550 /* Check that this node has pages within the zone's required range */
4551 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4552 return 0;
4553
4554 /* Move the zone boundaries inside the node if necessary */
4555 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4556 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4557
4558 /* Return the spanned pages */
4559 return zone_end_pfn - zone_start_pfn;
4560}
4561
4562/*
4563 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4564 * then all holes in the requested range will be accounted for.
c713216d 4565 */
32996250 4566unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4567 unsigned long range_start_pfn,
4568 unsigned long range_end_pfn)
4569{
96e907d1
TH
4570 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4571 unsigned long start_pfn, end_pfn;
4572 int i;
c713216d 4573
96e907d1
TH
4574 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4575 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4576 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4577 nr_absent -= end_pfn - start_pfn;
c713216d 4578 }
96e907d1 4579 return nr_absent;
c713216d
MG
4580}
4581
4582/**
4583 * absent_pages_in_range - Return number of page frames in holes within a range
4584 * @start_pfn: The start PFN to start searching for holes
4585 * @end_pfn: The end PFN to stop searching for holes
4586 *
88ca3b94 4587 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4588 */
4589unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4590 unsigned long end_pfn)
4591{
4592 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4593}
4594
4595/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4596static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4597 unsigned long zone_type,
7960aedd
ZY
4598 unsigned long node_start_pfn,
4599 unsigned long node_end_pfn,
c713216d
MG
4600 unsigned long *ignored)
4601{
96e907d1
TH
4602 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4603 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4604 unsigned long zone_start_pfn, zone_end_pfn;
4605
96e907d1
TH
4606 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4607 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4608
2a1e274a
MG
4609 adjust_zone_range_for_zone_movable(nid, zone_type,
4610 node_start_pfn, node_end_pfn,
4611 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4612 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4613}
0e0b864e 4614
0ee332c1 4615#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4616static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4617 unsigned long zone_type,
7960aedd
ZY
4618 unsigned long node_start_pfn,
4619 unsigned long node_end_pfn,
c713216d
MG
4620 unsigned long *zones_size)
4621{
4622 return zones_size[zone_type];
4623}
4624
6ea6e688 4625static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4626 unsigned long zone_type,
7960aedd
ZY
4627 unsigned long node_start_pfn,
4628 unsigned long node_end_pfn,
c713216d
MG
4629 unsigned long *zholes_size)
4630{
4631 if (!zholes_size)
4632 return 0;
4633
4634 return zholes_size[zone_type];
4635}
20e6926d 4636
0ee332c1 4637#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4638
a3142c8e 4639static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4640 unsigned long node_start_pfn,
4641 unsigned long node_end_pfn,
4642 unsigned long *zones_size,
4643 unsigned long *zholes_size)
c713216d
MG
4644{
4645 unsigned long realtotalpages, totalpages = 0;
4646 enum zone_type i;
4647
4648 for (i = 0; i < MAX_NR_ZONES; i++)
4649 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4650 node_start_pfn,
4651 node_end_pfn,
4652 zones_size);
c713216d
MG
4653 pgdat->node_spanned_pages = totalpages;
4654
4655 realtotalpages = totalpages;
4656 for (i = 0; i < MAX_NR_ZONES; i++)
4657 realtotalpages -=
4658 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4659 node_start_pfn, node_end_pfn,
4660 zholes_size);
c713216d
MG
4661 pgdat->node_present_pages = realtotalpages;
4662 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4663 realtotalpages);
4664}
4665
835c134e
MG
4666#ifndef CONFIG_SPARSEMEM
4667/*
4668 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4669 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4670 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4671 * round what is now in bits to nearest long in bits, then return it in
4672 * bytes.
4673 */
7c45512d 4674static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4675{
4676 unsigned long usemapsize;
4677
7c45512d 4678 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4679 usemapsize = roundup(zonesize, pageblock_nr_pages);
4680 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4681 usemapsize *= NR_PAGEBLOCK_BITS;
4682 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4683
4684 return usemapsize / 8;
4685}
4686
4687static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4688 struct zone *zone,
4689 unsigned long zone_start_pfn,
4690 unsigned long zonesize)
835c134e 4691{
7c45512d 4692 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4693 zone->pageblock_flags = NULL;
58a01a45 4694 if (usemapsize)
6782832e
SS
4695 zone->pageblock_flags =
4696 memblock_virt_alloc_node_nopanic(usemapsize,
4697 pgdat->node_id);
835c134e
MG
4698}
4699#else
7c45512d
LT
4700static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4701 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4702#endif /* CONFIG_SPARSEMEM */
4703
d9c23400 4704#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4705
d9c23400 4706/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4707void __paginginit set_pageblock_order(void)
d9c23400 4708{
955c1cd7
AM
4709 unsigned int order;
4710
d9c23400
MG
4711 /* Check that pageblock_nr_pages has not already been setup */
4712 if (pageblock_order)
4713 return;
4714
955c1cd7
AM
4715 if (HPAGE_SHIFT > PAGE_SHIFT)
4716 order = HUGETLB_PAGE_ORDER;
4717 else
4718 order = MAX_ORDER - 1;
4719
d9c23400
MG
4720 /*
4721 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4722 * This value may be variable depending on boot parameters on IA64 and
4723 * powerpc.
d9c23400
MG
4724 */
4725 pageblock_order = order;
4726}
4727#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4728
ba72cb8c
MG
4729/*
4730 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4731 * is unused as pageblock_order is set at compile-time. See
4732 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4733 * the kernel config
ba72cb8c 4734 */
15ca220e 4735void __paginginit set_pageblock_order(void)
ba72cb8c 4736{
ba72cb8c 4737}
d9c23400
MG
4738
4739#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4740
01cefaef
JL
4741static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4742 unsigned long present_pages)
4743{
4744 unsigned long pages = spanned_pages;
4745
4746 /*
4747 * Provide a more accurate estimation if there are holes within
4748 * the zone and SPARSEMEM is in use. If there are holes within the
4749 * zone, each populated memory region may cost us one or two extra
4750 * memmap pages due to alignment because memmap pages for each
4751 * populated regions may not naturally algined on page boundary.
4752 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4753 */
4754 if (spanned_pages > present_pages + (present_pages >> 4) &&
4755 IS_ENABLED(CONFIG_SPARSEMEM))
4756 pages = present_pages;
4757
4758 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4759}
4760
1da177e4
LT
4761/*
4762 * Set up the zone data structures:
4763 * - mark all pages reserved
4764 * - mark all memory queues empty
4765 * - clear the memory bitmaps
6527af5d
MK
4766 *
4767 * NOTE: pgdat should get zeroed by caller.
1da177e4 4768 */
b5a0e011 4769static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4770 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4771 unsigned long *zones_size, unsigned long *zholes_size)
4772{
2f1b6248 4773 enum zone_type j;
ed8ece2e 4774 int nid = pgdat->node_id;
1da177e4 4775 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4776 int ret;
1da177e4 4777
208d54e5 4778 pgdat_resize_init(pgdat);
8177a420
AA
4779#ifdef CONFIG_NUMA_BALANCING
4780 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4781 pgdat->numabalancing_migrate_nr_pages = 0;
4782 pgdat->numabalancing_migrate_next_window = jiffies;
4783#endif
1da177e4 4784 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4785 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4786 pgdat_page_cgroup_init(pgdat);
5f63b720 4787
1da177e4
LT
4788 for (j = 0; j < MAX_NR_ZONES; j++) {
4789 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4790 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4791
7960aedd
ZY
4792 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4793 node_end_pfn, zones_size);
9feedc9d 4794 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4795 node_start_pfn,
4796 node_end_pfn,
c713216d 4797 zholes_size);
1da177e4 4798
0e0b864e 4799 /*
9feedc9d 4800 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4801 * is used by this zone for memmap. This affects the watermark
4802 * and per-cpu initialisations
4803 */
01cefaef 4804 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4805 if (freesize >= memmap_pages) {
4806 freesize -= memmap_pages;
5594c8c8
YL
4807 if (memmap_pages)
4808 printk(KERN_DEBUG
4809 " %s zone: %lu pages used for memmap\n",
4810 zone_names[j], memmap_pages);
0e0b864e
MG
4811 } else
4812 printk(KERN_WARNING
9feedc9d
JL
4813 " %s zone: %lu pages exceeds freesize %lu\n",
4814 zone_names[j], memmap_pages, freesize);
0e0b864e 4815
6267276f 4816 /* Account for reserved pages */
9feedc9d
JL
4817 if (j == 0 && freesize > dma_reserve) {
4818 freesize -= dma_reserve;
d903ef9f 4819 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4820 zone_names[0], dma_reserve);
0e0b864e
MG
4821 }
4822
98d2b0eb 4823 if (!is_highmem_idx(j))
9feedc9d 4824 nr_kernel_pages += freesize;
01cefaef
JL
4825 /* Charge for highmem memmap if there are enough kernel pages */
4826 else if (nr_kernel_pages > memmap_pages * 2)
4827 nr_kernel_pages -= memmap_pages;
9feedc9d 4828 nr_all_pages += freesize;
1da177e4
LT
4829
4830 zone->spanned_pages = size;
306f2e9e 4831 zone->present_pages = realsize;
9feedc9d
JL
4832 /*
4833 * Set an approximate value for lowmem here, it will be adjusted
4834 * when the bootmem allocator frees pages into the buddy system.
4835 * And all highmem pages will be managed by the buddy system.
4836 */
4837 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4838#ifdef CONFIG_NUMA
d5f541ed 4839 zone->node = nid;
9feedc9d 4840 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4841 / 100;
9feedc9d 4842 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4843#endif
1da177e4
LT
4844 zone->name = zone_names[j];
4845 spin_lock_init(&zone->lock);
4846 spin_lock_init(&zone->lru_lock);
bdc8cb98 4847 zone_seqlock_init(zone);
1da177e4 4848 zone->zone_pgdat = pgdat;
ed8ece2e 4849 zone_pcp_init(zone);
81c0a2bb
JW
4850
4851 /* For bootup, initialized properly in watermark setup */
4852 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4853
bea8c150 4854 lruvec_init(&zone->lruvec);
1da177e4
LT
4855 if (!size)
4856 continue;
4857
955c1cd7 4858 set_pageblock_order();
7c45512d 4859 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4860 ret = init_currently_empty_zone(zone, zone_start_pfn,
4861 size, MEMMAP_EARLY);
718127cc 4862 BUG_ON(ret);
76cdd58e 4863 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4864 zone_start_pfn += size;
1da177e4
LT
4865 }
4866}
4867
577a32f6 4868static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4869{
1da177e4
LT
4870 /* Skip empty nodes */
4871 if (!pgdat->node_spanned_pages)
4872 return;
4873
d41dee36 4874#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4875 /* ia64 gets its own node_mem_map, before this, without bootmem */
4876 if (!pgdat->node_mem_map) {
e984bb43 4877 unsigned long size, start, end;
d41dee36
AW
4878 struct page *map;
4879
e984bb43
BP
4880 /*
4881 * The zone's endpoints aren't required to be MAX_ORDER
4882 * aligned but the node_mem_map endpoints must be in order
4883 * for the buddy allocator to function correctly.
4884 */
4885 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4886 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4887 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4888 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4889 map = alloc_remap(pgdat->node_id, size);
4890 if (!map)
6782832e
SS
4891 map = memblock_virt_alloc_node_nopanic(size,
4892 pgdat->node_id);
e984bb43 4893 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4894 }
12d810c1 4895#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4896 /*
4897 * With no DISCONTIG, the global mem_map is just set as node 0's
4898 */
c713216d 4899 if (pgdat == NODE_DATA(0)) {
1da177e4 4900 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4901#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4902 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4903 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4904#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4905 }
1da177e4 4906#endif
d41dee36 4907#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4908}
4909
9109fb7b
JW
4910void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4911 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4912{
9109fb7b 4913 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4914 unsigned long start_pfn = 0;
4915 unsigned long end_pfn = 0;
9109fb7b 4916
88fdf75d 4917 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4918 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4919
1da177e4
LT
4920 pgdat->node_id = nid;
4921 pgdat->node_start_pfn = node_start_pfn;
70ef57e6
MH
4922 if (node_state(nid, N_MEMORY))
4923 init_zone_allows_reclaim(nid);
7960aedd
ZY
4924#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4925 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4926#endif
4927 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4928 zones_size, zholes_size);
1da177e4
LT
4929
4930 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4931#ifdef CONFIG_FLAT_NODE_MEM_MAP
4932 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4933 nid, (unsigned long)pgdat,
4934 (unsigned long)pgdat->node_mem_map);
4935#endif
1da177e4 4936
7960aedd
ZY
4937 free_area_init_core(pgdat, start_pfn, end_pfn,
4938 zones_size, zholes_size);
1da177e4
LT
4939}
4940
0ee332c1 4941#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4942
4943#if MAX_NUMNODES > 1
4944/*
4945 * Figure out the number of possible node ids.
4946 */
f9872caf 4947void __init setup_nr_node_ids(void)
418508c1
MS
4948{
4949 unsigned int node;
4950 unsigned int highest = 0;
4951
4952 for_each_node_mask(node, node_possible_map)
4953 highest = node;
4954 nr_node_ids = highest + 1;
4955}
418508c1
MS
4956#endif
4957
1e01979c
TH
4958/**
4959 * node_map_pfn_alignment - determine the maximum internode alignment
4960 *
4961 * This function should be called after node map is populated and sorted.
4962 * It calculates the maximum power of two alignment which can distinguish
4963 * all the nodes.
4964 *
4965 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4966 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4967 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4968 * shifted, 1GiB is enough and this function will indicate so.
4969 *
4970 * This is used to test whether pfn -> nid mapping of the chosen memory
4971 * model has fine enough granularity to avoid incorrect mapping for the
4972 * populated node map.
4973 *
4974 * Returns the determined alignment in pfn's. 0 if there is no alignment
4975 * requirement (single node).
4976 */
4977unsigned long __init node_map_pfn_alignment(void)
4978{
4979 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4980 unsigned long start, end, mask;
1e01979c 4981 int last_nid = -1;
c13291a5 4982 int i, nid;
1e01979c 4983
c13291a5 4984 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4985 if (!start || last_nid < 0 || last_nid == nid) {
4986 last_nid = nid;
4987 last_end = end;
4988 continue;
4989 }
4990
4991 /*
4992 * Start with a mask granular enough to pin-point to the
4993 * start pfn and tick off bits one-by-one until it becomes
4994 * too coarse to separate the current node from the last.
4995 */
4996 mask = ~((1 << __ffs(start)) - 1);
4997 while (mask && last_end <= (start & (mask << 1)))
4998 mask <<= 1;
4999
5000 /* accumulate all internode masks */
5001 accl_mask |= mask;
5002 }
5003
5004 /* convert mask to number of pages */
5005 return ~accl_mask + 1;
5006}
5007
a6af2bc3 5008/* Find the lowest pfn for a node */
b69a7288 5009static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5010{
a6af2bc3 5011 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5012 unsigned long start_pfn;
5013 int i;
1abbfb41 5014
c13291a5
TH
5015 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5016 min_pfn = min(min_pfn, start_pfn);
c713216d 5017
a6af2bc3
MG
5018 if (min_pfn == ULONG_MAX) {
5019 printk(KERN_WARNING
2bc0d261 5020 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5021 return 0;
5022 }
5023
5024 return min_pfn;
c713216d
MG
5025}
5026
5027/**
5028 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5029 *
5030 * It returns the minimum PFN based on information provided via
88ca3b94 5031 * add_active_range().
c713216d
MG
5032 */
5033unsigned long __init find_min_pfn_with_active_regions(void)
5034{
5035 return find_min_pfn_for_node(MAX_NUMNODES);
5036}
5037
37b07e41
LS
5038/*
5039 * early_calculate_totalpages()
5040 * Sum pages in active regions for movable zone.
4b0ef1fe 5041 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5042 */
484f51f8 5043static unsigned long __init early_calculate_totalpages(void)
7e63efef 5044{
7e63efef 5045 unsigned long totalpages = 0;
c13291a5
TH
5046 unsigned long start_pfn, end_pfn;
5047 int i, nid;
5048
5049 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5050 unsigned long pages = end_pfn - start_pfn;
7e63efef 5051
37b07e41
LS
5052 totalpages += pages;
5053 if (pages)
4b0ef1fe 5054 node_set_state(nid, N_MEMORY);
37b07e41 5055 }
b8af2941 5056 return totalpages;
7e63efef
MG
5057}
5058
2a1e274a
MG
5059/*
5060 * Find the PFN the Movable zone begins in each node. Kernel memory
5061 * is spread evenly between nodes as long as the nodes have enough
5062 * memory. When they don't, some nodes will have more kernelcore than
5063 * others
5064 */
b224ef85 5065static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5066{
5067 int i, nid;
5068 unsigned long usable_startpfn;
5069 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5070 /* save the state before borrow the nodemask */
4b0ef1fe 5071 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5072 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5073 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
b2f3eebe
TC
5074 struct memblock_type *type = &memblock.memory;
5075
5076 /* Need to find movable_zone earlier when movable_node is specified. */
5077 find_usable_zone_for_movable();
5078
5079 /*
5080 * If movable_node is specified, ignore kernelcore and movablecore
5081 * options.
5082 */
5083 if (movable_node_is_enabled()) {
5084 for (i = 0; i < type->cnt; i++) {
5085 if (!memblock_is_hotpluggable(&type->regions[i]))
5086 continue;
5087
5088 nid = type->regions[i].nid;
5089
5090 usable_startpfn = PFN_DOWN(type->regions[i].base);
5091 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5092 min(usable_startpfn, zone_movable_pfn[nid]) :
5093 usable_startpfn;
5094 }
5095
5096 goto out2;
5097 }
2a1e274a 5098
7e63efef 5099 /*
b2f3eebe 5100 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5101 * kernelcore that corresponds so that memory usable for
5102 * any allocation type is evenly spread. If both kernelcore
5103 * and movablecore are specified, then the value of kernelcore
5104 * will be used for required_kernelcore if it's greater than
5105 * what movablecore would have allowed.
5106 */
5107 if (required_movablecore) {
7e63efef
MG
5108 unsigned long corepages;
5109
5110 /*
5111 * Round-up so that ZONE_MOVABLE is at least as large as what
5112 * was requested by the user
5113 */
5114 required_movablecore =
5115 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5116 corepages = totalpages - required_movablecore;
5117
5118 required_kernelcore = max(required_kernelcore, corepages);
5119 }
5120
20e6926d
YL
5121 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5122 if (!required_kernelcore)
66918dcd 5123 goto out;
2a1e274a
MG
5124
5125 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5126 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5127
5128restart:
5129 /* Spread kernelcore memory as evenly as possible throughout nodes */
5130 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5131 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5132 unsigned long start_pfn, end_pfn;
5133
2a1e274a
MG
5134 /*
5135 * Recalculate kernelcore_node if the division per node
5136 * now exceeds what is necessary to satisfy the requested
5137 * amount of memory for the kernel
5138 */
5139 if (required_kernelcore < kernelcore_node)
5140 kernelcore_node = required_kernelcore / usable_nodes;
5141
5142 /*
5143 * As the map is walked, we track how much memory is usable
5144 * by the kernel using kernelcore_remaining. When it is
5145 * 0, the rest of the node is usable by ZONE_MOVABLE
5146 */
5147 kernelcore_remaining = kernelcore_node;
5148
5149 /* Go through each range of PFNs within this node */
c13291a5 5150 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5151 unsigned long size_pages;
5152
c13291a5 5153 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5154 if (start_pfn >= end_pfn)
5155 continue;
5156
5157 /* Account for what is only usable for kernelcore */
5158 if (start_pfn < usable_startpfn) {
5159 unsigned long kernel_pages;
5160 kernel_pages = min(end_pfn, usable_startpfn)
5161 - start_pfn;
5162
5163 kernelcore_remaining -= min(kernel_pages,
5164 kernelcore_remaining);
5165 required_kernelcore -= min(kernel_pages,
5166 required_kernelcore);
5167
5168 /* Continue if range is now fully accounted */
5169 if (end_pfn <= usable_startpfn) {
5170
5171 /*
5172 * Push zone_movable_pfn to the end so
5173 * that if we have to rebalance
5174 * kernelcore across nodes, we will
5175 * not double account here
5176 */
5177 zone_movable_pfn[nid] = end_pfn;
5178 continue;
5179 }
5180 start_pfn = usable_startpfn;
5181 }
5182
5183 /*
5184 * The usable PFN range for ZONE_MOVABLE is from
5185 * start_pfn->end_pfn. Calculate size_pages as the
5186 * number of pages used as kernelcore
5187 */
5188 size_pages = end_pfn - start_pfn;
5189 if (size_pages > kernelcore_remaining)
5190 size_pages = kernelcore_remaining;
5191 zone_movable_pfn[nid] = start_pfn + size_pages;
5192
5193 /*
5194 * Some kernelcore has been met, update counts and
5195 * break if the kernelcore for this node has been
b8af2941 5196 * satisfied
2a1e274a
MG
5197 */
5198 required_kernelcore -= min(required_kernelcore,
5199 size_pages);
5200 kernelcore_remaining -= size_pages;
5201 if (!kernelcore_remaining)
5202 break;
5203 }
5204 }
5205
5206 /*
5207 * If there is still required_kernelcore, we do another pass with one
5208 * less node in the count. This will push zone_movable_pfn[nid] further
5209 * along on the nodes that still have memory until kernelcore is
b8af2941 5210 * satisfied
2a1e274a
MG
5211 */
5212 usable_nodes--;
5213 if (usable_nodes && required_kernelcore > usable_nodes)
5214 goto restart;
5215
b2f3eebe 5216out2:
2a1e274a
MG
5217 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5218 for (nid = 0; nid < MAX_NUMNODES; nid++)
5219 zone_movable_pfn[nid] =
5220 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5221
20e6926d 5222out:
66918dcd 5223 /* restore the node_state */
4b0ef1fe 5224 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5225}
5226
4b0ef1fe
LJ
5227/* Any regular or high memory on that node ? */
5228static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5229{
37b07e41
LS
5230 enum zone_type zone_type;
5231
4b0ef1fe
LJ
5232 if (N_MEMORY == N_NORMAL_MEMORY)
5233 return;
5234
5235 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5236 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5237 if (populated_zone(zone)) {
4b0ef1fe
LJ
5238 node_set_state(nid, N_HIGH_MEMORY);
5239 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5240 zone_type <= ZONE_NORMAL)
5241 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5242 break;
5243 }
37b07e41 5244 }
37b07e41
LS
5245}
5246
c713216d
MG
5247/**
5248 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5249 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5250 *
5251 * This will call free_area_init_node() for each active node in the system.
5252 * Using the page ranges provided by add_active_range(), the size of each
5253 * zone in each node and their holes is calculated. If the maximum PFN
5254 * between two adjacent zones match, it is assumed that the zone is empty.
5255 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5256 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5257 * starts where the previous one ended. For example, ZONE_DMA32 starts
5258 * at arch_max_dma_pfn.
5259 */
5260void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5261{
c13291a5
TH
5262 unsigned long start_pfn, end_pfn;
5263 int i, nid;
a6af2bc3 5264
c713216d
MG
5265 /* Record where the zone boundaries are */
5266 memset(arch_zone_lowest_possible_pfn, 0,
5267 sizeof(arch_zone_lowest_possible_pfn));
5268 memset(arch_zone_highest_possible_pfn, 0,
5269 sizeof(arch_zone_highest_possible_pfn));
5270 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5271 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5272 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5273 if (i == ZONE_MOVABLE)
5274 continue;
c713216d
MG
5275 arch_zone_lowest_possible_pfn[i] =
5276 arch_zone_highest_possible_pfn[i-1];
5277 arch_zone_highest_possible_pfn[i] =
5278 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5279 }
2a1e274a
MG
5280 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5281 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5282
5283 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5284 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5285 find_zone_movable_pfns_for_nodes();
c713216d 5286
c713216d 5287 /* Print out the zone ranges */
a62e2f4f 5288 printk("Zone ranges:\n");
2a1e274a
MG
5289 for (i = 0; i < MAX_NR_ZONES; i++) {
5290 if (i == ZONE_MOVABLE)
5291 continue;
155cbfc8 5292 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5293 if (arch_zone_lowest_possible_pfn[i] ==
5294 arch_zone_highest_possible_pfn[i])
155cbfc8 5295 printk(KERN_CONT "empty\n");
72f0ba02 5296 else
a62e2f4f
BH
5297 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5298 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5299 (arch_zone_highest_possible_pfn[i]
5300 << PAGE_SHIFT) - 1);
2a1e274a
MG
5301 }
5302
5303 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5304 printk("Movable zone start for each node\n");
2a1e274a
MG
5305 for (i = 0; i < MAX_NUMNODES; i++) {
5306 if (zone_movable_pfn[i])
a62e2f4f
BH
5307 printk(" Node %d: %#010lx\n", i,
5308 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5309 }
c713216d 5310
f2d52fe5 5311 /* Print out the early node map */
a62e2f4f 5312 printk("Early memory node ranges\n");
c13291a5 5313 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5314 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5315 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5316
5317 /* Initialise every node */
708614e6 5318 mminit_verify_pageflags_layout();
8ef82866 5319 setup_nr_node_ids();
c713216d
MG
5320 for_each_online_node(nid) {
5321 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5322 free_area_init_node(nid, NULL,
c713216d 5323 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5324
5325 /* Any memory on that node */
5326 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5327 node_set_state(nid, N_MEMORY);
5328 check_for_memory(pgdat, nid);
c713216d
MG
5329 }
5330}
2a1e274a 5331
7e63efef 5332static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5333{
5334 unsigned long long coremem;
5335 if (!p)
5336 return -EINVAL;
5337
5338 coremem = memparse(p, &p);
7e63efef 5339 *core = coremem >> PAGE_SHIFT;
2a1e274a 5340
7e63efef 5341 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5342 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5343
5344 return 0;
5345}
ed7ed365 5346
7e63efef
MG
5347/*
5348 * kernelcore=size sets the amount of memory for use for allocations that
5349 * cannot be reclaimed or migrated.
5350 */
5351static int __init cmdline_parse_kernelcore(char *p)
5352{
5353 return cmdline_parse_core(p, &required_kernelcore);
5354}
5355
5356/*
5357 * movablecore=size sets the amount of memory for use for allocations that
5358 * can be reclaimed or migrated.
5359 */
5360static int __init cmdline_parse_movablecore(char *p)
5361{
5362 return cmdline_parse_core(p, &required_movablecore);
5363}
5364
ed7ed365 5365early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5366early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5367
0ee332c1 5368#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5369
c3d5f5f0
JL
5370void adjust_managed_page_count(struct page *page, long count)
5371{
5372 spin_lock(&managed_page_count_lock);
5373 page_zone(page)->managed_pages += count;
5374 totalram_pages += count;
3dcc0571
JL
5375#ifdef CONFIG_HIGHMEM
5376 if (PageHighMem(page))
5377 totalhigh_pages += count;
5378#endif
c3d5f5f0
JL
5379 spin_unlock(&managed_page_count_lock);
5380}
3dcc0571 5381EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5382
11199692 5383unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5384{
11199692
JL
5385 void *pos;
5386 unsigned long pages = 0;
69afade7 5387
11199692
JL
5388 start = (void *)PAGE_ALIGN((unsigned long)start);
5389 end = (void *)((unsigned long)end & PAGE_MASK);
5390 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5391 if ((unsigned int)poison <= 0xFF)
11199692
JL
5392 memset(pos, poison, PAGE_SIZE);
5393 free_reserved_page(virt_to_page(pos));
69afade7
JL
5394 }
5395
5396 if (pages && s)
11199692 5397 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5398 s, pages << (PAGE_SHIFT - 10), start, end);
5399
5400 return pages;
5401}
11199692 5402EXPORT_SYMBOL(free_reserved_area);
69afade7 5403
cfa11e08
JL
5404#ifdef CONFIG_HIGHMEM
5405void free_highmem_page(struct page *page)
5406{
5407 __free_reserved_page(page);
5408 totalram_pages++;
7b4b2a0d 5409 page_zone(page)->managed_pages++;
cfa11e08
JL
5410 totalhigh_pages++;
5411}
5412#endif
5413
7ee3d4e8
JL
5414
5415void __init mem_init_print_info(const char *str)
5416{
5417 unsigned long physpages, codesize, datasize, rosize, bss_size;
5418 unsigned long init_code_size, init_data_size;
5419
5420 physpages = get_num_physpages();
5421 codesize = _etext - _stext;
5422 datasize = _edata - _sdata;
5423 rosize = __end_rodata - __start_rodata;
5424 bss_size = __bss_stop - __bss_start;
5425 init_data_size = __init_end - __init_begin;
5426 init_code_size = _einittext - _sinittext;
5427
5428 /*
5429 * Detect special cases and adjust section sizes accordingly:
5430 * 1) .init.* may be embedded into .data sections
5431 * 2) .init.text.* may be out of [__init_begin, __init_end],
5432 * please refer to arch/tile/kernel/vmlinux.lds.S.
5433 * 3) .rodata.* may be embedded into .text or .data sections.
5434 */
5435#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5436 do { \
5437 if (start <= pos && pos < end && size > adj) \
5438 size -= adj; \
5439 } while (0)
7ee3d4e8
JL
5440
5441 adj_init_size(__init_begin, __init_end, init_data_size,
5442 _sinittext, init_code_size);
5443 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5444 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5445 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5446 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5447
5448#undef adj_init_size
5449
5450 printk("Memory: %luK/%luK available "
5451 "(%luK kernel code, %luK rwdata, %luK rodata, "
5452 "%luK init, %luK bss, %luK reserved"
5453#ifdef CONFIG_HIGHMEM
5454 ", %luK highmem"
5455#endif
5456 "%s%s)\n",
5457 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5458 codesize >> 10, datasize >> 10, rosize >> 10,
5459 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5460 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5461#ifdef CONFIG_HIGHMEM
5462 totalhigh_pages << (PAGE_SHIFT-10),
5463#endif
5464 str ? ", " : "", str ? str : "");
5465}
5466
0e0b864e 5467/**
88ca3b94
RD
5468 * set_dma_reserve - set the specified number of pages reserved in the first zone
5469 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5470 *
5471 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5472 * In the DMA zone, a significant percentage may be consumed by kernel image
5473 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5474 * function may optionally be used to account for unfreeable pages in the
5475 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5476 * smaller per-cpu batchsize.
0e0b864e
MG
5477 */
5478void __init set_dma_reserve(unsigned long new_dma_reserve)
5479{
5480 dma_reserve = new_dma_reserve;
5481}
5482
1da177e4
LT
5483void __init free_area_init(unsigned long *zones_size)
5484{
9109fb7b 5485 free_area_init_node(0, zones_size,
1da177e4
LT
5486 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5487}
1da177e4 5488
1da177e4
LT
5489static int page_alloc_cpu_notify(struct notifier_block *self,
5490 unsigned long action, void *hcpu)
5491{
5492 int cpu = (unsigned long)hcpu;
1da177e4 5493
8bb78442 5494 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5495 lru_add_drain_cpu(cpu);
9f8f2172
CL
5496 drain_pages(cpu);
5497
5498 /*
5499 * Spill the event counters of the dead processor
5500 * into the current processors event counters.
5501 * This artificially elevates the count of the current
5502 * processor.
5503 */
f8891e5e 5504 vm_events_fold_cpu(cpu);
9f8f2172
CL
5505
5506 /*
5507 * Zero the differential counters of the dead processor
5508 * so that the vm statistics are consistent.
5509 *
5510 * This is only okay since the processor is dead and cannot
5511 * race with what we are doing.
5512 */
2bb921e5 5513 cpu_vm_stats_fold(cpu);
1da177e4
LT
5514 }
5515 return NOTIFY_OK;
5516}
1da177e4
LT
5517
5518void __init page_alloc_init(void)
5519{
5520 hotcpu_notifier(page_alloc_cpu_notify, 0);
5521}
5522
cb45b0e9
HA
5523/*
5524 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5525 * or min_free_kbytes changes.
5526 */
5527static void calculate_totalreserve_pages(void)
5528{
5529 struct pglist_data *pgdat;
5530 unsigned long reserve_pages = 0;
2f6726e5 5531 enum zone_type i, j;
cb45b0e9
HA
5532
5533 for_each_online_pgdat(pgdat) {
5534 for (i = 0; i < MAX_NR_ZONES; i++) {
5535 struct zone *zone = pgdat->node_zones + i;
5536 unsigned long max = 0;
5537
5538 /* Find valid and maximum lowmem_reserve in the zone */
5539 for (j = i; j < MAX_NR_ZONES; j++) {
5540 if (zone->lowmem_reserve[j] > max)
5541 max = zone->lowmem_reserve[j];
5542 }
5543
41858966
MG
5544 /* we treat the high watermark as reserved pages. */
5545 max += high_wmark_pages(zone);
cb45b0e9 5546
b40da049
JL
5547 if (max > zone->managed_pages)
5548 max = zone->managed_pages;
cb45b0e9 5549 reserve_pages += max;
ab8fabd4
JW
5550 /*
5551 * Lowmem reserves are not available to
5552 * GFP_HIGHUSER page cache allocations and
5553 * kswapd tries to balance zones to their high
5554 * watermark. As a result, neither should be
5555 * regarded as dirtyable memory, to prevent a
5556 * situation where reclaim has to clean pages
5557 * in order to balance the zones.
5558 */
5559 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5560 }
5561 }
ab8fabd4 5562 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5563 totalreserve_pages = reserve_pages;
5564}
5565
1da177e4
LT
5566/*
5567 * setup_per_zone_lowmem_reserve - called whenever
5568 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5569 * has a correct pages reserved value, so an adequate number of
5570 * pages are left in the zone after a successful __alloc_pages().
5571 */
5572static void setup_per_zone_lowmem_reserve(void)
5573{
5574 struct pglist_data *pgdat;
2f6726e5 5575 enum zone_type j, idx;
1da177e4 5576
ec936fc5 5577 for_each_online_pgdat(pgdat) {
1da177e4
LT
5578 for (j = 0; j < MAX_NR_ZONES; j++) {
5579 struct zone *zone = pgdat->node_zones + j;
b40da049 5580 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5581
5582 zone->lowmem_reserve[j] = 0;
5583
2f6726e5
CL
5584 idx = j;
5585 while (idx) {
1da177e4
LT
5586 struct zone *lower_zone;
5587
2f6726e5
CL
5588 idx--;
5589
1da177e4
LT
5590 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5591 sysctl_lowmem_reserve_ratio[idx] = 1;
5592
5593 lower_zone = pgdat->node_zones + idx;
b40da049 5594 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5595 sysctl_lowmem_reserve_ratio[idx];
b40da049 5596 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5597 }
5598 }
5599 }
cb45b0e9
HA
5600
5601 /* update totalreserve_pages */
5602 calculate_totalreserve_pages();
1da177e4
LT
5603}
5604
cfd3da1e 5605static void __setup_per_zone_wmarks(void)
1da177e4
LT
5606{
5607 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5608 unsigned long lowmem_pages = 0;
5609 struct zone *zone;
5610 unsigned long flags;
5611
5612 /* Calculate total number of !ZONE_HIGHMEM pages */
5613 for_each_zone(zone) {
5614 if (!is_highmem(zone))
b40da049 5615 lowmem_pages += zone->managed_pages;
1da177e4
LT
5616 }
5617
5618 for_each_zone(zone) {
ac924c60
AM
5619 u64 tmp;
5620
1125b4e3 5621 spin_lock_irqsave(&zone->lock, flags);
b40da049 5622 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5623 do_div(tmp, lowmem_pages);
1da177e4
LT
5624 if (is_highmem(zone)) {
5625 /*
669ed175
NP
5626 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5627 * need highmem pages, so cap pages_min to a small
5628 * value here.
5629 *
41858966 5630 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5631 * deltas controls asynch page reclaim, and so should
5632 * not be capped for highmem.
1da177e4 5633 */
90ae8d67 5634 unsigned long min_pages;
1da177e4 5635
b40da049 5636 min_pages = zone->managed_pages / 1024;
90ae8d67 5637 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5638 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5639 } else {
669ed175
NP
5640 /*
5641 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5642 * proportionate to the zone's size.
5643 */
41858966 5644 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5645 }
5646
41858966
MG
5647 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5648 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5649
81c0a2bb
JW
5650 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5651 high_wmark_pages(zone) -
5652 low_wmark_pages(zone) -
5653 zone_page_state(zone, NR_ALLOC_BATCH));
5654
56fd56b8 5655 setup_zone_migrate_reserve(zone);
1125b4e3 5656 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5657 }
cb45b0e9
HA
5658
5659 /* update totalreserve_pages */
5660 calculate_totalreserve_pages();
1da177e4
LT
5661}
5662
cfd3da1e
MG
5663/**
5664 * setup_per_zone_wmarks - called when min_free_kbytes changes
5665 * or when memory is hot-{added|removed}
5666 *
5667 * Ensures that the watermark[min,low,high] values for each zone are set
5668 * correctly with respect to min_free_kbytes.
5669 */
5670void setup_per_zone_wmarks(void)
5671{
5672 mutex_lock(&zonelists_mutex);
5673 __setup_per_zone_wmarks();
5674 mutex_unlock(&zonelists_mutex);
5675}
5676
55a4462a 5677/*
556adecb
RR
5678 * The inactive anon list should be small enough that the VM never has to
5679 * do too much work, but large enough that each inactive page has a chance
5680 * to be referenced again before it is swapped out.
5681 *
5682 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5683 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5684 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5685 * the anonymous pages are kept on the inactive list.
5686 *
5687 * total target max
5688 * memory ratio inactive anon
5689 * -------------------------------------
5690 * 10MB 1 5MB
5691 * 100MB 1 50MB
5692 * 1GB 3 250MB
5693 * 10GB 10 0.9GB
5694 * 100GB 31 3GB
5695 * 1TB 101 10GB
5696 * 10TB 320 32GB
5697 */
1b79acc9 5698static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5699{
96cb4df5 5700 unsigned int gb, ratio;
556adecb 5701
96cb4df5 5702 /* Zone size in gigabytes */
b40da049 5703 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5704 if (gb)
556adecb 5705 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5706 else
5707 ratio = 1;
556adecb 5708
96cb4df5
MK
5709 zone->inactive_ratio = ratio;
5710}
556adecb 5711
839a4fcc 5712static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5713{
5714 struct zone *zone;
5715
5716 for_each_zone(zone)
5717 calculate_zone_inactive_ratio(zone);
556adecb
RR
5718}
5719
1da177e4
LT
5720/*
5721 * Initialise min_free_kbytes.
5722 *
5723 * For small machines we want it small (128k min). For large machines
5724 * we want it large (64MB max). But it is not linear, because network
5725 * bandwidth does not increase linearly with machine size. We use
5726 *
b8af2941 5727 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5728 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5729 *
5730 * which yields
5731 *
5732 * 16MB: 512k
5733 * 32MB: 724k
5734 * 64MB: 1024k
5735 * 128MB: 1448k
5736 * 256MB: 2048k
5737 * 512MB: 2896k
5738 * 1024MB: 4096k
5739 * 2048MB: 5792k
5740 * 4096MB: 8192k
5741 * 8192MB: 11584k
5742 * 16384MB: 16384k
5743 */
1b79acc9 5744int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5745{
5746 unsigned long lowmem_kbytes;
5f12733e 5747 int new_min_free_kbytes;
1da177e4
LT
5748
5749 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5750 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5751
5752 if (new_min_free_kbytes > user_min_free_kbytes) {
5753 min_free_kbytes = new_min_free_kbytes;
5754 if (min_free_kbytes < 128)
5755 min_free_kbytes = 128;
5756 if (min_free_kbytes > 65536)
5757 min_free_kbytes = 65536;
5758 } else {
5759 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5760 new_min_free_kbytes, user_min_free_kbytes);
5761 }
bc75d33f 5762 setup_per_zone_wmarks();
a6cccdc3 5763 refresh_zone_stat_thresholds();
1da177e4 5764 setup_per_zone_lowmem_reserve();
556adecb 5765 setup_per_zone_inactive_ratio();
1da177e4
LT
5766 return 0;
5767}
bc75d33f 5768module_init(init_per_zone_wmark_min)
1da177e4
LT
5769
5770/*
b8af2941 5771 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5772 * that we can call two helper functions whenever min_free_kbytes
5773 * changes.
5774 */
b8af2941 5775int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5776 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5777{
da8c757b
HP
5778 int rc;
5779
5780 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5781 if (rc)
5782 return rc;
5783
5f12733e
MH
5784 if (write) {
5785 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5786 setup_per_zone_wmarks();
5f12733e 5787 }
1da177e4
LT
5788 return 0;
5789}
5790
9614634f
CL
5791#ifdef CONFIG_NUMA
5792int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5793 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5794{
5795 struct zone *zone;
5796 int rc;
5797
8d65af78 5798 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5799 if (rc)
5800 return rc;
5801
5802 for_each_zone(zone)
b40da049 5803 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5804 sysctl_min_unmapped_ratio) / 100;
5805 return 0;
5806}
0ff38490
CL
5807
5808int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5809 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5810{
5811 struct zone *zone;
5812 int rc;
5813
8d65af78 5814 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5815 if (rc)
5816 return rc;
5817
5818 for_each_zone(zone)
b40da049 5819 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5820 sysctl_min_slab_ratio) / 100;
5821 return 0;
5822}
9614634f
CL
5823#endif
5824
1da177e4
LT
5825/*
5826 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5827 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5828 * whenever sysctl_lowmem_reserve_ratio changes.
5829 *
5830 * The reserve ratio obviously has absolutely no relation with the
41858966 5831 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5832 * if in function of the boot time zone sizes.
5833 */
5834int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5835 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5836{
8d65af78 5837 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5838 setup_per_zone_lowmem_reserve();
5839 return 0;
5840}
5841
8ad4b1fb
RS
5842/*
5843 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5844 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5845 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5846 */
8ad4b1fb 5847int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5848 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5849{
5850 struct zone *zone;
5851 unsigned int cpu;
5852 int ret;
5853
8d65af78 5854 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5855 if (!write || (ret < 0))
8ad4b1fb 5856 return ret;
c8e251fa
CS
5857
5858 mutex_lock(&pcp_batch_high_lock);
364df0eb 5859 for_each_populated_zone(zone) {
22a7f12b
CS
5860 unsigned long high;
5861 high = zone->managed_pages / percpu_pagelist_fraction;
5862 for_each_possible_cpu(cpu)
3664033c
CS
5863 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5864 high);
8ad4b1fb 5865 }
c8e251fa 5866 mutex_unlock(&pcp_batch_high_lock);
8ad4b1fb
RS
5867 return 0;
5868}
5869
f034b5d4 5870int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5871
5872#ifdef CONFIG_NUMA
5873static int __init set_hashdist(char *str)
5874{
5875 if (!str)
5876 return 0;
5877 hashdist = simple_strtoul(str, &str, 0);
5878 return 1;
5879}
5880__setup("hashdist=", set_hashdist);
5881#endif
5882
5883/*
5884 * allocate a large system hash table from bootmem
5885 * - it is assumed that the hash table must contain an exact power-of-2
5886 * quantity of entries
5887 * - limit is the number of hash buckets, not the total allocation size
5888 */
5889void *__init alloc_large_system_hash(const char *tablename,
5890 unsigned long bucketsize,
5891 unsigned long numentries,
5892 int scale,
5893 int flags,
5894 unsigned int *_hash_shift,
5895 unsigned int *_hash_mask,
31fe62b9
TB
5896 unsigned long low_limit,
5897 unsigned long high_limit)
1da177e4 5898{
31fe62b9 5899 unsigned long long max = high_limit;
1da177e4
LT
5900 unsigned long log2qty, size;
5901 void *table = NULL;
5902
5903 /* allow the kernel cmdline to have a say */
5904 if (!numentries) {
5905 /* round applicable memory size up to nearest megabyte */
04903664 5906 numentries = nr_kernel_pages;
a7e83318
JZ
5907
5908 /* It isn't necessary when PAGE_SIZE >= 1MB */
5909 if (PAGE_SHIFT < 20)
5910 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5911
5912 /* limit to 1 bucket per 2^scale bytes of low memory */
5913 if (scale > PAGE_SHIFT)
5914 numentries >>= (scale - PAGE_SHIFT);
5915 else
5916 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5917
5918 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5919 if (unlikely(flags & HASH_SMALL)) {
5920 /* Makes no sense without HASH_EARLY */
5921 WARN_ON(!(flags & HASH_EARLY));
5922 if (!(numentries >> *_hash_shift)) {
5923 numentries = 1UL << *_hash_shift;
5924 BUG_ON(!numentries);
5925 }
5926 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5927 numentries = PAGE_SIZE / bucketsize;
1da177e4 5928 }
6e692ed3 5929 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5930
5931 /* limit allocation size to 1/16 total memory by default */
5932 if (max == 0) {
5933 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5934 do_div(max, bucketsize);
5935 }
074b8517 5936 max = min(max, 0x80000000ULL);
1da177e4 5937
31fe62b9
TB
5938 if (numentries < low_limit)
5939 numentries = low_limit;
1da177e4
LT
5940 if (numentries > max)
5941 numentries = max;
5942
f0d1b0b3 5943 log2qty = ilog2(numentries);
1da177e4
LT
5944
5945 do {
5946 size = bucketsize << log2qty;
5947 if (flags & HASH_EARLY)
6782832e 5948 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
5949 else if (hashdist)
5950 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5951 else {
1037b83b
ED
5952 /*
5953 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5954 * some pages at the end of hash table which
5955 * alloc_pages_exact() automatically does
1037b83b 5956 */
264ef8a9 5957 if (get_order(size) < MAX_ORDER) {
a1dd268c 5958 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5959 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5960 }
1da177e4
LT
5961 }
5962 } while (!table && size > PAGE_SIZE && --log2qty);
5963
5964 if (!table)
5965 panic("Failed to allocate %s hash table\n", tablename);
5966
f241e660 5967 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5968 tablename,
f241e660 5969 (1UL << log2qty),
f0d1b0b3 5970 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5971 size);
5972
5973 if (_hash_shift)
5974 *_hash_shift = log2qty;
5975 if (_hash_mask)
5976 *_hash_mask = (1 << log2qty) - 1;
5977
5978 return table;
5979}
a117e66e 5980
835c134e
MG
5981/* Return a pointer to the bitmap storing bits affecting a block of pages */
5982static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5983 unsigned long pfn)
5984{
5985#ifdef CONFIG_SPARSEMEM
5986 return __pfn_to_section(pfn)->pageblock_flags;
5987#else
5988 return zone->pageblock_flags;
5989#endif /* CONFIG_SPARSEMEM */
5990}
5991
5992static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5993{
5994#ifdef CONFIG_SPARSEMEM
5995 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5996 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 5997#else
c060f943 5998 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 5999 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6000#endif /* CONFIG_SPARSEMEM */
6001}
6002
6003/**
d9c23400 6004 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
6005 * @page: The page within the block of interest
6006 * @start_bitidx: The first bit of interest to retrieve
6007 * @end_bitidx: The last bit of interest
6008 * returns pageblock_bits flags
6009 */
6010unsigned long get_pageblock_flags_group(struct page *page,
6011 int start_bitidx, int end_bitidx)
6012{
6013 struct zone *zone;
6014 unsigned long *bitmap;
6015 unsigned long pfn, bitidx;
6016 unsigned long flags = 0;
6017 unsigned long value = 1;
6018
6019 zone = page_zone(page);
6020 pfn = page_to_pfn(page);
6021 bitmap = get_pageblock_bitmap(zone, pfn);
6022 bitidx = pfn_to_bitidx(zone, pfn);
6023
6024 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6025 if (test_bit(bitidx + start_bitidx, bitmap))
6026 flags |= value;
6220ec78 6027
835c134e
MG
6028 return flags;
6029}
6030
6031/**
d9c23400 6032 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
6033 * @page: The page within the block of interest
6034 * @start_bitidx: The first bit of interest
6035 * @end_bitidx: The last bit of interest
6036 * @flags: The flags to set
6037 */
6038void set_pageblock_flags_group(struct page *page, unsigned long flags,
6039 int start_bitidx, int end_bitidx)
6040{
6041 struct zone *zone;
6042 unsigned long *bitmap;
6043 unsigned long pfn, bitidx;
6044 unsigned long value = 1;
6045
6046 zone = page_zone(page);
6047 pfn = page_to_pfn(page);
6048 bitmap = get_pageblock_bitmap(zone, pfn);
6049 bitidx = pfn_to_bitidx(zone, pfn);
309381fe 6050 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e
MG
6051
6052 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6053 if (flags & value)
6054 __set_bit(bitidx + start_bitidx, bitmap);
6055 else
6056 __clear_bit(bitidx + start_bitidx, bitmap);
6057}
a5d76b54
KH
6058
6059/*
80934513
MK
6060 * This function checks whether pageblock includes unmovable pages or not.
6061 * If @count is not zero, it is okay to include less @count unmovable pages
6062 *
b8af2941 6063 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6064 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6065 * expect this function should be exact.
a5d76b54 6066 */
b023f468
WC
6067bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6068 bool skip_hwpoisoned_pages)
49ac8255
KH
6069{
6070 unsigned long pfn, iter, found;
47118af0
MN
6071 int mt;
6072
49ac8255
KH
6073 /*
6074 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6075 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6076 */
6077 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6078 return false;
47118af0
MN
6079 mt = get_pageblock_migratetype(page);
6080 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6081 return false;
49ac8255
KH
6082
6083 pfn = page_to_pfn(page);
6084 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6085 unsigned long check = pfn + iter;
6086
29723fcc 6087 if (!pfn_valid_within(check))
49ac8255 6088 continue;
29723fcc 6089
49ac8255 6090 page = pfn_to_page(check);
c8721bbb
NH
6091
6092 /*
6093 * Hugepages are not in LRU lists, but they're movable.
6094 * We need not scan over tail pages bacause we don't
6095 * handle each tail page individually in migration.
6096 */
6097 if (PageHuge(page)) {
6098 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6099 continue;
6100 }
6101
97d255c8
MK
6102 /*
6103 * We can't use page_count without pin a page
6104 * because another CPU can free compound page.
6105 * This check already skips compound tails of THP
6106 * because their page->_count is zero at all time.
6107 */
6108 if (!atomic_read(&page->_count)) {
49ac8255
KH
6109 if (PageBuddy(page))
6110 iter += (1 << page_order(page)) - 1;
6111 continue;
6112 }
97d255c8 6113
b023f468
WC
6114 /*
6115 * The HWPoisoned page may be not in buddy system, and
6116 * page_count() is not 0.
6117 */
6118 if (skip_hwpoisoned_pages && PageHWPoison(page))
6119 continue;
6120
49ac8255
KH
6121 if (!PageLRU(page))
6122 found++;
6123 /*
6124 * If there are RECLAIMABLE pages, we need to check it.
6125 * But now, memory offline itself doesn't call shrink_slab()
6126 * and it still to be fixed.
6127 */
6128 /*
6129 * If the page is not RAM, page_count()should be 0.
6130 * we don't need more check. This is an _used_ not-movable page.
6131 *
6132 * The problematic thing here is PG_reserved pages. PG_reserved
6133 * is set to both of a memory hole page and a _used_ kernel
6134 * page at boot.
6135 */
6136 if (found > count)
80934513 6137 return true;
49ac8255 6138 }
80934513 6139 return false;
49ac8255
KH
6140}
6141
6142bool is_pageblock_removable_nolock(struct page *page)
6143{
656a0706
MH
6144 struct zone *zone;
6145 unsigned long pfn;
687875fb
MH
6146
6147 /*
6148 * We have to be careful here because we are iterating over memory
6149 * sections which are not zone aware so we might end up outside of
6150 * the zone but still within the section.
656a0706
MH
6151 * We have to take care about the node as well. If the node is offline
6152 * its NODE_DATA will be NULL - see page_zone.
687875fb 6153 */
656a0706
MH
6154 if (!node_online(page_to_nid(page)))
6155 return false;
6156
6157 zone = page_zone(page);
6158 pfn = page_to_pfn(page);
108bcc96 6159 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6160 return false;
6161
b023f468 6162 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6163}
0c0e6195 6164
041d3a8c
MN
6165#ifdef CONFIG_CMA
6166
6167static unsigned long pfn_max_align_down(unsigned long pfn)
6168{
6169 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6170 pageblock_nr_pages) - 1);
6171}
6172
6173static unsigned long pfn_max_align_up(unsigned long pfn)
6174{
6175 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6176 pageblock_nr_pages));
6177}
6178
041d3a8c 6179/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6180static int __alloc_contig_migrate_range(struct compact_control *cc,
6181 unsigned long start, unsigned long end)
041d3a8c
MN
6182{
6183 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6184 unsigned long nr_reclaimed;
041d3a8c
MN
6185 unsigned long pfn = start;
6186 unsigned int tries = 0;
6187 int ret = 0;
6188
be49a6e1 6189 migrate_prep();
041d3a8c 6190
bb13ffeb 6191 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6192 if (fatal_signal_pending(current)) {
6193 ret = -EINTR;
6194 break;
6195 }
6196
bb13ffeb
MG
6197 if (list_empty(&cc->migratepages)) {
6198 cc->nr_migratepages = 0;
6199 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6200 pfn, end, true);
041d3a8c
MN
6201 if (!pfn) {
6202 ret = -EINTR;
6203 break;
6204 }
6205 tries = 0;
6206 } else if (++tries == 5) {
6207 ret = ret < 0 ? ret : -EBUSY;
6208 break;
6209 }
6210
beb51eaa
MK
6211 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6212 &cc->migratepages);
6213 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6214
9c620e2b
HD
6215 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6216 0, MIGRATE_SYNC, MR_CMA);
041d3a8c 6217 }
2a6f5124
SP
6218 if (ret < 0) {
6219 putback_movable_pages(&cc->migratepages);
6220 return ret;
6221 }
6222 return 0;
041d3a8c
MN
6223}
6224
6225/**
6226 * alloc_contig_range() -- tries to allocate given range of pages
6227 * @start: start PFN to allocate
6228 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6229 * @migratetype: migratetype of the underlaying pageblocks (either
6230 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6231 * in range must have the same migratetype and it must
6232 * be either of the two.
041d3a8c
MN
6233 *
6234 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6235 * aligned, however it's the caller's responsibility to guarantee that
6236 * we are the only thread that changes migrate type of pageblocks the
6237 * pages fall in.
6238 *
6239 * The PFN range must belong to a single zone.
6240 *
6241 * Returns zero on success or negative error code. On success all
6242 * pages which PFN is in [start, end) are allocated for the caller and
6243 * need to be freed with free_contig_range().
6244 */
0815f3d8
MN
6245int alloc_contig_range(unsigned long start, unsigned long end,
6246 unsigned migratetype)
041d3a8c 6247{
041d3a8c
MN
6248 unsigned long outer_start, outer_end;
6249 int ret = 0, order;
6250
bb13ffeb
MG
6251 struct compact_control cc = {
6252 .nr_migratepages = 0,
6253 .order = -1,
6254 .zone = page_zone(pfn_to_page(start)),
6255 .sync = true,
6256 .ignore_skip_hint = true,
6257 };
6258 INIT_LIST_HEAD(&cc.migratepages);
6259
041d3a8c
MN
6260 /*
6261 * What we do here is we mark all pageblocks in range as
6262 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6263 * have different sizes, and due to the way page allocator
6264 * work, we align the range to biggest of the two pages so
6265 * that page allocator won't try to merge buddies from
6266 * different pageblocks and change MIGRATE_ISOLATE to some
6267 * other migration type.
6268 *
6269 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6270 * migrate the pages from an unaligned range (ie. pages that
6271 * we are interested in). This will put all the pages in
6272 * range back to page allocator as MIGRATE_ISOLATE.
6273 *
6274 * When this is done, we take the pages in range from page
6275 * allocator removing them from the buddy system. This way
6276 * page allocator will never consider using them.
6277 *
6278 * This lets us mark the pageblocks back as
6279 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6280 * aligned range but not in the unaligned, original range are
6281 * put back to page allocator so that buddy can use them.
6282 */
6283
6284 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6285 pfn_max_align_up(end), migratetype,
6286 false);
041d3a8c 6287 if (ret)
86a595f9 6288 return ret;
041d3a8c 6289
bb13ffeb 6290 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6291 if (ret)
6292 goto done;
6293
6294 /*
6295 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6296 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6297 * more, all pages in [start, end) are free in page allocator.
6298 * What we are going to do is to allocate all pages from
6299 * [start, end) (that is remove them from page allocator).
6300 *
6301 * The only problem is that pages at the beginning and at the
6302 * end of interesting range may be not aligned with pages that
6303 * page allocator holds, ie. they can be part of higher order
6304 * pages. Because of this, we reserve the bigger range and
6305 * once this is done free the pages we are not interested in.
6306 *
6307 * We don't have to hold zone->lock here because the pages are
6308 * isolated thus they won't get removed from buddy.
6309 */
6310
6311 lru_add_drain_all();
6312 drain_all_pages();
6313
6314 order = 0;
6315 outer_start = start;
6316 while (!PageBuddy(pfn_to_page(outer_start))) {
6317 if (++order >= MAX_ORDER) {
6318 ret = -EBUSY;
6319 goto done;
6320 }
6321 outer_start &= ~0UL << order;
6322 }
6323
6324 /* Make sure the range is really isolated. */
b023f468 6325 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6326 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6327 outer_start, end);
6328 ret = -EBUSY;
6329 goto done;
6330 }
6331
49f223a9
MS
6332
6333 /* Grab isolated pages from freelists. */
bb13ffeb 6334 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6335 if (!outer_end) {
6336 ret = -EBUSY;
6337 goto done;
6338 }
6339
6340 /* Free head and tail (if any) */
6341 if (start != outer_start)
6342 free_contig_range(outer_start, start - outer_start);
6343 if (end != outer_end)
6344 free_contig_range(end, outer_end - end);
6345
6346done:
6347 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6348 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6349 return ret;
6350}
6351
6352void free_contig_range(unsigned long pfn, unsigned nr_pages)
6353{
bcc2b02f
MS
6354 unsigned int count = 0;
6355
6356 for (; nr_pages--; pfn++) {
6357 struct page *page = pfn_to_page(pfn);
6358
6359 count += page_count(page) != 1;
6360 __free_page(page);
6361 }
6362 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6363}
6364#endif
6365
4ed7e022 6366#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6367/*
6368 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6369 * page high values need to be recalulated.
6370 */
4ed7e022
JL
6371void __meminit zone_pcp_update(struct zone *zone)
6372{
0a647f38 6373 unsigned cpu;
c8e251fa 6374 mutex_lock(&pcp_batch_high_lock);
0a647f38 6375 for_each_possible_cpu(cpu)
169f6c19
CS
6376 pageset_set_high_and_batch(zone,
6377 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6378 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6379}
6380#endif
6381
340175b7
JL
6382void zone_pcp_reset(struct zone *zone)
6383{
6384 unsigned long flags;
5a883813
MK
6385 int cpu;
6386 struct per_cpu_pageset *pset;
340175b7
JL
6387
6388 /* avoid races with drain_pages() */
6389 local_irq_save(flags);
6390 if (zone->pageset != &boot_pageset) {
5a883813
MK
6391 for_each_online_cpu(cpu) {
6392 pset = per_cpu_ptr(zone->pageset, cpu);
6393 drain_zonestat(zone, pset);
6394 }
340175b7
JL
6395 free_percpu(zone->pageset);
6396 zone->pageset = &boot_pageset;
6397 }
6398 local_irq_restore(flags);
6399}
6400
6dcd73d7 6401#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6402/*
6403 * All pages in the range must be isolated before calling this.
6404 */
6405void
6406__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6407{
6408 struct page *page;
6409 struct zone *zone;
6410 int order, i;
6411 unsigned long pfn;
6412 unsigned long flags;
6413 /* find the first valid pfn */
6414 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6415 if (pfn_valid(pfn))
6416 break;
6417 if (pfn == end_pfn)
6418 return;
6419 zone = page_zone(pfn_to_page(pfn));
6420 spin_lock_irqsave(&zone->lock, flags);
6421 pfn = start_pfn;
6422 while (pfn < end_pfn) {
6423 if (!pfn_valid(pfn)) {
6424 pfn++;
6425 continue;
6426 }
6427 page = pfn_to_page(pfn);
b023f468
WC
6428 /*
6429 * The HWPoisoned page may be not in buddy system, and
6430 * page_count() is not 0.
6431 */
6432 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6433 pfn++;
6434 SetPageReserved(page);
6435 continue;
6436 }
6437
0c0e6195
KH
6438 BUG_ON(page_count(page));
6439 BUG_ON(!PageBuddy(page));
6440 order = page_order(page);
6441#ifdef CONFIG_DEBUG_VM
6442 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6443 pfn, 1 << order, end_pfn);
6444#endif
6445 list_del(&page->lru);
6446 rmv_page_order(page);
6447 zone->free_area[order].nr_free--;
0c0e6195
KH
6448 for (i = 0; i < (1 << order); i++)
6449 SetPageReserved((page+i));
6450 pfn += (1 << order);
6451 }
6452 spin_unlock_irqrestore(&zone->lock, flags);
6453}
6454#endif
8d22ba1b
WF
6455
6456#ifdef CONFIG_MEMORY_FAILURE
6457bool is_free_buddy_page(struct page *page)
6458{
6459 struct zone *zone = page_zone(page);
6460 unsigned long pfn = page_to_pfn(page);
6461 unsigned long flags;
6462 int order;
6463
6464 spin_lock_irqsave(&zone->lock, flags);
6465 for (order = 0; order < MAX_ORDER; order++) {
6466 struct page *page_head = page - (pfn & ((1 << order) - 1));
6467
6468 if (PageBuddy(page_head) && page_order(page_head) >= order)
6469 break;
6470 }
6471 spin_unlock_irqrestore(&zone->lock, flags);
6472
6473 return order < MAX_ORDER;
6474}
6475#endif
718a3821 6476
51300cef 6477static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6478 {1UL << PG_locked, "locked" },
6479 {1UL << PG_error, "error" },
6480 {1UL << PG_referenced, "referenced" },
6481 {1UL << PG_uptodate, "uptodate" },
6482 {1UL << PG_dirty, "dirty" },
6483 {1UL << PG_lru, "lru" },
6484 {1UL << PG_active, "active" },
6485 {1UL << PG_slab, "slab" },
6486 {1UL << PG_owner_priv_1, "owner_priv_1" },
6487 {1UL << PG_arch_1, "arch_1" },
6488 {1UL << PG_reserved, "reserved" },
6489 {1UL << PG_private, "private" },
6490 {1UL << PG_private_2, "private_2" },
6491 {1UL << PG_writeback, "writeback" },
6492#ifdef CONFIG_PAGEFLAGS_EXTENDED
6493 {1UL << PG_head, "head" },
6494 {1UL << PG_tail, "tail" },
6495#else
6496 {1UL << PG_compound, "compound" },
6497#endif
6498 {1UL << PG_swapcache, "swapcache" },
6499 {1UL << PG_mappedtodisk, "mappedtodisk" },
6500 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6501 {1UL << PG_swapbacked, "swapbacked" },
6502 {1UL << PG_unevictable, "unevictable" },
6503#ifdef CONFIG_MMU
6504 {1UL << PG_mlocked, "mlocked" },
6505#endif
6506#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6507 {1UL << PG_uncached, "uncached" },
6508#endif
6509#ifdef CONFIG_MEMORY_FAILURE
6510 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6511#endif
6512#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6513 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6514#endif
718a3821
WF
6515};
6516
6517static void dump_page_flags(unsigned long flags)
6518{
6519 const char *delim = "";
6520 unsigned long mask;
6521 int i;
6522
51300cef 6523 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6524
718a3821
WF
6525 printk(KERN_ALERT "page flags: %#lx(", flags);
6526
6527 /* remove zone id */
6528 flags &= (1UL << NR_PAGEFLAGS) - 1;
6529
51300cef 6530 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6531
6532 mask = pageflag_names[i].mask;
6533 if ((flags & mask) != mask)
6534 continue;
6535
6536 flags &= ~mask;
6537 printk("%s%s", delim, pageflag_names[i].name);
6538 delim = "|";
6539 }
6540
6541 /* check for left over flags */
6542 if (flags)
6543 printk("%s%#lx", delim, flags);
6544
6545 printk(")\n");
6546}
6547
f0b791a3 6548void dump_page_badflags(struct page *page, char *reason, unsigned long badflags)
718a3821
WF
6549{
6550 printk(KERN_ALERT
6551 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6552 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6553 page->mapping, page->index);
6554 dump_page_flags(page->flags);
f0b791a3
DH
6555 if (reason)
6556 pr_alert("page dumped because: %s\n", reason);
6557 if (page->flags & badflags) {
6558 pr_alert("bad because of flags:\n");
6559 dump_page_flags(page->flags & badflags);
6560 }
f212ad7c 6561 mem_cgroup_print_bad_page(page);
718a3821 6562}
f0b791a3
DH
6563
6564void dump_page(struct page *page, char *reason)
6565{
6566 dump_page_badflags(page, reason, 0);
6567}
309381fe 6568EXPORT_SYMBOL_GPL(dump_page);