]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm: rearrange zone fields into read-only, page alloc, statistics and page reclaim...
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
c0a32fc5 61#include <linux/page-debug-flags.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 72#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 73
72812019
LS
74#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75DEFINE_PER_CPU(int, numa_node);
76EXPORT_PER_CPU_SYMBOL(numa_node);
77#endif
78
7aac7898
LS
79#ifdef CONFIG_HAVE_MEMORYLESS_NODES
80/*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88#endif
89
1da177e4 90/*
13808910 91 * Array of node states.
1da177e4 92 */
13808910
CL
93nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
94 [N_POSSIBLE] = NODE_MASK_ALL,
95 [N_ONLINE] = { { [0] = 1UL } },
96#ifndef CONFIG_NUMA
97 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
98#ifdef CONFIG_HIGHMEM
99 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
100#endif
101#ifdef CONFIG_MOVABLE_NODE
102 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
103#endif
104 [N_CPU] = { { [0] = 1UL } },
105#endif /* NUMA */
106};
107EXPORT_SYMBOL(node_states);
108
c3d5f5f0
JL
109/* Protect totalram_pages and zone->managed_pages */
110static DEFINE_SPINLOCK(managed_page_count_lock);
111
6c231b7b 112unsigned long totalram_pages __read_mostly;
cb45b0e9 113unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
114/*
115 * When calculating the number of globally allowed dirty pages, there
116 * is a certain number of per-zone reserves that should not be
117 * considered dirtyable memory. This is the sum of those reserves
118 * over all existing zones that contribute dirtyable memory.
119 */
120unsigned long dirty_balance_reserve __read_mostly;
121
1b76b02f 122int percpu_pagelist_fraction;
dcce284a 123gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 124
452aa699
RW
125#ifdef CONFIG_PM_SLEEP
126/*
127 * The following functions are used by the suspend/hibernate code to temporarily
128 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
129 * while devices are suspended. To avoid races with the suspend/hibernate code,
130 * they should always be called with pm_mutex held (gfp_allowed_mask also should
131 * only be modified with pm_mutex held, unless the suspend/hibernate code is
132 * guaranteed not to run in parallel with that modification).
133 */
c9e664f1
RW
134
135static gfp_t saved_gfp_mask;
136
137void pm_restore_gfp_mask(void)
452aa699
RW
138{
139 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
140 if (saved_gfp_mask) {
141 gfp_allowed_mask = saved_gfp_mask;
142 saved_gfp_mask = 0;
143 }
452aa699
RW
144}
145
c9e664f1 146void pm_restrict_gfp_mask(void)
452aa699 147{
452aa699 148 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
149 WARN_ON(saved_gfp_mask);
150 saved_gfp_mask = gfp_allowed_mask;
151 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 152}
f90ac398
MG
153
154bool pm_suspended_storage(void)
155{
156 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
157 return false;
158 return true;
159}
452aa699
RW
160#endif /* CONFIG_PM_SLEEP */
161
d9c23400
MG
162#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
163int pageblock_order __read_mostly;
164#endif
165
d98c7a09 166static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 167
1da177e4
LT
168/*
169 * results with 256, 32 in the lowmem_reserve sysctl:
170 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
171 * 1G machine -> (16M dma, 784M normal, 224M high)
172 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
173 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
174 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
175 *
176 * TBD: should special case ZONE_DMA32 machines here - in those we normally
177 * don't need any ZONE_NORMAL reservation
1da177e4 178 */
2f1b6248 179int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 180#ifdef CONFIG_ZONE_DMA
2f1b6248 181 256,
4b51d669 182#endif
fb0e7942 183#ifdef CONFIG_ZONE_DMA32
2f1b6248 184 256,
fb0e7942 185#endif
e53ef38d 186#ifdef CONFIG_HIGHMEM
2a1e274a 187 32,
e53ef38d 188#endif
2a1e274a 189 32,
2f1b6248 190};
1da177e4
LT
191
192EXPORT_SYMBOL(totalram_pages);
1da177e4 193
15ad7cdc 194static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 "DMA",
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 "DMA32",
fb0e7942 200#endif
2f1b6248 201 "Normal",
e53ef38d 202#ifdef CONFIG_HIGHMEM
2a1e274a 203 "HighMem",
e53ef38d 204#endif
2a1e274a 205 "Movable",
2f1b6248
CL
206};
207
1da177e4 208int min_free_kbytes = 1024;
42aa83cb 209int user_min_free_kbytes = -1;
1da177e4 210
2c85f51d
JB
211static unsigned long __meminitdata nr_kernel_pages;
212static unsigned long __meminitdata nr_all_pages;
a3142c8e 213static unsigned long __meminitdata dma_reserve;
1da177e4 214
0ee332c1
TH
215#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
216static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
218static unsigned long __initdata required_kernelcore;
219static unsigned long __initdata required_movablecore;
220static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
221
222/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
223int movable_zone;
224EXPORT_SYMBOL(movable_zone);
225#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 226
418508c1
MS
227#if MAX_NUMNODES > 1
228int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 229int nr_online_nodes __read_mostly = 1;
418508c1 230EXPORT_SYMBOL(nr_node_ids);
62bc62a8 231EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
232#endif
233
9ef9acb0
MG
234int page_group_by_mobility_disabled __read_mostly;
235
ee6f509c 236void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 237{
5d0f3f72
KM
238 if (unlikely(page_group_by_mobility_disabled &&
239 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
240 migratetype = MIGRATE_UNMOVABLE;
241
b2a0ac88
MG
242 set_pageblock_flags_group(page, (unsigned long)migratetype,
243 PB_migrate, PB_migrate_end);
244}
245
7f33d49a
RW
246bool oom_killer_disabled __read_mostly;
247
13e7444b 248#ifdef CONFIG_DEBUG_VM
c6a57e19 249static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 250{
bdc8cb98
DH
251 int ret = 0;
252 unsigned seq;
253 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 254 unsigned long sp, start_pfn;
c6a57e19 255
bdc8cb98
DH
256 do {
257 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
258 start_pfn = zone->zone_start_pfn;
259 sp = zone->spanned_pages;
108bcc96 260 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
261 ret = 1;
262 } while (zone_span_seqretry(zone, seq));
263
b5e6a5a2 264 if (ret)
613813e8
DH
265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 pfn, zone_to_nid(zone), zone->name,
267 start_pfn, start_pfn + sp);
b5e6a5a2 268
bdc8cb98 269 return ret;
c6a57e19
DH
270}
271
272static int page_is_consistent(struct zone *zone, struct page *page)
273{
14e07298 274 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 275 return 0;
1da177e4 276 if (zone != page_zone(page))
c6a57e19
DH
277 return 0;
278
279 return 1;
280}
281/*
282 * Temporary debugging check for pages not lying within a given zone.
283 */
284static int bad_range(struct zone *zone, struct page *page)
285{
286 if (page_outside_zone_boundaries(zone, page))
1da177e4 287 return 1;
c6a57e19
DH
288 if (!page_is_consistent(zone, page))
289 return 1;
290
1da177e4
LT
291 return 0;
292}
13e7444b
NP
293#else
294static inline int bad_range(struct zone *zone, struct page *page)
295{
296 return 0;
297}
298#endif
299
d230dec1
KS
300static void bad_page(struct page *page, const char *reason,
301 unsigned long bad_flags)
1da177e4 302{
d936cf9b
HD
303 static unsigned long resume;
304 static unsigned long nr_shown;
305 static unsigned long nr_unshown;
306
2a7684a2
WF
307 /* Don't complain about poisoned pages */
308 if (PageHWPoison(page)) {
22b751c3 309 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
310 return;
311 }
312
d936cf9b
HD
313 /*
314 * Allow a burst of 60 reports, then keep quiet for that minute;
315 * or allow a steady drip of one report per second.
316 */
317 if (nr_shown == 60) {
318 if (time_before(jiffies, resume)) {
319 nr_unshown++;
320 goto out;
321 }
322 if (nr_unshown) {
1e9e6365
HD
323 printk(KERN_ALERT
324 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
325 nr_unshown);
326 nr_unshown = 0;
327 }
328 nr_shown = 0;
329 }
330 if (nr_shown++ == 0)
331 resume = jiffies + 60 * HZ;
332
1e9e6365 333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 334 current->comm, page_to_pfn(page));
f0b791a3 335 dump_page_badflags(page, reason, bad_flags);
3dc14741 336
4f31888c 337 print_modules();
1da177e4 338 dump_stack();
d936cf9b 339out:
8cc3b392 340 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 341 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
343}
344
1da177e4
LT
345/*
346 * Higher-order pages are called "compound pages". They are structured thusly:
347 *
348 * The first PAGE_SIZE page is called the "head page".
349 *
350 * The remaining PAGE_SIZE pages are called "tail pages".
351 *
6416b9fa
WSH
352 * All pages have PG_compound set. All tail pages have their ->first_page
353 * pointing at the head page.
1da177e4 354 *
41d78ba5
HD
355 * The first tail page's ->lru.next holds the address of the compound page's
356 * put_page() function. Its ->lru.prev holds the order of allocation.
357 * This usage means that zero-order pages may not be compound.
1da177e4 358 */
d98c7a09
HD
359
360static void free_compound_page(struct page *page)
361{
d85f3385 362 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
363}
364
01ad1c08 365void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
366{
367 int i;
368 int nr_pages = 1 << order;
369
370 set_compound_page_dtor(page, free_compound_page);
371 set_compound_order(page, order);
372 __SetPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
58a84aa9 375 set_page_count(p, 0);
18229df5 376 p->first_page = page;
668f9abb
DR
377 /* Make sure p->first_page is always valid for PageTail() */
378 smp_wmb();
379 __SetPageTail(p);
18229df5
AW
380 }
381}
382
59ff4216 383/* update __split_huge_page_refcount if you change this function */
8cc3b392 384static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
385{
386 int i;
387 int nr_pages = 1 << order;
8cc3b392 388 int bad = 0;
1da177e4 389
0bb2c763 390 if (unlikely(compound_order(page) != order)) {
f0b791a3 391 bad_page(page, "wrong compound order", 0);
8cc3b392
HD
392 bad++;
393 }
1da177e4 394
6d777953 395 __ClearPageHead(page);
8cc3b392 396
18229df5
AW
397 for (i = 1; i < nr_pages; i++) {
398 struct page *p = page + i;
1da177e4 399
f0b791a3
DH
400 if (unlikely(!PageTail(p))) {
401 bad_page(page, "PageTail not set", 0);
402 bad++;
403 } else if (unlikely(p->first_page != page)) {
404 bad_page(page, "first_page not consistent", 0);
8cc3b392
HD
405 bad++;
406 }
d85f3385 407 __ClearPageTail(p);
1da177e4 408 }
8cc3b392
HD
409
410 return bad;
1da177e4 411}
1da177e4 412
7aeb09f9
MG
413static inline void prep_zero_page(struct page *page, unsigned int order,
414 gfp_t gfp_flags)
17cf4406
NP
415{
416 int i;
417
6626c5d5
AM
418 /*
419 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
420 * and __GFP_HIGHMEM from hard or soft interrupt context.
421 */
725d704e 422 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
423 for (i = 0; i < (1 << order); i++)
424 clear_highpage(page + i);
425}
426
c0a32fc5
SG
427#ifdef CONFIG_DEBUG_PAGEALLOC
428unsigned int _debug_guardpage_minorder;
429
430static int __init debug_guardpage_minorder_setup(char *buf)
431{
432 unsigned long res;
433
434 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
435 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
436 return 0;
437 }
438 _debug_guardpage_minorder = res;
439 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
440 return 0;
441}
442__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
443
444static inline void set_page_guard_flag(struct page *page)
445{
446 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
447}
448
449static inline void clear_page_guard_flag(struct page *page)
450{
451 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
452}
453#else
454static inline void set_page_guard_flag(struct page *page) { }
455static inline void clear_page_guard_flag(struct page *page) { }
456#endif
457
7aeb09f9 458static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 459{
4c21e2f2 460 set_page_private(page, order);
676165a8 461 __SetPageBuddy(page);
1da177e4
LT
462}
463
464static inline void rmv_page_order(struct page *page)
465{
676165a8 466 __ClearPageBuddy(page);
4c21e2f2 467 set_page_private(page, 0);
1da177e4
LT
468}
469
470/*
471 * Locate the struct page for both the matching buddy in our
472 * pair (buddy1) and the combined O(n+1) page they form (page).
473 *
474 * 1) Any buddy B1 will have an order O twin B2 which satisfies
475 * the following equation:
476 * B2 = B1 ^ (1 << O)
477 * For example, if the starting buddy (buddy2) is #8 its order
478 * 1 buddy is #10:
479 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
480 *
481 * 2) Any buddy B will have an order O+1 parent P which
482 * satisfies the following equation:
483 * P = B & ~(1 << O)
484 *
d6e05edc 485 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 486 */
1da177e4 487static inline unsigned long
43506fad 488__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 489{
43506fad 490 return page_idx ^ (1 << order);
1da177e4
LT
491}
492
493/*
494 * This function checks whether a page is free && is the buddy
495 * we can do coalesce a page and its buddy if
13e7444b 496 * (a) the buddy is not in a hole &&
676165a8 497 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
498 * (c) a page and its buddy have the same order &&
499 * (d) a page and its buddy are in the same zone.
676165a8 500 *
cf6fe945
WSH
501 * For recording whether a page is in the buddy system, we set ->_mapcount
502 * PAGE_BUDDY_MAPCOUNT_VALUE.
503 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
504 * serialized by zone->lock.
1da177e4 505 *
676165a8 506 * For recording page's order, we use page_private(page).
1da177e4 507 */
cb2b95e1 508static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 509 unsigned int order)
1da177e4 510{
14e07298 511 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 512 return 0;
13e7444b 513
c0a32fc5 514 if (page_is_guard(buddy) && page_order(buddy) == order) {
309381fe 515 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
516
517 if (page_zone_id(page) != page_zone_id(buddy))
518 return 0;
519
c0a32fc5
SG
520 return 1;
521 }
522
cb2b95e1 523 if (PageBuddy(buddy) && page_order(buddy) == order) {
309381fe 524 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
525
526 /*
527 * zone check is done late to avoid uselessly
528 * calculating zone/node ids for pages that could
529 * never merge.
530 */
531 if (page_zone_id(page) != page_zone_id(buddy))
532 return 0;
533
6aa3001b 534 return 1;
676165a8 535 }
6aa3001b 536 return 0;
1da177e4
LT
537}
538
539/*
540 * Freeing function for a buddy system allocator.
541 *
542 * The concept of a buddy system is to maintain direct-mapped table
543 * (containing bit values) for memory blocks of various "orders".
544 * The bottom level table contains the map for the smallest allocatable
545 * units of memory (here, pages), and each level above it describes
546 * pairs of units from the levels below, hence, "buddies".
547 * At a high level, all that happens here is marking the table entry
548 * at the bottom level available, and propagating the changes upward
549 * as necessary, plus some accounting needed to play nicely with other
550 * parts of the VM system.
551 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
552 * free pages of length of (1 << order) and marked with _mapcount
553 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
554 * field.
1da177e4 555 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
556 * other. That is, if we allocate a small block, and both were
557 * free, the remainder of the region must be split into blocks.
1da177e4 558 * If a block is freed, and its buddy is also free, then this
5f63b720 559 * triggers coalescing into a block of larger size.
1da177e4 560 *
6d49e352 561 * -- nyc
1da177e4
LT
562 */
563
48db57f8 564static inline void __free_one_page(struct page *page,
dc4b0caf 565 unsigned long pfn,
ed0ae21d
MG
566 struct zone *zone, unsigned int order,
567 int migratetype)
1da177e4
LT
568{
569 unsigned long page_idx;
6dda9d55 570 unsigned long combined_idx;
43506fad 571 unsigned long uninitialized_var(buddy_idx);
6dda9d55 572 struct page *buddy;
1da177e4 573
d29bb978
CS
574 VM_BUG_ON(!zone_is_initialized(zone));
575
224abf92 576 if (unlikely(PageCompound(page)))
8cc3b392
HD
577 if (unlikely(destroy_compound_page(page, order)))
578 return;
1da177e4 579
ed0ae21d
MG
580 VM_BUG_ON(migratetype == -1);
581
dc4b0caf 582 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 583
309381fe
SL
584 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
585 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 586
1da177e4 587 while (order < MAX_ORDER-1) {
43506fad
KC
588 buddy_idx = __find_buddy_index(page_idx, order);
589 buddy = page + (buddy_idx - page_idx);
cb2b95e1 590 if (!page_is_buddy(page, buddy, order))
3c82d0ce 591 break;
c0a32fc5
SG
592 /*
593 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
594 * merge with it and move up one order.
595 */
596 if (page_is_guard(buddy)) {
597 clear_page_guard_flag(buddy);
598 set_page_private(page, 0);
d1ce749a
BZ
599 __mod_zone_freepage_state(zone, 1 << order,
600 migratetype);
c0a32fc5
SG
601 } else {
602 list_del(&buddy->lru);
603 zone->free_area[order].nr_free--;
604 rmv_page_order(buddy);
605 }
43506fad 606 combined_idx = buddy_idx & page_idx;
1da177e4
LT
607 page = page + (combined_idx - page_idx);
608 page_idx = combined_idx;
609 order++;
610 }
611 set_page_order(page, order);
6dda9d55
CZ
612
613 /*
614 * If this is not the largest possible page, check if the buddy
615 * of the next-highest order is free. If it is, it's possible
616 * that pages are being freed that will coalesce soon. In case,
617 * that is happening, add the free page to the tail of the list
618 * so it's less likely to be used soon and more likely to be merged
619 * as a higher order page
620 */
b7f50cfa 621 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 622 struct page *higher_page, *higher_buddy;
43506fad
KC
623 combined_idx = buddy_idx & page_idx;
624 higher_page = page + (combined_idx - page_idx);
625 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 626 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
627 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
628 list_add_tail(&page->lru,
629 &zone->free_area[order].free_list[migratetype]);
630 goto out;
631 }
632 }
633
634 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
635out:
1da177e4
LT
636 zone->free_area[order].nr_free++;
637}
638
224abf92 639static inline int free_pages_check(struct page *page)
1da177e4 640{
d230dec1 641 const char *bad_reason = NULL;
f0b791a3
DH
642 unsigned long bad_flags = 0;
643
644 if (unlikely(page_mapcount(page)))
645 bad_reason = "nonzero mapcount";
646 if (unlikely(page->mapping != NULL))
647 bad_reason = "non-NULL mapping";
648 if (unlikely(atomic_read(&page->_count) != 0))
649 bad_reason = "nonzero _count";
650 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
651 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
652 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
653 }
654 if (unlikely(mem_cgroup_bad_page_check(page)))
655 bad_reason = "cgroup check failed";
656 if (unlikely(bad_reason)) {
657 bad_page(page, bad_reason, bad_flags);
79f4b7bf 658 return 1;
8cc3b392 659 }
90572890 660 page_cpupid_reset_last(page);
79f4b7bf
HD
661 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
662 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
663 return 0;
1da177e4
LT
664}
665
666/*
5f8dcc21 667 * Frees a number of pages from the PCP lists
1da177e4 668 * Assumes all pages on list are in same zone, and of same order.
207f36ee 669 * count is the number of pages to free.
1da177e4
LT
670 *
671 * If the zone was previously in an "all pages pinned" state then look to
672 * see if this freeing clears that state.
673 *
674 * And clear the zone's pages_scanned counter, to hold off the "all pages are
675 * pinned" detection logic.
676 */
5f8dcc21
MG
677static void free_pcppages_bulk(struct zone *zone, int count,
678 struct per_cpu_pages *pcp)
1da177e4 679{
5f8dcc21 680 int migratetype = 0;
a6f9edd6 681 int batch_free = 0;
72853e29 682 int to_free = count;
5f8dcc21 683
c54ad30c 684 spin_lock(&zone->lock);
1da177e4 685 zone->pages_scanned = 0;
f2260e6b 686
72853e29 687 while (to_free) {
48db57f8 688 struct page *page;
5f8dcc21
MG
689 struct list_head *list;
690
691 /*
a6f9edd6
MG
692 * Remove pages from lists in a round-robin fashion. A
693 * batch_free count is maintained that is incremented when an
694 * empty list is encountered. This is so more pages are freed
695 * off fuller lists instead of spinning excessively around empty
696 * lists
5f8dcc21
MG
697 */
698 do {
a6f9edd6 699 batch_free++;
5f8dcc21
MG
700 if (++migratetype == MIGRATE_PCPTYPES)
701 migratetype = 0;
702 list = &pcp->lists[migratetype];
703 } while (list_empty(list));
48db57f8 704
1d16871d
NK
705 /* This is the only non-empty list. Free them all. */
706 if (batch_free == MIGRATE_PCPTYPES)
707 batch_free = to_free;
708
a6f9edd6 709 do {
770c8aaa
BZ
710 int mt; /* migratetype of the to-be-freed page */
711
a6f9edd6
MG
712 page = list_entry(list->prev, struct page, lru);
713 /* must delete as __free_one_page list manipulates */
714 list_del(&page->lru);
b12c4ad1 715 mt = get_freepage_migratetype(page);
a7016235 716 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 717 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 718 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 719 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
720 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
721 if (is_migrate_cma(mt))
722 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
723 }
72853e29 724 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 725 }
c54ad30c 726 spin_unlock(&zone->lock);
1da177e4
LT
727}
728
dc4b0caf
MG
729static void free_one_page(struct zone *zone,
730 struct page *page, unsigned long pfn,
7aeb09f9 731 unsigned int order,
ed0ae21d 732 int migratetype)
1da177e4 733{
006d22d9 734 spin_lock(&zone->lock);
006d22d9 735 zone->pages_scanned = 0;
f2260e6b 736
dc4b0caf 737 __free_one_page(page, pfn, zone, order, migratetype);
194159fb 738 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 739 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 740 spin_unlock(&zone->lock);
48db57f8
NP
741}
742
ec95f53a 743static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 744{
1da177e4 745 int i;
8cc3b392 746 int bad = 0;
1da177e4 747
b413d48a 748 trace_mm_page_free(page, order);
b1eeab67
VN
749 kmemcheck_free_shadow(page, order);
750
8dd60a3a
AA
751 if (PageAnon(page))
752 page->mapping = NULL;
753 for (i = 0; i < (1 << order); i++)
754 bad += free_pages_check(page + i);
8cc3b392 755 if (bad)
ec95f53a 756 return false;
689bcebf 757
3ac7fe5a 758 if (!PageHighMem(page)) {
b8af2941
PK
759 debug_check_no_locks_freed(page_address(page),
760 PAGE_SIZE << order);
3ac7fe5a
TG
761 debug_check_no_obj_freed(page_address(page),
762 PAGE_SIZE << order);
763 }
dafb1367 764 arch_free_page(page, order);
48db57f8 765 kernel_map_pages(page, 1 << order, 0);
dafb1367 766
ec95f53a
KM
767 return true;
768}
769
770static void __free_pages_ok(struct page *page, unsigned int order)
771{
772 unsigned long flags;
95e34412 773 int migratetype;
dc4b0caf 774 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
775
776 if (!free_pages_prepare(page, order))
777 return;
778
cfc47a28 779 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 780 local_irq_save(flags);
f8891e5e 781 __count_vm_events(PGFREE, 1 << order);
95e34412 782 set_freepage_migratetype(page, migratetype);
dc4b0caf 783 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 784 local_irq_restore(flags);
1da177e4
LT
785}
786
170a5a7e 787void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 788{
c3993076 789 unsigned int nr_pages = 1 << order;
e2d0bd2b 790 struct page *p = page;
c3993076 791 unsigned int loop;
a226f6c8 792
e2d0bd2b
YL
793 prefetchw(p);
794 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
795 prefetchw(p + 1);
c3993076
JW
796 __ClearPageReserved(p);
797 set_page_count(p, 0);
a226f6c8 798 }
e2d0bd2b
YL
799 __ClearPageReserved(p);
800 set_page_count(p, 0);
c3993076 801
e2d0bd2b 802 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
803 set_page_refcounted(page);
804 __free_pages(page, order);
a226f6c8
DH
805}
806
47118af0 807#ifdef CONFIG_CMA
9cf510a5 808/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
809void __init init_cma_reserved_pageblock(struct page *page)
810{
811 unsigned i = pageblock_nr_pages;
812 struct page *p = page;
813
814 do {
815 __ClearPageReserved(p);
816 set_page_count(p, 0);
817 } while (++p, --i);
818
47118af0 819 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
820
821 if (pageblock_order >= MAX_ORDER) {
822 i = pageblock_nr_pages;
823 p = page;
824 do {
825 set_page_refcounted(p);
826 __free_pages(p, MAX_ORDER - 1);
827 p += MAX_ORDER_NR_PAGES;
828 } while (i -= MAX_ORDER_NR_PAGES);
829 } else {
830 set_page_refcounted(page);
831 __free_pages(page, pageblock_order);
832 }
833
3dcc0571 834 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
835}
836#endif
1da177e4
LT
837
838/*
839 * The order of subdivision here is critical for the IO subsystem.
840 * Please do not alter this order without good reasons and regression
841 * testing. Specifically, as large blocks of memory are subdivided,
842 * the order in which smaller blocks are delivered depends on the order
843 * they're subdivided in this function. This is the primary factor
844 * influencing the order in which pages are delivered to the IO
845 * subsystem according to empirical testing, and this is also justified
846 * by considering the behavior of a buddy system containing a single
847 * large block of memory acted on by a series of small allocations.
848 * This behavior is a critical factor in sglist merging's success.
849 *
6d49e352 850 * -- nyc
1da177e4 851 */
085cc7d5 852static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
853 int low, int high, struct free_area *area,
854 int migratetype)
1da177e4
LT
855{
856 unsigned long size = 1 << high;
857
858 while (high > low) {
859 area--;
860 high--;
861 size >>= 1;
309381fe 862 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5
SG
863
864#ifdef CONFIG_DEBUG_PAGEALLOC
865 if (high < debug_guardpage_minorder()) {
866 /*
867 * Mark as guard pages (or page), that will allow to
868 * merge back to allocator when buddy will be freed.
869 * Corresponding page table entries will not be touched,
870 * pages will stay not present in virtual address space
871 */
872 INIT_LIST_HEAD(&page[size].lru);
873 set_page_guard_flag(&page[size]);
874 set_page_private(&page[size], high);
875 /* Guard pages are not available for any usage */
d1ce749a
BZ
876 __mod_zone_freepage_state(zone, -(1 << high),
877 migratetype);
c0a32fc5
SG
878 continue;
879 }
880#endif
b2a0ac88 881 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
882 area->nr_free++;
883 set_page_order(&page[size], high);
884 }
1da177e4
LT
885}
886
1da177e4
LT
887/*
888 * This page is about to be returned from the page allocator
889 */
2a7684a2 890static inline int check_new_page(struct page *page)
1da177e4 891{
d230dec1 892 const char *bad_reason = NULL;
f0b791a3
DH
893 unsigned long bad_flags = 0;
894
895 if (unlikely(page_mapcount(page)))
896 bad_reason = "nonzero mapcount";
897 if (unlikely(page->mapping != NULL))
898 bad_reason = "non-NULL mapping";
899 if (unlikely(atomic_read(&page->_count) != 0))
900 bad_reason = "nonzero _count";
901 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
902 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
903 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
904 }
905 if (unlikely(mem_cgroup_bad_page_check(page)))
906 bad_reason = "cgroup check failed";
907 if (unlikely(bad_reason)) {
908 bad_page(page, bad_reason, bad_flags);
689bcebf 909 return 1;
8cc3b392 910 }
2a7684a2
WF
911 return 0;
912}
913
7aeb09f9 914static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
2a7684a2
WF
915{
916 int i;
917
918 for (i = 0; i < (1 << order); i++) {
919 struct page *p = page + i;
920 if (unlikely(check_new_page(p)))
921 return 1;
922 }
689bcebf 923
4c21e2f2 924 set_page_private(page, 0);
7835e98b 925 set_page_refcounted(page);
cc102509
NP
926
927 arch_alloc_page(page, order);
1da177e4 928 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
929
930 if (gfp_flags & __GFP_ZERO)
931 prep_zero_page(page, order, gfp_flags);
932
933 if (order && (gfp_flags & __GFP_COMP))
934 prep_compound_page(page, order);
935
689bcebf 936 return 0;
1da177e4
LT
937}
938
56fd56b8
MG
939/*
940 * Go through the free lists for the given migratetype and remove
941 * the smallest available page from the freelists
942 */
728ec980
MG
943static inline
944struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
945 int migratetype)
946{
947 unsigned int current_order;
b8af2941 948 struct free_area *area;
56fd56b8
MG
949 struct page *page;
950
951 /* Find a page of the appropriate size in the preferred list */
952 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
953 area = &(zone->free_area[current_order]);
954 if (list_empty(&area->free_list[migratetype]))
955 continue;
956
957 page = list_entry(area->free_list[migratetype].next,
958 struct page, lru);
959 list_del(&page->lru);
960 rmv_page_order(page);
961 area->nr_free--;
56fd56b8 962 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 963 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
964 return page;
965 }
966
967 return NULL;
968}
969
970
b2a0ac88
MG
971/*
972 * This array describes the order lists are fallen back to when
973 * the free lists for the desirable migrate type are depleted
974 */
47118af0
MN
975static int fallbacks[MIGRATE_TYPES][4] = {
976 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
977 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
978#ifdef CONFIG_CMA
979 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
980 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
981#else
982 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
983#endif
6d4a4916 984 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 985#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 986 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 987#endif
b2a0ac88
MG
988};
989
c361be55
MG
990/*
991 * Move the free pages in a range to the free lists of the requested type.
d9c23400 992 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
993 * boundary. If alignment is required, use move_freepages_block()
994 */
435b405c 995int move_freepages(struct zone *zone,
b69a7288
AB
996 struct page *start_page, struct page *end_page,
997 int migratetype)
c361be55
MG
998{
999 struct page *page;
1000 unsigned long order;
d100313f 1001 int pages_moved = 0;
c361be55
MG
1002
1003#ifndef CONFIG_HOLES_IN_ZONE
1004 /*
1005 * page_zone is not safe to call in this context when
1006 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1007 * anyway as we check zone boundaries in move_freepages_block().
1008 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1009 * grouping pages by mobility
c361be55
MG
1010 */
1011 BUG_ON(page_zone(start_page) != page_zone(end_page));
1012#endif
1013
1014 for (page = start_page; page <= end_page;) {
344c790e 1015 /* Make sure we are not inadvertently changing nodes */
309381fe 1016 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1017
c361be55
MG
1018 if (!pfn_valid_within(page_to_pfn(page))) {
1019 page++;
1020 continue;
1021 }
1022
1023 if (!PageBuddy(page)) {
1024 page++;
1025 continue;
1026 }
1027
1028 order = page_order(page);
84be48d8
KS
1029 list_move(&page->lru,
1030 &zone->free_area[order].free_list[migratetype]);
95e34412 1031 set_freepage_migratetype(page, migratetype);
c361be55 1032 page += 1 << order;
d100313f 1033 pages_moved += 1 << order;
c361be55
MG
1034 }
1035
d100313f 1036 return pages_moved;
c361be55
MG
1037}
1038
ee6f509c 1039int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1040 int migratetype)
c361be55
MG
1041{
1042 unsigned long start_pfn, end_pfn;
1043 struct page *start_page, *end_page;
1044
1045 start_pfn = page_to_pfn(page);
d9c23400 1046 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1047 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1048 end_page = start_page + pageblock_nr_pages - 1;
1049 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1050
1051 /* Do not cross zone boundaries */
108bcc96 1052 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1053 start_page = page;
108bcc96 1054 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1055 return 0;
1056
1057 return move_freepages(zone, start_page, end_page, migratetype);
1058}
1059
2f66a68f
MG
1060static void change_pageblock_range(struct page *pageblock_page,
1061 int start_order, int migratetype)
1062{
1063 int nr_pageblocks = 1 << (start_order - pageblock_order);
1064
1065 while (nr_pageblocks--) {
1066 set_pageblock_migratetype(pageblock_page, migratetype);
1067 pageblock_page += pageblock_nr_pages;
1068 }
1069}
1070
fef903ef
SB
1071/*
1072 * If breaking a large block of pages, move all free pages to the preferred
1073 * allocation list. If falling back for a reclaimable kernel allocation, be
1074 * more aggressive about taking ownership of free pages.
1075 *
1076 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1077 * nor move CMA pages to different free lists. We don't want unmovable pages
1078 * to be allocated from MIGRATE_CMA areas.
1079 *
1080 * Returns the new migratetype of the pageblock (or the same old migratetype
1081 * if it was unchanged).
1082 */
1083static int try_to_steal_freepages(struct zone *zone, struct page *page,
1084 int start_type, int fallback_type)
1085{
1086 int current_order = page_order(page);
1087
0cbef29a
KM
1088 /*
1089 * When borrowing from MIGRATE_CMA, we need to release the excess
5bcc9f86
VB
1090 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1091 * is set to CMA so it is returned to the correct freelist in case
1092 * the page ends up being not actually allocated from the pcp lists.
0cbef29a 1093 */
fef903ef
SB
1094 if (is_migrate_cma(fallback_type))
1095 return fallback_type;
1096
1097 /* Take ownership for orders >= pageblock_order */
1098 if (current_order >= pageblock_order) {
1099 change_pageblock_range(page, current_order, start_type);
1100 return start_type;
1101 }
1102
1103 if (current_order >= pageblock_order / 2 ||
1104 start_type == MIGRATE_RECLAIMABLE ||
1105 page_group_by_mobility_disabled) {
1106 int pages;
1107
1108 pages = move_freepages_block(zone, page, start_type);
1109
1110 /* Claim the whole block if over half of it is free */
1111 if (pages >= (1 << (pageblock_order-1)) ||
1112 page_group_by_mobility_disabled) {
1113
1114 set_pageblock_migratetype(page, start_type);
1115 return start_type;
1116 }
1117
1118 }
1119
1120 return fallback_type;
1121}
1122
b2a0ac88 1123/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1124static inline struct page *
7aeb09f9 1125__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1126{
b8af2941 1127 struct free_area *area;
7aeb09f9 1128 unsigned int current_order;
b2a0ac88 1129 struct page *page;
fef903ef 1130 int migratetype, new_type, i;
b2a0ac88
MG
1131
1132 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1133 for (current_order = MAX_ORDER-1;
1134 current_order >= order && current_order <= MAX_ORDER-1;
1135 --current_order) {
6d4a4916 1136 for (i = 0;; i++) {
b2a0ac88
MG
1137 migratetype = fallbacks[start_migratetype][i];
1138
56fd56b8
MG
1139 /* MIGRATE_RESERVE handled later if necessary */
1140 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1141 break;
e010487d 1142
b2a0ac88
MG
1143 area = &(zone->free_area[current_order]);
1144 if (list_empty(&area->free_list[migratetype]))
1145 continue;
1146
1147 page = list_entry(area->free_list[migratetype].next,
1148 struct page, lru);
1149 area->nr_free--;
1150
fef903ef
SB
1151 new_type = try_to_steal_freepages(zone, page,
1152 start_migratetype,
1153 migratetype);
b2a0ac88
MG
1154
1155 /* Remove the page from the freelists */
1156 list_del(&page->lru);
1157 rmv_page_order(page);
b2a0ac88 1158
47118af0 1159 expand(zone, page, order, current_order, area,
0cbef29a 1160 new_type);
5bcc9f86
VB
1161 /* The freepage_migratetype may differ from pageblock's
1162 * migratetype depending on the decisions in
1163 * try_to_steal_freepages. This is OK as long as it does
1164 * not differ for MIGRATE_CMA type.
1165 */
1166 set_freepage_migratetype(page, new_type);
e0fff1bd 1167
52c8f6a5
KM
1168 trace_mm_page_alloc_extfrag(page, order, current_order,
1169 start_migratetype, migratetype, new_type);
e0fff1bd 1170
b2a0ac88
MG
1171 return page;
1172 }
1173 }
1174
728ec980 1175 return NULL;
b2a0ac88
MG
1176}
1177
56fd56b8 1178/*
1da177e4
LT
1179 * Do the hard work of removing an element from the buddy allocator.
1180 * Call me with the zone->lock already held.
1181 */
b2a0ac88
MG
1182static struct page *__rmqueue(struct zone *zone, unsigned int order,
1183 int migratetype)
1da177e4 1184{
1da177e4
LT
1185 struct page *page;
1186
728ec980 1187retry_reserve:
56fd56b8 1188 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1189
728ec980 1190 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1191 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1192
728ec980
MG
1193 /*
1194 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1195 * is used because __rmqueue_smallest is an inline function
1196 * and we want just one call site
1197 */
1198 if (!page) {
1199 migratetype = MIGRATE_RESERVE;
1200 goto retry_reserve;
1201 }
1202 }
1203
0d3d062a 1204 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1205 return page;
1da177e4
LT
1206}
1207
5f63b720 1208/*
1da177e4
LT
1209 * Obtain a specified number of elements from the buddy allocator, all under
1210 * a single hold of the lock, for efficiency. Add them to the supplied list.
1211 * Returns the number of new pages which were placed at *list.
1212 */
5f63b720 1213static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1214 unsigned long count, struct list_head *list,
b745bc85 1215 int migratetype, bool cold)
1da177e4 1216{
5bcc9f86 1217 int i;
5f63b720 1218
c54ad30c 1219 spin_lock(&zone->lock);
1da177e4 1220 for (i = 0; i < count; ++i) {
b2a0ac88 1221 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1222 if (unlikely(page == NULL))
1da177e4 1223 break;
81eabcbe
MG
1224
1225 /*
1226 * Split buddy pages returned by expand() are received here
1227 * in physical page order. The page is added to the callers and
1228 * list and the list head then moves forward. From the callers
1229 * perspective, the linked list is ordered by page number in
1230 * some conditions. This is useful for IO devices that can
1231 * merge IO requests if the physical pages are ordered
1232 * properly.
1233 */
b745bc85 1234 if (likely(!cold))
e084b2d9
MG
1235 list_add(&page->lru, list);
1236 else
1237 list_add_tail(&page->lru, list);
81eabcbe 1238 list = &page->lru;
5bcc9f86 1239 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1240 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1241 -(1 << order));
1da177e4 1242 }
f2260e6b 1243 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1244 spin_unlock(&zone->lock);
085cc7d5 1245 return i;
1da177e4
LT
1246}
1247
4ae7c039 1248#ifdef CONFIG_NUMA
8fce4d8e 1249/*
4037d452
CL
1250 * Called from the vmstat counter updater to drain pagesets of this
1251 * currently executing processor on remote nodes after they have
1252 * expired.
1253 *
879336c3
CL
1254 * Note that this function must be called with the thread pinned to
1255 * a single processor.
8fce4d8e 1256 */
4037d452 1257void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1258{
4ae7c039 1259 unsigned long flags;
7be12fc9 1260 int to_drain, batch;
4ae7c039 1261
4037d452 1262 local_irq_save(flags);
998d39cb 1263 batch = ACCESS_ONCE(pcp->batch);
7be12fc9 1264 to_drain = min(pcp->count, batch);
2a13515c
KM
1265 if (to_drain > 0) {
1266 free_pcppages_bulk(zone, to_drain, pcp);
1267 pcp->count -= to_drain;
1268 }
4037d452 1269 local_irq_restore(flags);
4ae7c039
CL
1270}
1271#endif
1272
9f8f2172
CL
1273/*
1274 * Drain pages of the indicated processor.
1275 *
1276 * The processor must either be the current processor and the
1277 * thread pinned to the current processor or a processor that
1278 * is not online.
1279 */
1280static void drain_pages(unsigned int cpu)
1da177e4 1281{
c54ad30c 1282 unsigned long flags;
1da177e4 1283 struct zone *zone;
1da177e4 1284
ee99c71c 1285 for_each_populated_zone(zone) {
1da177e4 1286 struct per_cpu_pageset *pset;
3dfa5721 1287 struct per_cpu_pages *pcp;
1da177e4 1288
99dcc3e5
CL
1289 local_irq_save(flags);
1290 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1291
1292 pcp = &pset->pcp;
2ff754fa
DR
1293 if (pcp->count) {
1294 free_pcppages_bulk(zone, pcp->count, pcp);
1295 pcp->count = 0;
1296 }
3dfa5721 1297 local_irq_restore(flags);
1da177e4
LT
1298 }
1299}
1da177e4 1300
9f8f2172
CL
1301/*
1302 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1303 */
1304void drain_local_pages(void *arg)
1305{
1306 drain_pages(smp_processor_id());
1307}
1308
1309/*
74046494
GBY
1310 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1311 *
1312 * Note that this code is protected against sending an IPI to an offline
1313 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1314 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1315 * nothing keeps CPUs from showing up after we populated the cpumask and
1316 * before the call to on_each_cpu_mask().
9f8f2172
CL
1317 */
1318void drain_all_pages(void)
1319{
74046494
GBY
1320 int cpu;
1321 struct per_cpu_pageset *pcp;
1322 struct zone *zone;
1323
1324 /*
1325 * Allocate in the BSS so we wont require allocation in
1326 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1327 */
1328 static cpumask_t cpus_with_pcps;
1329
1330 /*
1331 * We don't care about racing with CPU hotplug event
1332 * as offline notification will cause the notified
1333 * cpu to drain that CPU pcps and on_each_cpu_mask
1334 * disables preemption as part of its processing
1335 */
1336 for_each_online_cpu(cpu) {
1337 bool has_pcps = false;
1338 for_each_populated_zone(zone) {
1339 pcp = per_cpu_ptr(zone->pageset, cpu);
1340 if (pcp->pcp.count) {
1341 has_pcps = true;
1342 break;
1343 }
1344 }
1345 if (has_pcps)
1346 cpumask_set_cpu(cpu, &cpus_with_pcps);
1347 else
1348 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1349 }
1350 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1351}
1352
296699de 1353#ifdef CONFIG_HIBERNATION
1da177e4
LT
1354
1355void mark_free_pages(struct zone *zone)
1356{
f623f0db
RW
1357 unsigned long pfn, max_zone_pfn;
1358 unsigned long flags;
7aeb09f9 1359 unsigned int order, t;
1da177e4
LT
1360 struct list_head *curr;
1361
8080fc03 1362 if (zone_is_empty(zone))
1da177e4
LT
1363 return;
1364
1365 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1366
108bcc96 1367 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1368 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1369 if (pfn_valid(pfn)) {
1370 struct page *page = pfn_to_page(pfn);
1371
7be98234
RW
1372 if (!swsusp_page_is_forbidden(page))
1373 swsusp_unset_page_free(page);
f623f0db 1374 }
1da177e4 1375
b2a0ac88
MG
1376 for_each_migratetype_order(order, t) {
1377 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1378 unsigned long i;
1da177e4 1379
f623f0db
RW
1380 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1381 for (i = 0; i < (1UL << order); i++)
7be98234 1382 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1383 }
b2a0ac88 1384 }
1da177e4
LT
1385 spin_unlock_irqrestore(&zone->lock, flags);
1386}
e2c55dc8 1387#endif /* CONFIG_PM */
1da177e4 1388
1da177e4
LT
1389/*
1390 * Free a 0-order page
b745bc85 1391 * cold == true ? free a cold page : free a hot page
1da177e4 1392 */
b745bc85 1393void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1394{
1395 struct zone *zone = page_zone(page);
1396 struct per_cpu_pages *pcp;
1397 unsigned long flags;
dc4b0caf 1398 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1399 int migratetype;
1da177e4 1400
ec95f53a 1401 if (!free_pages_prepare(page, 0))
689bcebf
HD
1402 return;
1403
dc4b0caf 1404 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1405 set_freepage_migratetype(page, migratetype);
1da177e4 1406 local_irq_save(flags);
f8891e5e 1407 __count_vm_event(PGFREE);
da456f14 1408
5f8dcc21
MG
1409 /*
1410 * We only track unmovable, reclaimable and movable on pcp lists.
1411 * Free ISOLATE pages back to the allocator because they are being
1412 * offlined but treat RESERVE as movable pages so we can get those
1413 * areas back if necessary. Otherwise, we may have to free
1414 * excessively into the page allocator
1415 */
1416 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1417 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1418 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1419 goto out;
1420 }
1421 migratetype = MIGRATE_MOVABLE;
1422 }
1423
99dcc3e5 1424 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1425 if (!cold)
5f8dcc21 1426 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1427 else
1428 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1429 pcp->count++;
48db57f8 1430 if (pcp->count >= pcp->high) {
998d39cb
CS
1431 unsigned long batch = ACCESS_ONCE(pcp->batch);
1432 free_pcppages_bulk(zone, batch, pcp);
1433 pcp->count -= batch;
48db57f8 1434 }
5f8dcc21
MG
1435
1436out:
1da177e4 1437 local_irq_restore(flags);
1da177e4
LT
1438}
1439
cc59850e
KK
1440/*
1441 * Free a list of 0-order pages
1442 */
b745bc85 1443void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1444{
1445 struct page *page, *next;
1446
1447 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1448 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1449 free_hot_cold_page(page, cold);
1450 }
1451}
1452
8dfcc9ba
NP
1453/*
1454 * split_page takes a non-compound higher-order page, and splits it into
1455 * n (1<<order) sub-pages: page[0..n]
1456 * Each sub-page must be freed individually.
1457 *
1458 * Note: this is probably too low level an operation for use in drivers.
1459 * Please consult with lkml before using this in your driver.
1460 */
1461void split_page(struct page *page, unsigned int order)
1462{
1463 int i;
1464
309381fe
SL
1465 VM_BUG_ON_PAGE(PageCompound(page), page);
1466 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1467
1468#ifdef CONFIG_KMEMCHECK
1469 /*
1470 * Split shadow pages too, because free(page[0]) would
1471 * otherwise free the whole shadow.
1472 */
1473 if (kmemcheck_page_is_tracked(page))
1474 split_page(virt_to_page(page[0].shadow), order);
1475#endif
1476
7835e98b
NP
1477 for (i = 1; i < (1 << order); i++)
1478 set_page_refcounted(page + i);
8dfcc9ba 1479}
5853ff23 1480EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1481
8fb74b9f 1482static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1483{
748446bb
MG
1484 unsigned long watermark;
1485 struct zone *zone;
2139cbe6 1486 int mt;
748446bb
MG
1487
1488 BUG_ON(!PageBuddy(page));
1489
1490 zone = page_zone(page);
2e30abd1 1491 mt = get_pageblock_migratetype(page);
748446bb 1492
194159fb 1493 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1494 /* Obey watermarks as if the page was being allocated */
1495 watermark = low_wmark_pages(zone) + (1 << order);
1496 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1497 return 0;
1498
8fb74b9f 1499 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1500 }
748446bb
MG
1501
1502 /* Remove page from free list */
1503 list_del(&page->lru);
1504 zone->free_area[order].nr_free--;
1505 rmv_page_order(page);
2139cbe6 1506
8fb74b9f 1507 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1508 if (order >= pageblock_order - 1) {
1509 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1510 for (; page < endpage; page += pageblock_nr_pages) {
1511 int mt = get_pageblock_migratetype(page);
194159fb 1512 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1513 set_pageblock_migratetype(page,
1514 MIGRATE_MOVABLE);
1515 }
748446bb
MG
1516 }
1517
8fb74b9f 1518 return 1UL << order;
1fb3f8ca
MG
1519}
1520
1521/*
1522 * Similar to split_page except the page is already free. As this is only
1523 * being used for migration, the migratetype of the block also changes.
1524 * As this is called with interrupts disabled, the caller is responsible
1525 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1526 * are enabled.
1527 *
1528 * Note: this is probably too low level an operation for use in drivers.
1529 * Please consult with lkml before using this in your driver.
1530 */
1531int split_free_page(struct page *page)
1532{
1533 unsigned int order;
1534 int nr_pages;
1535
1fb3f8ca
MG
1536 order = page_order(page);
1537
8fb74b9f 1538 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1539 if (!nr_pages)
1540 return 0;
1541
1542 /* Split into individual pages */
1543 set_page_refcounted(page);
1544 split_page(page, order);
1545 return nr_pages;
748446bb
MG
1546}
1547
1da177e4
LT
1548/*
1549 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1550 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1551 * or two.
1552 */
0a15c3e9
MG
1553static inline
1554struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
1555 struct zone *zone, unsigned int order,
1556 gfp_t gfp_flags, int migratetype)
1da177e4
LT
1557{
1558 unsigned long flags;
689bcebf 1559 struct page *page;
b745bc85 1560 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 1561
689bcebf 1562again:
48db57f8 1563 if (likely(order == 0)) {
1da177e4 1564 struct per_cpu_pages *pcp;
5f8dcc21 1565 struct list_head *list;
1da177e4 1566
1da177e4 1567 local_irq_save(flags);
99dcc3e5
CL
1568 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1569 list = &pcp->lists[migratetype];
5f8dcc21 1570 if (list_empty(list)) {
535131e6 1571 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1572 pcp->batch, list,
e084b2d9 1573 migratetype, cold);
5f8dcc21 1574 if (unlikely(list_empty(list)))
6fb332fa 1575 goto failed;
535131e6 1576 }
b92a6edd 1577
5f8dcc21
MG
1578 if (cold)
1579 page = list_entry(list->prev, struct page, lru);
1580 else
1581 page = list_entry(list->next, struct page, lru);
1582
b92a6edd
MG
1583 list_del(&page->lru);
1584 pcp->count--;
7fb1d9fc 1585 } else {
dab48dab
AM
1586 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1587 /*
1588 * __GFP_NOFAIL is not to be used in new code.
1589 *
1590 * All __GFP_NOFAIL callers should be fixed so that they
1591 * properly detect and handle allocation failures.
1592 *
1593 * We most definitely don't want callers attempting to
4923abf9 1594 * allocate greater than order-1 page units with
dab48dab
AM
1595 * __GFP_NOFAIL.
1596 */
4923abf9 1597 WARN_ON_ONCE(order > 1);
dab48dab 1598 }
1da177e4 1599 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1600 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1601 spin_unlock(&zone->lock);
1602 if (!page)
1603 goto failed;
d1ce749a 1604 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1605 get_freepage_migratetype(page));
1da177e4
LT
1606 }
1607
3a025760 1608 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
27329369 1609
f8891e5e 1610 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1611 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1612 local_irq_restore(flags);
1da177e4 1613
309381fe 1614 VM_BUG_ON_PAGE(bad_range(zone, page), page);
17cf4406 1615 if (prep_new_page(page, order, gfp_flags))
a74609fa 1616 goto again;
1da177e4 1617 return page;
a74609fa
NP
1618
1619failed:
1620 local_irq_restore(flags);
a74609fa 1621 return NULL;
1da177e4
LT
1622}
1623
933e312e
AM
1624#ifdef CONFIG_FAIL_PAGE_ALLOC
1625
b2588c4b 1626static struct {
933e312e
AM
1627 struct fault_attr attr;
1628
1629 u32 ignore_gfp_highmem;
1630 u32 ignore_gfp_wait;
54114994 1631 u32 min_order;
933e312e
AM
1632} fail_page_alloc = {
1633 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1634 .ignore_gfp_wait = 1,
1635 .ignore_gfp_highmem = 1,
54114994 1636 .min_order = 1,
933e312e
AM
1637};
1638
1639static int __init setup_fail_page_alloc(char *str)
1640{
1641 return setup_fault_attr(&fail_page_alloc.attr, str);
1642}
1643__setup("fail_page_alloc=", setup_fail_page_alloc);
1644
deaf386e 1645static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1646{
54114994 1647 if (order < fail_page_alloc.min_order)
deaf386e 1648 return false;
933e312e 1649 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1650 return false;
933e312e 1651 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1652 return false;
933e312e 1653 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1654 return false;
933e312e
AM
1655
1656 return should_fail(&fail_page_alloc.attr, 1 << order);
1657}
1658
1659#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1660
1661static int __init fail_page_alloc_debugfs(void)
1662{
f4ae40a6 1663 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1664 struct dentry *dir;
933e312e 1665
dd48c085
AM
1666 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1667 &fail_page_alloc.attr);
1668 if (IS_ERR(dir))
1669 return PTR_ERR(dir);
933e312e 1670
b2588c4b
AM
1671 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1672 &fail_page_alloc.ignore_gfp_wait))
1673 goto fail;
1674 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1675 &fail_page_alloc.ignore_gfp_highmem))
1676 goto fail;
1677 if (!debugfs_create_u32("min-order", mode, dir,
1678 &fail_page_alloc.min_order))
1679 goto fail;
1680
1681 return 0;
1682fail:
dd48c085 1683 debugfs_remove_recursive(dir);
933e312e 1684
b2588c4b 1685 return -ENOMEM;
933e312e
AM
1686}
1687
1688late_initcall(fail_page_alloc_debugfs);
1689
1690#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1691
1692#else /* CONFIG_FAIL_PAGE_ALLOC */
1693
deaf386e 1694static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1695{
deaf386e 1696 return false;
933e312e
AM
1697}
1698
1699#endif /* CONFIG_FAIL_PAGE_ALLOC */
1700
1da177e4 1701/*
88f5acf8 1702 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1703 * of the allocation.
1704 */
7aeb09f9
MG
1705static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1706 unsigned long mark, int classzone_idx, int alloc_flags,
1707 long free_pages)
1da177e4
LT
1708{
1709 /* free_pages my go negative - that's OK */
d23ad423 1710 long min = mark;
1da177e4 1711 int o;
026b0814 1712 long free_cma = 0;
1da177e4 1713
df0a6daa 1714 free_pages -= (1 << order) - 1;
7fb1d9fc 1715 if (alloc_flags & ALLOC_HIGH)
1da177e4 1716 min -= min / 2;
7fb1d9fc 1717 if (alloc_flags & ALLOC_HARDER)
1da177e4 1718 min -= min / 4;
d95ea5d1
BZ
1719#ifdef CONFIG_CMA
1720 /* If allocation can't use CMA areas don't use free CMA pages */
1721 if (!(alloc_flags & ALLOC_CMA))
026b0814 1722 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1723#endif
026b0814 1724
3484b2de 1725 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1726 return false;
1da177e4
LT
1727 for (o = 0; o < order; o++) {
1728 /* At the next order, this order's pages become unavailable */
1729 free_pages -= z->free_area[o].nr_free << o;
1730
1731 /* Require fewer higher order pages to be free */
1732 min >>= 1;
1733
1734 if (free_pages <= min)
88f5acf8 1735 return false;
1da177e4 1736 }
88f5acf8
MG
1737 return true;
1738}
1739
7aeb09f9 1740bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
1741 int classzone_idx, int alloc_flags)
1742{
1743 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1744 zone_page_state(z, NR_FREE_PAGES));
1745}
1746
7aeb09f9
MG
1747bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1748 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
1749{
1750 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1751
1752 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1753 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1754
1755 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1756 free_pages);
1da177e4
LT
1757}
1758
9276b1bc
PJ
1759#ifdef CONFIG_NUMA
1760/*
1761 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1762 * skip over zones that are not allowed by the cpuset, or that have
1763 * been recently (in last second) found to be nearly full. See further
1764 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1765 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1766 *
a1aeb65a 1767 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1768 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1769 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1770 *
1771 * If the zonelist cache is not available for this zonelist, does
1772 * nothing and returns NULL.
1773 *
1774 * If the fullzones BITMAP in the zonelist cache is stale (more than
1775 * a second since last zap'd) then we zap it out (clear its bits.)
1776 *
1777 * We hold off even calling zlc_setup, until after we've checked the
1778 * first zone in the zonelist, on the theory that most allocations will
1779 * be satisfied from that first zone, so best to examine that zone as
1780 * quickly as we can.
1781 */
1782static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1783{
1784 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1785 nodemask_t *allowednodes; /* zonelist_cache approximation */
1786
1787 zlc = zonelist->zlcache_ptr;
1788 if (!zlc)
1789 return NULL;
1790
f05111f5 1791 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1792 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1793 zlc->last_full_zap = jiffies;
1794 }
1795
1796 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1797 &cpuset_current_mems_allowed :
4b0ef1fe 1798 &node_states[N_MEMORY];
9276b1bc
PJ
1799 return allowednodes;
1800}
1801
1802/*
1803 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1804 * if it is worth looking at further for free memory:
1805 * 1) Check that the zone isn't thought to be full (doesn't have its
1806 * bit set in the zonelist_cache fullzones BITMAP).
1807 * 2) Check that the zones node (obtained from the zonelist_cache
1808 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1809 * Return true (non-zero) if zone is worth looking at further, or
1810 * else return false (zero) if it is not.
1811 *
1812 * This check -ignores- the distinction between various watermarks,
1813 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1814 * found to be full for any variation of these watermarks, it will
1815 * be considered full for up to one second by all requests, unless
1816 * we are so low on memory on all allowed nodes that we are forced
1817 * into the second scan of the zonelist.
1818 *
1819 * In the second scan we ignore this zonelist cache and exactly
1820 * apply the watermarks to all zones, even it is slower to do so.
1821 * We are low on memory in the second scan, and should leave no stone
1822 * unturned looking for a free page.
1823 */
dd1a239f 1824static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1825 nodemask_t *allowednodes)
1826{
1827 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1828 int i; /* index of *z in zonelist zones */
1829 int n; /* node that zone *z is on */
1830
1831 zlc = zonelist->zlcache_ptr;
1832 if (!zlc)
1833 return 1;
1834
dd1a239f 1835 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1836 n = zlc->z_to_n[i];
1837
1838 /* This zone is worth trying if it is allowed but not full */
1839 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1840}
1841
1842/*
1843 * Given 'z' scanning a zonelist, set the corresponding bit in
1844 * zlc->fullzones, so that subsequent attempts to allocate a page
1845 * from that zone don't waste time re-examining it.
1846 */
dd1a239f 1847static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1848{
1849 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1850 int i; /* index of *z in zonelist zones */
1851
1852 zlc = zonelist->zlcache_ptr;
1853 if (!zlc)
1854 return;
1855
dd1a239f 1856 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1857
1858 set_bit(i, zlc->fullzones);
1859}
1860
76d3fbf8
MG
1861/*
1862 * clear all zones full, called after direct reclaim makes progress so that
1863 * a zone that was recently full is not skipped over for up to a second
1864 */
1865static void zlc_clear_zones_full(struct zonelist *zonelist)
1866{
1867 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1868
1869 zlc = zonelist->zlcache_ptr;
1870 if (!zlc)
1871 return;
1872
1873 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1874}
1875
81c0a2bb
JW
1876static bool zone_local(struct zone *local_zone, struct zone *zone)
1877{
fff4068c 1878 return local_zone->node == zone->node;
81c0a2bb
JW
1879}
1880
957f822a
DR
1881static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1882{
5f7a75ac
MG
1883 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1884 RECLAIM_DISTANCE;
957f822a
DR
1885}
1886
9276b1bc
PJ
1887#else /* CONFIG_NUMA */
1888
1889static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1890{
1891 return NULL;
1892}
1893
dd1a239f 1894static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1895 nodemask_t *allowednodes)
1896{
1897 return 1;
1898}
1899
dd1a239f 1900static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1901{
1902}
76d3fbf8
MG
1903
1904static void zlc_clear_zones_full(struct zonelist *zonelist)
1905{
1906}
957f822a 1907
81c0a2bb
JW
1908static bool zone_local(struct zone *local_zone, struct zone *zone)
1909{
1910 return true;
1911}
1912
957f822a
DR
1913static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1914{
1915 return true;
1916}
1917
9276b1bc
PJ
1918#endif /* CONFIG_NUMA */
1919
7fb1d9fc 1920/*
0798e519 1921 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1922 * a page.
1923 */
1924static struct page *
19770b32 1925get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1926 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
d8846374 1927 struct zone *preferred_zone, int classzone_idx, int migratetype)
753ee728 1928{
dd1a239f 1929 struct zoneref *z;
7fb1d9fc 1930 struct page *page = NULL;
5117f45d 1931 struct zone *zone;
9276b1bc
PJ
1932 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1933 int zlc_active = 0; /* set if using zonelist_cache */
1934 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
1935 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1936 (gfp_mask & __GFP_WRITE);
54a6eb5c 1937
9276b1bc 1938zonelist_scan:
7fb1d9fc 1939 /*
9276b1bc 1940 * Scan zonelist, looking for a zone with enough free.
3b11f0aa 1941 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
7fb1d9fc 1942 */
19770b32
MG
1943 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1944 high_zoneidx, nodemask) {
e085dbc5
JW
1945 unsigned long mark;
1946
e5adfffc 1947 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1948 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1949 continue;
664eedde
MG
1950 if (cpusets_enabled() &&
1951 (alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1952 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1953 continue;
81c0a2bb
JW
1954 /*
1955 * Distribute pages in proportion to the individual
1956 * zone size to ensure fair page aging. The zone a
1957 * page was allocated in should have no effect on the
1958 * time the page has in memory before being reclaimed.
81c0a2bb 1959 */
3a025760 1960 if (alloc_flags & ALLOC_FAIR) {
fff4068c 1961 if (!zone_local(preferred_zone, zone))
81c0a2bb 1962 continue;
3a025760
JW
1963 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1964 continue;
81c0a2bb 1965 }
a756cf59
JW
1966 /*
1967 * When allocating a page cache page for writing, we
1968 * want to get it from a zone that is within its dirty
1969 * limit, such that no single zone holds more than its
1970 * proportional share of globally allowed dirty pages.
1971 * The dirty limits take into account the zone's
1972 * lowmem reserves and high watermark so that kswapd
1973 * should be able to balance it without having to
1974 * write pages from its LRU list.
1975 *
1976 * This may look like it could increase pressure on
1977 * lower zones by failing allocations in higher zones
1978 * before they are full. But the pages that do spill
1979 * over are limited as the lower zones are protected
1980 * by this very same mechanism. It should not become
1981 * a practical burden to them.
1982 *
1983 * XXX: For now, allow allocations to potentially
1984 * exceed the per-zone dirty limit in the slowpath
1985 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1986 * which is important when on a NUMA setup the allowed
1987 * zones are together not big enough to reach the
1988 * global limit. The proper fix for these situations
1989 * will require awareness of zones in the
1990 * dirty-throttling and the flusher threads.
1991 */
a6e21b14 1992 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 1993 continue;
7fb1d9fc 1994
e085dbc5
JW
1995 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1996 if (!zone_watermark_ok(zone, order, mark,
1997 classzone_idx, alloc_flags)) {
fa5e084e
MG
1998 int ret;
1999
5dab2911
MG
2000 /* Checked here to keep the fast path fast */
2001 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2002 if (alloc_flags & ALLOC_NO_WATERMARKS)
2003 goto try_this_zone;
2004
e5adfffc
KS
2005 if (IS_ENABLED(CONFIG_NUMA) &&
2006 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2007 /*
2008 * we do zlc_setup if there are multiple nodes
2009 * and before considering the first zone allowed
2010 * by the cpuset.
2011 */
2012 allowednodes = zlc_setup(zonelist, alloc_flags);
2013 zlc_active = 1;
2014 did_zlc_setup = 1;
2015 }
2016
957f822a
DR
2017 if (zone_reclaim_mode == 0 ||
2018 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
2019 goto this_zone_full;
2020
cd38b115
MG
2021 /*
2022 * As we may have just activated ZLC, check if the first
2023 * eligible zone has failed zone_reclaim recently.
2024 */
e5adfffc 2025 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2026 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2027 continue;
2028
fa5e084e
MG
2029 ret = zone_reclaim(zone, gfp_mask, order);
2030 switch (ret) {
2031 case ZONE_RECLAIM_NOSCAN:
2032 /* did not scan */
cd38b115 2033 continue;
fa5e084e
MG
2034 case ZONE_RECLAIM_FULL:
2035 /* scanned but unreclaimable */
cd38b115 2036 continue;
fa5e084e
MG
2037 default:
2038 /* did we reclaim enough */
fed2719e 2039 if (zone_watermark_ok(zone, order, mark,
fa5e084e 2040 classzone_idx, alloc_flags))
fed2719e
MG
2041 goto try_this_zone;
2042
2043 /*
2044 * Failed to reclaim enough to meet watermark.
2045 * Only mark the zone full if checking the min
2046 * watermark or if we failed to reclaim just
2047 * 1<<order pages or else the page allocator
2048 * fastpath will prematurely mark zones full
2049 * when the watermark is between the low and
2050 * min watermarks.
2051 */
2052 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2053 ret == ZONE_RECLAIM_SOME)
9276b1bc 2054 goto this_zone_full;
fed2719e
MG
2055
2056 continue;
0798e519 2057 }
7fb1d9fc
RS
2058 }
2059
fa5e084e 2060try_this_zone:
3dd28266
MG
2061 page = buffered_rmqueue(preferred_zone, zone, order,
2062 gfp_mask, migratetype);
0798e519 2063 if (page)
7fb1d9fc 2064 break;
9276b1bc 2065this_zone_full:
65bb3719 2066 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2067 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2068 }
9276b1bc 2069
e5adfffc 2070 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
2071 /* Disable zlc cache for second zonelist scan */
2072 zlc_active = 0;
2073 goto zonelist_scan;
2074 }
b121186a
AS
2075
2076 if (page)
2077 /*
2078 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2079 * necessary to allocate the page. The expectation is
2080 * that the caller is taking steps that will free more
2081 * memory. The caller should avoid the page being used
2082 * for !PFMEMALLOC purposes.
2083 */
2084 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2085
7fb1d9fc 2086 return page;
753ee728
MH
2087}
2088
29423e77
DR
2089/*
2090 * Large machines with many possible nodes should not always dump per-node
2091 * meminfo in irq context.
2092 */
2093static inline bool should_suppress_show_mem(void)
2094{
2095 bool ret = false;
2096
2097#if NODES_SHIFT > 8
2098 ret = in_interrupt();
2099#endif
2100 return ret;
2101}
2102
a238ab5b
DH
2103static DEFINE_RATELIMIT_STATE(nopage_rs,
2104 DEFAULT_RATELIMIT_INTERVAL,
2105 DEFAULT_RATELIMIT_BURST);
2106
2107void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2108{
a238ab5b
DH
2109 unsigned int filter = SHOW_MEM_FILTER_NODES;
2110
c0a32fc5
SG
2111 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2112 debug_guardpage_minorder() > 0)
a238ab5b
DH
2113 return;
2114
2115 /*
2116 * This documents exceptions given to allocations in certain
2117 * contexts that are allowed to allocate outside current's set
2118 * of allowed nodes.
2119 */
2120 if (!(gfp_mask & __GFP_NOMEMALLOC))
2121 if (test_thread_flag(TIF_MEMDIE) ||
2122 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2123 filter &= ~SHOW_MEM_FILTER_NODES;
2124 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2125 filter &= ~SHOW_MEM_FILTER_NODES;
2126
2127 if (fmt) {
3ee9a4f0
JP
2128 struct va_format vaf;
2129 va_list args;
2130
a238ab5b 2131 va_start(args, fmt);
3ee9a4f0
JP
2132
2133 vaf.fmt = fmt;
2134 vaf.va = &args;
2135
2136 pr_warn("%pV", &vaf);
2137
a238ab5b
DH
2138 va_end(args);
2139 }
2140
3ee9a4f0
JP
2141 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2142 current->comm, order, gfp_mask);
a238ab5b
DH
2143
2144 dump_stack();
2145 if (!should_suppress_show_mem())
2146 show_mem(filter);
2147}
2148
11e33f6a
MG
2149static inline int
2150should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2151 unsigned long did_some_progress,
11e33f6a 2152 unsigned long pages_reclaimed)
1da177e4 2153{
11e33f6a
MG
2154 /* Do not loop if specifically requested */
2155 if (gfp_mask & __GFP_NORETRY)
2156 return 0;
1da177e4 2157
f90ac398
MG
2158 /* Always retry if specifically requested */
2159 if (gfp_mask & __GFP_NOFAIL)
2160 return 1;
2161
2162 /*
2163 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2164 * making forward progress without invoking OOM. Suspend also disables
2165 * storage devices so kswapd will not help. Bail if we are suspending.
2166 */
2167 if (!did_some_progress && pm_suspended_storage())
2168 return 0;
2169
11e33f6a
MG
2170 /*
2171 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2172 * means __GFP_NOFAIL, but that may not be true in other
2173 * implementations.
2174 */
2175 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2176 return 1;
2177
2178 /*
2179 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2180 * specified, then we retry until we no longer reclaim any pages
2181 * (above), or we've reclaimed an order of pages at least as
2182 * large as the allocation's order. In both cases, if the
2183 * allocation still fails, we stop retrying.
2184 */
2185 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2186 return 1;
cf40bd16 2187
11e33f6a
MG
2188 return 0;
2189}
933e312e 2190
11e33f6a
MG
2191static inline struct page *
2192__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2193 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2194 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2195 int classzone_idx, int migratetype)
11e33f6a
MG
2196{
2197 struct page *page;
2198
2199 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2200 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2201 schedule_timeout_uninterruptible(1);
1da177e4
LT
2202 return NULL;
2203 }
6b1de916 2204
11e33f6a
MG
2205 /*
2206 * Go through the zonelist yet one more time, keep very high watermark
2207 * here, this is only to catch a parallel oom killing, we must fail if
2208 * we're still under heavy pressure.
2209 */
2210 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2211 order, zonelist, high_zoneidx,
5117f45d 2212 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
d8846374 2213 preferred_zone, classzone_idx, migratetype);
7fb1d9fc 2214 if (page)
11e33f6a
MG
2215 goto out;
2216
4365a567
KH
2217 if (!(gfp_mask & __GFP_NOFAIL)) {
2218 /* The OOM killer will not help higher order allocs */
2219 if (order > PAGE_ALLOC_COSTLY_ORDER)
2220 goto out;
03668b3c
DR
2221 /* The OOM killer does not needlessly kill tasks for lowmem */
2222 if (high_zoneidx < ZONE_NORMAL)
2223 goto out;
4365a567
KH
2224 /*
2225 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2226 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2227 * The caller should handle page allocation failure by itself if
2228 * it specifies __GFP_THISNODE.
2229 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2230 */
2231 if (gfp_mask & __GFP_THISNODE)
2232 goto out;
2233 }
11e33f6a 2234 /* Exhausted what can be done so it's blamo time */
08ab9b10 2235 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2236
2237out:
2238 clear_zonelist_oom(zonelist, gfp_mask);
2239 return page;
2240}
2241
56de7263
MG
2242#ifdef CONFIG_COMPACTION
2243/* Try memory compaction for high-order allocations before reclaim */
2244static struct page *
2245__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2246 struct zonelist *zonelist, enum zone_type high_zoneidx,
2247 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374 2248 int classzone_idx, int migratetype, enum migrate_mode mode,
c67fe375 2249 bool *contended_compaction, bool *deferred_compaction,
66199712 2250 unsigned long *did_some_progress)
56de7263 2251{
66199712 2252 if (!order)
56de7263
MG
2253 return NULL;
2254
aff62249 2255 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2256 *deferred_compaction = true;
2257 return NULL;
2258 }
2259
c06b1fca 2260 current->flags |= PF_MEMALLOC;
56de7263 2261 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
e0b9daeb 2262 nodemask, mode,
8fb74b9f 2263 contended_compaction);
c06b1fca 2264 current->flags &= ~PF_MEMALLOC;
56de7263 2265
1fb3f8ca 2266 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2267 struct page *page;
2268
56de7263
MG
2269 /* Page migration frees to the PCP lists but we want merging */
2270 drain_pages(get_cpu());
2271 put_cpu();
2272
2273 page = get_page_from_freelist(gfp_mask, nodemask,
2274 order, zonelist, high_zoneidx,
cfd19c5a 2275 alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374 2276 preferred_zone, classzone_idx, migratetype);
56de7263 2277 if (page) {
62997027 2278 preferred_zone->compact_blockskip_flush = false;
de6c60a6 2279 compaction_defer_reset(preferred_zone, order, true);
56de7263
MG
2280 count_vm_event(COMPACTSUCCESS);
2281 return page;
2282 }
2283
2284 /*
2285 * It's bad if compaction run occurs and fails.
2286 * The most likely reason is that pages exist,
2287 * but not enough to satisfy watermarks.
2288 */
2289 count_vm_event(COMPACTFAIL);
66199712
MG
2290
2291 /*
2292 * As async compaction considers a subset of pageblocks, only
2293 * defer if the failure was a sync compaction failure.
2294 */
e0b9daeb 2295 if (mode != MIGRATE_ASYNC)
aff62249 2296 defer_compaction(preferred_zone, order);
56de7263
MG
2297
2298 cond_resched();
2299 }
2300
2301 return NULL;
2302}
2303#else
2304static inline struct page *
2305__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2306 struct zonelist *zonelist, enum zone_type high_zoneidx,
2307 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374
MG
2308 int classzone_idx, int migratetype,
2309 enum migrate_mode mode, bool *contended_compaction,
e0b9daeb 2310 bool *deferred_compaction, unsigned long *did_some_progress)
56de7263
MG
2311{
2312 return NULL;
2313}
2314#endif /* CONFIG_COMPACTION */
2315
bba90710
MS
2316/* Perform direct synchronous page reclaim */
2317static int
2318__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2319 nodemask_t *nodemask)
11e33f6a 2320{
11e33f6a 2321 struct reclaim_state reclaim_state;
bba90710 2322 int progress;
11e33f6a
MG
2323
2324 cond_resched();
2325
2326 /* We now go into synchronous reclaim */
2327 cpuset_memory_pressure_bump();
c06b1fca 2328 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2329 lockdep_set_current_reclaim_state(gfp_mask);
2330 reclaim_state.reclaimed_slab = 0;
c06b1fca 2331 current->reclaim_state = &reclaim_state;
11e33f6a 2332
bba90710 2333 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2334
c06b1fca 2335 current->reclaim_state = NULL;
11e33f6a 2336 lockdep_clear_current_reclaim_state();
c06b1fca 2337 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2338
2339 cond_resched();
2340
bba90710
MS
2341 return progress;
2342}
2343
2344/* The really slow allocator path where we enter direct reclaim */
2345static inline struct page *
2346__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2347 struct zonelist *zonelist, enum zone_type high_zoneidx,
2348 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374 2349 int classzone_idx, int migratetype, unsigned long *did_some_progress)
bba90710
MS
2350{
2351 struct page *page = NULL;
2352 bool drained = false;
2353
2354 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2355 nodemask);
9ee493ce
MG
2356 if (unlikely(!(*did_some_progress)))
2357 return NULL;
11e33f6a 2358
76d3fbf8 2359 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2360 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2361 zlc_clear_zones_full(zonelist);
2362
9ee493ce
MG
2363retry:
2364 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2365 zonelist, high_zoneidx,
cfd19c5a 2366 alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374
MG
2367 preferred_zone, classzone_idx,
2368 migratetype);
9ee493ce
MG
2369
2370 /*
2371 * If an allocation failed after direct reclaim, it could be because
2372 * pages are pinned on the per-cpu lists. Drain them and try again
2373 */
2374 if (!page && !drained) {
2375 drain_all_pages();
2376 drained = true;
2377 goto retry;
2378 }
2379
11e33f6a
MG
2380 return page;
2381}
2382
1da177e4 2383/*
11e33f6a
MG
2384 * This is called in the allocator slow-path if the allocation request is of
2385 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2386 */
11e33f6a
MG
2387static inline struct page *
2388__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2389 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2390 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2391 int classzone_idx, int migratetype)
11e33f6a
MG
2392{
2393 struct page *page;
2394
2395 do {
2396 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2397 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
d8846374 2398 preferred_zone, classzone_idx, migratetype);
11e33f6a
MG
2399
2400 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2401 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2402 } while (!page && (gfp_mask & __GFP_NOFAIL));
2403
2404 return page;
2405}
2406
3a025760
JW
2407static void reset_alloc_batches(struct zonelist *zonelist,
2408 enum zone_type high_zoneidx,
2409 struct zone *preferred_zone)
1da177e4 2410{
dd1a239f
MG
2411 struct zoneref *z;
2412 struct zone *zone;
1da177e4 2413
81c0a2bb 2414 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81c0a2bb
JW
2415 /*
2416 * Only reset the batches of zones that were actually
3a025760
JW
2417 * considered in the fairness pass, we don't want to
2418 * trash fairness information for zones that are not
81c0a2bb
JW
2419 * actually part of this zonelist's round-robin cycle.
2420 */
fff4068c 2421 if (!zone_local(preferred_zone, zone))
81c0a2bb
JW
2422 continue;
2423 mod_zone_page_state(zone, NR_ALLOC_BATCH,
3a025760
JW
2424 high_wmark_pages(zone) - low_wmark_pages(zone) -
2425 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 2426 }
11e33f6a 2427}
cf40bd16 2428
3a025760
JW
2429static void wake_all_kswapds(unsigned int order,
2430 struct zonelist *zonelist,
2431 enum zone_type high_zoneidx,
2432 struct zone *preferred_zone)
2433{
2434 struct zoneref *z;
2435 struct zone *zone;
2436
2437 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2438 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2439}
2440
341ce06f
PZ
2441static inline int
2442gfp_to_alloc_flags(gfp_t gfp_mask)
2443{
341ce06f 2444 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2445 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2446
a56f57ff 2447 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2448 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2449
341ce06f
PZ
2450 /*
2451 * The caller may dip into page reserves a bit more if the caller
2452 * cannot run direct reclaim, or if the caller has realtime scheduling
2453 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2454 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2455 */
e6223a3b 2456 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2457
b104a35d 2458 if (atomic) {
5c3240d9 2459 /*
b104a35d
DR
2460 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2461 * if it can't schedule.
5c3240d9 2462 */
b104a35d 2463 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2464 alloc_flags |= ALLOC_HARDER;
523b9458 2465 /*
b104a35d
DR
2466 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2467 * comment for __cpuset_node_allowed_softwall().
523b9458 2468 */
341ce06f 2469 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2470 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2471 alloc_flags |= ALLOC_HARDER;
2472
b37f1dd0
MG
2473 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2474 if (gfp_mask & __GFP_MEMALLOC)
2475 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2476 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2477 alloc_flags |= ALLOC_NO_WATERMARKS;
2478 else if (!in_interrupt() &&
2479 ((current->flags & PF_MEMALLOC) ||
2480 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2481 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2482 }
d95ea5d1
BZ
2483#ifdef CONFIG_CMA
2484 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2485 alloc_flags |= ALLOC_CMA;
2486#endif
341ce06f
PZ
2487 return alloc_flags;
2488}
2489
072bb0aa
MG
2490bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2491{
b37f1dd0 2492 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2493}
2494
11e33f6a
MG
2495static inline struct page *
2496__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2497 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2498 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2499 int classzone_idx, int migratetype)
11e33f6a
MG
2500{
2501 const gfp_t wait = gfp_mask & __GFP_WAIT;
2502 struct page *page = NULL;
2503 int alloc_flags;
2504 unsigned long pages_reclaimed = 0;
2505 unsigned long did_some_progress;
e0b9daeb 2506 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2507 bool deferred_compaction = false;
c67fe375 2508 bool contended_compaction = false;
1da177e4 2509
72807a74
MG
2510 /*
2511 * In the slowpath, we sanity check order to avoid ever trying to
2512 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2513 * be using allocators in order of preference for an area that is
2514 * too large.
2515 */
1fc28b70
MG
2516 if (order >= MAX_ORDER) {
2517 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2518 return NULL;
1fc28b70 2519 }
1da177e4 2520
952f3b51
CL
2521 /*
2522 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2523 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2524 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2525 * using a larger set of nodes after it has established that the
2526 * allowed per node queues are empty and that nodes are
2527 * over allocated.
2528 */
3a025760
JW
2529 if (IS_ENABLED(CONFIG_NUMA) &&
2530 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2531 goto nopage;
2532
cc4a6851 2533restart:
3a025760
JW
2534 if (!(gfp_mask & __GFP_NO_KSWAPD))
2535 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
1da177e4 2536
9bf2229f 2537 /*
7fb1d9fc
RS
2538 * OK, we're below the kswapd watermark and have kicked background
2539 * reclaim. Now things get more complex, so set up alloc_flags according
2540 * to how we want to proceed.
9bf2229f 2541 */
341ce06f 2542 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2543
f33261d7
DR
2544 /*
2545 * Find the true preferred zone if the allocation is unconstrained by
2546 * cpusets.
2547 */
d8846374
MG
2548 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2549 struct zoneref *preferred_zoneref;
2550 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2551 NULL, &preferred_zone);
2552 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2553 }
f33261d7 2554
cfa54a0f 2555rebalance:
341ce06f 2556 /* This is the last chance, in general, before the goto nopage. */
19770b32 2557 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f 2558 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374 2559 preferred_zone, classzone_idx, migratetype);
7fb1d9fc
RS
2560 if (page)
2561 goto got_pg;
1da177e4 2562
11e33f6a 2563 /* Allocate without watermarks if the context allows */
341ce06f 2564 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2565 /*
2566 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2567 * the allocation is high priority and these type of
2568 * allocations are system rather than user orientated
2569 */
2570 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2571
341ce06f
PZ
2572 page = __alloc_pages_high_priority(gfp_mask, order,
2573 zonelist, high_zoneidx, nodemask,
d8846374 2574 preferred_zone, classzone_idx, migratetype);
cfd19c5a 2575 if (page) {
341ce06f 2576 goto got_pg;
cfd19c5a 2577 }
1da177e4
LT
2578 }
2579
2580 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2581 if (!wait) {
2582 /*
2583 * All existing users of the deprecated __GFP_NOFAIL are
2584 * blockable, so warn of any new users that actually allow this
2585 * type of allocation to fail.
2586 */
2587 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2588 goto nopage;
aed0a0e3 2589 }
1da177e4 2590
341ce06f 2591 /* Avoid recursion of direct reclaim */
c06b1fca 2592 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2593 goto nopage;
2594
6583bb64
DR
2595 /* Avoid allocations with no watermarks from looping endlessly */
2596 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2597 goto nopage;
2598
77f1fe6b
MG
2599 /*
2600 * Try direct compaction. The first pass is asynchronous. Subsequent
2601 * attempts after direct reclaim are synchronous
2602 */
e0b9daeb
DR
2603 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2604 high_zoneidx, nodemask, alloc_flags,
d8846374
MG
2605 preferred_zone,
2606 classzone_idx, migratetype,
e0b9daeb 2607 migration_mode, &contended_compaction,
66199712
MG
2608 &deferred_compaction,
2609 &did_some_progress);
56de7263
MG
2610 if (page)
2611 goto got_pg;
75f30861
DR
2612
2613 /*
2614 * It can become very expensive to allocate transparent hugepages at
2615 * fault, so use asynchronous memory compaction for THP unless it is
2616 * khugepaged trying to collapse.
2617 */
2618 if (!(gfp_mask & __GFP_NO_KSWAPD) || (current->flags & PF_KTHREAD))
2619 migration_mode = MIGRATE_SYNC_LIGHT;
56de7263 2620
31f8d42d
LT
2621 /*
2622 * If compaction is deferred for high-order allocations, it is because
2623 * sync compaction recently failed. In this is the case and the caller
2624 * requested a movable allocation that does not heavily disrupt the
2625 * system then fail the allocation instead of entering direct reclaim.
2626 */
2627 if ((deferred_compaction || contended_compaction) &&
caf49191 2628 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2629 goto nopage;
66199712 2630
11e33f6a
MG
2631 /* Try direct reclaim and then allocating */
2632 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2633 zonelist, high_zoneidx,
2634 nodemask,
5117f45d 2635 alloc_flags, preferred_zone,
d8846374
MG
2636 classzone_idx, migratetype,
2637 &did_some_progress);
11e33f6a
MG
2638 if (page)
2639 goto got_pg;
1da177e4 2640
e33c3b5e 2641 /*
11e33f6a
MG
2642 * If we failed to make any progress reclaiming, then we are
2643 * running out of options and have to consider going OOM
e33c3b5e 2644 */
11e33f6a 2645 if (!did_some_progress) {
b9921ecd 2646 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2647 if (oom_killer_disabled)
2648 goto nopage;
29fd66d2
DR
2649 /* Coredumps can quickly deplete all memory reserves */
2650 if ((current->flags & PF_DUMPCORE) &&
2651 !(gfp_mask & __GFP_NOFAIL))
2652 goto nopage;
11e33f6a
MG
2653 page = __alloc_pages_may_oom(gfp_mask, order,
2654 zonelist, high_zoneidx,
3dd28266 2655 nodemask, preferred_zone,
d8846374 2656 classzone_idx, migratetype);
11e33f6a
MG
2657 if (page)
2658 goto got_pg;
1da177e4 2659
03668b3c
DR
2660 if (!(gfp_mask & __GFP_NOFAIL)) {
2661 /*
2662 * The oom killer is not called for high-order
2663 * allocations that may fail, so if no progress
2664 * is being made, there are no other options and
2665 * retrying is unlikely to help.
2666 */
2667 if (order > PAGE_ALLOC_COSTLY_ORDER)
2668 goto nopage;
2669 /*
2670 * The oom killer is not called for lowmem
2671 * allocations to prevent needlessly killing
2672 * innocent tasks.
2673 */
2674 if (high_zoneidx < ZONE_NORMAL)
2675 goto nopage;
2676 }
e2c55dc8 2677
ff0ceb9d
DR
2678 goto restart;
2679 }
1da177e4
LT
2680 }
2681
11e33f6a 2682 /* Check if we should retry the allocation */
a41f24ea 2683 pages_reclaimed += did_some_progress;
f90ac398
MG
2684 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2685 pages_reclaimed)) {
11e33f6a 2686 /* Wait for some write requests to complete then retry */
0e093d99 2687 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2688 goto rebalance;
3e7d3449
MG
2689 } else {
2690 /*
2691 * High-order allocations do not necessarily loop after
2692 * direct reclaim and reclaim/compaction depends on compaction
2693 * being called after reclaim so call directly if necessary
2694 */
e0b9daeb
DR
2695 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2696 high_zoneidx, nodemask, alloc_flags,
d8846374
MG
2697 preferred_zone,
2698 classzone_idx, migratetype,
e0b9daeb 2699 migration_mode, &contended_compaction,
66199712
MG
2700 &deferred_compaction,
2701 &did_some_progress);
3e7d3449
MG
2702 if (page)
2703 goto got_pg;
1da177e4
LT
2704 }
2705
2706nopage:
a238ab5b 2707 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2708 return page;
1da177e4 2709got_pg:
b1eeab67
VN
2710 if (kmemcheck_enabled)
2711 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2712
072bb0aa 2713 return page;
1da177e4 2714}
11e33f6a
MG
2715
2716/*
2717 * This is the 'heart' of the zoned buddy allocator.
2718 */
2719struct page *
2720__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2721 struct zonelist *zonelist, nodemask_t *nodemask)
2722{
2723 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2724 struct zone *preferred_zone;
d8846374 2725 struct zoneref *preferred_zoneref;
cc9a6c87 2726 struct page *page = NULL;
3dd28266 2727 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2728 unsigned int cpuset_mems_cookie;
3a025760 2729 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
d8846374 2730 int classzone_idx;
11e33f6a 2731
dcce284a
BH
2732 gfp_mask &= gfp_allowed_mask;
2733
11e33f6a
MG
2734 lockdep_trace_alloc(gfp_mask);
2735
2736 might_sleep_if(gfp_mask & __GFP_WAIT);
2737
2738 if (should_fail_alloc_page(gfp_mask, order))
2739 return NULL;
2740
2741 /*
2742 * Check the zones suitable for the gfp_mask contain at least one
2743 * valid zone. It's possible to have an empty zonelist as a result
2744 * of GFP_THISNODE and a memoryless node
2745 */
2746 if (unlikely(!zonelist->_zonerefs->zone))
2747 return NULL;
2748
cc9a6c87 2749retry_cpuset:
d26914d1 2750 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2751
5117f45d 2752 /* The preferred zone is used for statistics later */
d8846374 2753 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
f33261d7
DR
2754 nodemask ? : &cpuset_current_mems_allowed,
2755 &preferred_zone);
cc9a6c87
MG
2756 if (!preferred_zone)
2757 goto out;
d8846374 2758 classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d 2759
d95ea5d1
BZ
2760#ifdef CONFIG_CMA
2761 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2762 alloc_flags |= ALLOC_CMA;
2763#endif
3a025760 2764retry:
5117f45d 2765 /* First allocation attempt */
11e33f6a 2766 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2767 zonelist, high_zoneidx, alloc_flags,
d8846374 2768 preferred_zone, classzone_idx, migratetype);
21caf2fc 2769 if (unlikely(!page)) {
3a025760
JW
2770 /*
2771 * The first pass makes sure allocations are spread
2772 * fairly within the local node. However, the local
2773 * node might have free pages left after the fairness
2774 * batches are exhausted, and remote zones haven't
2775 * even been considered yet. Try once more without
2776 * fairness, and include remote zones now, before
2777 * entering the slowpath and waking kswapd: prefer
2778 * spilling to a remote zone over swapping locally.
2779 */
2780 if (alloc_flags & ALLOC_FAIR) {
2781 reset_alloc_batches(zonelist, high_zoneidx,
2782 preferred_zone);
2783 alloc_flags &= ~ALLOC_FAIR;
2784 goto retry;
2785 }
21caf2fc
ML
2786 /*
2787 * Runtime PM, block IO and its error handling path
2788 * can deadlock because I/O on the device might not
2789 * complete.
2790 */
2791 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2792 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2793 zonelist, high_zoneidx, nodemask,
d8846374 2794 preferred_zone, classzone_idx, migratetype);
21caf2fc 2795 }
11e33f6a 2796
4b4f278c 2797 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2798
2799out:
2800 /*
2801 * When updating a task's mems_allowed, it is possible to race with
2802 * parallel threads in such a way that an allocation can fail while
2803 * the mask is being updated. If a page allocation is about to fail,
2804 * check if the cpuset changed during allocation and if so, retry.
2805 */
d26914d1 2806 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2807 goto retry_cpuset;
2808
11e33f6a 2809 return page;
1da177e4 2810}
d239171e 2811EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2812
2813/*
2814 * Common helper functions.
2815 */
920c7a5d 2816unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2817{
945a1113
AM
2818 struct page *page;
2819
2820 /*
2821 * __get_free_pages() returns a 32-bit address, which cannot represent
2822 * a highmem page
2823 */
2824 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2825
1da177e4
LT
2826 page = alloc_pages(gfp_mask, order);
2827 if (!page)
2828 return 0;
2829 return (unsigned long) page_address(page);
2830}
1da177e4
LT
2831EXPORT_SYMBOL(__get_free_pages);
2832
920c7a5d 2833unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2834{
945a1113 2835 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2836}
1da177e4
LT
2837EXPORT_SYMBOL(get_zeroed_page);
2838
920c7a5d 2839void __free_pages(struct page *page, unsigned int order)
1da177e4 2840{
b5810039 2841 if (put_page_testzero(page)) {
1da177e4 2842 if (order == 0)
b745bc85 2843 free_hot_cold_page(page, false);
1da177e4
LT
2844 else
2845 __free_pages_ok(page, order);
2846 }
2847}
2848
2849EXPORT_SYMBOL(__free_pages);
2850
920c7a5d 2851void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2852{
2853 if (addr != 0) {
725d704e 2854 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2855 __free_pages(virt_to_page((void *)addr), order);
2856 }
2857}
2858
2859EXPORT_SYMBOL(free_pages);
2860
6a1a0d3b 2861/*
52383431
VD
2862 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2863 * of the current memory cgroup.
6a1a0d3b 2864 *
52383431
VD
2865 * It should be used when the caller would like to use kmalloc, but since the
2866 * allocation is large, it has to fall back to the page allocator.
2867 */
2868struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2869{
2870 struct page *page;
2871 struct mem_cgroup *memcg = NULL;
2872
2873 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2874 return NULL;
2875 page = alloc_pages(gfp_mask, order);
2876 memcg_kmem_commit_charge(page, memcg, order);
2877 return page;
2878}
2879
2880struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2881{
2882 struct page *page;
2883 struct mem_cgroup *memcg = NULL;
2884
2885 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2886 return NULL;
2887 page = alloc_pages_node(nid, gfp_mask, order);
2888 memcg_kmem_commit_charge(page, memcg, order);
2889 return page;
2890}
2891
2892/*
2893 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2894 * alloc_kmem_pages.
6a1a0d3b 2895 */
52383431 2896void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
2897{
2898 memcg_kmem_uncharge_pages(page, order);
2899 __free_pages(page, order);
2900}
2901
52383431 2902void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
2903{
2904 if (addr != 0) {
2905 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 2906 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
2907 }
2908}
2909
ee85c2e1
AK
2910static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2911{
2912 if (addr) {
2913 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2914 unsigned long used = addr + PAGE_ALIGN(size);
2915
2916 split_page(virt_to_page((void *)addr), order);
2917 while (used < alloc_end) {
2918 free_page(used);
2919 used += PAGE_SIZE;
2920 }
2921 }
2922 return (void *)addr;
2923}
2924
2be0ffe2
TT
2925/**
2926 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2927 * @size: the number of bytes to allocate
2928 * @gfp_mask: GFP flags for the allocation
2929 *
2930 * This function is similar to alloc_pages(), except that it allocates the
2931 * minimum number of pages to satisfy the request. alloc_pages() can only
2932 * allocate memory in power-of-two pages.
2933 *
2934 * This function is also limited by MAX_ORDER.
2935 *
2936 * Memory allocated by this function must be released by free_pages_exact().
2937 */
2938void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2939{
2940 unsigned int order = get_order(size);
2941 unsigned long addr;
2942
2943 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2944 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2945}
2946EXPORT_SYMBOL(alloc_pages_exact);
2947
ee85c2e1
AK
2948/**
2949 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2950 * pages on a node.
b5e6ab58 2951 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2952 * @size: the number of bytes to allocate
2953 * @gfp_mask: GFP flags for the allocation
2954 *
2955 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2956 * back.
2957 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2958 * but is not exact.
2959 */
e1931811 2960void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
2961{
2962 unsigned order = get_order(size);
2963 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2964 if (!p)
2965 return NULL;
2966 return make_alloc_exact((unsigned long)page_address(p), order, size);
2967}
ee85c2e1 2968
2be0ffe2
TT
2969/**
2970 * free_pages_exact - release memory allocated via alloc_pages_exact()
2971 * @virt: the value returned by alloc_pages_exact.
2972 * @size: size of allocation, same value as passed to alloc_pages_exact().
2973 *
2974 * Release the memory allocated by a previous call to alloc_pages_exact.
2975 */
2976void free_pages_exact(void *virt, size_t size)
2977{
2978 unsigned long addr = (unsigned long)virt;
2979 unsigned long end = addr + PAGE_ALIGN(size);
2980
2981 while (addr < end) {
2982 free_page(addr);
2983 addr += PAGE_SIZE;
2984 }
2985}
2986EXPORT_SYMBOL(free_pages_exact);
2987
e0fb5815
ZY
2988/**
2989 * nr_free_zone_pages - count number of pages beyond high watermark
2990 * @offset: The zone index of the highest zone
2991 *
2992 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2993 * high watermark within all zones at or below a given zone index. For each
2994 * zone, the number of pages is calculated as:
834405c3 2995 * managed_pages - high_pages
e0fb5815 2996 */
ebec3862 2997static unsigned long nr_free_zone_pages(int offset)
1da177e4 2998{
dd1a239f 2999 struct zoneref *z;
54a6eb5c
MG
3000 struct zone *zone;
3001
e310fd43 3002 /* Just pick one node, since fallback list is circular */
ebec3862 3003 unsigned long sum = 0;
1da177e4 3004
0e88460d 3005 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3006
54a6eb5c 3007 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3008 unsigned long size = zone->managed_pages;
41858966 3009 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3010 if (size > high)
3011 sum += size - high;
1da177e4
LT
3012 }
3013
3014 return sum;
3015}
3016
e0fb5815
ZY
3017/**
3018 * nr_free_buffer_pages - count number of pages beyond high watermark
3019 *
3020 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3021 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3022 */
ebec3862 3023unsigned long nr_free_buffer_pages(void)
1da177e4 3024{
af4ca457 3025 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3026}
c2f1a551 3027EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3028
e0fb5815
ZY
3029/**
3030 * nr_free_pagecache_pages - count number of pages beyond high watermark
3031 *
3032 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3033 * high watermark within all zones.
1da177e4 3034 */
ebec3862 3035unsigned long nr_free_pagecache_pages(void)
1da177e4 3036{
2a1e274a 3037 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3038}
08e0f6a9
CL
3039
3040static inline void show_node(struct zone *zone)
1da177e4 3041{
e5adfffc 3042 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3043 printk("Node %d ", zone_to_nid(zone));
1da177e4 3044}
1da177e4 3045
1da177e4
LT
3046void si_meminfo(struct sysinfo *val)
3047{
3048 val->totalram = totalram_pages;
cc7452b6 3049 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3050 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3051 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3052 val->totalhigh = totalhigh_pages;
3053 val->freehigh = nr_free_highpages();
1da177e4
LT
3054 val->mem_unit = PAGE_SIZE;
3055}
3056
3057EXPORT_SYMBOL(si_meminfo);
3058
3059#ifdef CONFIG_NUMA
3060void si_meminfo_node(struct sysinfo *val, int nid)
3061{
cdd91a77
JL
3062 int zone_type; /* needs to be signed */
3063 unsigned long managed_pages = 0;
1da177e4
LT
3064 pg_data_t *pgdat = NODE_DATA(nid);
3065
cdd91a77
JL
3066 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3067 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3068 val->totalram = managed_pages;
cc7452b6 3069 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3070 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3071#ifdef CONFIG_HIGHMEM
b40da049 3072 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3073 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3074 NR_FREE_PAGES);
98d2b0eb
CL
3075#else
3076 val->totalhigh = 0;
3077 val->freehigh = 0;
3078#endif
1da177e4
LT
3079 val->mem_unit = PAGE_SIZE;
3080}
3081#endif
3082
ddd588b5 3083/*
7bf02ea2
DR
3084 * Determine whether the node should be displayed or not, depending on whether
3085 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3086 */
7bf02ea2 3087bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3088{
3089 bool ret = false;
cc9a6c87 3090 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3091
3092 if (!(flags & SHOW_MEM_FILTER_NODES))
3093 goto out;
3094
cc9a6c87 3095 do {
d26914d1 3096 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3097 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3098 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3099out:
3100 return ret;
3101}
3102
1da177e4
LT
3103#define K(x) ((x) << (PAGE_SHIFT-10))
3104
377e4f16
RV
3105static void show_migration_types(unsigned char type)
3106{
3107 static const char types[MIGRATE_TYPES] = {
3108 [MIGRATE_UNMOVABLE] = 'U',
3109 [MIGRATE_RECLAIMABLE] = 'E',
3110 [MIGRATE_MOVABLE] = 'M',
3111 [MIGRATE_RESERVE] = 'R',
3112#ifdef CONFIG_CMA
3113 [MIGRATE_CMA] = 'C',
3114#endif
194159fb 3115#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3116 [MIGRATE_ISOLATE] = 'I',
194159fb 3117#endif
377e4f16
RV
3118 };
3119 char tmp[MIGRATE_TYPES + 1];
3120 char *p = tmp;
3121 int i;
3122
3123 for (i = 0; i < MIGRATE_TYPES; i++) {
3124 if (type & (1 << i))
3125 *p++ = types[i];
3126 }
3127
3128 *p = '\0';
3129 printk("(%s) ", tmp);
3130}
3131
1da177e4
LT
3132/*
3133 * Show free area list (used inside shift_scroll-lock stuff)
3134 * We also calculate the percentage fragmentation. We do this by counting the
3135 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3136 * Suppresses nodes that are not allowed by current's cpuset if
3137 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3138 */
7bf02ea2 3139void show_free_areas(unsigned int filter)
1da177e4 3140{
c7241913 3141 int cpu;
1da177e4
LT
3142 struct zone *zone;
3143
ee99c71c 3144 for_each_populated_zone(zone) {
7bf02ea2 3145 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3146 continue;
c7241913
JS
3147 show_node(zone);
3148 printk("%s per-cpu:\n", zone->name);
1da177e4 3149
6b482c67 3150 for_each_online_cpu(cpu) {
1da177e4
LT
3151 struct per_cpu_pageset *pageset;
3152
99dcc3e5 3153 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3154
3dfa5721
CL
3155 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3156 cpu, pageset->pcp.high,
3157 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3158 }
3159 }
3160
a731286d
KM
3161 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3162 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3163 " unevictable:%lu"
b76146ed 3164 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3165 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3166 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3167 " free_cma:%lu\n",
4f98a2fe 3168 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3169 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3170 global_page_state(NR_ISOLATED_ANON),
3171 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3172 global_page_state(NR_INACTIVE_FILE),
a731286d 3173 global_page_state(NR_ISOLATED_FILE),
7b854121 3174 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3175 global_page_state(NR_FILE_DIRTY),
ce866b34 3176 global_page_state(NR_WRITEBACK),
fd39fc85 3177 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3178 global_page_state(NR_FREE_PAGES),
3701b033
KM
3179 global_page_state(NR_SLAB_RECLAIMABLE),
3180 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3181 global_page_state(NR_FILE_MAPPED),
4b02108a 3182 global_page_state(NR_SHMEM),
a25700a5 3183 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3184 global_page_state(NR_BOUNCE),
3185 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3186
ee99c71c 3187 for_each_populated_zone(zone) {
1da177e4
LT
3188 int i;
3189
7bf02ea2 3190 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3191 continue;
1da177e4
LT
3192 show_node(zone);
3193 printk("%s"
3194 " free:%lukB"
3195 " min:%lukB"
3196 " low:%lukB"
3197 " high:%lukB"
4f98a2fe
RR
3198 " active_anon:%lukB"
3199 " inactive_anon:%lukB"
3200 " active_file:%lukB"
3201 " inactive_file:%lukB"
7b854121 3202 " unevictable:%lukB"
a731286d
KM
3203 " isolated(anon):%lukB"
3204 " isolated(file):%lukB"
1da177e4 3205 " present:%lukB"
9feedc9d 3206 " managed:%lukB"
4a0aa73f
KM
3207 " mlocked:%lukB"
3208 " dirty:%lukB"
3209 " writeback:%lukB"
3210 " mapped:%lukB"
4b02108a 3211 " shmem:%lukB"
4a0aa73f
KM
3212 " slab_reclaimable:%lukB"
3213 " slab_unreclaimable:%lukB"
c6a7f572 3214 " kernel_stack:%lukB"
4a0aa73f
KM
3215 " pagetables:%lukB"
3216 " unstable:%lukB"
3217 " bounce:%lukB"
d1ce749a 3218 " free_cma:%lukB"
4a0aa73f 3219 " writeback_tmp:%lukB"
1da177e4
LT
3220 " pages_scanned:%lu"
3221 " all_unreclaimable? %s"
3222 "\n",
3223 zone->name,
88f5acf8 3224 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3225 K(min_wmark_pages(zone)),
3226 K(low_wmark_pages(zone)),
3227 K(high_wmark_pages(zone)),
4f98a2fe
RR
3228 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3229 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3230 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3231 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3232 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3233 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3234 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3235 K(zone->present_pages),
9feedc9d 3236 K(zone->managed_pages),
4a0aa73f
KM
3237 K(zone_page_state(zone, NR_MLOCK)),
3238 K(zone_page_state(zone, NR_FILE_DIRTY)),
3239 K(zone_page_state(zone, NR_WRITEBACK)),
3240 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3241 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3242 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3243 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3244 zone_page_state(zone, NR_KERNEL_STACK) *
3245 THREAD_SIZE / 1024,
4a0aa73f
KM
3246 K(zone_page_state(zone, NR_PAGETABLE)),
3247 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3248 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3249 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3250 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3251 zone->pages_scanned,
6e543d57 3252 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3253 );
3254 printk("lowmem_reserve[]:");
3255 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3256 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3257 printk("\n");
3258 }
3259
ee99c71c 3260 for_each_populated_zone(zone) {
b8af2941 3261 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3262 unsigned char types[MAX_ORDER];
1da177e4 3263
7bf02ea2 3264 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3265 continue;
1da177e4
LT
3266 show_node(zone);
3267 printk("%s: ", zone->name);
1da177e4
LT
3268
3269 spin_lock_irqsave(&zone->lock, flags);
3270 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3271 struct free_area *area = &zone->free_area[order];
3272 int type;
3273
3274 nr[order] = area->nr_free;
8f9de51a 3275 total += nr[order] << order;
377e4f16
RV
3276
3277 types[order] = 0;
3278 for (type = 0; type < MIGRATE_TYPES; type++) {
3279 if (!list_empty(&area->free_list[type]))
3280 types[order] |= 1 << type;
3281 }
1da177e4
LT
3282 }
3283 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3284 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3285 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3286 if (nr[order])
3287 show_migration_types(types[order]);
3288 }
1da177e4
LT
3289 printk("= %lukB\n", K(total));
3290 }
3291
949f7ec5
DR
3292 hugetlb_show_meminfo();
3293
e6f3602d
LW
3294 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3295
1da177e4
LT
3296 show_swap_cache_info();
3297}
3298
19770b32
MG
3299static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3300{
3301 zoneref->zone = zone;
3302 zoneref->zone_idx = zone_idx(zone);
3303}
3304
1da177e4
LT
3305/*
3306 * Builds allocation fallback zone lists.
1a93205b
CL
3307 *
3308 * Add all populated zones of a node to the zonelist.
1da177e4 3309 */
f0c0b2b8 3310static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3311 int nr_zones)
1da177e4 3312{
1a93205b 3313 struct zone *zone;
bc732f1d 3314 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3315
3316 do {
2f6726e5 3317 zone_type--;
070f8032 3318 zone = pgdat->node_zones + zone_type;
1a93205b 3319 if (populated_zone(zone)) {
dd1a239f
MG
3320 zoneref_set_zone(zone,
3321 &zonelist->_zonerefs[nr_zones++]);
070f8032 3322 check_highest_zone(zone_type);
1da177e4 3323 }
2f6726e5 3324 } while (zone_type);
bc732f1d 3325
070f8032 3326 return nr_zones;
1da177e4
LT
3327}
3328
f0c0b2b8
KH
3329
3330/*
3331 * zonelist_order:
3332 * 0 = automatic detection of better ordering.
3333 * 1 = order by ([node] distance, -zonetype)
3334 * 2 = order by (-zonetype, [node] distance)
3335 *
3336 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3337 * the same zonelist. So only NUMA can configure this param.
3338 */
3339#define ZONELIST_ORDER_DEFAULT 0
3340#define ZONELIST_ORDER_NODE 1
3341#define ZONELIST_ORDER_ZONE 2
3342
3343/* zonelist order in the kernel.
3344 * set_zonelist_order() will set this to NODE or ZONE.
3345 */
3346static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3347static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3348
3349
1da177e4 3350#ifdef CONFIG_NUMA
f0c0b2b8
KH
3351/* The value user specified ....changed by config */
3352static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3353/* string for sysctl */
3354#define NUMA_ZONELIST_ORDER_LEN 16
3355char numa_zonelist_order[16] = "default";
3356
3357/*
3358 * interface for configure zonelist ordering.
3359 * command line option "numa_zonelist_order"
3360 * = "[dD]efault - default, automatic configuration.
3361 * = "[nN]ode - order by node locality, then by zone within node
3362 * = "[zZ]one - order by zone, then by locality within zone
3363 */
3364
3365static int __parse_numa_zonelist_order(char *s)
3366{
3367 if (*s == 'd' || *s == 'D') {
3368 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3369 } else if (*s == 'n' || *s == 'N') {
3370 user_zonelist_order = ZONELIST_ORDER_NODE;
3371 } else if (*s == 'z' || *s == 'Z') {
3372 user_zonelist_order = ZONELIST_ORDER_ZONE;
3373 } else {
3374 printk(KERN_WARNING
3375 "Ignoring invalid numa_zonelist_order value: "
3376 "%s\n", s);
3377 return -EINVAL;
3378 }
3379 return 0;
3380}
3381
3382static __init int setup_numa_zonelist_order(char *s)
3383{
ecb256f8
VL
3384 int ret;
3385
3386 if (!s)
3387 return 0;
3388
3389 ret = __parse_numa_zonelist_order(s);
3390 if (ret == 0)
3391 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3392
3393 return ret;
f0c0b2b8
KH
3394}
3395early_param("numa_zonelist_order", setup_numa_zonelist_order);
3396
3397/*
3398 * sysctl handler for numa_zonelist_order
3399 */
cccad5b9 3400int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3401 void __user *buffer, size_t *length,
f0c0b2b8
KH
3402 loff_t *ppos)
3403{
3404 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3405 int ret;
443c6f14 3406 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3407
443c6f14 3408 mutex_lock(&zl_order_mutex);
dacbde09
CG
3409 if (write) {
3410 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3411 ret = -EINVAL;
3412 goto out;
3413 }
3414 strcpy(saved_string, (char *)table->data);
3415 }
8d65af78 3416 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3417 if (ret)
443c6f14 3418 goto out;
f0c0b2b8
KH
3419 if (write) {
3420 int oldval = user_zonelist_order;
dacbde09
CG
3421
3422 ret = __parse_numa_zonelist_order((char *)table->data);
3423 if (ret) {
f0c0b2b8
KH
3424 /*
3425 * bogus value. restore saved string
3426 */
dacbde09 3427 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3428 NUMA_ZONELIST_ORDER_LEN);
3429 user_zonelist_order = oldval;
4eaf3f64
HL
3430 } else if (oldval != user_zonelist_order) {
3431 mutex_lock(&zonelists_mutex);
9adb62a5 3432 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3433 mutex_unlock(&zonelists_mutex);
3434 }
f0c0b2b8 3435 }
443c6f14
AK
3436out:
3437 mutex_unlock(&zl_order_mutex);
3438 return ret;
f0c0b2b8
KH
3439}
3440
3441
62bc62a8 3442#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3443static int node_load[MAX_NUMNODES];
3444
1da177e4 3445/**
4dc3b16b 3446 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3447 * @node: node whose fallback list we're appending
3448 * @used_node_mask: nodemask_t of already used nodes
3449 *
3450 * We use a number of factors to determine which is the next node that should
3451 * appear on a given node's fallback list. The node should not have appeared
3452 * already in @node's fallback list, and it should be the next closest node
3453 * according to the distance array (which contains arbitrary distance values
3454 * from each node to each node in the system), and should also prefer nodes
3455 * with no CPUs, since presumably they'll have very little allocation pressure
3456 * on them otherwise.
3457 * It returns -1 if no node is found.
3458 */
f0c0b2b8 3459static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3460{
4cf808eb 3461 int n, val;
1da177e4 3462 int min_val = INT_MAX;
00ef2d2f 3463 int best_node = NUMA_NO_NODE;
a70f7302 3464 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3465
4cf808eb
LT
3466 /* Use the local node if we haven't already */
3467 if (!node_isset(node, *used_node_mask)) {
3468 node_set(node, *used_node_mask);
3469 return node;
3470 }
1da177e4 3471
4b0ef1fe 3472 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3473
3474 /* Don't want a node to appear more than once */
3475 if (node_isset(n, *used_node_mask))
3476 continue;
3477
1da177e4
LT
3478 /* Use the distance array to find the distance */
3479 val = node_distance(node, n);
3480
4cf808eb
LT
3481 /* Penalize nodes under us ("prefer the next node") */
3482 val += (n < node);
3483
1da177e4 3484 /* Give preference to headless and unused nodes */
a70f7302
RR
3485 tmp = cpumask_of_node(n);
3486 if (!cpumask_empty(tmp))
1da177e4
LT
3487 val += PENALTY_FOR_NODE_WITH_CPUS;
3488
3489 /* Slight preference for less loaded node */
3490 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3491 val += node_load[n];
3492
3493 if (val < min_val) {
3494 min_val = val;
3495 best_node = n;
3496 }
3497 }
3498
3499 if (best_node >= 0)
3500 node_set(best_node, *used_node_mask);
3501
3502 return best_node;
3503}
3504
f0c0b2b8
KH
3505
3506/*
3507 * Build zonelists ordered by node and zones within node.
3508 * This results in maximum locality--normal zone overflows into local
3509 * DMA zone, if any--but risks exhausting DMA zone.
3510 */
3511static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3512{
f0c0b2b8 3513 int j;
1da177e4 3514 struct zonelist *zonelist;
f0c0b2b8 3515
54a6eb5c 3516 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3517 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3518 ;
bc732f1d 3519 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3520 zonelist->_zonerefs[j].zone = NULL;
3521 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3522}
3523
523b9458
CL
3524/*
3525 * Build gfp_thisnode zonelists
3526 */
3527static void build_thisnode_zonelists(pg_data_t *pgdat)
3528{
523b9458
CL
3529 int j;
3530 struct zonelist *zonelist;
3531
54a6eb5c 3532 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3533 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3534 zonelist->_zonerefs[j].zone = NULL;
3535 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3536}
3537
f0c0b2b8
KH
3538/*
3539 * Build zonelists ordered by zone and nodes within zones.
3540 * This results in conserving DMA zone[s] until all Normal memory is
3541 * exhausted, but results in overflowing to remote node while memory
3542 * may still exist in local DMA zone.
3543 */
3544static int node_order[MAX_NUMNODES];
3545
3546static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3547{
f0c0b2b8
KH
3548 int pos, j, node;
3549 int zone_type; /* needs to be signed */
3550 struct zone *z;
3551 struct zonelist *zonelist;
3552
54a6eb5c
MG
3553 zonelist = &pgdat->node_zonelists[0];
3554 pos = 0;
3555 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3556 for (j = 0; j < nr_nodes; j++) {
3557 node = node_order[j];
3558 z = &NODE_DATA(node)->node_zones[zone_type];
3559 if (populated_zone(z)) {
dd1a239f
MG
3560 zoneref_set_zone(z,
3561 &zonelist->_zonerefs[pos++]);
54a6eb5c 3562 check_highest_zone(zone_type);
f0c0b2b8
KH
3563 }
3564 }
f0c0b2b8 3565 }
dd1a239f
MG
3566 zonelist->_zonerefs[pos].zone = NULL;
3567 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3568}
3569
3570static int default_zonelist_order(void)
3571{
3572 int nid, zone_type;
b8af2941 3573 unsigned long low_kmem_size, total_size;
f0c0b2b8
KH
3574 struct zone *z;
3575 int average_size;
3576 /*
b8af2941 3577 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3578 * If they are really small and used heavily, the system can fall
3579 * into OOM very easily.
e325c90f 3580 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3581 */
3582 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3583 low_kmem_size = 0;
3584 total_size = 0;
3585 for_each_online_node(nid) {
3586 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3587 z = &NODE_DATA(nid)->node_zones[zone_type];
3588 if (populated_zone(z)) {
3589 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3590 low_kmem_size += z->managed_pages;
3591 total_size += z->managed_pages;
e325c90f
DR
3592 } else if (zone_type == ZONE_NORMAL) {
3593 /*
3594 * If any node has only lowmem, then node order
3595 * is preferred to allow kernel allocations
3596 * locally; otherwise, they can easily infringe
3597 * on other nodes when there is an abundance of
3598 * lowmem available to allocate from.
3599 */
3600 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3601 }
3602 }
3603 }
3604 if (!low_kmem_size || /* there are no DMA area. */
3605 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3606 return ZONELIST_ORDER_NODE;
3607 /*
3608 * look into each node's config.
b8af2941
PK
3609 * If there is a node whose DMA/DMA32 memory is very big area on
3610 * local memory, NODE_ORDER may be suitable.
3611 */
37b07e41 3612 average_size = total_size /
4b0ef1fe 3613 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3614 for_each_online_node(nid) {
3615 low_kmem_size = 0;
3616 total_size = 0;
3617 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3618 z = &NODE_DATA(nid)->node_zones[zone_type];
3619 if (populated_zone(z)) {
3620 if (zone_type < ZONE_NORMAL)
3621 low_kmem_size += z->present_pages;
3622 total_size += z->present_pages;
3623 }
3624 }
3625 if (low_kmem_size &&
3626 total_size > average_size && /* ignore small node */
3627 low_kmem_size > total_size * 70/100)
3628 return ZONELIST_ORDER_NODE;
3629 }
3630 return ZONELIST_ORDER_ZONE;
3631}
3632
3633static void set_zonelist_order(void)
3634{
3635 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3636 current_zonelist_order = default_zonelist_order();
3637 else
3638 current_zonelist_order = user_zonelist_order;
3639}
3640
3641static void build_zonelists(pg_data_t *pgdat)
3642{
3643 int j, node, load;
3644 enum zone_type i;
1da177e4 3645 nodemask_t used_mask;
f0c0b2b8
KH
3646 int local_node, prev_node;
3647 struct zonelist *zonelist;
3648 int order = current_zonelist_order;
1da177e4
LT
3649
3650 /* initialize zonelists */
523b9458 3651 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3652 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3653 zonelist->_zonerefs[0].zone = NULL;
3654 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3655 }
3656
3657 /* NUMA-aware ordering of nodes */
3658 local_node = pgdat->node_id;
62bc62a8 3659 load = nr_online_nodes;
1da177e4
LT
3660 prev_node = local_node;
3661 nodes_clear(used_mask);
f0c0b2b8 3662
f0c0b2b8
KH
3663 memset(node_order, 0, sizeof(node_order));
3664 j = 0;
3665
1da177e4
LT
3666 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3667 /*
3668 * We don't want to pressure a particular node.
3669 * So adding penalty to the first node in same
3670 * distance group to make it round-robin.
3671 */
957f822a
DR
3672 if (node_distance(local_node, node) !=
3673 node_distance(local_node, prev_node))
f0c0b2b8
KH
3674 node_load[node] = load;
3675
1da177e4
LT
3676 prev_node = node;
3677 load--;
f0c0b2b8
KH
3678 if (order == ZONELIST_ORDER_NODE)
3679 build_zonelists_in_node_order(pgdat, node);
3680 else
3681 node_order[j++] = node; /* remember order */
3682 }
1da177e4 3683
f0c0b2b8
KH
3684 if (order == ZONELIST_ORDER_ZONE) {
3685 /* calculate node order -- i.e., DMA last! */
3686 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3687 }
523b9458
CL
3688
3689 build_thisnode_zonelists(pgdat);
1da177e4
LT
3690}
3691
9276b1bc 3692/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3693static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3694{
54a6eb5c
MG
3695 struct zonelist *zonelist;
3696 struct zonelist_cache *zlc;
dd1a239f 3697 struct zoneref *z;
9276b1bc 3698
54a6eb5c
MG
3699 zonelist = &pgdat->node_zonelists[0];
3700 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3701 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3702 for (z = zonelist->_zonerefs; z->zone; z++)
3703 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3704}
3705
7aac7898
LS
3706#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3707/*
3708 * Return node id of node used for "local" allocations.
3709 * I.e., first node id of first zone in arg node's generic zonelist.
3710 * Used for initializing percpu 'numa_mem', which is used primarily
3711 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3712 */
3713int local_memory_node(int node)
3714{
3715 struct zone *zone;
3716
3717 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3718 gfp_zone(GFP_KERNEL),
3719 NULL,
3720 &zone);
3721 return zone->node;
3722}
3723#endif
f0c0b2b8 3724
1da177e4
LT
3725#else /* CONFIG_NUMA */
3726
f0c0b2b8
KH
3727static void set_zonelist_order(void)
3728{
3729 current_zonelist_order = ZONELIST_ORDER_ZONE;
3730}
3731
3732static void build_zonelists(pg_data_t *pgdat)
1da177e4 3733{
19655d34 3734 int node, local_node;
54a6eb5c
MG
3735 enum zone_type j;
3736 struct zonelist *zonelist;
1da177e4
LT
3737
3738 local_node = pgdat->node_id;
1da177e4 3739
54a6eb5c 3740 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3741 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3742
54a6eb5c
MG
3743 /*
3744 * Now we build the zonelist so that it contains the zones
3745 * of all the other nodes.
3746 * We don't want to pressure a particular node, so when
3747 * building the zones for node N, we make sure that the
3748 * zones coming right after the local ones are those from
3749 * node N+1 (modulo N)
3750 */
3751 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3752 if (!node_online(node))
3753 continue;
bc732f1d 3754 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3755 }
54a6eb5c
MG
3756 for (node = 0; node < local_node; node++) {
3757 if (!node_online(node))
3758 continue;
bc732f1d 3759 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3760 }
3761
dd1a239f
MG
3762 zonelist->_zonerefs[j].zone = NULL;
3763 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3764}
3765
9276b1bc 3766/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3767static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3768{
54a6eb5c 3769 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3770}
3771
1da177e4
LT
3772#endif /* CONFIG_NUMA */
3773
99dcc3e5
CL
3774/*
3775 * Boot pageset table. One per cpu which is going to be used for all
3776 * zones and all nodes. The parameters will be set in such a way
3777 * that an item put on a list will immediately be handed over to
3778 * the buddy list. This is safe since pageset manipulation is done
3779 * with interrupts disabled.
3780 *
3781 * The boot_pagesets must be kept even after bootup is complete for
3782 * unused processors and/or zones. They do play a role for bootstrapping
3783 * hotplugged processors.
3784 *
3785 * zoneinfo_show() and maybe other functions do
3786 * not check if the processor is online before following the pageset pointer.
3787 * Other parts of the kernel may not check if the zone is available.
3788 */
3789static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3790static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3791static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3792
4eaf3f64
HL
3793/*
3794 * Global mutex to protect against size modification of zonelists
3795 * as well as to serialize pageset setup for the new populated zone.
3796 */
3797DEFINE_MUTEX(zonelists_mutex);
3798
9b1a4d38 3799/* return values int ....just for stop_machine() */
4ed7e022 3800static int __build_all_zonelists(void *data)
1da177e4 3801{
6811378e 3802 int nid;
99dcc3e5 3803 int cpu;
9adb62a5 3804 pg_data_t *self = data;
9276b1bc 3805
7f9cfb31
BL
3806#ifdef CONFIG_NUMA
3807 memset(node_load, 0, sizeof(node_load));
3808#endif
9adb62a5
JL
3809
3810 if (self && !node_online(self->node_id)) {
3811 build_zonelists(self);
3812 build_zonelist_cache(self);
3813 }
3814
9276b1bc 3815 for_each_online_node(nid) {
7ea1530a
CL
3816 pg_data_t *pgdat = NODE_DATA(nid);
3817
3818 build_zonelists(pgdat);
3819 build_zonelist_cache(pgdat);
9276b1bc 3820 }
99dcc3e5
CL
3821
3822 /*
3823 * Initialize the boot_pagesets that are going to be used
3824 * for bootstrapping processors. The real pagesets for
3825 * each zone will be allocated later when the per cpu
3826 * allocator is available.
3827 *
3828 * boot_pagesets are used also for bootstrapping offline
3829 * cpus if the system is already booted because the pagesets
3830 * are needed to initialize allocators on a specific cpu too.
3831 * F.e. the percpu allocator needs the page allocator which
3832 * needs the percpu allocator in order to allocate its pagesets
3833 * (a chicken-egg dilemma).
3834 */
7aac7898 3835 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3836 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3837
7aac7898
LS
3838#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3839 /*
3840 * We now know the "local memory node" for each node--
3841 * i.e., the node of the first zone in the generic zonelist.
3842 * Set up numa_mem percpu variable for on-line cpus. During
3843 * boot, only the boot cpu should be on-line; we'll init the
3844 * secondary cpus' numa_mem as they come on-line. During
3845 * node/memory hotplug, we'll fixup all on-line cpus.
3846 */
3847 if (cpu_online(cpu))
3848 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3849#endif
3850 }
3851
6811378e
YG
3852 return 0;
3853}
3854
4eaf3f64
HL
3855/*
3856 * Called with zonelists_mutex held always
3857 * unless system_state == SYSTEM_BOOTING.
3858 */
9adb62a5 3859void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3860{
f0c0b2b8
KH
3861 set_zonelist_order();
3862
6811378e 3863 if (system_state == SYSTEM_BOOTING) {
423b41d7 3864 __build_all_zonelists(NULL);
68ad8df4 3865 mminit_verify_zonelist();
6811378e
YG
3866 cpuset_init_current_mems_allowed();
3867 } else {
e9959f0f 3868#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3869 if (zone)
3870 setup_zone_pageset(zone);
e9959f0f 3871#endif
dd1895e2
CS
3872 /* we have to stop all cpus to guarantee there is no user
3873 of zonelist */
9adb62a5 3874 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3875 /* cpuset refresh routine should be here */
3876 }
bd1e22b8 3877 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3878 /*
3879 * Disable grouping by mobility if the number of pages in the
3880 * system is too low to allow the mechanism to work. It would be
3881 * more accurate, but expensive to check per-zone. This check is
3882 * made on memory-hotadd so a system can start with mobility
3883 * disabled and enable it later
3884 */
d9c23400 3885 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3886 page_group_by_mobility_disabled = 1;
3887 else
3888 page_group_by_mobility_disabled = 0;
3889
3890 printk("Built %i zonelists in %s order, mobility grouping %s. "
3891 "Total pages: %ld\n",
62bc62a8 3892 nr_online_nodes,
f0c0b2b8 3893 zonelist_order_name[current_zonelist_order],
9ef9acb0 3894 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3895 vm_total_pages);
3896#ifdef CONFIG_NUMA
3897 printk("Policy zone: %s\n", zone_names[policy_zone]);
3898#endif
1da177e4
LT
3899}
3900
3901/*
3902 * Helper functions to size the waitqueue hash table.
3903 * Essentially these want to choose hash table sizes sufficiently
3904 * large so that collisions trying to wait on pages are rare.
3905 * But in fact, the number of active page waitqueues on typical
3906 * systems is ridiculously low, less than 200. So this is even
3907 * conservative, even though it seems large.
3908 *
3909 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3910 * waitqueues, i.e. the size of the waitq table given the number of pages.
3911 */
3912#define PAGES_PER_WAITQUEUE 256
3913
cca448fe 3914#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3915static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3916{
3917 unsigned long size = 1;
3918
3919 pages /= PAGES_PER_WAITQUEUE;
3920
3921 while (size < pages)
3922 size <<= 1;
3923
3924 /*
3925 * Once we have dozens or even hundreds of threads sleeping
3926 * on IO we've got bigger problems than wait queue collision.
3927 * Limit the size of the wait table to a reasonable size.
3928 */
3929 size = min(size, 4096UL);
3930
3931 return max(size, 4UL);
3932}
cca448fe
YG
3933#else
3934/*
3935 * A zone's size might be changed by hot-add, so it is not possible to determine
3936 * a suitable size for its wait_table. So we use the maximum size now.
3937 *
3938 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3939 *
3940 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3941 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3942 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3943 *
3944 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3945 * or more by the traditional way. (See above). It equals:
3946 *
3947 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3948 * ia64(16K page size) : = ( 8G + 4M)byte.
3949 * powerpc (64K page size) : = (32G +16M)byte.
3950 */
3951static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3952{
3953 return 4096UL;
3954}
3955#endif
1da177e4
LT
3956
3957/*
3958 * This is an integer logarithm so that shifts can be used later
3959 * to extract the more random high bits from the multiplicative
3960 * hash function before the remainder is taken.
3961 */
3962static inline unsigned long wait_table_bits(unsigned long size)
3963{
3964 return ffz(~size);
3965}
3966
6d3163ce
AH
3967/*
3968 * Check if a pageblock contains reserved pages
3969 */
3970static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3971{
3972 unsigned long pfn;
3973
3974 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3975 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3976 return 1;
3977 }
3978 return 0;
3979}
3980
56fd56b8 3981/*
d9c23400 3982 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3983 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3984 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3985 * higher will lead to a bigger reserve which will get freed as contiguous
3986 * blocks as reclaim kicks in
3987 */
3988static void setup_zone_migrate_reserve(struct zone *zone)
3989{
6d3163ce 3990 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3991 struct page *page;
78986a67
MG
3992 unsigned long block_migratetype;
3993 int reserve;
943dca1a 3994 int old_reserve;
56fd56b8 3995
d0215638
MH
3996 /*
3997 * Get the start pfn, end pfn and the number of blocks to reserve
3998 * We have to be careful to be aligned to pageblock_nr_pages to
3999 * make sure that we always check pfn_valid for the first page in
4000 * the block.
4001 */
56fd56b8 4002 start_pfn = zone->zone_start_pfn;
108bcc96 4003 end_pfn = zone_end_pfn(zone);
d0215638 4004 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4005 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4006 pageblock_order;
56fd56b8 4007
78986a67
MG
4008 /*
4009 * Reserve blocks are generally in place to help high-order atomic
4010 * allocations that are short-lived. A min_free_kbytes value that
4011 * would result in more than 2 reserve blocks for atomic allocations
4012 * is assumed to be in place to help anti-fragmentation for the
4013 * future allocation of hugepages at runtime.
4014 */
4015 reserve = min(2, reserve);
943dca1a
YI
4016 old_reserve = zone->nr_migrate_reserve_block;
4017
4018 /* When memory hot-add, we almost always need to do nothing */
4019 if (reserve == old_reserve)
4020 return;
4021 zone->nr_migrate_reserve_block = reserve;
78986a67 4022
d9c23400 4023 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
4024 if (!pfn_valid(pfn))
4025 continue;
4026 page = pfn_to_page(pfn);
4027
344c790e
AL
4028 /* Watch out for overlapping nodes */
4029 if (page_to_nid(page) != zone_to_nid(zone))
4030 continue;
4031
56fd56b8
MG
4032 block_migratetype = get_pageblock_migratetype(page);
4033
938929f1
MG
4034 /* Only test what is necessary when the reserves are not met */
4035 if (reserve > 0) {
4036 /*
4037 * Blocks with reserved pages will never free, skip
4038 * them.
4039 */
4040 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4041 if (pageblock_is_reserved(pfn, block_end_pfn))
4042 continue;
56fd56b8 4043
938929f1
MG
4044 /* If this block is reserved, account for it */
4045 if (block_migratetype == MIGRATE_RESERVE) {
4046 reserve--;
4047 continue;
4048 }
4049
4050 /* Suitable for reserving if this block is movable */
4051 if (block_migratetype == MIGRATE_MOVABLE) {
4052 set_pageblock_migratetype(page,
4053 MIGRATE_RESERVE);
4054 move_freepages_block(zone, page,
4055 MIGRATE_RESERVE);
4056 reserve--;
4057 continue;
4058 }
943dca1a
YI
4059 } else if (!old_reserve) {
4060 /*
4061 * At boot time we don't need to scan the whole zone
4062 * for turning off MIGRATE_RESERVE.
4063 */
4064 break;
56fd56b8
MG
4065 }
4066
4067 /*
4068 * If the reserve is met and this is a previous reserved block,
4069 * take it back
4070 */
4071 if (block_migratetype == MIGRATE_RESERVE) {
4072 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4073 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4074 }
4075 }
4076}
ac0e5b7a 4077
1da177e4
LT
4078/*
4079 * Initially all pages are reserved - free ones are freed
4080 * up by free_all_bootmem() once the early boot process is
4081 * done. Non-atomic initialization, single-pass.
4082 */
c09b4240 4083void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4084 unsigned long start_pfn, enum memmap_context context)
1da177e4 4085{
1da177e4 4086 struct page *page;
29751f69
AW
4087 unsigned long end_pfn = start_pfn + size;
4088 unsigned long pfn;
86051ca5 4089 struct zone *z;
1da177e4 4090
22b31eec
HD
4091 if (highest_memmap_pfn < end_pfn - 1)
4092 highest_memmap_pfn = end_pfn - 1;
4093
86051ca5 4094 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4095 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4096 /*
4097 * There can be holes in boot-time mem_map[]s
4098 * handed to this function. They do not
4099 * exist on hotplugged memory.
4100 */
4101 if (context == MEMMAP_EARLY) {
4102 if (!early_pfn_valid(pfn))
4103 continue;
4104 if (!early_pfn_in_nid(pfn, nid))
4105 continue;
4106 }
d41dee36
AW
4107 page = pfn_to_page(pfn);
4108 set_page_links(page, zone, nid, pfn);
708614e6 4109 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4110 init_page_count(page);
22b751c3 4111 page_mapcount_reset(page);
90572890 4112 page_cpupid_reset_last(page);
1da177e4 4113 SetPageReserved(page);
b2a0ac88
MG
4114 /*
4115 * Mark the block movable so that blocks are reserved for
4116 * movable at startup. This will force kernel allocations
4117 * to reserve their blocks rather than leaking throughout
4118 * the address space during boot when many long-lived
56fd56b8
MG
4119 * kernel allocations are made. Later some blocks near
4120 * the start are marked MIGRATE_RESERVE by
4121 * setup_zone_migrate_reserve()
86051ca5
KH
4122 *
4123 * bitmap is created for zone's valid pfn range. but memmap
4124 * can be created for invalid pages (for alignment)
4125 * check here not to call set_pageblock_migratetype() against
4126 * pfn out of zone.
b2a0ac88 4127 */
86051ca5 4128 if ((z->zone_start_pfn <= pfn)
108bcc96 4129 && (pfn < zone_end_pfn(z))
86051ca5 4130 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4131 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4132
1da177e4
LT
4133 INIT_LIST_HEAD(&page->lru);
4134#ifdef WANT_PAGE_VIRTUAL
4135 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4136 if (!is_highmem_idx(zone))
3212c6be 4137 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4138#endif
1da177e4
LT
4139 }
4140}
4141
1e548deb 4142static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4143{
7aeb09f9 4144 unsigned int order, t;
b2a0ac88
MG
4145 for_each_migratetype_order(order, t) {
4146 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4147 zone->free_area[order].nr_free = 0;
4148 }
4149}
4150
4151#ifndef __HAVE_ARCH_MEMMAP_INIT
4152#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4153 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4154#endif
4155
7cd2b0a3 4156static int zone_batchsize(struct zone *zone)
e7c8d5c9 4157{
3a6be87f 4158#ifdef CONFIG_MMU
e7c8d5c9
CL
4159 int batch;
4160
4161 /*
4162 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4163 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4164 *
4165 * OK, so we don't know how big the cache is. So guess.
4166 */
b40da049 4167 batch = zone->managed_pages / 1024;
ba56e91c
SR
4168 if (batch * PAGE_SIZE > 512 * 1024)
4169 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4170 batch /= 4; /* We effectively *= 4 below */
4171 if (batch < 1)
4172 batch = 1;
4173
4174 /*
0ceaacc9
NP
4175 * Clamp the batch to a 2^n - 1 value. Having a power
4176 * of 2 value was found to be more likely to have
4177 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4178 *
0ceaacc9
NP
4179 * For example if 2 tasks are alternately allocating
4180 * batches of pages, one task can end up with a lot
4181 * of pages of one half of the possible page colors
4182 * and the other with pages of the other colors.
e7c8d5c9 4183 */
9155203a 4184 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4185
e7c8d5c9 4186 return batch;
3a6be87f
DH
4187
4188#else
4189 /* The deferral and batching of frees should be suppressed under NOMMU
4190 * conditions.
4191 *
4192 * The problem is that NOMMU needs to be able to allocate large chunks
4193 * of contiguous memory as there's no hardware page translation to
4194 * assemble apparent contiguous memory from discontiguous pages.
4195 *
4196 * Queueing large contiguous runs of pages for batching, however,
4197 * causes the pages to actually be freed in smaller chunks. As there
4198 * can be a significant delay between the individual batches being
4199 * recycled, this leads to the once large chunks of space being
4200 * fragmented and becoming unavailable for high-order allocations.
4201 */
4202 return 0;
4203#endif
e7c8d5c9
CL
4204}
4205
8d7a8fa9
CS
4206/*
4207 * pcp->high and pcp->batch values are related and dependent on one another:
4208 * ->batch must never be higher then ->high.
4209 * The following function updates them in a safe manner without read side
4210 * locking.
4211 *
4212 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4213 * those fields changing asynchronously (acording the the above rule).
4214 *
4215 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4216 * outside of boot time (or some other assurance that no concurrent updaters
4217 * exist).
4218 */
4219static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4220 unsigned long batch)
4221{
4222 /* start with a fail safe value for batch */
4223 pcp->batch = 1;
4224 smp_wmb();
4225
4226 /* Update high, then batch, in order */
4227 pcp->high = high;
4228 smp_wmb();
4229
4230 pcp->batch = batch;
4231}
4232
3664033c 4233/* a companion to pageset_set_high() */
4008bab7
CS
4234static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4235{
8d7a8fa9 4236 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4237}
4238
88c90dbc 4239static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4240{
4241 struct per_cpu_pages *pcp;
5f8dcc21 4242 int migratetype;
2caaad41 4243
1c6fe946
MD
4244 memset(p, 0, sizeof(*p));
4245
3dfa5721 4246 pcp = &p->pcp;
2caaad41 4247 pcp->count = 0;
5f8dcc21
MG
4248 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4249 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4250}
4251
88c90dbc
CS
4252static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4253{
4254 pageset_init(p);
4255 pageset_set_batch(p, batch);
4256}
4257
8ad4b1fb 4258/*
3664033c 4259 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4260 * to the value high for the pageset p.
4261 */
3664033c 4262static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4263 unsigned long high)
4264{
8d7a8fa9
CS
4265 unsigned long batch = max(1UL, high / 4);
4266 if ((high / 4) > (PAGE_SHIFT * 8))
4267 batch = PAGE_SHIFT * 8;
8ad4b1fb 4268
8d7a8fa9 4269 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4270}
4271
7cd2b0a3
DR
4272static void pageset_set_high_and_batch(struct zone *zone,
4273 struct per_cpu_pageset *pcp)
56cef2b8 4274{
56cef2b8 4275 if (percpu_pagelist_fraction)
3664033c 4276 pageset_set_high(pcp,
56cef2b8
CS
4277 (zone->managed_pages /
4278 percpu_pagelist_fraction));
4279 else
4280 pageset_set_batch(pcp, zone_batchsize(zone));
4281}
4282
169f6c19
CS
4283static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4284{
4285 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4286
4287 pageset_init(pcp);
4288 pageset_set_high_and_batch(zone, pcp);
4289}
4290
4ed7e022 4291static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4292{
4293 int cpu;
319774e2 4294 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4295 for_each_possible_cpu(cpu)
4296 zone_pageset_init(zone, cpu);
319774e2
WF
4297}
4298
2caaad41 4299/*
99dcc3e5
CL
4300 * Allocate per cpu pagesets and initialize them.
4301 * Before this call only boot pagesets were available.
e7c8d5c9 4302 */
99dcc3e5 4303void __init setup_per_cpu_pageset(void)
e7c8d5c9 4304{
99dcc3e5 4305 struct zone *zone;
e7c8d5c9 4306
319774e2
WF
4307 for_each_populated_zone(zone)
4308 setup_zone_pageset(zone);
e7c8d5c9
CL
4309}
4310
577a32f6 4311static noinline __init_refok
cca448fe 4312int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4313{
4314 int i;
cca448fe 4315 size_t alloc_size;
ed8ece2e
DH
4316
4317 /*
4318 * The per-page waitqueue mechanism uses hashed waitqueues
4319 * per zone.
4320 */
02b694de
YG
4321 zone->wait_table_hash_nr_entries =
4322 wait_table_hash_nr_entries(zone_size_pages);
4323 zone->wait_table_bits =
4324 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4325 alloc_size = zone->wait_table_hash_nr_entries
4326 * sizeof(wait_queue_head_t);
4327
cd94b9db 4328 if (!slab_is_available()) {
cca448fe 4329 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4330 memblock_virt_alloc_node_nopanic(
4331 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4332 } else {
4333 /*
4334 * This case means that a zone whose size was 0 gets new memory
4335 * via memory hot-add.
4336 * But it may be the case that a new node was hot-added. In
4337 * this case vmalloc() will not be able to use this new node's
4338 * memory - this wait_table must be initialized to use this new
4339 * node itself as well.
4340 * To use this new node's memory, further consideration will be
4341 * necessary.
4342 */
8691f3a7 4343 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4344 }
4345 if (!zone->wait_table)
4346 return -ENOMEM;
ed8ece2e 4347
b8af2941 4348 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4349 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4350
4351 return 0;
ed8ece2e
DH
4352}
4353
c09b4240 4354static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4355{
99dcc3e5
CL
4356 /*
4357 * per cpu subsystem is not up at this point. The following code
4358 * relies on the ability of the linker to provide the
4359 * offset of a (static) per cpu variable into the per cpu area.
4360 */
4361 zone->pageset = &boot_pageset;
ed8ece2e 4362
b38a8725 4363 if (populated_zone(zone))
99dcc3e5
CL
4364 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4365 zone->name, zone->present_pages,
4366 zone_batchsize(zone));
ed8ece2e
DH
4367}
4368
4ed7e022 4369int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4370 unsigned long zone_start_pfn,
a2f3aa02
DH
4371 unsigned long size,
4372 enum memmap_context context)
ed8ece2e
DH
4373{
4374 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4375 int ret;
4376 ret = zone_wait_table_init(zone, size);
4377 if (ret)
4378 return ret;
ed8ece2e
DH
4379 pgdat->nr_zones = zone_idx(zone) + 1;
4380
ed8ece2e
DH
4381 zone->zone_start_pfn = zone_start_pfn;
4382
708614e6
MG
4383 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4384 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4385 pgdat->node_id,
4386 (unsigned long)zone_idx(zone),
4387 zone_start_pfn, (zone_start_pfn + size));
4388
1e548deb 4389 zone_init_free_lists(zone);
718127cc
YG
4390
4391 return 0;
ed8ece2e
DH
4392}
4393
0ee332c1 4394#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4395#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4396/*
4397 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4398 */
f2dbcfa7 4399int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4400{
c13291a5 4401 unsigned long start_pfn, end_pfn;
e76b63f8 4402 int nid;
7c243c71
RA
4403 /*
4404 * NOTE: The following SMP-unsafe globals are only used early in boot
4405 * when the kernel is running single-threaded.
4406 */
4407 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4408 static int __meminitdata last_nid;
4409
4410 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4411 return last_nid;
c713216d 4412
e76b63f8
YL
4413 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4414 if (nid != -1) {
4415 last_start_pfn = start_pfn;
4416 last_end_pfn = end_pfn;
4417 last_nid = nid;
4418 }
4419
4420 return nid;
c713216d
MG
4421}
4422#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4423
f2dbcfa7
KH
4424int __meminit early_pfn_to_nid(unsigned long pfn)
4425{
cc2559bc
KH
4426 int nid;
4427
4428 nid = __early_pfn_to_nid(pfn);
4429 if (nid >= 0)
4430 return nid;
4431 /* just returns 0 */
4432 return 0;
f2dbcfa7
KH
4433}
4434
cc2559bc
KH
4435#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4436bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4437{
4438 int nid;
4439
4440 nid = __early_pfn_to_nid(pfn);
4441 if (nid >= 0 && nid != node)
4442 return false;
4443 return true;
4444}
4445#endif
f2dbcfa7 4446
c713216d 4447/**
6782832e 4448 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4449 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4450 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4451 *
7d018176
ZZ
4452 * If an architecture guarantees that all ranges registered contain no holes
4453 * and may be freed, this this function may be used instead of calling
4454 * memblock_free_early_nid() manually.
c713216d 4455 */
c13291a5 4456void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4457{
c13291a5
TH
4458 unsigned long start_pfn, end_pfn;
4459 int i, this_nid;
edbe7d23 4460
c13291a5
TH
4461 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4462 start_pfn = min(start_pfn, max_low_pfn);
4463 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4464
c13291a5 4465 if (start_pfn < end_pfn)
6782832e
SS
4466 memblock_free_early_nid(PFN_PHYS(start_pfn),
4467 (end_pfn - start_pfn) << PAGE_SHIFT,
4468 this_nid);
edbe7d23 4469 }
edbe7d23 4470}
edbe7d23 4471
c713216d
MG
4472/**
4473 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4474 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4475 *
7d018176
ZZ
4476 * If an architecture guarantees that all ranges registered contain no holes and may
4477 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4478 */
4479void __init sparse_memory_present_with_active_regions(int nid)
4480{
c13291a5
TH
4481 unsigned long start_pfn, end_pfn;
4482 int i, this_nid;
c713216d 4483
c13291a5
TH
4484 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4485 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4486}
4487
4488/**
4489 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4490 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4491 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4492 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4493 *
4494 * It returns the start and end page frame of a node based on information
7d018176 4495 * provided by memblock_set_node(). If called for a node
c713216d 4496 * with no available memory, a warning is printed and the start and end
88ca3b94 4497 * PFNs will be 0.
c713216d 4498 */
a3142c8e 4499void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4500 unsigned long *start_pfn, unsigned long *end_pfn)
4501{
c13291a5 4502 unsigned long this_start_pfn, this_end_pfn;
c713216d 4503 int i;
c13291a5 4504
c713216d
MG
4505 *start_pfn = -1UL;
4506 *end_pfn = 0;
4507
c13291a5
TH
4508 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4509 *start_pfn = min(*start_pfn, this_start_pfn);
4510 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4511 }
4512
633c0666 4513 if (*start_pfn == -1UL)
c713216d 4514 *start_pfn = 0;
c713216d
MG
4515}
4516
2a1e274a
MG
4517/*
4518 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4519 * assumption is made that zones within a node are ordered in monotonic
4520 * increasing memory addresses so that the "highest" populated zone is used
4521 */
b69a7288 4522static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4523{
4524 int zone_index;
4525 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4526 if (zone_index == ZONE_MOVABLE)
4527 continue;
4528
4529 if (arch_zone_highest_possible_pfn[zone_index] >
4530 arch_zone_lowest_possible_pfn[zone_index])
4531 break;
4532 }
4533
4534 VM_BUG_ON(zone_index == -1);
4535 movable_zone = zone_index;
4536}
4537
4538/*
4539 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4540 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4541 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4542 * in each node depending on the size of each node and how evenly kernelcore
4543 * is distributed. This helper function adjusts the zone ranges
4544 * provided by the architecture for a given node by using the end of the
4545 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4546 * zones within a node are in order of monotonic increases memory addresses
4547 */
b69a7288 4548static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4549 unsigned long zone_type,
4550 unsigned long node_start_pfn,
4551 unsigned long node_end_pfn,
4552 unsigned long *zone_start_pfn,
4553 unsigned long *zone_end_pfn)
4554{
4555 /* Only adjust if ZONE_MOVABLE is on this node */
4556 if (zone_movable_pfn[nid]) {
4557 /* Size ZONE_MOVABLE */
4558 if (zone_type == ZONE_MOVABLE) {
4559 *zone_start_pfn = zone_movable_pfn[nid];
4560 *zone_end_pfn = min(node_end_pfn,
4561 arch_zone_highest_possible_pfn[movable_zone]);
4562
4563 /* Adjust for ZONE_MOVABLE starting within this range */
4564 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4565 *zone_end_pfn > zone_movable_pfn[nid]) {
4566 *zone_end_pfn = zone_movable_pfn[nid];
4567
4568 /* Check if this whole range is within ZONE_MOVABLE */
4569 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4570 *zone_start_pfn = *zone_end_pfn;
4571 }
4572}
4573
c713216d
MG
4574/*
4575 * Return the number of pages a zone spans in a node, including holes
4576 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4577 */
6ea6e688 4578static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4579 unsigned long zone_type,
7960aedd
ZY
4580 unsigned long node_start_pfn,
4581 unsigned long node_end_pfn,
c713216d
MG
4582 unsigned long *ignored)
4583{
c713216d
MG
4584 unsigned long zone_start_pfn, zone_end_pfn;
4585
7960aedd 4586 /* Get the start and end of the zone */
c713216d
MG
4587 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4588 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4589 adjust_zone_range_for_zone_movable(nid, zone_type,
4590 node_start_pfn, node_end_pfn,
4591 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4592
4593 /* Check that this node has pages within the zone's required range */
4594 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4595 return 0;
4596
4597 /* Move the zone boundaries inside the node if necessary */
4598 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4599 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4600
4601 /* Return the spanned pages */
4602 return zone_end_pfn - zone_start_pfn;
4603}
4604
4605/*
4606 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4607 * then all holes in the requested range will be accounted for.
c713216d 4608 */
32996250 4609unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4610 unsigned long range_start_pfn,
4611 unsigned long range_end_pfn)
4612{
96e907d1
TH
4613 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4614 unsigned long start_pfn, end_pfn;
4615 int i;
c713216d 4616
96e907d1
TH
4617 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4618 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4619 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4620 nr_absent -= end_pfn - start_pfn;
c713216d 4621 }
96e907d1 4622 return nr_absent;
c713216d
MG
4623}
4624
4625/**
4626 * absent_pages_in_range - Return number of page frames in holes within a range
4627 * @start_pfn: The start PFN to start searching for holes
4628 * @end_pfn: The end PFN to stop searching for holes
4629 *
88ca3b94 4630 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4631 */
4632unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4633 unsigned long end_pfn)
4634{
4635 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4636}
4637
4638/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4639static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4640 unsigned long zone_type,
7960aedd
ZY
4641 unsigned long node_start_pfn,
4642 unsigned long node_end_pfn,
c713216d
MG
4643 unsigned long *ignored)
4644{
96e907d1
TH
4645 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4646 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4647 unsigned long zone_start_pfn, zone_end_pfn;
4648
96e907d1
TH
4649 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4650 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4651
2a1e274a
MG
4652 adjust_zone_range_for_zone_movable(nid, zone_type,
4653 node_start_pfn, node_end_pfn,
4654 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4655 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4656}
0e0b864e 4657
0ee332c1 4658#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4659static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4660 unsigned long zone_type,
7960aedd
ZY
4661 unsigned long node_start_pfn,
4662 unsigned long node_end_pfn,
c713216d
MG
4663 unsigned long *zones_size)
4664{
4665 return zones_size[zone_type];
4666}
4667
6ea6e688 4668static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4669 unsigned long zone_type,
7960aedd
ZY
4670 unsigned long node_start_pfn,
4671 unsigned long node_end_pfn,
c713216d
MG
4672 unsigned long *zholes_size)
4673{
4674 if (!zholes_size)
4675 return 0;
4676
4677 return zholes_size[zone_type];
4678}
20e6926d 4679
0ee332c1 4680#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4681
a3142c8e 4682static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4683 unsigned long node_start_pfn,
4684 unsigned long node_end_pfn,
4685 unsigned long *zones_size,
4686 unsigned long *zholes_size)
c713216d
MG
4687{
4688 unsigned long realtotalpages, totalpages = 0;
4689 enum zone_type i;
4690
4691 for (i = 0; i < MAX_NR_ZONES; i++)
4692 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4693 node_start_pfn,
4694 node_end_pfn,
4695 zones_size);
c713216d
MG
4696 pgdat->node_spanned_pages = totalpages;
4697
4698 realtotalpages = totalpages;
4699 for (i = 0; i < MAX_NR_ZONES; i++)
4700 realtotalpages -=
4701 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4702 node_start_pfn, node_end_pfn,
4703 zholes_size);
c713216d
MG
4704 pgdat->node_present_pages = realtotalpages;
4705 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4706 realtotalpages);
4707}
4708
835c134e
MG
4709#ifndef CONFIG_SPARSEMEM
4710/*
4711 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4712 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4713 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4714 * round what is now in bits to nearest long in bits, then return it in
4715 * bytes.
4716 */
7c45512d 4717static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4718{
4719 unsigned long usemapsize;
4720
7c45512d 4721 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4722 usemapsize = roundup(zonesize, pageblock_nr_pages);
4723 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4724 usemapsize *= NR_PAGEBLOCK_BITS;
4725 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4726
4727 return usemapsize / 8;
4728}
4729
4730static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4731 struct zone *zone,
4732 unsigned long zone_start_pfn,
4733 unsigned long zonesize)
835c134e 4734{
7c45512d 4735 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4736 zone->pageblock_flags = NULL;
58a01a45 4737 if (usemapsize)
6782832e
SS
4738 zone->pageblock_flags =
4739 memblock_virt_alloc_node_nopanic(usemapsize,
4740 pgdat->node_id);
835c134e
MG
4741}
4742#else
7c45512d
LT
4743static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4744 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4745#endif /* CONFIG_SPARSEMEM */
4746
d9c23400 4747#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4748
d9c23400 4749/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4750void __paginginit set_pageblock_order(void)
d9c23400 4751{
955c1cd7
AM
4752 unsigned int order;
4753
d9c23400
MG
4754 /* Check that pageblock_nr_pages has not already been setup */
4755 if (pageblock_order)
4756 return;
4757
955c1cd7
AM
4758 if (HPAGE_SHIFT > PAGE_SHIFT)
4759 order = HUGETLB_PAGE_ORDER;
4760 else
4761 order = MAX_ORDER - 1;
4762
d9c23400
MG
4763 /*
4764 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4765 * This value may be variable depending on boot parameters on IA64 and
4766 * powerpc.
d9c23400
MG
4767 */
4768 pageblock_order = order;
4769}
4770#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4771
ba72cb8c
MG
4772/*
4773 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4774 * is unused as pageblock_order is set at compile-time. See
4775 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4776 * the kernel config
ba72cb8c 4777 */
15ca220e 4778void __paginginit set_pageblock_order(void)
ba72cb8c 4779{
ba72cb8c 4780}
d9c23400
MG
4781
4782#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4783
01cefaef
JL
4784static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4785 unsigned long present_pages)
4786{
4787 unsigned long pages = spanned_pages;
4788
4789 /*
4790 * Provide a more accurate estimation if there are holes within
4791 * the zone and SPARSEMEM is in use. If there are holes within the
4792 * zone, each populated memory region may cost us one or two extra
4793 * memmap pages due to alignment because memmap pages for each
4794 * populated regions may not naturally algined on page boundary.
4795 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4796 */
4797 if (spanned_pages > present_pages + (present_pages >> 4) &&
4798 IS_ENABLED(CONFIG_SPARSEMEM))
4799 pages = present_pages;
4800
4801 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4802}
4803
1da177e4
LT
4804/*
4805 * Set up the zone data structures:
4806 * - mark all pages reserved
4807 * - mark all memory queues empty
4808 * - clear the memory bitmaps
6527af5d
MK
4809 *
4810 * NOTE: pgdat should get zeroed by caller.
1da177e4 4811 */
b5a0e011 4812static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4813 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4814 unsigned long *zones_size, unsigned long *zholes_size)
4815{
2f1b6248 4816 enum zone_type j;
ed8ece2e 4817 int nid = pgdat->node_id;
1da177e4 4818 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4819 int ret;
1da177e4 4820
208d54e5 4821 pgdat_resize_init(pgdat);
8177a420
AA
4822#ifdef CONFIG_NUMA_BALANCING
4823 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4824 pgdat->numabalancing_migrate_nr_pages = 0;
4825 pgdat->numabalancing_migrate_next_window = jiffies;
4826#endif
1da177e4 4827 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4828 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4829 pgdat_page_cgroup_init(pgdat);
5f63b720 4830
1da177e4
LT
4831 for (j = 0; j < MAX_NR_ZONES; j++) {
4832 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4833 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4834
7960aedd
ZY
4835 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4836 node_end_pfn, zones_size);
9feedc9d 4837 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4838 node_start_pfn,
4839 node_end_pfn,
c713216d 4840 zholes_size);
1da177e4 4841
0e0b864e 4842 /*
9feedc9d 4843 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4844 * is used by this zone for memmap. This affects the watermark
4845 * and per-cpu initialisations
4846 */
01cefaef 4847 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4848 if (freesize >= memmap_pages) {
4849 freesize -= memmap_pages;
5594c8c8
YL
4850 if (memmap_pages)
4851 printk(KERN_DEBUG
4852 " %s zone: %lu pages used for memmap\n",
4853 zone_names[j], memmap_pages);
0e0b864e
MG
4854 } else
4855 printk(KERN_WARNING
9feedc9d
JL
4856 " %s zone: %lu pages exceeds freesize %lu\n",
4857 zone_names[j], memmap_pages, freesize);
0e0b864e 4858
6267276f 4859 /* Account for reserved pages */
9feedc9d
JL
4860 if (j == 0 && freesize > dma_reserve) {
4861 freesize -= dma_reserve;
d903ef9f 4862 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4863 zone_names[0], dma_reserve);
0e0b864e
MG
4864 }
4865
98d2b0eb 4866 if (!is_highmem_idx(j))
9feedc9d 4867 nr_kernel_pages += freesize;
01cefaef
JL
4868 /* Charge for highmem memmap if there are enough kernel pages */
4869 else if (nr_kernel_pages > memmap_pages * 2)
4870 nr_kernel_pages -= memmap_pages;
9feedc9d 4871 nr_all_pages += freesize;
1da177e4
LT
4872
4873 zone->spanned_pages = size;
306f2e9e 4874 zone->present_pages = realsize;
9feedc9d
JL
4875 /*
4876 * Set an approximate value for lowmem here, it will be adjusted
4877 * when the bootmem allocator frees pages into the buddy system.
4878 * And all highmem pages will be managed by the buddy system.
4879 */
4880 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4881#ifdef CONFIG_NUMA
d5f541ed 4882 zone->node = nid;
9feedc9d 4883 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4884 / 100;
9feedc9d 4885 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4886#endif
1da177e4
LT
4887 zone->name = zone_names[j];
4888 spin_lock_init(&zone->lock);
4889 spin_lock_init(&zone->lru_lock);
bdc8cb98 4890 zone_seqlock_init(zone);
1da177e4 4891 zone->zone_pgdat = pgdat;
ed8ece2e 4892 zone_pcp_init(zone);
81c0a2bb
JW
4893
4894 /* For bootup, initialized properly in watermark setup */
4895 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4896
bea8c150 4897 lruvec_init(&zone->lruvec);
1da177e4
LT
4898 if (!size)
4899 continue;
4900
955c1cd7 4901 set_pageblock_order();
7c45512d 4902 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4903 ret = init_currently_empty_zone(zone, zone_start_pfn,
4904 size, MEMMAP_EARLY);
718127cc 4905 BUG_ON(ret);
76cdd58e 4906 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4907 zone_start_pfn += size;
1da177e4
LT
4908 }
4909}
4910
577a32f6 4911static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4912{
1da177e4
LT
4913 /* Skip empty nodes */
4914 if (!pgdat->node_spanned_pages)
4915 return;
4916
d41dee36 4917#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4918 /* ia64 gets its own node_mem_map, before this, without bootmem */
4919 if (!pgdat->node_mem_map) {
e984bb43 4920 unsigned long size, start, end;
d41dee36
AW
4921 struct page *map;
4922
e984bb43
BP
4923 /*
4924 * The zone's endpoints aren't required to be MAX_ORDER
4925 * aligned but the node_mem_map endpoints must be in order
4926 * for the buddy allocator to function correctly.
4927 */
4928 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4929 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4930 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4931 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4932 map = alloc_remap(pgdat->node_id, size);
4933 if (!map)
6782832e
SS
4934 map = memblock_virt_alloc_node_nopanic(size,
4935 pgdat->node_id);
e984bb43 4936 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4937 }
12d810c1 4938#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4939 /*
4940 * With no DISCONTIG, the global mem_map is just set as node 0's
4941 */
c713216d 4942 if (pgdat == NODE_DATA(0)) {
1da177e4 4943 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4944#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4945 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4946 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4947#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4948 }
1da177e4 4949#endif
d41dee36 4950#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4951}
4952
9109fb7b
JW
4953void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4954 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4955{
9109fb7b 4956 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4957 unsigned long start_pfn = 0;
4958 unsigned long end_pfn = 0;
9109fb7b 4959
88fdf75d 4960 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4961 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4962
1da177e4
LT
4963 pgdat->node_id = nid;
4964 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
4965#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4966 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4967#endif
4968 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4969 zones_size, zholes_size);
1da177e4
LT
4970
4971 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4972#ifdef CONFIG_FLAT_NODE_MEM_MAP
4973 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4974 nid, (unsigned long)pgdat,
4975 (unsigned long)pgdat->node_mem_map);
4976#endif
1da177e4 4977
7960aedd
ZY
4978 free_area_init_core(pgdat, start_pfn, end_pfn,
4979 zones_size, zholes_size);
1da177e4
LT
4980}
4981
0ee332c1 4982#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4983
4984#if MAX_NUMNODES > 1
4985/*
4986 * Figure out the number of possible node ids.
4987 */
f9872caf 4988void __init setup_nr_node_ids(void)
418508c1
MS
4989{
4990 unsigned int node;
4991 unsigned int highest = 0;
4992
4993 for_each_node_mask(node, node_possible_map)
4994 highest = node;
4995 nr_node_ids = highest + 1;
4996}
418508c1
MS
4997#endif
4998
1e01979c
TH
4999/**
5000 * node_map_pfn_alignment - determine the maximum internode alignment
5001 *
5002 * This function should be called after node map is populated and sorted.
5003 * It calculates the maximum power of two alignment which can distinguish
5004 * all the nodes.
5005 *
5006 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5007 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5008 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5009 * shifted, 1GiB is enough and this function will indicate so.
5010 *
5011 * This is used to test whether pfn -> nid mapping of the chosen memory
5012 * model has fine enough granularity to avoid incorrect mapping for the
5013 * populated node map.
5014 *
5015 * Returns the determined alignment in pfn's. 0 if there is no alignment
5016 * requirement (single node).
5017 */
5018unsigned long __init node_map_pfn_alignment(void)
5019{
5020 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5021 unsigned long start, end, mask;
1e01979c 5022 int last_nid = -1;
c13291a5 5023 int i, nid;
1e01979c 5024
c13291a5 5025 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5026 if (!start || last_nid < 0 || last_nid == nid) {
5027 last_nid = nid;
5028 last_end = end;
5029 continue;
5030 }
5031
5032 /*
5033 * Start with a mask granular enough to pin-point to the
5034 * start pfn and tick off bits one-by-one until it becomes
5035 * too coarse to separate the current node from the last.
5036 */
5037 mask = ~((1 << __ffs(start)) - 1);
5038 while (mask && last_end <= (start & (mask << 1)))
5039 mask <<= 1;
5040
5041 /* accumulate all internode masks */
5042 accl_mask |= mask;
5043 }
5044
5045 /* convert mask to number of pages */
5046 return ~accl_mask + 1;
5047}
5048
a6af2bc3 5049/* Find the lowest pfn for a node */
b69a7288 5050static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5051{
a6af2bc3 5052 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5053 unsigned long start_pfn;
5054 int i;
1abbfb41 5055
c13291a5
TH
5056 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5057 min_pfn = min(min_pfn, start_pfn);
c713216d 5058
a6af2bc3
MG
5059 if (min_pfn == ULONG_MAX) {
5060 printk(KERN_WARNING
2bc0d261 5061 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5062 return 0;
5063 }
5064
5065 return min_pfn;
c713216d
MG
5066}
5067
5068/**
5069 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5070 *
5071 * It returns the minimum PFN based on information provided via
7d018176 5072 * memblock_set_node().
c713216d
MG
5073 */
5074unsigned long __init find_min_pfn_with_active_regions(void)
5075{
5076 return find_min_pfn_for_node(MAX_NUMNODES);
5077}
5078
37b07e41
LS
5079/*
5080 * early_calculate_totalpages()
5081 * Sum pages in active regions for movable zone.
4b0ef1fe 5082 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5083 */
484f51f8 5084static unsigned long __init early_calculate_totalpages(void)
7e63efef 5085{
7e63efef 5086 unsigned long totalpages = 0;
c13291a5
TH
5087 unsigned long start_pfn, end_pfn;
5088 int i, nid;
5089
5090 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5091 unsigned long pages = end_pfn - start_pfn;
7e63efef 5092
37b07e41
LS
5093 totalpages += pages;
5094 if (pages)
4b0ef1fe 5095 node_set_state(nid, N_MEMORY);
37b07e41 5096 }
b8af2941 5097 return totalpages;
7e63efef
MG
5098}
5099
2a1e274a
MG
5100/*
5101 * Find the PFN the Movable zone begins in each node. Kernel memory
5102 * is spread evenly between nodes as long as the nodes have enough
5103 * memory. When they don't, some nodes will have more kernelcore than
5104 * others
5105 */
b224ef85 5106static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5107{
5108 int i, nid;
5109 unsigned long usable_startpfn;
5110 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5111 /* save the state before borrow the nodemask */
4b0ef1fe 5112 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5113 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5114 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5115 struct memblock_region *r;
b2f3eebe
TC
5116
5117 /* Need to find movable_zone earlier when movable_node is specified. */
5118 find_usable_zone_for_movable();
5119
5120 /*
5121 * If movable_node is specified, ignore kernelcore and movablecore
5122 * options.
5123 */
5124 if (movable_node_is_enabled()) {
136199f0
EM
5125 for_each_memblock(memory, r) {
5126 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5127 continue;
5128
136199f0 5129 nid = r->nid;
b2f3eebe 5130
136199f0 5131 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5132 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5133 min(usable_startpfn, zone_movable_pfn[nid]) :
5134 usable_startpfn;
5135 }
5136
5137 goto out2;
5138 }
2a1e274a 5139
7e63efef 5140 /*
b2f3eebe 5141 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5142 * kernelcore that corresponds so that memory usable for
5143 * any allocation type is evenly spread. If both kernelcore
5144 * and movablecore are specified, then the value of kernelcore
5145 * will be used for required_kernelcore if it's greater than
5146 * what movablecore would have allowed.
5147 */
5148 if (required_movablecore) {
7e63efef
MG
5149 unsigned long corepages;
5150
5151 /*
5152 * Round-up so that ZONE_MOVABLE is at least as large as what
5153 * was requested by the user
5154 */
5155 required_movablecore =
5156 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5157 corepages = totalpages - required_movablecore;
5158
5159 required_kernelcore = max(required_kernelcore, corepages);
5160 }
5161
20e6926d
YL
5162 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5163 if (!required_kernelcore)
66918dcd 5164 goto out;
2a1e274a
MG
5165
5166 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5167 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5168
5169restart:
5170 /* Spread kernelcore memory as evenly as possible throughout nodes */
5171 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5172 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5173 unsigned long start_pfn, end_pfn;
5174
2a1e274a
MG
5175 /*
5176 * Recalculate kernelcore_node if the division per node
5177 * now exceeds what is necessary to satisfy the requested
5178 * amount of memory for the kernel
5179 */
5180 if (required_kernelcore < kernelcore_node)
5181 kernelcore_node = required_kernelcore / usable_nodes;
5182
5183 /*
5184 * As the map is walked, we track how much memory is usable
5185 * by the kernel using kernelcore_remaining. When it is
5186 * 0, the rest of the node is usable by ZONE_MOVABLE
5187 */
5188 kernelcore_remaining = kernelcore_node;
5189
5190 /* Go through each range of PFNs within this node */
c13291a5 5191 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5192 unsigned long size_pages;
5193
c13291a5 5194 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5195 if (start_pfn >= end_pfn)
5196 continue;
5197
5198 /* Account for what is only usable for kernelcore */
5199 if (start_pfn < usable_startpfn) {
5200 unsigned long kernel_pages;
5201 kernel_pages = min(end_pfn, usable_startpfn)
5202 - start_pfn;
5203
5204 kernelcore_remaining -= min(kernel_pages,
5205 kernelcore_remaining);
5206 required_kernelcore -= min(kernel_pages,
5207 required_kernelcore);
5208
5209 /* Continue if range is now fully accounted */
5210 if (end_pfn <= usable_startpfn) {
5211
5212 /*
5213 * Push zone_movable_pfn to the end so
5214 * that if we have to rebalance
5215 * kernelcore across nodes, we will
5216 * not double account here
5217 */
5218 zone_movable_pfn[nid] = end_pfn;
5219 continue;
5220 }
5221 start_pfn = usable_startpfn;
5222 }
5223
5224 /*
5225 * The usable PFN range for ZONE_MOVABLE is from
5226 * start_pfn->end_pfn. Calculate size_pages as the
5227 * number of pages used as kernelcore
5228 */
5229 size_pages = end_pfn - start_pfn;
5230 if (size_pages > kernelcore_remaining)
5231 size_pages = kernelcore_remaining;
5232 zone_movable_pfn[nid] = start_pfn + size_pages;
5233
5234 /*
5235 * Some kernelcore has been met, update counts and
5236 * break if the kernelcore for this node has been
b8af2941 5237 * satisfied
2a1e274a
MG
5238 */
5239 required_kernelcore -= min(required_kernelcore,
5240 size_pages);
5241 kernelcore_remaining -= size_pages;
5242 if (!kernelcore_remaining)
5243 break;
5244 }
5245 }
5246
5247 /*
5248 * If there is still required_kernelcore, we do another pass with one
5249 * less node in the count. This will push zone_movable_pfn[nid] further
5250 * along on the nodes that still have memory until kernelcore is
b8af2941 5251 * satisfied
2a1e274a
MG
5252 */
5253 usable_nodes--;
5254 if (usable_nodes && required_kernelcore > usable_nodes)
5255 goto restart;
5256
b2f3eebe 5257out2:
2a1e274a
MG
5258 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5259 for (nid = 0; nid < MAX_NUMNODES; nid++)
5260 zone_movable_pfn[nid] =
5261 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5262
20e6926d 5263out:
66918dcd 5264 /* restore the node_state */
4b0ef1fe 5265 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5266}
5267
4b0ef1fe
LJ
5268/* Any regular or high memory on that node ? */
5269static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5270{
37b07e41
LS
5271 enum zone_type zone_type;
5272
4b0ef1fe
LJ
5273 if (N_MEMORY == N_NORMAL_MEMORY)
5274 return;
5275
5276 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5277 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5278 if (populated_zone(zone)) {
4b0ef1fe
LJ
5279 node_set_state(nid, N_HIGH_MEMORY);
5280 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5281 zone_type <= ZONE_NORMAL)
5282 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5283 break;
5284 }
37b07e41 5285 }
37b07e41
LS
5286}
5287
c713216d
MG
5288/**
5289 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5290 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5291 *
5292 * This will call free_area_init_node() for each active node in the system.
7d018176 5293 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5294 * zone in each node and their holes is calculated. If the maximum PFN
5295 * between two adjacent zones match, it is assumed that the zone is empty.
5296 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5297 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5298 * starts where the previous one ended. For example, ZONE_DMA32 starts
5299 * at arch_max_dma_pfn.
5300 */
5301void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5302{
c13291a5
TH
5303 unsigned long start_pfn, end_pfn;
5304 int i, nid;
a6af2bc3 5305
c713216d
MG
5306 /* Record where the zone boundaries are */
5307 memset(arch_zone_lowest_possible_pfn, 0,
5308 sizeof(arch_zone_lowest_possible_pfn));
5309 memset(arch_zone_highest_possible_pfn, 0,
5310 sizeof(arch_zone_highest_possible_pfn));
5311 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5312 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5313 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5314 if (i == ZONE_MOVABLE)
5315 continue;
c713216d
MG
5316 arch_zone_lowest_possible_pfn[i] =
5317 arch_zone_highest_possible_pfn[i-1];
5318 arch_zone_highest_possible_pfn[i] =
5319 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5320 }
2a1e274a
MG
5321 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5322 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5323
5324 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5325 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5326 find_zone_movable_pfns_for_nodes();
c713216d 5327
c713216d 5328 /* Print out the zone ranges */
a62e2f4f 5329 printk("Zone ranges:\n");
2a1e274a
MG
5330 for (i = 0; i < MAX_NR_ZONES; i++) {
5331 if (i == ZONE_MOVABLE)
5332 continue;
155cbfc8 5333 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5334 if (arch_zone_lowest_possible_pfn[i] ==
5335 arch_zone_highest_possible_pfn[i])
155cbfc8 5336 printk(KERN_CONT "empty\n");
72f0ba02 5337 else
a62e2f4f
BH
5338 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5339 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5340 (arch_zone_highest_possible_pfn[i]
5341 << PAGE_SHIFT) - 1);
2a1e274a
MG
5342 }
5343
5344 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5345 printk("Movable zone start for each node\n");
2a1e274a
MG
5346 for (i = 0; i < MAX_NUMNODES; i++) {
5347 if (zone_movable_pfn[i])
a62e2f4f
BH
5348 printk(" Node %d: %#010lx\n", i,
5349 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5350 }
c713216d 5351
f2d52fe5 5352 /* Print out the early node map */
a62e2f4f 5353 printk("Early memory node ranges\n");
c13291a5 5354 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5355 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5356 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5357
5358 /* Initialise every node */
708614e6 5359 mminit_verify_pageflags_layout();
8ef82866 5360 setup_nr_node_ids();
c713216d
MG
5361 for_each_online_node(nid) {
5362 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5363 free_area_init_node(nid, NULL,
c713216d 5364 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5365
5366 /* Any memory on that node */
5367 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5368 node_set_state(nid, N_MEMORY);
5369 check_for_memory(pgdat, nid);
c713216d
MG
5370 }
5371}
2a1e274a 5372
7e63efef 5373static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5374{
5375 unsigned long long coremem;
5376 if (!p)
5377 return -EINVAL;
5378
5379 coremem = memparse(p, &p);
7e63efef 5380 *core = coremem >> PAGE_SHIFT;
2a1e274a 5381
7e63efef 5382 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5383 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5384
5385 return 0;
5386}
ed7ed365 5387
7e63efef
MG
5388/*
5389 * kernelcore=size sets the amount of memory for use for allocations that
5390 * cannot be reclaimed or migrated.
5391 */
5392static int __init cmdline_parse_kernelcore(char *p)
5393{
5394 return cmdline_parse_core(p, &required_kernelcore);
5395}
5396
5397/*
5398 * movablecore=size sets the amount of memory for use for allocations that
5399 * can be reclaimed or migrated.
5400 */
5401static int __init cmdline_parse_movablecore(char *p)
5402{
5403 return cmdline_parse_core(p, &required_movablecore);
5404}
5405
ed7ed365 5406early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5407early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5408
0ee332c1 5409#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5410
c3d5f5f0
JL
5411void adjust_managed_page_count(struct page *page, long count)
5412{
5413 spin_lock(&managed_page_count_lock);
5414 page_zone(page)->managed_pages += count;
5415 totalram_pages += count;
3dcc0571
JL
5416#ifdef CONFIG_HIGHMEM
5417 if (PageHighMem(page))
5418 totalhigh_pages += count;
5419#endif
c3d5f5f0
JL
5420 spin_unlock(&managed_page_count_lock);
5421}
3dcc0571 5422EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5423
11199692 5424unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5425{
11199692
JL
5426 void *pos;
5427 unsigned long pages = 0;
69afade7 5428
11199692
JL
5429 start = (void *)PAGE_ALIGN((unsigned long)start);
5430 end = (void *)((unsigned long)end & PAGE_MASK);
5431 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5432 if ((unsigned int)poison <= 0xFF)
11199692
JL
5433 memset(pos, poison, PAGE_SIZE);
5434 free_reserved_page(virt_to_page(pos));
69afade7
JL
5435 }
5436
5437 if (pages && s)
11199692 5438 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5439 s, pages << (PAGE_SHIFT - 10), start, end);
5440
5441 return pages;
5442}
11199692 5443EXPORT_SYMBOL(free_reserved_area);
69afade7 5444
cfa11e08
JL
5445#ifdef CONFIG_HIGHMEM
5446void free_highmem_page(struct page *page)
5447{
5448 __free_reserved_page(page);
5449 totalram_pages++;
7b4b2a0d 5450 page_zone(page)->managed_pages++;
cfa11e08
JL
5451 totalhigh_pages++;
5452}
5453#endif
5454
7ee3d4e8
JL
5455
5456void __init mem_init_print_info(const char *str)
5457{
5458 unsigned long physpages, codesize, datasize, rosize, bss_size;
5459 unsigned long init_code_size, init_data_size;
5460
5461 physpages = get_num_physpages();
5462 codesize = _etext - _stext;
5463 datasize = _edata - _sdata;
5464 rosize = __end_rodata - __start_rodata;
5465 bss_size = __bss_stop - __bss_start;
5466 init_data_size = __init_end - __init_begin;
5467 init_code_size = _einittext - _sinittext;
5468
5469 /*
5470 * Detect special cases and adjust section sizes accordingly:
5471 * 1) .init.* may be embedded into .data sections
5472 * 2) .init.text.* may be out of [__init_begin, __init_end],
5473 * please refer to arch/tile/kernel/vmlinux.lds.S.
5474 * 3) .rodata.* may be embedded into .text or .data sections.
5475 */
5476#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5477 do { \
5478 if (start <= pos && pos < end && size > adj) \
5479 size -= adj; \
5480 } while (0)
7ee3d4e8
JL
5481
5482 adj_init_size(__init_begin, __init_end, init_data_size,
5483 _sinittext, init_code_size);
5484 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5485 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5486 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5487 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5488
5489#undef adj_init_size
5490
5491 printk("Memory: %luK/%luK available "
5492 "(%luK kernel code, %luK rwdata, %luK rodata, "
5493 "%luK init, %luK bss, %luK reserved"
5494#ifdef CONFIG_HIGHMEM
5495 ", %luK highmem"
5496#endif
5497 "%s%s)\n",
5498 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5499 codesize >> 10, datasize >> 10, rosize >> 10,
5500 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5501 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5502#ifdef CONFIG_HIGHMEM
5503 totalhigh_pages << (PAGE_SHIFT-10),
5504#endif
5505 str ? ", " : "", str ? str : "");
5506}
5507
0e0b864e 5508/**
88ca3b94
RD
5509 * set_dma_reserve - set the specified number of pages reserved in the first zone
5510 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5511 *
5512 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5513 * In the DMA zone, a significant percentage may be consumed by kernel image
5514 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5515 * function may optionally be used to account for unfreeable pages in the
5516 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5517 * smaller per-cpu batchsize.
0e0b864e
MG
5518 */
5519void __init set_dma_reserve(unsigned long new_dma_reserve)
5520{
5521 dma_reserve = new_dma_reserve;
5522}
5523
1da177e4
LT
5524void __init free_area_init(unsigned long *zones_size)
5525{
9109fb7b 5526 free_area_init_node(0, zones_size,
1da177e4
LT
5527 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5528}
1da177e4 5529
1da177e4
LT
5530static int page_alloc_cpu_notify(struct notifier_block *self,
5531 unsigned long action, void *hcpu)
5532{
5533 int cpu = (unsigned long)hcpu;
1da177e4 5534
8bb78442 5535 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5536 lru_add_drain_cpu(cpu);
9f8f2172
CL
5537 drain_pages(cpu);
5538
5539 /*
5540 * Spill the event counters of the dead processor
5541 * into the current processors event counters.
5542 * This artificially elevates the count of the current
5543 * processor.
5544 */
f8891e5e 5545 vm_events_fold_cpu(cpu);
9f8f2172
CL
5546
5547 /*
5548 * Zero the differential counters of the dead processor
5549 * so that the vm statistics are consistent.
5550 *
5551 * This is only okay since the processor is dead and cannot
5552 * race with what we are doing.
5553 */
2bb921e5 5554 cpu_vm_stats_fold(cpu);
1da177e4
LT
5555 }
5556 return NOTIFY_OK;
5557}
1da177e4
LT
5558
5559void __init page_alloc_init(void)
5560{
5561 hotcpu_notifier(page_alloc_cpu_notify, 0);
5562}
5563
cb45b0e9
HA
5564/*
5565 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5566 * or min_free_kbytes changes.
5567 */
5568static void calculate_totalreserve_pages(void)
5569{
5570 struct pglist_data *pgdat;
5571 unsigned long reserve_pages = 0;
2f6726e5 5572 enum zone_type i, j;
cb45b0e9
HA
5573
5574 for_each_online_pgdat(pgdat) {
5575 for (i = 0; i < MAX_NR_ZONES; i++) {
5576 struct zone *zone = pgdat->node_zones + i;
3484b2de 5577 long max = 0;
cb45b0e9
HA
5578
5579 /* Find valid and maximum lowmem_reserve in the zone */
5580 for (j = i; j < MAX_NR_ZONES; j++) {
5581 if (zone->lowmem_reserve[j] > max)
5582 max = zone->lowmem_reserve[j];
5583 }
5584
41858966
MG
5585 /* we treat the high watermark as reserved pages. */
5586 max += high_wmark_pages(zone);
cb45b0e9 5587
b40da049
JL
5588 if (max > zone->managed_pages)
5589 max = zone->managed_pages;
cb45b0e9 5590 reserve_pages += max;
ab8fabd4
JW
5591 /*
5592 * Lowmem reserves are not available to
5593 * GFP_HIGHUSER page cache allocations and
5594 * kswapd tries to balance zones to their high
5595 * watermark. As a result, neither should be
5596 * regarded as dirtyable memory, to prevent a
5597 * situation where reclaim has to clean pages
5598 * in order to balance the zones.
5599 */
5600 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5601 }
5602 }
ab8fabd4 5603 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5604 totalreserve_pages = reserve_pages;
5605}
5606
1da177e4
LT
5607/*
5608 * setup_per_zone_lowmem_reserve - called whenever
5609 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5610 * has a correct pages reserved value, so an adequate number of
5611 * pages are left in the zone after a successful __alloc_pages().
5612 */
5613static void setup_per_zone_lowmem_reserve(void)
5614{
5615 struct pglist_data *pgdat;
2f6726e5 5616 enum zone_type j, idx;
1da177e4 5617
ec936fc5 5618 for_each_online_pgdat(pgdat) {
1da177e4
LT
5619 for (j = 0; j < MAX_NR_ZONES; j++) {
5620 struct zone *zone = pgdat->node_zones + j;
b40da049 5621 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5622
5623 zone->lowmem_reserve[j] = 0;
5624
2f6726e5
CL
5625 idx = j;
5626 while (idx) {
1da177e4
LT
5627 struct zone *lower_zone;
5628
2f6726e5
CL
5629 idx--;
5630
1da177e4
LT
5631 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5632 sysctl_lowmem_reserve_ratio[idx] = 1;
5633
5634 lower_zone = pgdat->node_zones + idx;
b40da049 5635 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5636 sysctl_lowmem_reserve_ratio[idx];
b40da049 5637 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5638 }
5639 }
5640 }
cb45b0e9
HA
5641
5642 /* update totalreserve_pages */
5643 calculate_totalreserve_pages();
1da177e4
LT
5644}
5645
cfd3da1e 5646static void __setup_per_zone_wmarks(void)
1da177e4
LT
5647{
5648 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5649 unsigned long lowmem_pages = 0;
5650 struct zone *zone;
5651 unsigned long flags;
5652
5653 /* Calculate total number of !ZONE_HIGHMEM pages */
5654 for_each_zone(zone) {
5655 if (!is_highmem(zone))
b40da049 5656 lowmem_pages += zone->managed_pages;
1da177e4
LT
5657 }
5658
5659 for_each_zone(zone) {
ac924c60
AM
5660 u64 tmp;
5661
1125b4e3 5662 spin_lock_irqsave(&zone->lock, flags);
b40da049 5663 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5664 do_div(tmp, lowmem_pages);
1da177e4
LT
5665 if (is_highmem(zone)) {
5666 /*
669ed175
NP
5667 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5668 * need highmem pages, so cap pages_min to a small
5669 * value here.
5670 *
41858966 5671 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5672 * deltas controls asynch page reclaim, and so should
5673 * not be capped for highmem.
1da177e4 5674 */
90ae8d67 5675 unsigned long min_pages;
1da177e4 5676
b40da049 5677 min_pages = zone->managed_pages / 1024;
90ae8d67 5678 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5679 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5680 } else {
669ed175
NP
5681 /*
5682 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5683 * proportionate to the zone's size.
5684 */
41858966 5685 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5686 }
5687
41858966
MG
5688 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5689 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5690
81c0a2bb
JW
5691 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5692 high_wmark_pages(zone) -
5693 low_wmark_pages(zone) -
5694 zone_page_state(zone, NR_ALLOC_BATCH));
5695
56fd56b8 5696 setup_zone_migrate_reserve(zone);
1125b4e3 5697 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5698 }
cb45b0e9
HA
5699
5700 /* update totalreserve_pages */
5701 calculate_totalreserve_pages();
1da177e4
LT
5702}
5703
cfd3da1e
MG
5704/**
5705 * setup_per_zone_wmarks - called when min_free_kbytes changes
5706 * or when memory is hot-{added|removed}
5707 *
5708 * Ensures that the watermark[min,low,high] values for each zone are set
5709 * correctly with respect to min_free_kbytes.
5710 */
5711void setup_per_zone_wmarks(void)
5712{
5713 mutex_lock(&zonelists_mutex);
5714 __setup_per_zone_wmarks();
5715 mutex_unlock(&zonelists_mutex);
5716}
5717
55a4462a 5718/*
556adecb
RR
5719 * The inactive anon list should be small enough that the VM never has to
5720 * do too much work, but large enough that each inactive page has a chance
5721 * to be referenced again before it is swapped out.
5722 *
5723 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5724 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5725 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5726 * the anonymous pages are kept on the inactive list.
5727 *
5728 * total target max
5729 * memory ratio inactive anon
5730 * -------------------------------------
5731 * 10MB 1 5MB
5732 * 100MB 1 50MB
5733 * 1GB 3 250MB
5734 * 10GB 10 0.9GB
5735 * 100GB 31 3GB
5736 * 1TB 101 10GB
5737 * 10TB 320 32GB
5738 */
1b79acc9 5739static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5740{
96cb4df5 5741 unsigned int gb, ratio;
556adecb 5742
96cb4df5 5743 /* Zone size in gigabytes */
b40da049 5744 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5745 if (gb)
556adecb 5746 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5747 else
5748 ratio = 1;
556adecb 5749
96cb4df5
MK
5750 zone->inactive_ratio = ratio;
5751}
556adecb 5752
839a4fcc 5753static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5754{
5755 struct zone *zone;
5756
5757 for_each_zone(zone)
5758 calculate_zone_inactive_ratio(zone);
556adecb
RR
5759}
5760
1da177e4
LT
5761/*
5762 * Initialise min_free_kbytes.
5763 *
5764 * For small machines we want it small (128k min). For large machines
5765 * we want it large (64MB max). But it is not linear, because network
5766 * bandwidth does not increase linearly with machine size. We use
5767 *
b8af2941 5768 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5769 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5770 *
5771 * which yields
5772 *
5773 * 16MB: 512k
5774 * 32MB: 724k
5775 * 64MB: 1024k
5776 * 128MB: 1448k
5777 * 256MB: 2048k
5778 * 512MB: 2896k
5779 * 1024MB: 4096k
5780 * 2048MB: 5792k
5781 * 4096MB: 8192k
5782 * 8192MB: 11584k
5783 * 16384MB: 16384k
5784 */
1b79acc9 5785int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5786{
5787 unsigned long lowmem_kbytes;
5f12733e 5788 int new_min_free_kbytes;
1da177e4
LT
5789
5790 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5791 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5792
5793 if (new_min_free_kbytes > user_min_free_kbytes) {
5794 min_free_kbytes = new_min_free_kbytes;
5795 if (min_free_kbytes < 128)
5796 min_free_kbytes = 128;
5797 if (min_free_kbytes > 65536)
5798 min_free_kbytes = 65536;
5799 } else {
5800 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5801 new_min_free_kbytes, user_min_free_kbytes);
5802 }
bc75d33f 5803 setup_per_zone_wmarks();
a6cccdc3 5804 refresh_zone_stat_thresholds();
1da177e4 5805 setup_per_zone_lowmem_reserve();
556adecb 5806 setup_per_zone_inactive_ratio();
1da177e4
LT
5807 return 0;
5808}
bc75d33f 5809module_init(init_per_zone_wmark_min)
1da177e4
LT
5810
5811/*
b8af2941 5812 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5813 * that we can call two helper functions whenever min_free_kbytes
5814 * changes.
5815 */
cccad5b9 5816int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5817 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5818{
da8c757b
HP
5819 int rc;
5820
5821 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5822 if (rc)
5823 return rc;
5824
5f12733e
MH
5825 if (write) {
5826 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5827 setup_per_zone_wmarks();
5f12733e 5828 }
1da177e4
LT
5829 return 0;
5830}
5831
9614634f 5832#ifdef CONFIG_NUMA
cccad5b9 5833int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5834 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5835{
5836 struct zone *zone;
5837 int rc;
5838
8d65af78 5839 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5840 if (rc)
5841 return rc;
5842
5843 for_each_zone(zone)
b40da049 5844 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5845 sysctl_min_unmapped_ratio) / 100;
5846 return 0;
5847}
0ff38490 5848
cccad5b9 5849int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5850 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5851{
5852 struct zone *zone;
5853 int rc;
5854
8d65af78 5855 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5856 if (rc)
5857 return rc;
5858
5859 for_each_zone(zone)
b40da049 5860 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5861 sysctl_min_slab_ratio) / 100;
5862 return 0;
5863}
9614634f
CL
5864#endif
5865
1da177e4
LT
5866/*
5867 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5868 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5869 * whenever sysctl_lowmem_reserve_ratio changes.
5870 *
5871 * The reserve ratio obviously has absolutely no relation with the
41858966 5872 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5873 * if in function of the boot time zone sizes.
5874 */
cccad5b9 5875int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5876 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5877{
8d65af78 5878 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5879 setup_per_zone_lowmem_reserve();
5880 return 0;
5881}
5882
8ad4b1fb
RS
5883/*
5884 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5885 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5886 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5887 */
cccad5b9 5888int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5889 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5890{
5891 struct zone *zone;
7cd2b0a3 5892 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
5893 int ret;
5894
7cd2b0a3
DR
5895 mutex_lock(&pcp_batch_high_lock);
5896 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5897
8d65af78 5898 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
5899 if (!write || ret < 0)
5900 goto out;
5901
5902 /* Sanity checking to avoid pcp imbalance */
5903 if (percpu_pagelist_fraction &&
5904 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5905 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5906 ret = -EINVAL;
5907 goto out;
5908 }
5909
5910 /* No change? */
5911 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5912 goto out;
c8e251fa 5913
364df0eb 5914 for_each_populated_zone(zone) {
7cd2b0a3
DR
5915 unsigned int cpu;
5916
22a7f12b 5917 for_each_possible_cpu(cpu)
7cd2b0a3
DR
5918 pageset_set_high_and_batch(zone,
5919 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 5920 }
7cd2b0a3 5921out:
c8e251fa 5922 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 5923 return ret;
8ad4b1fb
RS
5924}
5925
f034b5d4 5926int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5927
5928#ifdef CONFIG_NUMA
5929static int __init set_hashdist(char *str)
5930{
5931 if (!str)
5932 return 0;
5933 hashdist = simple_strtoul(str, &str, 0);
5934 return 1;
5935}
5936__setup("hashdist=", set_hashdist);
5937#endif
5938
5939/*
5940 * allocate a large system hash table from bootmem
5941 * - it is assumed that the hash table must contain an exact power-of-2
5942 * quantity of entries
5943 * - limit is the number of hash buckets, not the total allocation size
5944 */
5945void *__init alloc_large_system_hash(const char *tablename,
5946 unsigned long bucketsize,
5947 unsigned long numentries,
5948 int scale,
5949 int flags,
5950 unsigned int *_hash_shift,
5951 unsigned int *_hash_mask,
31fe62b9
TB
5952 unsigned long low_limit,
5953 unsigned long high_limit)
1da177e4 5954{
31fe62b9 5955 unsigned long long max = high_limit;
1da177e4
LT
5956 unsigned long log2qty, size;
5957 void *table = NULL;
5958
5959 /* allow the kernel cmdline to have a say */
5960 if (!numentries) {
5961 /* round applicable memory size up to nearest megabyte */
04903664 5962 numentries = nr_kernel_pages;
a7e83318
JZ
5963
5964 /* It isn't necessary when PAGE_SIZE >= 1MB */
5965 if (PAGE_SHIFT < 20)
5966 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5967
5968 /* limit to 1 bucket per 2^scale bytes of low memory */
5969 if (scale > PAGE_SHIFT)
5970 numentries >>= (scale - PAGE_SHIFT);
5971 else
5972 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5973
5974 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5975 if (unlikely(flags & HASH_SMALL)) {
5976 /* Makes no sense without HASH_EARLY */
5977 WARN_ON(!(flags & HASH_EARLY));
5978 if (!(numentries >> *_hash_shift)) {
5979 numentries = 1UL << *_hash_shift;
5980 BUG_ON(!numentries);
5981 }
5982 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5983 numentries = PAGE_SIZE / bucketsize;
1da177e4 5984 }
6e692ed3 5985 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5986
5987 /* limit allocation size to 1/16 total memory by default */
5988 if (max == 0) {
5989 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5990 do_div(max, bucketsize);
5991 }
074b8517 5992 max = min(max, 0x80000000ULL);
1da177e4 5993
31fe62b9
TB
5994 if (numentries < low_limit)
5995 numentries = low_limit;
1da177e4
LT
5996 if (numentries > max)
5997 numentries = max;
5998
f0d1b0b3 5999 log2qty = ilog2(numentries);
1da177e4
LT
6000
6001 do {
6002 size = bucketsize << log2qty;
6003 if (flags & HASH_EARLY)
6782832e 6004 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6005 else if (hashdist)
6006 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6007 else {
1037b83b
ED
6008 /*
6009 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6010 * some pages at the end of hash table which
6011 * alloc_pages_exact() automatically does
1037b83b 6012 */
264ef8a9 6013 if (get_order(size) < MAX_ORDER) {
a1dd268c 6014 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6015 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6016 }
1da177e4
LT
6017 }
6018 } while (!table && size > PAGE_SIZE && --log2qty);
6019
6020 if (!table)
6021 panic("Failed to allocate %s hash table\n", tablename);
6022
f241e660 6023 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6024 tablename,
f241e660 6025 (1UL << log2qty),
f0d1b0b3 6026 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6027 size);
6028
6029 if (_hash_shift)
6030 *_hash_shift = log2qty;
6031 if (_hash_mask)
6032 *_hash_mask = (1 << log2qty) - 1;
6033
6034 return table;
6035}
a117e66e 6036
835c134e
MG
6037/* Return a pointer to the bitmap storing bits affecting a block of pages */
6038static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6039 unsigned long pfn)
6040{
6041#ifdef CONFIG_SPARSEMEM
6042 return __pfn_to_section(pfn)->pageblock_flags;
6043#else
6044 return zone->pageblock_flags;
6045#endif /* CONFIG_SPARSEMEM */
6046}
6047
6048static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6049{
6050#ifdef CONFIG_SPARSEMEM
6051 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6052 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6053#else
c060f943 6054 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6055 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6056#endif /* CONFIG_SPARSEMEM */
6057}
6058
6059/**
1aab4d77 6060 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6061 * @page: The page within the block of interest
1aab4d77
RD
6062 * @pfn: The target page frame number
6063 * @end_bitidx: The last bit of interest to retrieve
6064 * @mask: mask of bits that the caller is interested in
6065 *
6066 * Return: pageblock_bits flags
835c134e 6067 */
dc4b0caf 6068unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6069 unsigned long end_bitidx,
6070 unsigned long mask)
835c134e
MG
6071{
6072 struct zone *zone;
6073 unsigned long *bitmap;
dc4b0caf 6074 unsigned long bitidx, word_bitidx;
e58469ba 6075 unsigned long word;
835c134e
MG
6076
6077 zone = page_zone(page);
835c134e
MG
6078 bitmap = get_pageblock_bitmap(zone, pfn);
6079 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6080 word_bitidx = bitidx / BITS_PER_LONG;
6081 bitidx &= (BITS_PER_LONG-1);
835c134e 6082
e58469ba
MG
6083 word = bitmap[word_bitidx];
6084 bitidx += end_bitidx;
6085 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6086}
6087
6088/**
dc4b0caf 6089 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6090 * @page: The page within the block of interest
835c134e 6091 * @flags: The flags to set
1aab4d77
RD
6092 * @pfn: The target page frame number
6093 * @end_bitidx: The last bit of interest
6094 * @mask: mask of bits that the caller is interested in
835c134e 6095 */
dc4b0caf
MG
6096void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6097 unsigned long pfn,
e58469ba
MG
6098 unsigned long end_bitidx,
6099 unsigned long mask)
835c134e
MG
6100{
6101 struct zone *zone;
6102 unsigned long *bitmap;
dc4b0caf 6103 unsigned long bitidx, word_bitidx;
e58469ba
MG
6104 unsigned long old_word, word;
6105
6106 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6107
6108 zone = page_zone(page);
835c134e
MG
6109 bitmap = get_pageblock_bitmap(zone, pfn);
6110 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6111 word_bitidx = bitidx / BITS_PER_LONG;
6112 bitidx &= (BITS_PER_LONG-1);
6113
309381fe 6114 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6115
e58469ba
MG
6116 bitidx += end_bitidx;
6117 mask <<= (BITS_PER_LONG - bitidx - 1);
6118 flags <<= (BITS_PER_LONG - bitidx - 1);
6119
6120 word = ACCESS_ONCE(bitmap[word_bitidx]);
6121 for (;;) {
6122 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6123 if (word == old_word)
6124 break;
6125 word = old_word;
6126 }
835c134e 6127}
a5d76b54
KH
6128
6129/*
80934513
MK
6130 * This function checks whether pageblock includes unmovable pages or not.
6131 * If @count is not zero, it is okay to include less @count unmovable pages
6132 *
b8af2941 6133 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6134 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6135 * expect this function should be exact.
a5d76b54 6136 */
b023f468
WC
6137bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6138 bool skip_hwpoisoned_pages)
49ac8255
KH
6139{
6140 unsigned long pfn, iter, found;
47118af0
MN
6141 int mt;
6142
49ac8255
KH
6143 /*
6144 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6145 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6146 */
6147 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6148 return false;
47118af0
MN
6149 mt = get_pageblock_migratetype(page);
6150 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6151 return false;
49ac8255
KH
6152
6153 pfn = page_to_pfn(page);
6154 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6155 unsigned long check = pfn + iter;
6156
29723fcc 6157 if (!pfn_valid_within(check))
49ac8255 6158 continue;
29723fcc 6159
49ac8255 6160 page = pfn_to_page(check);
c8721bbb
NH
6161
6162 /*
6163 * Hugepages are not in LRU lists, but they're movable.
6164 * We need not scan over tail pages bacause we don't
6165 * handle each tail page individually in migration.
6166 */
6167 if (PageHuge(page)) {
6168 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6169 continue;
6170 }
6171
97d255c8
MK
6172 /*
6173 * We can't use page_count without pin a page
6174 * because another CPU can free compound page.
6175 * This check already skips compound tails of THP
6176 * because their page->_count is zero at all time.
6177 */
6178 if (!atomic_read(&page->_count)) {
49ac8255
KH
6179 if (PageBuddy(page))
6180 iter += (1 << page_order(page)) - 1;
6181 continue;
6182 }
97d255c8 6183
b023f468
WC
6184 /*
6185 * The HWPoisoned page may be not in buddy system, and
6186 * page_count() is not 0.
6187 */
6188 if (skip_hwpoisoned_pages && PageHWPoison(page))
6189 continue;
6190
49ac8255
KH
6191 if (!PageLRU(page))
6192 found++;
6193 /*
6194 * If there are RECLAIMABLE pages, we need to check it.
6195 * But now, memory offline itself doesn't call shrink_slab()
6196 * and it still to be fixed.
6197 */
6198 /*
6199 * If the page is not RAM, page_count()should be 0.
6200 * we don't need more check. This is an _used_ not-movable page.
6201 *
6202 * The problematic thing here is PG_reserved pages. PG_reserved
6203 * is set to both of a memory hole page and a _used_ kernel
6204 * page at boot.
6205 */
6206 if (found > count)
80934513 6207 return true;
49ac8255 6208 }
80934513 6209 return false;
49ac8255
KH
6210}
6211
6212bool is_pageblock_removable_nolock(struct page *page)
6213{
656a0706
MH
6214 struct zone *zone;
6215 unsigned long pfn;
687875fb
MH
6216
6217 /*
6218 * We have to be careful here because we are iterating over memory
6219 * sections which are not zone aware so we might end up outside of
6220 * the zone but still within the section.
656a0706
MH
6221 * We have to take care about the node as well. If the node is offline
6222 * its NODE_DATA will be NULL - see page_zone.
687875fb 6223 */
656a0706
MH
6224 if (!node_online(page_to_nid(page)))
6225 return false;
6226
6227 zone = page_zone(page);
6228 pfn = page_to_pfn(page);
108bcc96 6229 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6230 return false;
6231
b023f468 6232 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6233}
0c0e6195 6234
041d3a8c
MN
6235#ifdef CONFIG_CMA
6236
6237static unsigned long pfn_max_align_down(unsigned long pfn)
6238{
6239 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6240 pageblock_nr_pages) - 1);
6241}
6242
6243static unsigned long pfn_max_align_up(unsigned long pfn)
6244{
6245 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6246 pageblock_nr_pages));
6247}
6248
041d3a8c 6249/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6250static int __alloc_contig_migrate_range(struct compact_control *cc,
6251 unsigned long start, unsigned long end)
041d3a8c
MN
6252{
6253 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6254 unsigned long nr_reclaimed;
041d3a8c
MN
6255 unsigned long pfn = start;
6256 unsigned int tries = 0;
6257 int ret = 0;
6258
be49a6e1 6259 migrate_prep();
041d3a8c 6260
bb13ffeb 6261 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6262 if (fatal_signal_pending(current)) {
6263 ret = -EINTR;
6264 break;
6265 }
6266
bb13ffeb
MG
6267 if (list_empty(&cc->migratepages)) {
6268 cc->nr_migratepages = 0;
6269 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6270 pfn, end, true);
041d3a8c
MN
6271 if (!pfn) {
6272 ret = -EINTR;
6273 break;
6274 }
6275 tries = 0;
6276 } else if (++tries == 5) {
6277 ret = ret < 0 ? ret : -EBUSY;
6278 break;
6279 }
6280
beb51eaa
MK
6281 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6282 &cc->migratepages);
6283 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6284
9c620e2b 6285 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6286 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6287 }
2a6f5124
SP
6288 if (ret < 0) {
6289 putback_movable_pages(&cc->migratepages);
6290 return ret;
6291 }
6292 return 0;
041d3a8c
MN
6293}
6294
6295/**
6296 * alloc_contig_range() -- tries to allocate given range of pages
6297 * @start: start PFN to allocate
6298 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6299 * @migratetype: migratetype of the underlaying pageblocks (either
6300 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6301 * in range must have the same migratetype and it must
6302 * be either of the two.
041d3a8c
MN
6303 *
6304 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6305 * aligned, however it's the caller's responsibility to guarantee that
6306 * we are the only thread that changes migrate type of pageblocks the
6307 * pages fall in.
6308 *
6309 * The PFN range must belong to a single zone.
6310 *
6311 * Returns zero on success or negative error code. On success all
6312 * pages which PFN is in [start, end) are allocated for the caller and
6313 * need to be freed with free_contig_range().
6314 */
0815f3d8
MN
6315int alloc_contig_range(unsigned long start, unsigned long end,
6316 unsigned migratetype)
041d3a8c 6317{
041d3a8c
MN
6318 unsigned long outer_start, outer_end;
6319 int ret = 0, order;
6320
bb13ffeb
MG
6321 struct compact_control cc = {
6322 .nr_migratepages = 0,
6323 .order = -1,
6324 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6325 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6326 .ignore_skip_hint = true,
6327 };
6328 INIT_LIST_HEAD(&cc.migratepages);
6329
041d3a8c
MN
6330 /*
6331 * What we do here is we mark all pageblocks in range as
6332 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6333 * have different sizes, and due to the way page allocator
6334 * work, we align the range to biggest of the two pages so
6335 * that page allocator won't try to merge buddies from
6336 * different pageblocks and change MIGRATE_ISOLATE to some
6337 * other migration type.
6338 *
6339 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6340 * migrate the pages from an unaligned range (ie. pages that
6341 * we are interested in). This will put all the pages in
6342 * range back to page allocator as MIGRATE_ISOLATE.
6343 *
6344 * When this is done, we take the pages in range from page
6345 * allocator removing them from the buddy system. This way
6346 * page allocator will never consider using them.
6347 *
6348 * This lets us mark the pageblocks back as
6349 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6350 * aligned range but not in the unaligned, original range are
6351 * put back to page allocator so that buddy can use them.
6352 */
6353
6354 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6355 pfn_max_align_up(end), migratetype,
6356 false);
041d3a8c 6357 if (ret)
86a595f9 6358 return ret;
041d3a8c 6359
bb13ffeb 6360 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6361 if (ret)
6362 goto done;
6363
6364 /*
6365 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6366 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6367 * more, all pages in [start, end) are free in page allocator.
6368 * What we are going to do is to allocate all pages from
6369 * [start, end) (that is remove them from page allocator).
6370 *
6371 * The only problem is that pages at the beginning and at the
6372 * end of interesting range may be not aligned with pages that
6373 * page allocator holds, ie. they can be part of higher order
6374 * pages. Because of this, we reserve the bigger range and
6375 * once this is done free the pages we are not interested in.
6376 *
6377 * We don't have to hold zone->lock here because the pages are
6378 * isolated thus they won't get removed from buddy.
6379 */
6380
6381 lru_add_drain_all();
6382 drain_all_pages();
6383
6384 order = 0;
6385 outer_start = start;
6386 while (!PageBuddy(pfn_to_page(outer_start))) {
6387 if (++order >= MAX_ORDER) {
6388 ret = -EBUSY;
6389 goto done;
6390 }
6391 outer_start &= ~0UL << order;
6392 }
6393
6394 /* Make sure the range is really isolated. */
b023f468 6395 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6396 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6397 outer_start, end);
6398 ret = -EBUSY;
6399 goto done;
6400 }
6401
49f223a9
MS
6402
6403 /* Grab isolated pages from freelists. */
bb13ffeb 6404 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6405 if (!outer_end) {
6406 ret = -EBUSY;
6407 goto done;
6408 }
6409
6410 /* Free head and tail (if any) */
6411 if (start != outer_start)
6412 free_contig_range(outer_start, start - outer_start);
6413 if (end != outer_end)
6414 free_contig_range(end, outer_end - end);
6415
6416done:
6417 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6418 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6419 return ret;
6420}
6421
6422void free_contig_range(unsigned long pfn, unsigned nr_pages)
6423{
bcc2b02f
MS
6424 unsigned int count = 0;
6425
6426 for (; nr_pages--; pfn++) {
6427 struct page *page = pfn_to_page(pfn);
6428
6429 count += page_count(page) != 1;
6430 __free_page(page);
6431 }
6432 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6433}
6434#endif
6435
4ed7e022 6436#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6437/*
6438 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6439 * page high values need to be recalulated.
6440 */
4ed7e022
JL
6441void __meminit zone_pcp_update(struct zone *zone)
6442{
0a647f38 6443 unsigned cpu;
c8e251fa 6444 mutex_lock(&pcp_batch_high_lock);
0a647f38 6445 for_each_possible_cpu(cpu)
169f6c19
CS
6446 pageset_set_high_and_batch(zone,
6447 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6448 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6449}
6450#endif
6451
340175b7
JL
6452void zone_pcp_reset(struct zone *zone)
6453{
6454 unsigned long flags;
5a883813
MK
6455 int cpu;
6456 struct per_cpu_pageset *pset;
340175b7
JL
6457
6458 /* avoid races with drain_pages() */
6459 local_irq_save(flags);
6460 if (zone->pageset != &boot_pageset) {
5a883813
MK
6461 for_each_online_cpu(cpu) {
6462 pset = per_cpu_ptr(zone->pageset, cpu);
6463 drain_zonestat(zone, pset);
6464 }
340175b7
JL
6465 free_percpu(zone->pageset);
6466 zone->pageset = &boot_pageset;
6467 }
6468 local_irq_restore(flags);
6469}
6470
6dcd73d7 6471#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6472/*
6473 * All pages in the range must be isolated before calling this.
6474 */
6475void
6476__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6477{
6478 struct page *page;
6479 struct zone *zone;
7aeb09f9 6480 unsigned int order, i;
0c0e6195
KH
6481 unsigned long pfn;
6482 unsigned long flags;
6483 /* find the first valid pfn */
6484 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6485 if (pfn_valid(pfn))
6486 break;
6487 if (pfn == end_pfn)
6488 return;
6489 zone = page_zone(pfn_to_page(pfn));
6490 spin_lock_irqsave(&zone->lock, flags);
6491 pfn = start_pfn;
6492 while (pfn < end_pfn) {
6493 if (!pfn_valid(pfn)) {
6494 pfn++;
6495 continue;
6496 }
6497 page = pfn_to_page(pfn);
b023f468
WC
6498 /*
6499 * The HWPoisoned page may be not in buddy system, and
6500 * page_count() is not 0.
6501 */
6502 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6503 pfn++;
6504 SetPageReserved(page);
6505 continue;
6506 }
6507
0c0e6195
KH
6508 BUG_ON(page_count(page));
6509 BUG_ON(!PageBuddy(page));
6510 order = page_order(page);
6511#ifdef CONFIG_DEBUG_VM
6512 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6513 pfn, 1 << order, end_pfn);
6514#endif
6515 list_del(&page->lru);
6516 rmv_page_order(page);
6517 zone->free_area[order].nr_free--;
0c0e6195
KH
6518 for (i = 0; i < (1 << order); i++)
6519 SetPageReserved((page+i));
6520 pfn += (1 << order);
6521 }
6522 spin_unlock_irqrestore(&zone->lock, flags);
6523}
6524#endif
8d22ba1b
WF
6525
6526#ifdef CONFIG_MEMORY_FAILURE
6527bool is_free_buddy_page(struct page *page)
6528{
6529 struct zone *zone = page_zone(page);
6530 unsigned long pfn = page_to_pfn(page);
6531 unsigned long flags;
7aeb09f9 6532 unsigned int order;
8d22ba1b
WF
6533
6534 spin_lock_irqsave(&zone->lock, flags);
6535 for (order = 0; order < MAX_ORDER; order++) {
6536 struct page *page_head = page - (pfn & ((1 << order) - 1));
6537
6538 if (PageBuddy(page_head) && page_order(page_head) >= order)
6539 break;
6540 }
6541 spin_unlock_irqrestore(&zone->lock, flags);
6542
6543 return order < MAX_ORDER;
6544}
6545#endif
718a3821 6546
51300cef 6547static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6548 {1UL << PG_locked, "locked" },
6549 {1UL << PG_error, "error" },
6550 {1UL << PG_referenced, "referenced" },
6551 {1UL << PG_uptodate, "uptodate" },
6552 {1UL << PG_dirty, "dirty" },
6553 {1UL << PG_lru, "lru" },
6554 {1UL << PG_active, "active" },
6555 {1UL << PG_slab, "slab" },
6556 {1UL << PG_owner_priv_1, "owner_priv_1" },
6557 {1UL << PG_arch_1, "arch_1" },
6558 {1UL << PG_reserved, "reserved" },
6559 {1UL << PG_private, "private" },
6560 {1UL << PG_private_2, "private_2" },
6561 {1UL << PG_writeback, "writeback" },
6562#ifdef CONFIG_PAGEFLAGS_EXTENDED
6563 {1UL << PG_head, "head" },
6564 {1UL << PG_tail, "tail" },
6565#else
6566 {1UL << PG_compound, "compound" },
6567#endif
6568 {1UL << PG_swapcache, "swapcache" },
6569 {1UL << PG_mappedtodisk, "mappedtodisk" },
6570 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6571 {1UL << PG_swapbacked, "swapbacked" },
6572 {1UL << PG_unevictable, "unevictable" },
6573#ifdef CONFIG_MMU
6574 {1UL << PG_mlocked, "mlocked" },
6575#endif
6576#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6577 {1UL << PG_uncached, "uncached" },
6578#endif
6579#ifdef CONFIG_MEMORY_FAILURE
6580 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6581#endif
6582#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6583 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6584#endif
718a3821
WF
6585};
6586
6587static void dump_page_flags(unsigned long flags)
6588{
6589 const char *delim = "";
6590 unsigned long mask;
6591 int i;
6592
51300cef 6593 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6594
718a3821
WF
6595 printk(KERN_ALERT "page flags: %#lx(", flags);
6596
6597 /* remove zone id */
6598 flags &= (1UL << NR_PAGEFLAGS) - 1;
6599
51300cef 6600 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6601
6602 mask = pageflag_names[i].mask;
6603 if ((flags & mask) != mask)
6604 continue;
6605
6606 flags &= ~mask;
6607 printk("%s%s", delim, pageflag_names[i].name);
6608 delim = "|";
6609 }
6610
6611 /* check for left over flags */
6612 if (flags)
6613 printk("%s%#lx", delim, flags);
6614
6615 printk(")\n");
6616}
6617
d230dec1
KS
6618void dump_page_badflags(struct page *page, const char *reason,
6619 unsigned long badflags)
718a3821
WF
6620{
6621 printk(KERN_ALERT
6622 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6623 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6624 page->mapping, page->index);
6625 dump_page_flags(page->flags);
f0b791a3
DH
6626 if (reason)
6627 pr_alert("page dumped because: %s\n", reason);
6628 if (page->flags & badflags) {
6629 pr_alert("bad because of flags:\n");
6630 dump_page_flags(page->flags & badflags);
6631 }
f212ad7c 6632 mem_cgroup_print_bad_page(page);
718a3821 6633}
f0b791a3 6634
d230dec1 6635void dump_page(struct page *page, const char *reason)
f0b791a3
DH
6636{
6637 dump_page_badflags(page, reason, 0);
6638}
ed12d845 6639EXPORT_SYMBOL(dump_page);