]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - mm/page_alloc.c
Merge tag 'compiler-attributes-for-linus-v5.0-rc7' of git://github.com/ojeda/linux
[mirror_ubuntu-disco-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/jiffies.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/vmstat.h>
43 #include <linux/mempolicy.h>
44 #include <linux/memremap.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <trace/events/oom.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/sched/mm.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/lockdep.h>
68 #include <linux/nmi.h>
69 #include <linux/psi.h>
70
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
79
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 /*
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
93 */
94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
97 #endif
98
99 /* work_structs for global per-cpu drains */
100 struct pcpu_drain {
101 struct zone *zone;
102 struct work_struct work;
103 };
104 DEFINE_MUTEX(pcpu_drain_mutex);
105 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
106
107 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
108 volatile unsigned long latent_entropy __latent_entropy;
109 EXPORT_SYMBOL(latent_entropy);
110 #endif
111
112 /*
113 * Array of node states.
114 */
115 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
116 [N_POSSIBLE] = NODE_MASK_ALL,
117 [N_ONLINE] = { { [0] = 1UL } },
118 #ifndef CONFIG_NUMA
119 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
120 #ifdef CONFIG_HIGHMEM
121 [N_HIGH_MEMORY] = { { [0] = 1UL } },
122 #endif
123 [N_MEMORY] = { { [0] = 1UL } },
124 [N_CPU] = { { [0] = 1UL } },
125 #endif /* NUMA */
126 };
127 EXPORT_SYMBOL(node_states);
128
129 atomic_long_t _totalram_pages __read_mostly;
130 EXPORT_SYMBOL(_totalram_pages);
131 unsigned long totalreserve_pages __read_mostly;
132 unsigned long totalcma_pages __read_mostly;
133
134 int percpu_pagelist_fraction;
135 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
136
137 /*
138 * A cached value of the page's pageblock's migratetype, used when the page is
139 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
140 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
141 * Also the migratetype set in the page does not necessarily match the pcplist
142 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
143 * other index - this ensures that it will be put on the correct CMA freelist.
144 */
145 static inline int get_pcppage_migratetype(struct page *page)
146 {
147 return page->index;
148 }
149
150 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
151 {
152 page->index = migratetype;
153 }
154
155 #ifdef CONFIG_PM_SLEEP
156 /*
157 * The following functions are used by the suspend/hibernate code to temporarily
158 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
159 * while devices are suspended. To avoid races with the suspend/hibernate code,
160 * they should always be called with system_transition_mutex held
161 * (gfp_allowed_mask also should only be modified with system_transition_mutex
162 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
163 * with that modification).
164 */
165
166 static gfp_t saved_gfp_mask;
167
168 void pm_restore_gfp_mask(void)
169 {
170 WARN_ON(!mutex_is_locked(&system_transition_mutex));
171 if (saved_gfp_mask) {
172 gfp_allowed_mask = saved_gfp_mask;
173 saved_gfp_mask = 0;
174 }
175 }
176
177 void pm_restrict_gfp_mask(void)
178 {
179 WARN_ON(!mutex_is_locked(&system_transition_mutex));
180 WARN_ON(saved_gfp_mask);
181 saved_gfp_mask = gfp_allowed_mask;
182 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
183 }
184
185 bool pm_suspended_storage(void)
186 {
187 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
188 return false;
189 return true;
190 }
191 #endif /* CONFIG_PM_SLEEP */
192
193 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
194 unsigned int pageblock_order __read_mostly;
195 #endif
196
197 static void __free_pages_ok(struct page *page, unsigned int order);
198
199 /*
200 * results with 256, 32 in the lowmem_reserve sysctl:
201 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
202 * 1G machine -> (16M dma, 784M normal, 224M high)
203 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
204 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
205 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
206 *
207 * TBD: should special case ZONE_DMA32 machines here - in those we normally
208 * don't need any ZONE_NORMAL reservation
209 */
210 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
211 #ifdef CONFIG_ZONE_DMA
212 [ZONE_DMA] = 256,
213 #endif
214 #ifdef CONFIG_ZONE_DMA32
215 [ZONE_DMA32] = 256,
216 #endif
217 [ZONE_NORMAL] = 32,
218 #ifdef CONFIG_HIGHMEM
219 [ZONE_HIGHMEM] = 0,
220 #endif
221 [ZONE_MOVABLE] = 0,
222 };
223
224 EXPORT_SYMBOL(totalram_pages);
225
226 static char * const zone_names[MAX_NR_ZONES] = {
227 #ifdef CONFIG_ZONE_DMA
228 "DMA",
229 #endif
230 #ifdef CONFIG_ZONE_DMA32
231 "DMA32",
232 #endif
233 "Normal",
234 #ifdef CONFIG_HIGHMEM
235 "HighMem",
236 #endif
237 "Movable",
238 #ifdef CONFIG_ZONE_DEVICE
239 "Device",
240 #endif
241 };
242
243 const char * const migratetype_names[MIGRATE_TYPES] = {
244 "Unmovable",
245 "Movable",
246 "Reclaimable",
247 "HighAtomic",
248 #ifdef CONFIG_CMA
249 "CMA",
250 #endif
251 #ifdef CONFIG_MEMORY_ISOLATION
252 "Isolate",
253 #endif
254 };
255
256 compound_page_dtor * const compound_page_dtors[] = {
257 NULL,
258 free_compound_page,
259 #ifdef CONFIG_HUGETLB_PAGE
260 free_huge_page,
261 #endif
262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
263 free_transhuge_page,
264 #endif
265 };
266
267 int min_free_kbytes = 1024;
268 int user_min_free_kbytes = -1;
269 int watermark_boost_factor __read_mostly = 15000;
270 int watermark_scale_factor = 10;
271
272 static unsigned long nr_kernel_pages __initdata;
273 static unsigned long nr_all_pages __initdata;
274 static unsigned long dma_reserve __initdata;
275
276 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
277 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
278 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
279 static unsigned long required_kernelcore __initdata;
280 static unsigned long required_kernelcore_percent __initdata;
281 static unsigned long required_movablecore __initdata;
282 static unsigned long required_movablecore_percent __initdata;
283 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
284 static bool mirrored_kernelcore __meminitdata;
285
286 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
287 int movable_zone;
288 EXPORT_SYMBOL(movable_zone);
289 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
290
291 #if MAX_NUMNODES > 1
292 int nr_node_ids __read_mostly = MAX_NUMNODES;
293 int nr_online_nodes __read_mostly = 1;
294 EXPORT_SYMBOL(nr_node_ids);
295 EXPORT_SYMBOL(nr_online_nodes);
296 #endif
297
298 int page_group_by_mobility_disabled __read_mostly;
299
300 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
301 /*
302 * During boot we initialize deferred pages on-demand, as needed, but once
303 * page_alloc_init_late() has finished, the deferred pages are all initialized,
304 * and we can permanently disable that path.
305 */
306 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
307
308 /*
309 * Calling kasan_free_pages() only after deferred memory initialization
310 * has completed. Poisoning pages during deferred memory init will greatly
311 * lengthen the process and cause problem in large memory systems as the
312 * deferred pages initialization is done with interrupt disabled.
313 *
314 * Assuming that there will be no reference to those newly initialized
315 * pages before they are ever allocated, this should have no effect on
316 * KASAN memory tracking as the poison will be properly inserted at page
317 * allocation time. The only corner case is when pages are allocated by
318 * on-demand allocation and then freed again before the deferred pages
319 * initialization is done, but this is not likely to happen.
320 */
321 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
322 {
323 if (!static_branch_unlikely(&deferred_pages))
324 kasan_free_pages(page, order);
325 }
326
327 /* Returns true if the struct page for the pfn is uninitialised */
328 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
329 {
330 int nid = early_pfn_to_nid(pfn);
331
332 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
333 return true;
334
335 return false;
336 }
337
338 /*
339 * Returns true when the remaining initialisation should be deferred until
340 * later in the boot cycle when it can be parallelised.
341 */
342 static bool __meminit
343 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
344 {
345 static unsigned long prev_end_pfn, nr_initialised;
346
347 /*
348 * prev_end_pfn static that contains the end of previous zone
349 * No need to protect because called very early in boot before smp_init.
350 */
351 if (prev_end_pfn != end_pfn) {
352 prev_end_pfn = end_pfn;
353 nr_initialised = 0;
354 }
355
356 /* Always populate low zones for address-constrained allocations */
357 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
358 return false;
359
360 /*
361 * We start only with one section of pages, more pages are added as
362 * needed until the rest of deferred pages are initialized.
363 */
364 nr_initialised++;
365 if ((nr_initialised > PAGES_PER_SECTION) &&
366 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
367 NODE_DATA(nid)->first_deferred_pfn = pfn;
368 return true;
369 }
370 return false;
371 }
372 #else
373 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
374
375 static inline bool early_page_uninitialised(unsigned long pfn)
376 {
377 return false;
378 }
379
380 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
381 {
382 return false;
383 }
384 #endif
385
386 /* Return a pointer to the bitmap storing bits affecting a block of pages */
387 static inline unsigned long *get_pageblock_bitmap(struct page *page,
388 unsigned long pfn)
389 {
390 #ifdef CONFIG_SPARSEMEM
391 return __pfn_to_section(pfn)->pageblock_flags;
392 #else
393 return page_zone(page)->pageblock_flags;
394 #endif /* CONFIG_SPARSEMEM */
395 }
396
397 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
398 {
399 #ifdef CONFIG_SPARSEMEM
400 pfn &= (PAGES_PER_SECTION-1);
401 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
402 #else
403 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
404 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
405 #endif /* CONFIG_SPARSEMEM */
406 }
407
408 /**
409 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
410 * @page: The page within the block of interest
411 * @pfn: The target page frame number
412 * @end_bitidx: The last bit of interest to retrieve
413 * @mask: mask of bits that the caller is interested in
414 *
415 * Return: pageblock_bits flags
416 */
417 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
418 unsigned long pfn,
419 unsigned long end_bitidx,
420 unsigned long mask)
421 {
422 unsigned long *bitmap;
423 unsigned long bitidx, word_bitidx;
424 unsigned long word;
425
426 bitmap = get_pageblock_bitmap(page, pfn);
427 bitidx = pfn_to_bitidx(page, pfn);
428 word_bitidx = bitidx / BITS_PER_LONG;
429 bitidx &= (BITS_PER_LONG-1);
430
431 word = bitmap[word_bitidx];
432 bitidx += end_bitidx;
433 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
434 }
435
436 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
437 unsigned long end_bitidx,
438 unsigned long mask)
439 {
440 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
441 }
442
443 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
444 {
445 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
446 }
447
448 /**
449 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
450 * @page: The page within the block of interest
451 * @flags: The flags to set
452 * @pfn: The target page frame number
453 * @end_bitidx: The last bit of interest
454 * @mask: mask of bits that the caller is interested in
455 */
456 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
457 unsigned long pfn,
458 unsigned long end_bitidx,
459 unsigned long mask)
460 {
461 unsigned long *bitmap;
462 unsigned long bitidx, word_bitidx;
463 unsigned long old_word, word;
464
465 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
466 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
467
468 bitmap = get_pageblock_bitmap(page, pfn);
469 bitidx = pfn_to_bitidx(page, pfn);
470 word_bitidx = bitidx / BITS_PER_LONG;
471 bitidx &= (BITS_PER_LONG-1);
472
473 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
474
475 bitidx += end_bitidx;
476 mask <<= (BITS_PER_LONG - bitidx - 1);
477 flags <<= (BITS_PER_LONG - bitidx - 1);
478
479 word = READ_ONCE(bitmap[word_bitidx]);
480 for (;;) {
481 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
482 if (word == old_word)
483 break;
484 word = old_word;
485 }
486 }
487
488 void set_pageblock_migratetype(struct page *page, int migratetype)
489 {
490 if (unlikely(page_group_by_mobility_disabled &&
491 migratetype < MIGRATE_PCPTYPES))
492 migratetype = MIGRATE_UNMOVABLE;
493
494 set_pageblock_flags_group(page, (unsigned long)migratetype,
495 PB_migrate, PB_migrate_end);
496 }
497
498 #ifdef CONFIG_DEBUG_VM
499 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
500 {
501 int ret = 0;
502 unsigned seq;
503 unsigned long pfn = page_to_pfn(page);
504 unsigned long sp, start_pfn;
505
506 do {
507 seq = zone_span_seqbegin(zone);
508 start_pfn = zone->zone_start_pfn;
509 sp = zone->spanned_pages;
510 if (!zone_spans_pfn(zone, pfn))
511 ret = 1;
512 } while (zone_span_seqretry(zone, seq));
513
514 if (ret)
515 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
516 pfn, zone_to_nid(zone), zone->name,
517 start_pfn, start_pfn + sp);
518
519 return ret;
520 }
521
522 static int page_is_consistent(struct zone *zone, struct page *page)
523 {
524 if (!pfn_valid_within(page_to_pfn(page)))
525 return 0;
526 if (zone != page_zone(page))
527 return 0;
528
529 return 1;
530 }
531 /*
532 * Temporary debugging check for pages not lying within a given zone.
533 */
534 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
535 {
536 if (page_outside_zone_boundaries(zone, page))
537 return 1;
538 if (!page_is_consistent(zone, page))
539 return 1;
540
541 return 0;
542 }
543 #else
544 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
545 {
546 return 0;
547 }
548 #endif
549
550 static void bad_page(struct page *page, const char *reason,
551 unsigned long bad_flags)
552 {
553 static unsigned long resume;
554 static unsigned long nr_shown;
555 static unsigned long nr_unshown;
556
557 /*
558 * Allow a burst of 60 reports, then keep quiet for that minute;
559 * or allow a steady drip of one report per second.
560 */
561 if (nr_shown == 60) {
562 if (time_before(jiffies, resume)) {
563 nr_unshown++;
564 goto out;
565 }
566 if (nr_unshown) {
567 pr_alert(
568 "BUG: Bad page state: %lu messages suppressed\n",
569 nr_unshown);
570 nr_unshown = 0;
571 }
572 nr_shown = 0;
573 }
574 if (nr_shown++ == 0)
575 resume = jiffies + 60 * HZ;
576
577 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
578 current->comm, page_to_pfn(page));
579 __dump_page(page, reason);
580 bad_flags &= page->flags;
581 if (bad_flags)
582 pr_alert("bad because of flags: %#lx(%pGp)\n",
583 bad_flags, &bad_flags);
584 dump_page_owner(page);
585
586 print_modules();
587 dump_stack();
588 out:
589 /* Leave bad fields for debug, except PageBuddy could make trouble */
590 page_mapcount_reset(page); /* remove PageBuddy */
591 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
592 }
593
594 /*
595 * Higher-order pages are called "compound pages". They are structured thusly:
596 *
597 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
598 *
599 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
600 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
601 *
602 * The first tail page's ->compound_dtor holds the offset in array of compound
603 * page destructors. See compound_page_dtors.
604 *
605 * The first tail page's ->compound_order holds the order of allocation.
606 * This usage means that zero-order pages may not be compound.
607 */
608
609 void free_compound_page(struct page *page)
610 {
611 __free_pages_ok(page, compound_order(page));
612 }
613
614 void prep_compound_page(struct page *page, unsigned int order)
615 {
616 int i;
617 int nr_pages = 1 << order;
618
619 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
620 set_compound_order(page, order);
621 __SetPageHead(page);
622 for (i = 1; i < nr_pages; i++) {
623 struct page *p = page + i;
624 set_page_count(p, 0);
625 p->mapping = TAIL_MAPPING;
626 set_compound_head(p, page);
627 }
628 atomic_set(compound_mapcount_ptr(page), -1);
629 }
630
631 #ifdef CONFIG_DEBUG_PAGEALLOC
632 unsigned int _debug_guardpage_minorder;
633 bool _debug_pagealloc_enabled __read_mostly
634 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
635 EXPORT_SYMBOL(_debug_pagealloc_enabled);
636 bool _debug_guardpage_enabled __read_mostly;
637
638 static int __init early_debug_pagealloc(char *buf)
639 {
640 if (!buf)
641 return -EINVAL;
642 return kstrtobool(buf, &_debug_pagealloc_enabled);
643 }
644 early_param("debug_pagealloc", early_debug_pagealloc);
645
646 static bool need_debug_guardpage(void)
647 {
648 /* If we don't use debug_pagealloc, we don't need guard page */
649 if (!debug_pagealloc_enabled())
650 return false;
651
652 if (!debug_guardpage_minorder())
653 return false;
654
655 return true;
656 }
657
658 static void init_debug_guardpage(void)
659 {
660 if (!debug_pagealloc_enabled())
661 return;
662
663 if (!debug_guardpage_minorder())
664 return;
665
666 _debug_guardpage_enabled = true;
667 }
668
669 struct page_ext_operations debug_guardpage_ops = {
670 .need = need_debug_guardpage,
671 .init = init_debug_guardpage,
672 };
673
674 static int __init debug_guardpage_minorder_setup(char *buf)
675 {
676 unsigned long res;
677
678 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
679 pr_err("Bad debug_guardpage_minorder value\n");
680 return 0;
681 }
682 _debug_guardpage_minorder = res;
683 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
684 return 0;
685 }
686 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
687
688 static inline bool set_page_guard(struct zone *zone, struct page *page,
689 unsigned int order, int migratetype)
690 {
691 struct page_ext *page_ext;
692
693 if (!debug_guardpage_enabled())
694 return false;
695
696 if (order >= debug_guardpage_minorder())
697 return false;
698
699 page_ext = lookup_page_ext(page);
700 if (unlikely(!page_ext))
701 return false;
702
703 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
704
705 INIT_LIST_HEAD(&page->lru);
706 set_page_private(page, order);
707 /* Guard pages are not available for any usage */
708 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
709
710 return true;
711 }
712
713 static inline void clear_page_guard(struct zone *zone, struct page *page,
714 unsigned int order, int migratetype)
715 {
716 struct page_ext *page_ext;
717
718 if (!debug_guardpage_enabled())
719 return;
720
721 page_ext = lookup_page_ext(page);
722 if (unlikely(!page_ext))
723 return;
724
725 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
726
727 set_page_private(page, 0);
728 if (!is_migrate_isolate(migratetype))
729 __mod_zone_freepage_state(zone, (1 << order), migratetype);
730 }
731 #else
732 struct page_ext_operations debug_guardpage_ops;
733 static inline bool set_page_guard(struct zone *zone, struct page *page,
734 unsigned int order, int migratetype) { return false; }
735 static inline void clear_page_guard(struct zone *zone, struct page *page,
736 unsigned int order, int migratetype) {}
737 #endif
738
739 static inline void set_page_order(struct page *page, unsigned int order)
740 {
741 set_page_private(page, order);
742 __SetPageBuddy(page);
743 }
744
745 static inline void rmv_page_order(struct page *page)
746 {
747 __ClearPageBuddy(page);
748 set_page_private(page, 0);
749 }
750
751 /*
752 * This function checks whether a page is free && is the buddy
753 * we can coalesce a page and its buddy if
754 * (a) the buddy is not in a hole (check before calling!) &&
755 * (b) the buddy is in the buddy system &&
756 * (c) a page and its buddy have the same order &&
757 * (d) a page and its buddy are in the same zone.
758 *
759 * For recording whether a page is in the buddy system, we set PageBuddy.
760 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
761 *
762 * For recording page's order, we use page_private(page).
763 */
764 static inline int page_is_buddy(struct page *page, struct page *buddy,
765 unsigned int order)
766 {
767 if (page_is_guard(buddy) && page_order(buddy) == order) {
768 if (page_zone_id(page) != page_zone_id(buddy))
769 return 0;
770
771 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
772
773 return 1;
774 }
775
776 if (PageBuddy(buddy) && page_order(buddy) == order) {
777 /*
778 * zone check is done late to avoid uselessly
779 * calculating zone/node ids for pages that could
780 * never merge.
781 */
782 if (page_zone_id(page) != page_zone_id(buddy))
783 return 0;
784
785 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
786
787 return 1;
788 }
789 return 0;
790 }
791
792 /*
793 * Freeing function for a buddy system allocator.
794 *
795 * The concept of a buddy system is to maintain direct-mapped table
796 * (containing bit values) for memory blocks of various "orders".
797 * The bottom level table contains the map for the smallest allocatable
798 * units of memory (here, pages), and each level above it describes
799 * pairs of units from the levels below, hence, "buddies".
800 * At a high level, all that happens here is marking the table entry
801 * at the bottom level available, and propagating the changes upward
802 * as necessary, plus some accounting needed to play nicely with other
803 * parts of the VM system.
804 * At each level, we keep a list of pages, which are heads of continuous
805 * free pages of length of (1 << order) and marked with PageBuddy.
806 * Page's order is recorded in page_private(page) field.
807 * So when we are allocating or freeing one, we can derive the state of the
808 * other. That is, if we allocate a small block, and both were
809 * free, the remainder of the region must be split into blocks.
810 * If a block is freed, and its buddy is also free, then this
811 * triggers coalescing into a block of larger size.
812 *
813 * -- nyc
814 */
815
816 static inline void __free_one_page(struct page *page,
817 unsigned long pfn,
818 struct zone *zone, unsigned int order,
819 int migratetype)
820 {
821 unsigned long combined_pfn;
822 unsigned long uninitialized_var(buddy_pfn);
823 struct page *buddy;
824 unsigned int max_order;
825
826 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
827
828 VM_BUG_ON(!zone_is_initialized(zone));
829 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
830
831 VM_BUG_ON(migratetype == -1);
832 if (likely(!is_migrate_isolate(migratetype)))
833 __mod_zone_freepage_state(zone, 1 << order, migratetype);
834
835 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
836 VM_BUG_ON_PAGE(bad_range(zone, page), page);
837
838 continue_merging:
839 while (order < max_order - 1) {
840 buddy_pfn = __find_buddy_pfn(pfn, order);
841 buddy = page + (buddy_pfn - pfn);
842
843 if (!pfn_valid_within(buddy_pfn))
844 goto done_merging;
845 if (!page_is_buddy(page, buddy, order))
846 goto done_merging;
847 /*
848 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
849 * merge with it and move up one order.
850 */
851 if (page_is_guard(buddy)) {
852 clear_page_guard(zone, buddy, order, migratetype);
853 } else {
854 list_del(&buddy->lru);
855 zone->free_area[order].nr_free--;
856 rmv_page_order(buddy);
857 }
858 combined_pfn = buddy_pfn & pfn;
859 page = page + (combined_pfn - pfn);
860 pfn = combined_pfn;
861 order++;
862 }
863 if (max_order < MAX_ORDER) {
864 /* If we are here, it means order is >= pageblock_order.
865 * We want to prevent merge between freepages on isolate
866 * pageblock and normal pageblock. Without this, pageblock
867 * isolation could cause incorrect freepage or CMA accounting.
868 *
869 * We don't want to hit this code for the more frequent
870 * low-order merging.
871 */
872 if (unlikely(has_isolate_pageblock(zone))) {
873 int buddy_mt;
874
875 buddy_pfn = __find_buddy_pfn(pfn, order);
876 buddy = page + (buddy_pfn - pfn);
877 buddy_mt = get_pageblock_migratetype(buddy);
878
879 if (migratetype != buddy_mt
880 && (is_migrate_isolate(migratetype) ||
881 is_migrate_isolate(buddy_mt)))
882 goto done_merging;
883 }
884 max_order++;
885 goto continue_merging;
886 }
887
888 done_merging:
889 set_page_order(page, order);
890
891 /*
892 * If this is not the largest possible page, check if the buddy
893 * of the next-highest order is free. If it is, it's possible
894 * that pages are being freed that will coalesce soon. In case,
895 * that is happening, add the free page to the tail of the list
896 * so it's less likely to be used soon and more likely to be merged
897 * as a higher order page
898 */
899 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
900 struct page *higher_page, *higher_buddy;
901 combined_pfn = buddy_pfn & pfn;
902 higher_page = page + (combined_pfn - pfn);
903 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
904 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
905 if (pfn_valid_within(buddy_pfn) &&
906 page_is_buddy(higher_page, higher_buddy, order + 1)) {
907 list_add_tail(&page->lru,
908 &zone->free_area[order].free_list[migratetype]);
909 goto out;
910 }
911 }
912
913 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
914 out:
915 zone->free_area[order].nr_free++;
916 }
917
918 /*
919 * A bad page could be due to a number of fields. Instead of multiple branches,
920 * try and check multiple fields with one check. The caller must do a detailed
921 * check if necessary.
922 */
923 static inline bool page_expected_state(struct page *page,
924 unsigned long check_flags)
925 {
926 if (unlikely(atomic_read(&page->_mapcount) != -1))
927 return false;
928
929 if (unlikely((unsigned long)page->mapping |
930 page_ref_count(page) |
931 #ifdef CONFIG_MEMCG
932 (unsigned long)page->mem_cgroup |
933 #endif
934 (page->flags & check_flags)))
935 return false;
936
937 return true;
938 }
939
940 static void free_pages_check_bad(struct page *page)
941 {
942 const char *bad_reason;
943 unsigned long bad_flags;
944
945 bad_reason = NULL;
946 bad_flags = 0;
947
948 if (unlikely(atomic_read(&page->_mapcount) != -1))
949 bad_reason = "nonzero mapcount";
950 if (unlikely(page->mapping != NULL))
951 bad_reason = "non-NULL mapping";
952 if (unlikely(page_ref_count(page) != 0))
953 bad_reason = "nonzero _refcount";
954 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
955 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
956 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
957 }
958 #ifdef CONFIG_MEMCG
959 if (unlikely(page->mem_cgroup))
960 bad_reason = "page still charged to cgroup";
961 #endif
962 bad_page(page, bad_reason, bad_flags);
963 }
964
965 static inline int free_pages_check(struct page *page)
966 {
967 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
968 return 0;
969
970 /* Something has gone sideways, find it */
971 free_pages_check_bad(page);
972 return 1;
973 }
974
975 static int free_tail_pages_check(struct page *head_page, struct page *page)
976 {
977 int ret = 1;
978
979 /*
980 * We rely page->lru.next never has bit 0 set, unless the page
981 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
982 */
983 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
984
985 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
986 ret = 0;
987 goto out;
988 }
989 switch (page - head_page) {
990 case 1:
991 /* the first tail page: ->mapping may be compound_mapcount() */
992 if (unlikely(compound_mapcount(page))) {
993 bad_page(page, "nonzero compound_mapcount", 0);
994 goto out;
995 }
996 break;
997 case 2:
998 /*
999 * the second tail page: ->mapping is
1000 * deferred_list.next -- ignore value.
1001 */
1002 break;
1003 default:
1004 if (page->mapping != TAIL_MAPPING) {
1005 bad_page(page, "corrupted mapping in tail page", 0);
1006 goto out;
1007 }
1008 break;
1009 }
1010 if (unlikely(!PageTail(page))) {
1011 bad_page(page, "PageTail not set", 0);
1012 goto out;
1013 }
1014 if (unlikely(compound_head(page) != head_page)) {
1015 bad_page(page, "compound_head not consistent", 0);
1016 goto out;
1017 }
1018 ret = 0;
1019 out:
1020 page->mapping = NULL;
1021 clear_compound_head(page);
1022 return ret;
1023 }
1024
1025 static __always_inline bool free_pages_prepare(struct page *page,
1026 unsigned int order, bool check_free)
1027 {
1028 int bad = 0;
1029
1030 VM_BUG_ON_PAGE(PageTail(page), page);
1031
1032 trace_mm_page_free(page, order);
1033
1034 /*
1035 * Check tail pages before head page information is cleared to
1036 * avoid checking PageCompound for order-0 pages.
1037 */
1038 if (unlikely(order)) {
1039 bool compound = PageCompound(page);
1040 int i;
1041
1042 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1043
1044 if (compound)
1045 ClearPageDoubleMap(page);
1046 for (i = 1; i < (1 << order); i++) {
1047 if (compound)
1048 bad += free_tail_pages_check(page, page + i);
1049 if (unlikely(free_pages_check(page + i))) {
1050 bad++;
1051 continue;
1052 }
1053 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1054 }
1055 }
1056 if (PageMappingFlags(page))
1057 page->mapping = NULL;
1058 if (memcg_kmem_enabled() && PageKmemcg(page))
1059 memcg_kmem_uncharge(page, order);
1060 if (check_free)
1061 bad += free_pages_check(page);
1062 if (bad)
1063 return false;
1064
1065 page_cpupid_reset_last(page);
1066 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1067 reset_page_owner(page, order);
1068
1069 if (!PageHighMem(page)) {
1070 debug_check_no_locks_freed(page_address(page),
1071 PAGE_SIZE << order);
1072 debug_check_no_obj_freed(page_address(page),
1073 PAGE_SIZE << order);
1074 }
1075 arch_free_page(page, order);
1076 kernel_poison_pages(page, 1 << order, 0);
1077 kernel_map_pages(page, 1 << order, 0);
1078 kasan_free_nondeferred_pages(page, order);
1079
1080 return true;
1081 }
1082
1083 #ifdef CONFIG_DEBUG_VM
1084 static inline bool free_pcp_prepare(struct page *page)
1085 {
1086 return free_pages_prepare(page, 0, true);
1087 }
1088
1089 static inline bool bulkfree_pcp_prepare(struct page *page)
1090 {
1091 return false;
1092 }
1093 #else
1094 static bool free_pcp_prepare(struct page *page)
1095 {
1096 return free_pages_prepare(page, 0, false);
1097 }
1098
1099 static bool bulkfree_pcp_prepare(struct page *page)
1100 {
1101 return free_pages_check(page);
1102 }
1103 #endif /* CONFIG_DEBUG_VM */
1104
1105 static inline void prefetch_buddy(struct page *page)
1106 {
1107 unsigned long pfn = page_to_pfn(page);
1108 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1109 struct page *buddy = page + (buddy_pfn - pfn);
1110
1111 prefetch(buddy);
1112 }
1113
1114 /*
1115 * Frees a number of pages from the PCP lists
1116 * Assumes all pages on list are in same zone, and of same order.
1117 * count is the number of pages to free.
1118 *
1119 * If the zone was previously in an "all pages pinned" state then look to
1120 * see if this freeing clears that state.
1121 *
1122 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1123 * pinned" detection logic.
1124 */
1125 static void free_pcppages_bulk(struct zone *zone, int count,
1126 struct per_cpu_pages *pcp)
1127 {
1128 int migratetype = 0;
1129 int batch_free = 0;
1130 int prefetch_nr = 0;
1131 bool isolated_pageblocks;
1132 struct page *page, *tmp;
1133 LIST_HEAD(head);
1134
1135 while (count) {
1136 struct list_head *list;
1137
1138 /*
1139 * Remove pages from lists in a round-robin fashion. A
1140 * batch_free count is maintained that is incremented when an
1141 * empty list is encountered. This is so more pages are freed
1142 * off fuller lists instead of spinning excessively around empty
1143 * lists
1144 */
1145 do {
1146 batch_free++;
1147 if (++migratetype == MIGRATE_PCPTYPES)
1148 migratetype = 0;
1149 list = &pcp->lists[migratetype];
1150 } while (list_empty(list));
1151
1152 /* This is the only non-empty list. Free them all. */
1153 if (batch_free == MIGRATE_PCPTYPES)
1154 batch_free = count;
1155
1156 do {
1157 page = list_last_entry(list, struct page, lru);
1158 /* must delete to avoid corrupting pcp list */
1159 list_del(&page->lru);
1160 pcp->count--;
1161
1162 if (bulkfree_pcp_prepare(page))
1163 continue;
1164
1165 list_add_tail(&page->lru, &head);
1166
1167 /*
1168 * We are going to put the page back to the global
1169 * pool, prefetch its buddy to speed up later access
1170 * under zone->lock. It is believed the overhead of
1171 * an additional test and calculating buddy_pfn here
1172 * can be offset by reduced memory latency later. To
1173 * avoid excessive prefetching due to large count, only
1174 * prefetch buddy for the first pcp->batch nr of pages.
1175 */
1176 if (prefetch_nr++ < pcp->batch)
1177 prefetch_buddy(page);
1178 } while (--count && --batch_free && !list_empty(list));
1179 }
1180
1181 spin_lock(&zone->lock);
1182 isolated_pageblocks = has_isolate_pageblock(zone);
1183
1184 /*
1185 * Use safe version since after __free_one_page(),
1186 * page->lru.next will not point to original list.
1187 */
1188 list_for_each_entry_safe(page, tmp, &head, lru) {
1189 int mt = get_pcppage_migratetype(page);
1190 /* MIGRATE_ISOLATE page should not go to pcplists */
1191 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1192 /* Pageblock could have been isolated meanwhile */
1193 if (unlikely(isolated_pageblocks))
1194 mt = get_pageblock_migratetype(page);
1195
1196 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1197 trace_mm_page_pcpu_drain(page, 0, mt);
1198 }
1199 spin_unlock(&zone->lock);
1200 }
1201
1202 static void free_one_page(struct zone *zone,
1203 struct page *page, unsigned long pfn,
1204 unsigned int order,
1205 int migratetype)
1206 {
1207 spin_lock(&zone->lock);
1208 if (unlikely(has_isolate_pageblock(zone) ||
1209 is_migrate_isolate(migratetype))) {
1210 migratetype = get_pfnblock_migratetype(page, pfn);
1211 }
1212 __free_one_page(page, pfn, zone, order, migratetype);
1213 spin_unlock(&zone->lock);
1214 }
1215
1216 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1217 unsigned long zone, int nid)
1218 {
1219 mm_zero_struct_page(page);
1220 set_page_links(page, zone, nid, pfn);
1221 init_page_count(page);
1222 page_mapcount_reset(page);
1223 page_cpupid_reset_last(page);
1224 page_kasan_tag_reset(page);
1225
1226 INIT_LIST_HEAD(&page->lru);
1227 #ifdef WANT_PAGE_VIRTUAL
1228 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1229 if (!is_highmem_idx(zone))
1230 set_page_address(page, __va(pfn << PAGE_SHIFT));
1231 #endif
1232 }
1233
1234 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1235 static void __meminit init_reserved_page(unsigned long pfn)
1236 {
1237 pg_data_t *pgdat;
1238 int nid, zid;
1239
1240 if (!early_page_uninitialised(pfn))
1241 return;
1242
1243 nid = early_pfn_to_nid(pfn);
1244 pgdat = NODE_DATA(nid);
1245
1246 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1247 struct zone *zone = &pgdat->node_zones[zid];
1248
1249 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1250 break;
1251 }
1252 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1253 }
1254 #else
1255 static inline void init_reserved_page(unsigned long pfn)
1256 {
1257 }
1258 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1259
1260 /*
1261 * Initialised pages do not have PageReserved set. This function is
1262 * called for each range allocated by the bootmem allocator and
1263 * marks the pages PageReserved. The remaining valid pages are later
1264 * sent to the buddy page allocator.
1265 */
1266 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1267 {
1268 unsigned long start_pfn = PFN_DOWN(start);
1269 unsigned long end_pfn = PFN_UP(end);
1270
1271 for (; start_pfn < end_pfn; start_pfn++) {
1272 if (pfn_valid(start_pfn)) {
1273 struct page *page = pfn_to_page(start_pfn);
1274
1275 init_reserved_page(start_pfn);
1276
1277 /* Avoid false-positive PageTail() */
1278 INIT_LIST_HEAD(&page->lru);
1279
1280 /*
1281 * no need for atomic set_bit because the struct
1282 * page is not visible yet so nobody should
1283 * access it yet.
1284 */
1285 __SetPageReserved(page);
1286 }
1287 }
1288 }
1289
1290 static void __free_pages_ok(struct page *page, unsigned int order)
1291 {
1292 unsigned long flags;
1293 int migratetype;
1294 unsigned long pfn = page_to_pfn(page);
1295
1296 if (!free_pages_prepare(page, order, true))
1297 return;
1298
1299 migratetype = get_pfnblock_migratetype(page, pfn);
1300 local_irq_save(flags);
1301 __count_vm_events(PGFREE, 1 << order);
1302 free_one_page(page_zone(page), page, pfn, order, migratetype);
1303 local_irq_restore(flags);
1304 }
1305
1306 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1307 {
1308 unsigned int nr_pages = 1 << order;
1309 struct page *p = page;
1310 unsigned int loop;
1311
1312 prefetchw(p);
1313 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1314 prefetchw(p + 1);
1315 __ClearPageReserved(p);
1316 set_page_count(p, 0);
1317 }
1318 __ClearPageReserved(p);
1319 set_page_count(p, 0);
1320
1321 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1322 set_page_refcounted(page);
1323 __free_pages(page, order);
1324 }
1325
1326 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1327 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1328
1329 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1330
1331 int __meminit early_pfn_to_nid(unsigned long pfn)
1332 {
1333 static DEFINE_SPINLOCK(early_pfn_lock);
1334 int nid;
1335
1336 spin_lock(&early_pfn_lock);
1337 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1338 if (nid < 0)
1339 nid = first_online_node;
1340 spin_unlock(&early_pfn_lock);
1341
1342 return nid;
1343 }
1344 #endif
1345
1346 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1347 static inline bool __meminit __maybe_unused
1348 meminit_pfn_in_nid(unsigned long pfn, int node,
1349 struct mminit_pfnnid_cache *state)
1350 {
1351 int nid;
1352
1353 nid = __early_pfn_to_nid(pfn, state);
1354 if (nid >= 0 && nid != node)
1355 return false;
1356 return true;
1357 }
1358
1359 /* Only safe to use early in boot when initialisation is single-threaded */
1360 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1361 {
1362 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1363 }
1364
1365 #else
1366
1367 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1368 {
1369 return true;
1370 }
1371 static inline bool __meminit __maybe_unused
1372 meminit_pfn_in_nid(unsigned long pfn, int node,
1373 struct mminit_pfnnid_cache *state)
1374 {
1375 return true;
1376 }
1377 #endif
1378
1379
1380 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1381 unsigned int order)
1382 {
1383 if (early_page_uninitialised(pfn))
1384 return;
1385 return __free_pages_boot_core(page, order);
1386 }
1387
1388 /*
1389 * Check that the whole (or subset of) a pageblock given by the interval of
1390 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1391 * with the migration of free compaction scanner. The scanners then need to
1392 * use only pfn_valid_within() check for arches that allow holes within
1393 * pageblocks.
1394 *
1395 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1396 *
1397 * It's possible on some configurations to have a setup like node0 node1 node0
1398 * i.e. it's possible that all pages within a zones range of pages do not
1399 * belong to a single zone. We assume that a border between node0 and node1
1400 * can occur within a single pageblock, but not a node0 node1 node0
1401 * interleaving within a single pageblock. It is therefore sufficient to check
1402 * the first and last page of a pageblock and avoid checking each individual
1403 * page in a pageblock.
1404 */
1405 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1406 unsigned long end_pfn, struct zone *zone)
1407 {
1408 struct page *start_page;
1409 struct page *end_page;
1410
1411 /* end_pfn is one past the range we are checking */
1412 end_pfn--;
1413
1414 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1415 return NULL;
1416
1417 start_page = pfn_to_online_page(start_pfn);
1418 if (!start_page)
1419 return NULL;
1420
1421 if (page_zone(start_page) != zone)
1422 return NULL;
1423
1424 end_page = pfn_to_page(end_pfn);
1425
1426 /* This gives a shorter code than deriving page_zone(end_page) */
1427 if (page_zone_id(start_page) != page_zone_id(end_page))
1428 return NULL;
1429
1430 return start_page;
1431 }
1432
1433 void set_zone_contiguous(struct zone *zone)
1434 {
1435 unsigned long block_start_pfn = zone->zone_start_pfn;
1436 unsigned long block_end_pfn;
1437
1438 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1439 for (; block_start_pfn < zone_end_pfn(zone);
1440 block_start_pfn = block_end_pfn,
1441 block_end_pfn += pageblock_nr_pages) {
1442
1443 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1444
1445 if (!__pageblock_pfn_to_page(block_start_pfn,
1446 block_end_pfn, zone))
1447 return;
1448 }
1449
1450 /* We confirm that there is no hole */
1451 zone->contiguous = true;
1452 }
1453
1454 void clear_zone_contiguous(struct zone *zone)
1455 {
1456 zone->contiguous = false;
1457 }
1458
1459 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1460 static void __init deferred_free_range(unsigned long pfn,
1461 unsigned long nr_pages)
1462 {
1463 struct page *page;
1464 unsigned long i;
1465
1466 if (!nr_pages)
1467 return;
1468
1469 page = pfn_to_page(pfn);
1470
1471 /* Free a large naturally-aligned chunk if possible */
1472 if (nr_pages == pageblock_nr_pages &&
1473 (pfn & (pageblock_nr_pages - 1)) == 0) {
1474 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1475 __free_pages_boot_core(page, pageblock_order);
1476 return;
1477 }
1478
1479 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1480 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1481 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1482 __free_pages_boot_core(page, 0);
1483 }
1484 }
1485
1486 /* Completion tracking for deferred_init_memmap() threads */
1487 static atomic_t pgdat_init_n_undone __initdata;
1488 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1489
1490 static inline void __init pgdat_init_report_one_done(void)
1491 {
1492 if (atomic_dec_and_test(&pgdat_init_n_undone))
1493 complete(&pgdat_init_all_done_comp);
1494 }
1495
1496 /*
1497 * Returns true if page needs to be initialized or freed to buddy allocator.
1498 *
1499 * First we check if pfn is valid on architectures where it is possible to have
1500 * holes within pageblock_nr_pages. On systems where it is not possible, this
1501 * function is optimized out.
1502 *
1503 * Then, we check if a current large page is valid by only checking the validity
1504 * of the head pfn.
1505 *
1506 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1507 * within a node: a pfn is between start and end of a node, but does not belong
1508 * to this memory node.
1509 */
1510 static inline bool __init
1511 deferred_pfn_valid(int nid, unsigned long pfn,
1512 struct mminit_pfnnid_cache *nid_init_state)
1513 {
1514 if (!pfn_valid_within(pfn))
1515 return false;
1516 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1517 return false;
1518 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1519 return false;
1520 return true;
1521 }
1522
1523 /*
1524 * Free pages to buddy allocator. Try to free aligned pages in
1525 * pageblock_nr_pages sizes.
1526 */
1527 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1528 unsigned long end_pfn)
1529 {
1530 struct mminit_pfnnid_cache nid_init_state = { };
1531 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1532 unsigned long nr_free = 0;
1533
1534 for (; pfn < end_pfn; pfn++) {
1535 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1536 deferred_free_range(pfn - nr_free, nr_free);
1537 nr_free = 0;
1538 } else if (!(pfn & nr_pgmask)) {
1539 deferred_free_range(pfn - nr_free, nr_free);
1540 nr_free = 1;
1541 touch_nmi_watchdog();
1542 } else {
1543 nr_free++;
1544 }
1545 }
1546 /* Free the last block of pages to allocator */
1547 deferred_free_range(pfn - nr_free, nr_free);
1548 }
1549
1550 /*
1551 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1552 * by performing it only once every pageblock_nr_pages.
1553 * Return number of pages initialized.
1554 */
1555 static unsigned long __init deferred_init_pages(int nid, int zid,
1556 unsigned long pfn,
1557 unsigned long end_pfn)
1558 {
1559 struct mminit_pfnnid_cache nid_init_state = { };
1560 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1561 unsigned long nr_pages = 0;
1562 struct page *page = NULL;
1563
1564 for (; pfn < end_pfn; pfn++) {
1565 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1566 page = NULL;
1567 continue;
1568 } else if (!page || !(pfn & nr_pgmask)) {
1569 page = pfn_to_page(pfn);
1570 touch_nmi_watchdog();
1571 } else {
1572 page++;
1573 }
1574 __init_single_page(page, pfn, zid, nid);
1575 nr_pages++;
1576 }
1577 return (nr_pages);
1578 }
1579
1580 /* Initialise remaining memory on a node */
1581 static int __init deferred_init_memmap(void *data)
1582 {
1583 pg_data_t *pgdat = data;
1584 int nid = pgdat->node_id;
1585 unsigned long start = jiffies;
1586 unsigned long nr_pages = 0;
1587 unsigned long spfn, epfn, first_init_pfn, flags;
1588 phys_addr_t spa, epa;
1589 int zid;
1590 struct zone *zone;
1591 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1592 u64 i;
1593
1594 /* Bind memory initialisation thread to a local node if possible */
1595 if (!cpumask_empty(cpumask))
1596 set_cpus_allowed_ptr(current, cpumask);
1597
1598 pgdat_resize_lock(pgdat, &flags);
1599 first_init_pfn = pgdat->first_deferred_pfn;
1600 if (first_init_pfn == ULONG_MAX) {
1601 pgdat_resize_unlock(pgdat, &flags);
1602 pgdat_init_report_one_done();
1603 return 0;
1604 }
1605
1606 /* Sanity check boundaries */
1607 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1608 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1609 pgdat->first_deferred_pfn = ULONG_MAX;
1610
1611 /* Only the highest zone is deferred so find it */
1612 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1613 zone = pgdat->node_zones + zid;
1614 if (first_init_pfn < zone_end_pfn(zone))
1615 break;
1616 }
1617 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1618
1619 /*
1620 * Initialize and free pages. We do it in two loops: first we initialize
1621 * struct page, than free to buddy allocator, because while we are
1622 * freeing pages we can access pages that are ahead (computing buddy
1623 * page in __free_one_page()).
1624 */
1625 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1626 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1627 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1628 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1629 }
1630 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1631 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1632 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1633 deferred_free_pages(nid, zid, spfn, epfn);
1634 }
1635 pgdat_resize_unlock(pgdat, &flags);
1636
1637 /* Sanity check that the next zone really is unpopulated */
1638 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1639
1640 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1641 jiffies_to_msecs(jiffies - start));
1642
1643 pgdat_init_report_one_done();
1644 return 0;
1645 }
1646
1647 /*
1648 * If this zone has deferred pages, try to grow it by initializing enough
1649 * deferred pages to satisfy the allocation specified by order, rounded up to
1650 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1651 * of SECTION_SIZE bytes by initializing struct pages in increments of
1652 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1653 *
1654 * Return true when zone was grown, otherwise return false. We return true even
1655 * when we grow less than requested, to let the caller decide if there are
1656 * enough pages to satisfy the allocation.
1657 *
1658 * Note: We use noinline because this function is needed only during boot, and
1659 * it is called from a __ref function _deferred_grow_zone. This way we are
1660 * making sure that it is not inlined into permanent text section.
1661 */
1662 static noinline bool __init
1663 deferred_grow_zone(struct zone *zone, unsigned int order)
1664 {
1665 int zid = zone_idx(zone);
1666 int nid = zone_to_nid(zone);
1667 pg_data_t *pgdat = NODE_DATA(nid);
1668 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1669 unsigned long nr_pages = 0;
1670 unsigned long first_init_pfn, spfn, epfn, t, flags;
1671 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1672 phys_addr_t spa, epa;
1673 u64 i;
1674
1675 /* Only the last zone may have deferred pages */
1676 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1677 return false;
1678
1679 pgdat_resize_lock(pgdat, &flags);
1680
1681 /*
1682 * If deferred pages have been initialized while we were waiting for
1683 * the lock, return true, as the zone was grown. The caller will retry
1684 * this zone. We won't return to this function since the caller also
1685 * has this static branch.
1686 */
1687 if (!static_branch_unlikely(&deferred_pages)) {
1688 pgdat_resize_unlock(pgdat, &flags);
1689 return true;
1690 }
1691
1692 /*
1693 * If someone grew this zone while we were waiting for spinlock, return
1694 * true, as there might be enough pages already.
1695 */
1696 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1697 pgdat_resize_unlock(pgdat, &flags);
1698 return true;
1699 }
1700
1701 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1702
1703 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1704 pgdat_resize_unlock(pgdat, &flags);
1705 return false;
1706 }
1707
1708 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1709 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1710 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1711
1712 while (spfn < epfn && nr_pages < nr_pages_needed) {
1713 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1714 first_deferred_pfn = min(t, epfn);
1715 nr_pages += deferred_init_pages(nid, zid, spfn,
1716 first_deferred_pfn);
1717 spfn = first_deferred_pfn;
1718 }
1719
1720 if (nr_pages >= nr_pages_needed)
1721 break;
1722 }
1723
1724 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1725 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1726 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1727 deferred_free_pages(nid, zid, spfn, epfn);
1728
1729 if (first_deferred_pfn == epfn)
1730 break;
1731 }
1732 pgdat->first_deferred_pfn = first_deferred_pfn;
1733 pgdat_resize_unlock(pgdat, &flags);
1734
1735 return nr_pages > 0;
1736 }
1737
1738 /*
1739 * deferred_grow_zone() is __init, but it is called from
1740 * get_page_from_freelist() during early boot until deferred_pages permanently
1741 * disables this call. This is why we have refdata wrapper to avoid warning,
1742 * and to ensure that the function body gets unloaded.
1743 */
1744 static bool __ref
1745 _deferred_grow_zone(struct zone *zone, unsigned int order)
1746 {
1747 return deferred_grow_zone(zone, order);
1748 }
1749
1750 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1751
1752 void __init page_alloc_init_late(void)
1753 {
1754 struct zone *zone;
1755
1756 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1757 int nid;
1758
1759 /* There will be num_node_state(N_MEMORY) threads */
1760 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1761 for_each_node_state(nid, N_MEMORY) {
1762 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1763 }
1764
1765 /* Block until all are initialised */
1766 wait_for_completion(&pgdat_init_all_done_comp);
1767
1768 /*
1769 * We initialized the rest of the deferred pages. Permanently disable
1770 * on-demand struct page initialization.
1771 */
1772 static_branch_disable(&deferred_pages);
1773
1774 /* Reinit limits that are based on free pages after the kernel is up */
1775 files_maxfiles_init();
1776 #endif
1777 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1778 /* Discard memblock private memory */
1779 memblock_discard();
1780 #endif
1781
1782 for_each_populated_zone(zone)
1783 set_zone_contiguous(zone);
1784 }
1785
1786 #ifdef CONFIG_CMA
1787 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1788 void __init init_cma_reserved_pageblock(struct page *page)
1789 {
1790 unsigned i = pageblock_nr_pages;
1791 struct page *p = page;
1792
1793 do {
1794 __ClearPageReserved(p);
1795 set_page_count(p, 0);
1796 } while (++p, --i);
1797
1798 set_pageblock_migratetype(page, MIGRATE_CMA);
1799
1800 if (pageblock_order >= MAX_ORDER) {
1801 i = pageblock_nr_pages;
1802 p = page;
1803 do {
1804 set_page_refcounted(p);
1805 __free_pages(p, MAX_ORDER - 1);
1806 p += MAX_ORDER_NR_PAGES;
1807 } while (i -= MAX_ORDER_NR_PAGES);
1808 } else {
1809 set_page_refcounted(page);
1810 __free_pages(page, pageblock_order);
1811 }
1812
1813 adjust_managed_page_count(page, pageblock_nr_pages);
1814 }
1815 #endif
1816
1817 /*
1818 * The order of subdivision here is critical for the IO subsystem.
1819 * Please do not alter this order without good reasons and regression
1820 * testing. Specifically, as large blocks of memory are subdivided,
1821 * the order in which smaller blocks are delivered depends on the order
1822 * they're subdivided in this function. This is the primary factor
1823 * influencing the order in which pages are delivered to the IO
1824 * subsystem according to empirical testing, and this is also justified
1825 * by considering the behavior of a buddy system containing a single
1826 * large block of memory acted on by a series of small allocations.
1827 * This behavior is a critical factor in sglist merging's success.
1828 *
1829 * -- nyc
1830 */
1831 static inline void expand(struct zone *zone, struct page *page,
1832 int low, int high, struct free_area *area,
1833 int migratetype)
1834 {
1835 unsigned long size = 1 << high;
1836
1837 while (high > low) {
1838 area--;
1839 high--;
1840 size >>= 1;
1841 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1842
1843 /*
1844 * Mark as guard pages (or page), that will allow to
1845 * merge back to allocator when buddy will be freed.
1846 * Corresponding page table entries will not be touched,
1847 * pages will stay not present in virtual address space
1848 */
1849 if (set_page_guard(zone, &page[size], high, migratetype))
1850 continue;
1851
1852 list_add(&page[size].lru, &area->free_list[migratetype]);
1853 area->nr_free++;
1854 set_page_order(&page[size], high);
1855 }
1856 }
1857
1858 static void check_new_page_bad(struct page *page)
1859 {
1860 const char *bad_reason = NULL;
1861 unsigned long bad_flags = 0;
1862
1863 if (unlikely(atomic_read(&page->_mapcount) != -1))
1864 bad_reason = "nonzero mapcount";
1865 if (unlikely(page->mapping != NULL))
1866 bad_reason = "non-NULL mapping";
1867 if (unlikely(page_ref_count(page) != 0))
1868 bad_reason = "nonzero _count";
1869 if (unlikely(page->flags & __PG_HWPOISON)) {
1870 bad_reason = "HWPoisoned (hardware-corrupted)";
1871 bad_flags = __PG_HWPOISON;
1872 /* Don't complain about hwpoisoned pages */
1873 page_mapcount_reset(page); /* remove PageBuddy */
1874 return;
1875 }
1876 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1877 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1878 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1879 }
1880 #ifdef CONFIG_MEMCG
1881 if (unlikely(page->mem_cgroup))
1882 bad_reason = "page still charged to cgroup";
1883 #endif
1884 bad_page(page, bad_reason, bad_flags);
1885 }
1886
1887 /*
1888 * This page is about to be returned from the page allocator
1889 */
1890 static inline int check_new_page(struct page *page)
1891 {
1892 if (likely(page_expected_state(page,
1893 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1894 return 0;
1895
1896 check_new_page_bad(page);
1897 return 1;
1898 }
1899
1900 static inline bool free_pages_prezeroed(void)
1901 {
1902 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1903 page_poisoning_enabled();
1904 }
1905
1906 #ifdef CONFIG_DEBUG_VM
1907 static bool check_pcp_refill(struct page *page)
1908 {
1909 return false;
1910 }
1911
1912 static bool check_new_pcp(struct page *page)
1913 {
1914 return check_new_page(page);
1915 }
1916 #else
1917 static bool check_pcp_refill(struct page *page)
1918 {
1919 return check_new_page(page);
1920 }
1921 static bool check_new_pcp(struct page *page)
1922 {
1923 return false;
1924 }
1925 #endif /* CONFIG_DEBUG_VM */
1926
1927 static bool check_new_pages(struct page *page, unsigned int order)
1928 {
1929 int i;
1930 for (i = 0; i < (1 << order); i++) {
1931 struct page *p = page + i;
1932
1933 if (unlikely(check_new_page(p)))
1934 return true;
1935 }
1936
1937 return false;
1938 }
1939
1940 inline void post_alloc_hook(struct page *page, unsigned int order,
1941 gfp_t gfp_flags)
1942 {
1943 set_page_private(page, 0);
1944 set_page_refcounted(page);
1945
1946 arch_alloc_page(page, order);
1947 kernel_map_pages(page, 1 << order, 1);
1948 kernel_poison_pages(page, 1 << order, 1);
1949 kasan_alloc_pages(page, order);
1950 set_page_owner(page, order, gfp_flags);
1951 }
1952
1953 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1954 unsigned int alloc_flags)
1955 {
1956 int i;
1957
1958 post_alloc_hook(page, order, gfp_flags);
1959
1960 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1961 for (i = 0; i < (1 << order); i++)
1962 clear_highpage(page + i);
1963
1964 if (order && (gfp_flags & __GFP_COMP))
1965 prep_compound_page(page, order);
1966
1967 /*
1968 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1969 * allocate the page. The expectation is that the caller is taking
1970 * steps that will free more memory. The caller should avoid the page
1971 * being used for !PFMEMALLOC purposes.
1972 */
1973 if (alloc_flags & ALLOC_NO_WATERMARKS)
1974 set_page_pfmemalloc(page);
1975 else
1976 clear_page_pfmemalloc(page);
1977 }
1978
1979 /*
1980 * Go through the free lists for the given migratetype and remove
1981 * the smallest available page from the freelists
1982 */
1983 static __always_inline
1984 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1985 int migratetype)
1986 {
1987 unsigned int current_order;
1988 struct free_area *area;
1989 struct page *page;
1990
1991 /* Find a page of the appropriate size in the preferred list */
1992 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1993 area = &(zone->free_area[current_order]);
1994 page = list_first_entry_or_null(&area->free_list[migratetype],
1995 struct page, lru);
1996 if (!page)
1997 continue;
1998 list_del(&page->lru);
1999 rmv_page_order(page);
2000 area->nr_free--;
2001 expand(zone, page, order, current_order, area, migratetype);
2002 set_pcppage_migratetype(page, migratetype);
2003 return page;
2004 }
2005
2006 return NULL;
2007 }
2008
2009
2010 /*
2011 * This array describes the order lists are fallen back to when
2012 * the free lists for the desirable migrate type are depleted
2013 */
2014 static int fallbacks[MIGRATE_TYPES][4] = {
2015 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2016 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2017 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2018 #ifdef CONFIG_CMA
2019 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2020 #endif
2021 #ifdef CONFIG_MEMORY_ISOLATION
2022 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2023 #endif
2024 };
2025
2026 #ifdef CONFIG_CMA
2027 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2028 unsigned int order)
2029 {
2030 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2031 }
2032 #else
2033 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2034 unsigned int order) { return NULL; }
2035 #endif
2036
2037 /*
2038 * Move the free pages in a range to the free lists of the requested type.
2039 * Note that start_page and end_pages are not aligned on a pageblock
2040 * boundary. If alignment is required, use move_freepages_block()
2041 */
2042 static int move_freepages(struct zone *zone,
2043 struct page *start_page, struct page *end_page,
2044 int migratetype, int *num_movable)
2045 {
2046 struct page *page;
2047 unsigned int order;
2048 int pages_moved = 0;
2049
2050 #ifndef CONFIG_HOLES_IN_ZONE
2051 /*
2052 * page_zone is not safe to call in this context when
2053 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2054 * anyway as we check zone boundaries in move_freepages_block().
2055 * Remove at a later date when no bug reports exist related to
2056 * grouping pages by mobility
2057 */
2058 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2059 pfn_valid(page_to_pfn(end_page)) &&
2060 page_zone(start_page) != page_zone(end_page));
2061 #endif
2062 for (page = start_page; page <= end_page;) {
2063 if (!pfn_valid_within(page_to_pfn(page))) {
2064 page++;
2065 continue;
2066 }
2067
2068 /* Make sure we are not inadvertently changing nodes */
2069 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2070
2071 if (!PageBuddy(page)) {
2072 /*
2073 * We assume that pages that could be isolated for
2074 * migration are movable. But we don't actually try
2075 * isolating, as that would be expensive.
2076 */
2077 if (num_movable &&
2078 (PageLRU(page) || __PageMovable(page)))
2079 (*num_movable)++;
2080
2081 page++;
2082 continue;
2083 }
2084
2085 order = page_order(page);
2086 list_move(&page->lru,
2087 &zone->free_area[order].free_list[migratetype]);
2088 page += 1 << order;
2089 pages_moved += 1 << order;
2090 }
2091
2092 return pages_moved;
2093 }
2094
2095 int move_freepages_block(struct zone *zone, struct page *page,
2096 int migratetype, int *num_movable)
2097 {
2098 unsigned long start_pfn, end_pfn;
2099 struct page *start_page, *end_page;
2100
2101 if (num_movable)
2102 *num_movable = 0;
2103
2104 start_pfn = page_to_pfn(page);
2105 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2106 start_page = pfn_to_page(start_pfn);
2107 end_page = start_page + pageblock_nr_pages - 1;
2108 end_pfn = start_pfn + pageblock_nr_pages - 1;
2109
2110 /* Do not cross zone boundaries */
2111 if (!zone_spans_pfn(zone, start_pfn))
2112 start_page = page;
2113 if (!zone_spans_pfn(zone, end_pfn))
2114 return 0;
2115
2116 return move_freepages(zone, start_page, end_page, migratetype,
2117 num_movable);
2118 }
2119
2120 static void change_pageblock_range(struct page *pageblock_page,
2121 int start_order, int migratetype)
2122 {
2123 int nr_pageblocks = 1 << (start_order - pageblock_order);
2124
2125 while (nr_pageblocks--) {
2126 set_pageblock_migratetype(pageblock_page, migratetype);
2127 pageblock_page += pageblock_nr_pages;
2128 }
2129 }
2130
2131 /*
2132 * When we are falling back to another migratetype during allocation, try to
2133 * steal extra free pages from the same pageblocks to satisfy further
2134 * allocations, instead of polluting multiple pageblocks.
2135 *
2136 * If we are stealing a relatively large buddy page, it is likely there will
2137 * be more free pages in the pageblock, so try to steal them all. For
2138 * reclaimable and unmovable allocations, we steal regardless of page size,
2139 * as fragmentation caused by those allocations polluting movable pageblocks
2140 * is worse than movable allocations stealing from unmovable and reclaimable
2141 * pageblocks.
2142 */
2143 static bool can_steal_fallback(unsigned int order, int start_mt)
2144 {
2145 /*
2146 * Leaving this order check is intended, although there is
2147 * relaxed order check in next check. The reason is that
2148 * we can actually steal whole pageblock if this condition met,
2149 * but, below check doesn't guarantee it and that is just heuristic
2150 * so could be changed anytime.
2151 */
2152 if (order >= pageblock_order)
2153 return true;
2154
2155 if (order >= pageblock_order / 2 ||
2156 start_mt == MIGRATE_RECLAIMABLE ||
2157 start_mt == MIGRATE_UNMOVABLE ||
2158 page_group_by_mobility_disabled)
2159 return true;
2160
2161 return false;
2162 }
2163
2164 static inline void boost_watermark(struct zone *zone)
2165 {
2166 unsigned long max_boost;
2167
2168 if (!watermark_boost_factor)
2169 return;
2170
2171 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2172 watermark_boost_factor, 10000);
2173 max_boost = max(pageblock_nr_pages, max_boost);
2174
2175 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2176 max_boost);
2177 }
2178
2179 /*
2180 * This function implements actual steal behaviour. If order is large enough,
2181 * we can steal whole pageblock. If not, we first move freepages in this
2182 * pageblock to our migratetype and determine how many already-allocated pages
2183 * are there in the pageblock with a compatible migratetype. If at least half
2184 * of pages are free or compatible, we can change migratetype of the pageblock
2185 * itself, so pages freed in the future will be put on the correct free list.
2186 */
2187 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2188 unsigned int alloc_flags, int start_type, bool whole_block)
2189 {
2190 unsigned int current_order = page_order(page);
2191 struct free_area *area;
2192 int free_pages, movable_pages, alike_pages;
2193 int old_block_type;
2194
2195 old_block_type = get_pageblock_migratetype(page);
2196
2197 /*
2198 * This can happen due to races and we want to prevent broken
2199 * highatomic accounting.
2200 */
2201 if (is_migrate_highatomic(old_block_type))
2202 goto single_page;
2203
2204 /* Take ownership for orders >= pageblock_order */
2205 if (current_order >= pageblock_order) {
2206 change_pageblock_range(page, current_order, start_type);
2207 goto single_page;
2208 }
2209
2210 /*
2211 * Boost watermarks to increase reclaim pressure to reduce the
2212 * likelihood of future fallbacks. Wake kswapd now as the node
2213 * may be balanced overall and kswapd will not wake naturally.
2214 */
2215 boost_watermark(zone);
2216 if (alloc_flags & ALLOC_KSWAPD)
2217 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2218
2219 /* We are not allowed to try stealing from the whole block */
2220 if (!whole_block)
2221 goto single_page;
2222
2223 free_pages = move_freepages_block(zone, page, start_type,
2224 &movable_pages);
2225 /*
2226 * Determine how many pages are compatible with our allocation.
2227 * For movable allocation, it's the number of movable pages which
2228 * we just obtained. For other types it's a bit more tricky.
2229 */
2230 if (start_type == MIGRATE_MOVABLE) {
2231 alike_pages = movable_pages;
2232 } else {
2233 /*
2234 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2235 * to MOVABLE pageblock, consider all non-movable pages as
2236 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2237 * vice versa, be conservative since we can't distinguish the
2238 * exact migratetype of non-movable pages.
2239 */
2240 if (old_block_type == MIGRATE_MOVABLE)
2241 alike_pages = pageblock_nr_pages
2242 - (free_pages + movable_pages);
2243 else
2244 alike_pages = 0;
2245 }
2246
2247 /* moving whole block can fail due to zone boundary conditions */
2248 if (!free_pages)
2249 goto single_page;
2250
2251 /*
2252 * If a sufficient number of pages in the block are either free or of
2253 * comparable migratability as our allocation, claim the whole block.
2254 */
2255 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2256 page_group_by_mobility_disabled)
2257 set_pageblock_migratetype(page, start_type);
2258
2259 return;
2260
2261 single_page:
2262 area = &zone->free_area[current_order];
2263 list_move(&page->lru, &area->free_list[start_type]);
2264 }
2265
2266 /*
2267 * Check whether there is a suitable fallback freepage with requested order.
2268 * If only_stealable is true, this function returns fallback_mt only if
2269 * we can steal other freepages all together. This would help to reduce
2270 * fragmentation due to mixed migratetype pages in one pageblock.
2271 */
2272 int find_suitable_fallback(struct free_area *area, unsigned int order,
2273 int migratetype, bool only_stealable, bool *can_steal)
2274 {
2275 int i;
2276 int fallback_mt;
2277
2278 if (area->nr_free == 0)
2279 return -1;
2280
2281 *can_steal = false;
2282 for (i = 0;; i++) {
2283 fallback_mt = fallbacks[migratetype][i];
2284 if (fallback_mt == MIGRATE_TYPES)
2285 break;
2286
2287 if (list_empty(&area->free_list[fallback_mt]))
2288 continue;
2289
2290 if (can_steal_fallback(order, migratetype))
2291 *can_steal = true;
2292
2293 if (!only_stealable)
2294 return fallback_mt;
2295
2296 if (*can_steal)
2297 return fallback_mt;
2298 }
2299
2300 return -1;
2301 }
2302
2303 /*
2304 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2305 * there are no empty page blocks that contain a page with a suitable order
2306 */
2307 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2308 unsigned int alloc_order)
2309 {
2310 int mt;
2311 unsigned long max_managed, flags;
2312
2313 /*
2314 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2315 * Check is race-prone but harmless.
2316 */
2317 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2318 if (zone->nr_reserved_highatomic >= max_managed)
2319 return;
2320
2321 spin_lock_irqsave(&zone->lock, flags);
2322
2323 /* Recheck the nr_reserved_highatomic limit under the lock */
2324 if (zone->nr_reserved_highatomic >= max_managed)
2325 goto out_unlock;
2326
2327 /* Yoink! */
2328 mt = get_pageblock_migratetype(page);
2329 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2330 && !is_migrate_cma(mt)) {
2331 zone->nr_reserved_highatomic += pageblock_nr_pages;
2332 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2333 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2334 }
2335
2336 out_unlock:
2337 spin_unlock_irqrestore(&zone->lock, flags);
2338 }
2339
2340 /*
2341 * Used when an allocation is about to fail under memory pressure. This
2342 * potentially hurts the reliability of high-order allocations when under
2343 * intense memory pressure but failed atomic allocations should be easier
2344 * to recover from than an OOM.
2345 *
2346 * If @force is true, try to unreserve a pageblock even though highatomic
2347 * pageblock is exhausted.
2348 */
2349 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2350 bool force)
2351 {
2352 struct zonelist *zonelist = ac->zonelist;
2353 unsigned long flags;
2354 struct zoneref *z;
2355 struct zone *zone;
2356 struct page *page;
2357 int order;
2358 bool ret;
2359
2360 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2361 ac->nodemask) {
2362 /*
2363 * Preserve at least one pageblock unless memory pressure
2364 * is really high.
2365 */
2366 if (!force && zone->nr_reserved_highatomic <=
2367 pageblock_nr_pages)
2368 continue;
2369
2370 spin_lock_irqsave(&zone->lock, flags);
2371 for (order = 0; order < MAX_ORDER; order++) {
2372 struct free_area *area = &(zone->free_area[order]);
2373
2374 page = list_first_entry_or_null(
2375 &area->free_list[MIGRATE_HIGHATOMIC],
2376 struct page, lru);
2377 if (!page)
2378 continue;
2379
2380 /*
2381 * In page freeing path, migratetype change is racy so
2382 * we can counter several free pages in a pageblock
2383 * in this loop althoug we changed the pageblock type
2384 * from highatomic to ac->migratetype. So we should
2385 * adjust the count once.
2386 */
2387 if (is_migrate_highatomic_page(page)) {
2388 /*
2389 * It should never happen but changes to
2390 * locking could inadvertently allow a per-cpu
2391 * drain to add pages to MIGRATE_HIGHATOMIC
2392 * while unreserving so be safe and watch for
2393 * underflows.
2394 */
2395 zone->nr_reserved_highatomic -= min(
2396 pageblock_nr_pages,
2397 zone->nr_reserved_highatomic);
2398 }
2399
2400 /*
2401 * Convert to ac->migratetype and avoid the normal
2402 * pageblock stealing heuristics. Minimally, the caller
2403 * is doing the work and needs the pages. More
2404 * importantly, if the block was always converted to
2405 * MIGRATE_UNMOVABLE or another type then the number
2406 * of pageblocks that cannot be completely freed
2407 * may increase.
2408 */
2409 set_pageblock_migratetype(page, ac->migratetype);
2410 ret = move_freepages_block(zone, page, ac->migratetype,
2411 NULL);
2412 if (ret) {
2413 spin_unlock_irqrestore(&zone->lock, flags);
2414 return ret;
2415 }
2416 }
2417 spin_unlock_irqrestore(&zone->lock, flags);
2418 }
2419
2420 return false;
2421 }
2422
2423 /*
2424 * Try finding a free buddy page on the fallback list and put it on the free
2425 * list of requested migratetype, possibly along with other pages from the same
2426 * block, depending on fragmentation avoidance heuristics. Returns true if
2427 * fallback was found so that __rmqueue_smallest() can grab it.
2428 *
2429 * The use of signed ints for order and current_order is a deliberate
2430 * deviation from the rest of this file, to make the for loop
2431 * condition simpler.
2432 */
2433 static __always_inline bool
2434 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2435 unsigned int alloc_flags)
2436 {
2437 struct free_area *area;
2438 int current_order;
2439 int min_order = order;
2440 struct page *page;
2441 int fallback_mt;
2442 bool can_steal;
2443
2444 /*
2445 * Do not steal pages from freelists belonging to other pageblocks
2446 * i.e. orders < pageblock_order. If there are no local zones free,
2447 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2448 */
2449 if (alloc_flags & ALLOC_NOFRAGMENT)
2450 min_order = pageblock_order;
2451
2452 /*
2453 * Find the largest available free page in the other list. This roughly
2454 * approximates finding the pageblock with the most free pages, which
2455 * would be too costly to do exactly.
2456 */
2457 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2458 --current_order) {
2459 area = &(zone->free_area[current_order]);
2460 fallback_mt = find_suitable_fallback(area, current_order,
2461 start_migratetype, false, &can_steal);
2462 if (fallback_mt == -1)
2463 continue;
2464
2465 /*
2466 * We cannot steal all free pages from the pageblock and the
2467 * requested migratetype is movable. In that case it's better to
2468 * steal and split the smallest available page instead of the
2469 * largest available page, because even if the next movable
2470 * allocation falls back into a different pageblock than this
2471 * one, it won't cause permanent fragmentation.
2472 */
2473 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2474 && current_order > order)
2475 goto find_smallest;
2476
2477 goto do_steal;
2478 }
2479
2480 return false;
2481
2482 find_smallest:
2483 for (current_order = order; current_order < MAX_ORDER;
2484 current_order++) {
2485 area = &(zone->free_area[current_order]);
2486 fallback_mt = find_suitable_fallback(area, current_order,
2487 start_migratetype, false, &can_steal);
2488 if (fallback_mt != -1)
2489 break;
2490 }
2491
2492 /*
2493 * This should not happen - we already found a suitable fallback
2494 * when looking for the largest page.
2495 */
2496 VM_BUG_ON(current_order == MAX_ORDER);
2497
2498 do_steal:
2499 page = list_first_entry(&area->free_list[fallback_mt],
2500 struct page, lru);
2501
2502 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2503 can_steal);
2504
2505 trace_mm_page_alloc_extfrag(page, order, current_order,
2506 start_migratetype, fallback_mt);
2507
2508 return true;
2509
2510 }
2511
2512 /*
2513 * Do the hard work of removing an element from the buddy allocator.
2514 * Call me with the zone->lock already held.
2515 */
2516 static __always_inline struct page *
2517 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2518 unsigned int alloc_flags)
2519 {
2520 struct page *page;
2521
2522 retry:
2523 page = __rmqueue_smallest(zone, order, migratetype);
2524 if (unlikely(!page)) {
2525 if (migratetype == MIGRATE_MOVABLE)
2526 page = __rmqueue_cma_fallback(zone, order);
2527
2528 if (!page && __rmqueue_fallback(zone, order, migratetype,
2529 alloc_flags))
2530 goto retry;
2531 }
2532
2533 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2534 return page;
2535 }
2536
2537 /*
2538 * Obtain a specified number of elements from the buddy allocator, all under
2539 * a single hold of the lock, for efficiency. Add them to the supplied list.
2540 * Returns the number of new pages which were placed at *list.
2541 */
2542 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2543 unsigned long count, struct list_head *list,
2544 int migratetype, unsigned int alloc_flags)
2545 {
2546 int i, alloced = 0;
2547
2548 spin_lock(&zone->lock);
2549 for (i = 0; i < count; ++i) {
2550 struct page *page = __rmqueue(zone, order, migratetype,
2551 alloc_flags);
2552 if (unlikely(page == NULL))
2553 break;
2554
2555 if (unlikely(check_pcp_refill(page)))
2556 continue;
2557
2558 /*
2559 * Split buddy pages returned by expand() are received here in
2560 * physical page order. The page is added to the tail of
2561 * caller's list. From the callers perspective, the linked list
2562 * is ordered by page number under some conditions. This is
2563 * useful for IO devices that can forward direction from the
2564 * head, thus also in the physical page order. This is useful
2565 * for IO devices that can merge IO requests if the physical
2566 * pages are ordered properly.
2567 */
2568 list_add_tail(&page->lru, list);
2569 alloced++;
2570 if (is_migrate_cma(get_pcppage_migratetype(page)))
2571 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2572 -(1 << order));
2573 }
2574
2575 /*
2576 * i pages were removed from the buddy list even if some leak due
2577 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2578 * on i. Do not confuse with 'alloced' which is the number of
2579 * pages added to the pcp list.
2580 */
2581 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2582 spin_unlock(&zone->lock);
2583 return alloced;
2584 }
2585
2586 #ifdef CONFIG_NUMA
2587 /*
2588 * Called from the vmstat counter updater to drain pagesets of this
2589 * currently executing processor on remote nodes after they have
2590 * expired.
2591 *
2592 * Note that this function must be called with the thread pinned to
2593 * a single processor.
2594 */
2595 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2596 {
2597 unsigned long flags;
2598 int to_drain, batch;
2599
2600 local_irq_save(flags);
2601 batch = READ_ONCE(pcp->batch);
2602 to_drain = min(pcp->count, batch);
2603 if (to_drain > 0)
2604 free_pcppages_bulk(zone, to_drain, pcp);
2605 local_irq_restore(flags);
2606 }
2607 #endif
2608
2609 /*
2610 * Drain pcplists of the indicated processor and zone.
2611 *
2612 * The processor must either be the current processor and the
2613 * thread pinned to the current processor or a processor that
2614 * is not online.
2615 */
2616 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2617 {
2618 unsigned long flags;
2619 struct per_cpu_pageset *pset;
2620 struct per_cpu_pages *pcp;
2621
2622 local_irq_save(flags);
2623 pset = per_cpu_ptr(zone->pageset, cpu);
2624
2625 pcp = &pset->pcp;
2626 if (pcp->count)
2627 free_pcppages_bulk(zone, pcp->count, pcp);
2628 local_irq_restore(flags);
2629 }
2630
2631 /*
2632 * Drain pcplists of all zones on the indicated processor.
2633 *
2634 * The processor must either be the current processor and the
2635 * thread pinned to the current processor or a processor that
2636 * is not online.
2637 */
2638 static void drain_pages(unsigned int cpu)
2639 {
2640 struct zone *zone;
2641
2642 for_each_populated_zone(zone) {
2643 drain_pages_zone(cpu, zone);
2644 }
2645 }
2646
2647 /*
2648 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2649 *
2650 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2651 * the single zone's pages.
2652 */
2653 void drain_local_pages(struct zone *zone)
2654 {
2655 int cpu = smp_processor_id();
2656
2657 if (zone)
2658 drain_pages_zone(cpu, zone);
2659 else
2660 drain_pages(cpu);
2661 }
2662
2663 static void drain_local_pages_wq(struct work_struct *work)
2664 {
2665 struct pcpu_drain *drain;
2666
2667 drain = container_of(work, struct pcpu_drain, work);
2668
2669 /*
2670 * drain_all_pages doesn't use proper cpu hotplug protection so
2671 * we can race with cpu offline when the WQ can move this from
2672 * a cpu pinned worker to an unbound one. We can operate on a different
2673 * cpu which is allright but we also have to make sure to not move to
2674 * a different one.
2675 */
2676 preempt_disable();
2677 drain_local_pages(drain->zone);
2678 preempt_enable();
2679 }
2680
2681 /*
2682 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2683 *
2684 * When zone parameter is non-NULL, spill just the single zone's pages.
2685 *
2686 * Note that this can be extremely slow as the draining happens in a workqueue.
2687 */
2688 void drain_all_pages(struct zone *zone)
2689 {
2690 int cpu;
2691
2692 /*
2693 * Allocate in the BSS so we wont require allocation in
2694 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2695 */
2696 static cpumask_t cpus_with_pcps;
2697
2698 /*
2699 * Make sure nobody triggers this path before mm_percpu_wq is fully
2700 * initialized.
2701 */
2702 if (WARN_ON_ONCE(!mm_percpu_wq))
2703 return;
2704
2705 /*
2706 * Do not drain if one is already in progress unless it's specific to
2707 * a zone. Such callers are primarily CMA and memory hotplug and need
2708 * the drain to be complete when the call returns.
2709 */
2710 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2711 if (!zone)
2712 return;
2713 mutex_lock(&pcpu_drain_mutex);
2714 }
2715
2716 /*
2717 * We don't care about racing with CPU hotplug event
2718 * as offline notification will cause the notified
2719 * cpu to drain that CPU pcps and on_each_cpu_mask
2720 * disables preemption as part of its processing
2721 */
2722 for_each_online_cpu(cpu) {
2723 struct per_cpu_pageset *pcp;
2724 struct zone *z;
2725 bool has_pcps = false;
2726
2727 if (zone) {
2728 pcp = per_cpu_ptr(zone->pageset, cpu);
2729 if (pcp->pcp.count)
2730 has_pcps = true;
2731 } else {
2732 for_each_populated_zone(z) {
2733 pcp = per_cpu_ptr(z->pageset, cpu);
2734 if (pcp->pcp.count) {
2735 has_pcps = true;
2736 break;
2737 }
2738 }
2739 }
2740
2741 if (has_pcps)
2742 cpumask_set_cpu(cpu, &cpus_with_pcps);
2743 else
2744 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2745 }
2746
2747 for_each_cpu(cpu, &cpus_with_pcps) {
2748 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2749
2750 drain->zone = zone;
2751 INIT_WORK(&drain->work, drain_local_pages_wq);
2752 queue_work_on(cpu, mm_percpu_wq, &drain->work);
2753 }
2754 for_each_cpu(cpu, &cpus_with_pcps)
2755 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2756
2757 mutex_unlock(&pcpu_drain_mutex);
2758 }
2759
2760 #ifdef CONFIG_HIBERNATION
2761
2762 /*
2763 * Touch the watchdog for every WD_PAGE_COUNT pages.
2764 */
2765 #define WD_PAGE_COUNT (128*1024)
2766
2767 void mark_free_pages(struct zone *zone)
2768 {
2769 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2770 unsigned long flags;
2771 unsigned int order, t;
2772 struct page *page;
2773
2774 if (zone_is_empty(zone))
2775 return;
2776
2777 spin_lock_irqsave(&zone->lock, flags);
2778
2779 max_zone_pfn = zone_end_pfn(zone);
2780 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2781 if (pfn_valid(pfn)) {
2782 page = pfn_to_page(pfn);
2783
2784 if (!--page_count) {
2785 touch_nmi_watchdog();
2786 page_count = WD_PAGE_COUNT;
2787 }
2788
2789 if (page_zone(page) != zone)
2790 continue;
2791
2792 if (!swsusp_page_is_forbidden(page))
2793 swsusp_unset_page_free(page);
2794 }
2795
2796 for_each_migratetype_order(order, t) {
2797 list_for_each_entry(page,
2798 &zone->free_area[order].free_list[t], lru) {
2799 unsigned long i;
2800
2801 pfn = page_to_pfn(page);
2802 for (i = 0; i < (1UL << order); i++) {
2803 if (!--page_count) {
2804 touch_nmi_watchdog();
2805 page_count = WD_PAGE_COUNT;
2806 }
2807 swsusp_set_page_free(pfn_to_page(pfn + i));
2808 }
2809 }
2810 }
2811 spin_unlock_irqrestore(&zone->lock, flags);
2812 }
2813 #endif /* CONFIG_PM */
2814
2815 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2816 {
2817 int migratetype;
2818
2819 if (!free_pcp_prepare(page))
2820 return false;
2821
2822 migratetype = get_pfnblock_migratetype(page, pfn);
2823 set_pcppage_migratetype(page, migratetype);
2824 return true;
2825 }
2826
2827 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2828 {
2829 struct zone *zone = page_zone(page);
2830 struct per_cpu_pages *pcp;
2831 int migratetype;
2832
2833 migratetype = get_pcppage_migratetype(page);
2834 __count_vm_event(PGFREE);
2835
2836 /*
2837 * We only track unmovable, reclaimable and movable on pcp lists.
2838 * Free ISOLATE pages back to the allocator because they are being
2839 * offlined but treat HIGHATOMIC as movable pages so we can get those
2840 * areas back if necessary. Otherwise, we may have to free
2841 * excessively into the page allocator
2842 */
2843 if (migratetype >= MIGRATE_PCPTYPES) {
2844 if (unlikely(is_migrate_isolate(migratetype))) {
2845 free_one_page(zone, page, pfn, 0, migratetype);
2846 return;
2847 }
2848 migratetype = MIGRATE_MOVABLE;
2849 }
2850
2851 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2852 list_add(&page->lru, &pcp->lists[migratetype]);
2853 pcp->count++;
2854 if (pcp->count >= pcp->high) {
2855 unsigned long batch = READ_ONCE(pcp->batch);
2856 free_pcppages_bulk(zone, batch, pcp);
2857 }
2858 }
2859
2860 /*
2861 * Free a 0-order page
2862 */
2863 void free_unref_page(struct page *page)
2864 {
2865 unsigned long flags;
2866 unsigned long pfn = page_to_pfn(page);
2867
2868 if (!free_unref_page_prepare(page, pfn))
2869 return;
2870
2871 local_irq_save(flags);
2872 free_unref_page_commit(page, pfn);
2873 local_irq_restore(flags);
2874 }
2875
2876 /*
2877 * Free a list of 0-order pages
2878 */
2879 void free_unref_page_list(struct list_head *list)
2880 {
2881 struct page *page, *next;
2882 unsigned long flags, pfn;
2883 int batch_count = 0;
2884
2885 /* Prepare pages for freeing */
2886 list_for_each_entry_safe(page, next, list, lru) {
2887 pfn = page_to_pfn(page);
2888 if (!free_unref_page_prepare(page, pfn))
2889 list_del(&page->lru);
2890 set_page_private(page, pfn);
2891 }
2892
2893 local_irq_save(flags);
2894 list_for_each_entry_safe(page, next, list, lru) {
2895 unsigned long pfn = page_private(page);
2896
2897 set_page_private(page, 0);
2898 trace_mm_page_free_batched(page);
2899 free_unref_page_commit(page, pfn);
2900
2901 /*
2902 * Guard against excessive IRQ disabled times when we get
2903 * a large list of pages to free.
2904 */
2905 if (++batch_count == SWAP_CLUSTER_MAX) {
2906 local_irq_restore(flags);
2907 batch_count = 0;
2908 local_irq_save(flags);
2909 }
2910 }
2911 local_irq_restore(flags);
2912 }
2913
2914 /*
2915 * split_page takes a non-compound higher-order page, and splits it into
2916 * n (1<<order) sub-pages: page[0..n]
2917 * Each sub-page must be freed individually.
2918 *
2919 * Note: this is probably too low level an operation for use in drivers.
2920 * Please consult with lkml before using this in your driver.
2921 */
2922 void split_page(struct page *page, unsigned int order)
2923 {
2924 int i;
2925
2926 VM_BUG_ON_PAGE(PageCompound(page), page);
2927 VM_BUG_ON_PAGE(!page_count(page), page);
2928
2929 for (i = 1; i < (1 << order); i++)
2930 set_page_refcounted(page + i);
2931 split_page_owner(page, order);
2932 }
2933 EXPORT_SYMBOL_GPL(split_page);
2934
2935 int __isolate_free_page(struct page *page, unsigned int order)
2936 {
2937 unsigned long watermark;
2938 struct zone *zone;
2939 int mt;
2940
2941 BUG_ON(!PageBuddy(page));
2942
2943 zone = page_zone(page);
2944 mt = get_pageblock_migratetype(page);
2945
2946 if (!is_migrate_isolate(mt)) {
2947 /*
2948 * Obey watermarks as if the page was being allocated. We can
2949 * emulate a high-order watermark check with a raised order-0
2950 * watermark, because we already know our high-order page
2951 * exists.
2952 */
2953 watermark = min_wmark_pages(zone) + (1UL << order);
2954 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2955 return 0;
2956
2957 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2958 }
2959
2960 /* Remove page from free list */
2961 list_del(&page->lru);
2962 zone->free_area[order].nr_free--;
2963 rmv_page_order(page);
2964
2965 /*
2966 * Set the pageblock if the isolated page is at least half of a
2967 * pageblock
2968 */
2969 if (order >= pageblock_order - 1) {
2970 struct page *endpage = page + (1 << order) - 1;
2971 for (; page < endpage; page += pageblock_nr_pages) {
2972 int mt = get_pageblock_migratetype(page);
2973 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2974 && !is_migrate_highatomic(mt))
2975 set_pageblock_migratetype(page,
2976 MIGRATE_MOVABLE);
2977 }
2978 }
2979
2980
2981 return 1UL << order;
2982 }
2983
2984 /*
2985 * Update NUMA hit/miss statistics
2986 *
2987 * Must be called with interrupts disabled.
2988 */
2989 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2990 {
2991 #ifdef CONFIG_NUMA
2992 enum numa_stat_item local_stat = NUMA_LOCAL;
2993
2994 /* skip numa counters update if numa stats is disabled */
2995 if (!static_branch_likely(&vm_numa_stat_key))
2996 return;
2997
2998 if (zone_to_nid(z) != numa_node_id())
2999 local_stat = NUMA_OTHER;
3000
3001 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3002 __inc_numa_state(z, NUMA_HIT);
3003 else {
3004 __inc_numa_state(z, NUMA_MISS);
3005 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3006 }
3007 __inc_numa_state(z, local_stat);
3008 #endif
3009 }
3010
3011 /* Remove page from the per-cpu list, caller must protect the list */
3012 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3013 unsigned int alloc_flags,
3014 struct per_cpu_pages *pcp,
3015 struct list_head *list)
3016 {
3017 struct page *page;
3018
3019 do {
3020 if (list_empty(list)) {
3021 pcp->count += rmqueue_bulk(zone, 0,
3022 pcp->batch, list,
3023 migratetype, alloc_flags);
3024 if (unlikely(list_empty(list)))
3025 return NULL;
3026 }
3027
3028 page = list_first_entry(list, struct page, lru);
3029 list_del(&page->lru);
3030 pcp->count--;
3031 } while (check_new_pcp(page));
3032
3033 return page;
3034 }
3035
3036 /* Lock and remove page from the per-cpu list */
3037 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3038 struct zone *zone, unsigned int order,
3039 gfp_t gfp_flags, int migratetype,
3040 unsigned int alloc_flags)
3041 {
3042 struct per_cpu_pages *pcp;
3043 struct list_head *list;
3044 struct page *page;
3045 unsigned long flags;
3046
3047 local_irq_save(flags);
3048 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3049 list = &pcp->lists[migratetype];
3050 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3051 if (page) {
3052 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3053 zone_statistics(preferred_zone, zone);
3054 }
3055 local_irq_restore(flags);
3056 return page;
3057 }
3058
3059 /*
3060 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3061 */
3062 static inline
3063 struct page *rmqueue(struct zone *preferred_zone,
3064 struct zone *zone, unsigned int order,
3065 gfp_t gfp_flags, unsigned int alloc_flags,
3066 int migratetype)
3067 {
3068 unsigned long flags;
3069 struct page *page;
3070
3071 if (likely(order == 0)) {
3072 page = rmqueue_pcplist(preferred_zone, zone, order,
3073 gfp_flags, migratetype, alloc_flags);
3074 goto out;
3075 }
3076
3077 /*
3078 * We most definitely don't want callers attempting to
3079 * allocate greater than order-1 page units with __GFP_NOFAIL.
3080 */
3081 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3082 spin_lock_irqsave(&zone->lock, flags);
3083
3084 do {
3085 page = NULL;
3086 if (alloc_flags & ALLOC_HARDER) {
3087 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3088 if (page)
3089 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3090 }
3091 if (!page)
3092 page = __rmqueue(zone, order, migratetype, alloc_flags);
3093 } while (page && check_new_pages(page, order));
3094 spin_unlock(&zone->lock);
3095 if (!page)
3096 goto failed;
3097 __mod_zone_freepage_state(zone, -(1 << order),
3098 get_pcppage_migratetype(page));
3099
3100 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3101 zone_statistics(preferred_zone, zone);
3102 local_irq_restore(flags);
3103
3104 out:
3105 /* Separate test+clear to avoid unnecessary atomics */
3106 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3107 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3108 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3109 }
3110
3111 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3112 return page;
3113
3114 failed:
3115 local_irq_restore(flags);
3116 return NULL;
3117 }
3118
3119 #ifdef CONFIG_FAIL_PAGE_ALLOC
3120
3121 static struct {
3122 struct fault_attr attr;
3123
3124 bool ignore_gfp_highmem;
3125 bool ignore_gfp_reclaim;
3126 u32 min_order;
3127 } fail_page_alloc = {
3128 .attr = FAULT_ATTR_INITIALIZER,
3129 .ignore_gfp_reclaim = true,
3130 .ignore_gfp_highmem = true,
3131 .min_order = 1,
3132 };
3133
3134 static int __init setup_fail_page_alloc(char *str)
3135 {
3136 return setup_fault_attr(&fail_page_alloc.attr, str);
3137 }
3138 __setup("fail_page_alloc=", setup_fail_page_alloc);
3139
3140 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3141 {
3142 if (order < fail_page_alloc.min_order)
3143 return false;
3144 if (gfp_mask & __GFP_NOFAIL)
3145 return false;
3146 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3147 return false;
3148 if (fail_page_alloc.ignore_gfp_reclaim &&
3149 (gfp_mask & __GFP_DIRECT_RECLAIM))
3150 return false;
3151
3152 return should_fail(&fail_page_alloc.attr, 1 << order);
3153 }
3154
3155 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3156
3157 static int __init fail_page_alloc_debugfs(void)
3158 {
3159 umode_t mode = S_IFREG | 0600;
3160 struct dentry *dir;
3161
3162 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3163 &fail_page_alloc.attr);
3164 if (IS_ERR(dir))
3165 return PTR_ERR(dir);
3166
3167 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3168 &fail_page_alloc.ignore_gfp_reclaim))
3169 goto fail;
3170 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3171 &fail_page_alloc.ignore_gfp_highmem))
3172 goto fail;
3173 if (!debugfs_create_u32("min-order", mode, dir,
3174 &fail_page_alloc.min_order))
3175 goto fail;
3176
3177 return 0;
3178 fail:
3179 debugfs_remove_recursive(dir);
3180
3181 return -ENOMEM;
3182 }
3183
3184 late_initcall(fail_page_alloc_debugfs);
3185
3186 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3187
3188 #else /* CONFIG_FAIL_PAGE_ALLOC */
3189
3190 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3191 {
3192 return false;
3193 }
3194
3195 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3196
3197 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3198 {
3199 return __should_fail_alloc_page(gfp_mask, order);
3200 }
3201 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3202
3203 /*
3204 * Return true if free base pages are above 'mark'. For high-order checks it
3205 * will return true of the order-0 watermark is reached and there is at least
3206 * one free page of a suitable size. Checking now avoids taking the zone lock
3207 * to check in the allocation paths if no pages are free.
3208 */
3209 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3210 int classzone_idx, unsigned int alloc_flags,
3211 long free_pages)
3212 {
3213 long min = mark;
3214 int o;
3215 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3216
3217 /* free_pages may go negative - that's OK */
3218 free_pages -= (1 << order) - 1;
3219
3220 if (alloc_flags & ALLOC_HIGH)
3221 min -= min / 2;
3222
3223 /*
3224 * If the caller does not have rights to ALLOC_HARDER then subtract
3225 * the high-atomic reserves. This will over-estimate the size of the
3226 * atomic reserve but it avoids a search.
3227 */
3228 if (likely(!alloc_harder)) {
3229 free_pages -= z->nr_reserved_highatomic;
3230 } else {
3231 /*
3232 * OOM victims can try even harder than normal ALLOC_HARDER
3233 * users on the grounds that it's definitely going to be in
3234 * the exit path shortly and free memory. Any allocation it
3235 * makes during the free path will be small and short-lived.
3236 */
3237 if (alloc_flags & ALLOC_OOM)
3238 min -= min / 2;
3239 else
3240 min -= min / 4;
3241 }
3242
3243
3244 #ifdef CONFIG_CMA
3245 /* If allocation can't use CMA areas don't use free CMA pages */
3246 if (!(alloc_flags & ALLOC_CMA))
3247 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3248 #endif
3249
3250 /*
3251 * Check watermarks for an order-0 allocation request. If these
3252 * are not met, then a high-order request also cannot go ahead
3253 * even if a suitable page happened to be free.
3254 */
3255 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3256 return false;
3257
3258 /* If this is an order-0 request then the watermark is fine */
3259 if (!order)
3260 return true;
3261
3262 /* For a high-order request, check at least one suitable page is free */
3263 for (o = order; o < MAX_ORDER; o++) {
3264 struct free_area *area = &z->free_area[o];
3265 int mt;
3266
3267 if (!area->nr_free)
3268 continue;
3269
3270 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3271 if (!list_empty(&area->free_list[mt]))
3272 return true;
3273 }
3274
3275 #ifdef CONFIG_CMA
3276 if ((alloc_flags & ALLOC_CMA) &&
3277 !list_empty(&area->free_list[MIGRATE_CMA])) {
3278 return true;
3279 }
3280 #endif
3281 if (alloc_harder &&
3282 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3283 return true;
3284 }
3285 return false;
3286 }
3287
3288 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3289 int classzone_idx, unsigned int alloc_flags)
3290 {
3291 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3292 zone_page_state(z, NR_FREE_PAGES));
3293 }
3294
3295 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3296 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3297 {
3298 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3299 long cma_pages = 0;
3300
3301 #ifdef CONFIG_CMA
3302 /* If allocation can't use CMA areas don't use free CMA pages */
3303 if (!(alloc_flags & ALLOC_CMA))
3304 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3305 #endif
3306
3307 /*
3308 * Fast check for order-0 only. If this fails then the reserves
3309 * need to be calculated. There is a corner case where the check
3310 * passes but only the high-order atomic reserve are free. If
3311 * the caller is !atomic then it'll uselessly search the free
3312 * list. That corner case is then slower but it is harmless.
3313 */
3314 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3315 return true;
3316
3317 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3318 free_pages);
3319 }
3320
3321 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3322 unsigned long mark, int classzone_idx)
3323 {
3324 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3325
3326 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3327 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3328
3329 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3330 free_pages);
3331 }
3332
3333 #ifdef CONFIG_NUMA
3334 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3335 {
3336 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3337 RECLAIM_DISTANCE;
3338 }
3339 #else /* CONFIG_NUMA */
3340 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3341 {
3342 return true;
3343 }
3344 #endif /* CONFIG_NUMA */
3345
3346 /*
3347 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3348 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3349 * premature use of a lower zone may cause lowmem pressure problems that
3350 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3351 * probably too small. It only makes sense to spread allocations to avoid
3352 * fragmentation between the Normal and DMA32 zones.
3353 */
3354 static inline unsigned int
3355 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3356 {
3357 unsigned int alloc_flags = 0;
3358
3359 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3360 alloc_flags |= ALLOC_KSWAPD;
3361
3362 #ifdef CONFIG_ZONE_DMA32
3363 if (zone_idx(zone) != ZONE_NORMAL)
3364 goto out;
3365
3366 /*
3367 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3368 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3369 * on UMA that if Normal is populated then so is DMA32.
3370 */
3371 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3372 if (nr_online_nodes > 1 && !populated_zone(--zone))
3373 goto out;
3374
3375 out:
3376 #endif /* CONFIG_ZONE_DMA32 */
3377 return alloc_flags;
3378 }
3379
3380 /*
3381 * get_page_from_freelist goes through the zonelist trying to allocate
3382 * a page.
3383 */
3384 static struct page *
3385 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3386 const struct alloc_context *ac)
3387 {
3388 struct zoneref *z;
3389 struct zone *zone;
3390 struct pglist_data *last_pgdat_dirty_limit = NULL;
3391 bool no_fallback;
3392
3393 retry:
3394 /*
3395 * Scan zonelist, looking for a zone with enough free.
3396 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3397 */
3398 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3399 z = ac->preferred_zoneref;
3400 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3401 ac->nodemask) {
3402 struct page *page;
3403 unsigned long mark;
3404
3405 if (cpusets_enabled() &&
3406 (alloc_flags & ALLOC_CPUSET) &&
3407 !__cpuset_zone_allowed(zone, gfp_mask))
3408 continue;
3409 /*
3410 * When allocating a page cache page for writing, we
3411 * want to get it from a node that is within its dirty
3412 * limit, such that no single node holds more than its
3413 * proportional share of globally allowed dirty pages.
3414 * The dirty limits take into account the node's
3415 * lowmem reserves and high watermark so that kswapd
3416 * should be able to balance it without having to
3417 * write pages from its LRU list.
3418 *
3419 * XXX: For now, allow allocations to potentially
3420 * exceed the per-node dirty limit in the slowpath
3421 * (spread_dirty_pages unset) before going into reclaim,
3422 * which is important when on a NUMA setup the allowed
3423 * nodes are together not big enough to reach the
3424 * global limit. The proper fix for these situations
3425 * will require awareness of nodes in the
3426 * dirty-throttling and the flusher threads.
3427 */
3428 if (ac->spread_dirty_pages) {
3429 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3430 continue;
3431
3432 if (!node_dirty_ok(zone->zone_pgdat)) {
3433 last_pgdat_dirty_limit = zone->zone_pgdat;
3434 continue;
3435 }
3436 }
3437
3438 if (no_fallback && nr_online_nodes > 1 &&
3439 zone != ac->preferred_zoneref->zone) {
3440 int local_nid;
3441
3442 /*
3443 * If moving to a remote node, retry but allow
3444 * fragmenting fallbacks. Locality is more important
3445 * than fragmentation avoidance.
3446 */
3447 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3448 if (zone_to_nid(zone) != local_nid) {
3449 alloc_flags &= ~ALLOC_NOFRAGMENT;
3450 goto retry;
3451 }
3452 }
3453
3454 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3455 if (!zone_watermark_fast(zone, order, mark,
3456 ac_classzone_idx(ac), alloc_flags)) {
3457 int ret;
3458
3459 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3460 /*
3461 * Watermark failed for this zone, but see if we can
3462 * grow this zone if it contains deferred pages.
3463 */
3464 if (static_branch_unlikely(&deferred_pages)) {
3465 if (_deferred_grow_zone(zone, order))
3466 goto try_this_zone;
3467 }
3468 #endif
3469 /* Checked here to keep the fast path fast */
3470 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3471 if (alloc_flags & ALLOC_NO_WATERMARKS)
3472 goto try_this_zone;
3473
3474 if (node_reclaim_mode == 0 ||
3475 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3476 continue;
3477
3478 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3479 switch (ret) {
3480 case NODE_RECLAIM_NOSCAN:
3481 /* did not scan */
3482 continue;
3483 case NODE_RECLAIM_FULL:
3484 /* scanned but unreclaimable */
3485 continue;
3486 default:
3487 /* did we reclaim enough */
3488 if (zone_watermark_ok(zone, order, mark,
3489 ac_classzone_idx(ac), alloc_flags))
3490 goto try_this_zone;
3491
3492 continue;
3493 }
3494 }
3495
3496 try_this_zone:
3497 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3498 gfp_mask, alloc_flags, ac->migratetype);
3499 if (page) {
3500 prep_new_page(page, order, gfp_mask, alloc_flags);
3501
3502 /*
3503 * If this is a high-order atomic allocation then check
3504 * if the pageblock should be reserved for the future
3505 */
3506 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3507 reserve_highatomic_pageblock(page, zone, order);
3508
3509 return page;
3510 } else {
3511 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3512 /* Try again if zone has deferred pages */
3513 if (static_branch_unlikely(&deferred_pages)) {
3514 if (_deferred_grow_zone(zone, order))
3515 goto try_this_zone;
3516 }
3517 #endif
3518 }
3519 }
3520
3521 /*
3522 * It's possible on a UMA machine to get through all zones that are
3523 * fragmented. If avoiding fragmentation, reset and try again.
3524 */
3525 if (no_fallback) {
3526 alloc_flags &= ~ALLOC_NOFRAGMENT;
3527 goto retry;
3528 }
3529
3530 return NULL;
3531 }
3532
3533 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3534 {
3535 unsigned int filter = SHOW_MEM_FILTER_NODES;
3536 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3537
3538 if (!__ratelimit(&show_mem_rs))
3539 return;
3540
3541 /*
3542 * This documents exceptions given to allocations in certain
3543 * contexts that are allowed to allocate outside current's set
3544 * of allowed nodes.
3545 */
3546 if (!(gfp_mask & __GFP_NOMEMALLOC))
3547 if (tsk_is_oom_victim(current) ||
3548 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3549 filter &= ~SHOW_MEM_FILTER_NODES;
3550 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3551 filter &= ~SHOW_MEM_FILTER_NODES;
3552
3553 show_mem(filter, nodemask);
3554 }
3555
3556 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3557 {
3558 struct va_format vaf;
3559 va_list args;
3560 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3561 DEFAULT_RATELIMIT_BURST);
3562
3563 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3564 return;
3565
3566 va_start(args, fmt);
3567 vaf.fmt = fmt;
3568 vaf.va = &args;
3569 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3570 current->comm, &vaf, gfp_mask, &gfp_mask,
3571 nodemask_pr_args(nodemask));
3572 va_end(args);
3573
3574 cpuset_print_current_mems_allowed();
3575 pr_cont("\n");
3576 dump_stack();
3577 warn_alloc_show_mem(gfp_mask, nodemask);
3578 }
3579
3580 static inline struct page *
3581 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3582 unsigned int alloc_flags,
3583 const struct alloc_context *ac)
3584 {
3585 struct page *page;
3586
3587 page = get_page_from_freelist(gfp_mask, order,
3588 alloc_flags|ALLOC_CPUSET, ac);
3589 /*
3590 * fallback to ignore cpuset restriction if our nodes
3591 * are depleted
3592 */
3593 if (!page)
3594 page = get_page_from_freelist(gfp_mask, order,
3595 alloc_flags, ac);
3596
3597 return page;
3598 }
3599
3600 static inline struct page *
3601 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3602 const struct alloc_context *ac, unsigned long *did_some_progress)
3603 {
3604 struct oom_control oc = {
3605 .zonelist = ac->zonelist,
3606 .nodemask = ac->nodemask,
3607 .memcg = NULL,
3608 .gfp_mask = gfp_mask,
3609 .order = order,
3610 };
3611 struct page *page;
3612
3613 *did_some_progress = 0;
3614
3615 /*
3616 * Acquire the oom lock. If that fails, somebody else is
3617 * making progress for us.
3618 */
3619 if (!mutex_trylock(&oom_lock)) {
3620 *did_some_progress = 1;
3621 schedule_timeout_uninterruptible(1);
3622 return NULL;
3623 }
3624
3625 /*
3626 * Go through the zonelist yet one more time, keep very high watermark
3627 * here, this is only to catch a parallel oom killing, we must fail if
3628 * we're still under heavy pressure. But make sure that this reclaim
3629 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3630 * allocation which will never fail due to oom_lock already held.
3631 */
3632 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3633 ~__GFP_DIRECT_RECLAIM, order,
3634 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3635 if (page)
3636 goto out;
3637
3638 /* Coredumps can quickly deplete all memory reserves */
3639 if (current->flags & PF_DUMPCORE)
3640 goto out;
3641 /* The OOM killer will not help higher order allocs */
3642 if (order > PAGE_ALLOC_COSTLY_ORDER)
3643 goto out;
3644 /*
3645 * We have already exhausted all our reclaim opportunities without any
3646 * success so it is time to admit defeat. We will skip the OOM killer
3647 * because it is very likely that the caller has a more reasonable
3648 * fallback than shooting a random task.
3649 */
3650 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3651 goto out;
3652 /* The OOM killer does not needlessly kill tasks for lowmem */
3653 if (ac->high_zoneidx < ZONE_NORMAL)
3654 goto out;
3655 if (pm_suspended_storage())
3656 goto out;
3657 /*
3658 * XXX: GFP_NOFS allocations should rather fail than rely on
3659 * other request to make a forward progress.
3660 * We are in an unfortunate situation where out_of_memory cannot
3661 * do much for this context but let's try it to at least get
3662 * access to memory reserved if the current task is killed (see
3663 * out_of_memory). Once filesystems are ready to handle allocation
3664 * failures more gracefully we should just bail out here.
3665 */
3666
3667 /* The OOM killer may not free memory on a specific node */
3668 if (gfp_mask & __GFP_THISNODE)
3669 goto out;
3670
3671 /* Exhausted what can be done so it's blame time */
3672 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3673 *did_some_progress = 1;
3674
3675 /*
3676 * Help non-failing allocations by giving them access to memory
3677 * reserves
3678 */
3679 if (gfp_mask & __GFP_NOFAIL)
3680 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3681 ALLOC_NO_WATERMARKS, ac);
3682 }
3683 out:
3684 mutex_unlock(&oom_lock);
3685 return page;
3686 }
3687
3688 /*
3689 * Maximum number of compaction retries wit a progress before OOM
3690 * killer is consider as the only way to move forward.
3691 */
3692 #define MAX_COMPACT_RETRIES 16
3693
3694 #ifdef CONFIG_COMPACTION
3695 /* Try memory compaction for high-order allocations before reclaim */
3696 static struct page *
3697 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3698 unsigned int alloc_flags, const struct alloc_context *ac,
3699 enum compact_priority prio, enum compact_result *compact_result)
3700 {
3701 struct page *page;
3702 unsigned long pflags;
3703 unsigned int noreclaim_flag;
3704
3705 if (!order)
3706 return NULL;
3707
3708 psi_memstall_enter(&pflags);
3709 noreclaim_flag = memalloc_noreclaim_save();
3710
3711 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3712 prio);
3713
3714 memalloc_noreclaim_restore(noreclaim_flag);
3715 psi_memstall_leave(&pflags);
3716
3717 if (*compact_result <= COMPACT_INACTIVE)
3718 return NULL;
3719
3720 /*
3721 * At least in one zone compaction wasn't deferred or skipped, so let's
3722 * count a compaction stall
3723 */
3724 count_vm_event(COMPACTSTALL);
3725
3726 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3727
3728 if (page) {
3729 struct zone *zone = page_zone(page);
3730
3731 zone->compact_blockskip_flush = false;
3732 compaction_defer_reset(zone, order, true);
3733 count_vm_event(COMPACTSUCCESS);
3734 return page;
3735 }
3736
3737 /*
3738 * It's bad if compaction run occurs and fails. The most likely reason
3739 * is that pages exist, but not enough to satisfy watermarks.
3740 */
3741 count_vm_event(COMPACTFAIL);
3742
3743 cond_resched();
3744
3745 return NULL;
3746 }
3747
3748 static inline bool
3749 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3750 enum compact_result compact_result,
3751 enum compact_priority *compact_priority,
3752 int *compaction_retries)
3753 {
3754 int max_retries = MAX_COMPACT_RETRIES;
3755 int min_priority;
3756 bool ret = false;
3757 int retries = *compaction_retries;
3758 enum compact_priority priority = *compact_priority;
3759
3760 if (!order)
3761 return false;
3762
3763 if (compaction_made_progress(compact_result))
3764 (*compaction_retries)++;
3765
3766 /*
3767 * compaction considers all the zone as desperately out of memory
3768 * so it doesn't really make much sense to retry except when the
3769 * failure could be caused by insufficient priority
3770 */
3771 if (compaction_failed(compact_result))
3772 goto check_priority;
3773
3774 /*
3775 * make sure the compaction wasn't deferred or didn't bail out early
3776 * due to locks contention before we declare that we should give up.
3777 * But do not retry if the given zonelist is not suitable for
3778 * compaction.
3779 */
3780 if (compaction_withdrawn(compact_result)) {
3781 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3782 goto out;
3783 }
3784
3785 /*
3786 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3787 * costly ones because they are de facto nofail and invoke OOM
3788 * killer to move on while costly can fail and users are ready
3789 * to cope with that. 1/4 retries is rather arbitrary but we
3790 * would need much more detailed feedback from compaction to
3791 * make a better decision.
3792 */
3793 if (order > PAGE_ALLOC_COSTLY_ORDER)
3794 max_retries /= 4;
3795 if (*compaction_retries <= max_retries) {
3796 ret = true;
3797 goto out;
3798 }
3799
3800 /*
3801 * Make sure there are attempts at the highest priority if we exhausted
3802 * all retries or failed at the lower priorities.
3803 */
3804 check_priority:
3805 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3806 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3807
3808 if (*compact_priority > min_priority) {
3809 (*compact_priority)--;
3810 *compaction_retries = 0;
3811 ret = true;
3812 }
3813 out:
3814 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3815 return ret;
3816 }
3817 #else
3818 static inline struct page *
3819 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3820 unsigned int alloc_flags, const struct alloc_context *ac,
3821 enum compact_priority prio, enum compact_result *compact_result)
3822 {
3823 *compact_result = COMPACT_SKIPPED;
3824 return NULL;
3825 }
3826
3827 static inline bool
3828 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3829 enum compact_result compact_result,
3830 enum compact_priority *compact_priority,
3831 int *compaction_retries)
3832 {
3833 struct zone *zone;
3834 struct zoneref *z;
3835
3836 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3837 return false;
3838
3839 /*
3840 * There are setups with compaction disabled which would prefer to loop
3841 * inside the allocator rather than hit the oom killer prematurely.
3842 * Let's give them a good hope and keep retrying while the order-0
3843 * watermarks are OK.
3844 */
3845 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3846 ac->nodemask) {
3847 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3848 ac_classzone_idx(ac), alloc_flags))
3849 return true;
3850 }
3851 return false;
3852 }
3853 #endif /* CONFIG_COMPACTION */
3854
3855 #ifdef CONFIG_LOCKDEP
3856 static struct lockdep_map __fs_reclaim_map =
3857 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3858
3859 static bool __need_fs_reclaim(gfp_t gfp_mask)
3860 {
3861 gfp_mask = current_gfp_context(gfp_mask);
3862
3863 /* no reclaim without waiting on it */
3864 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3865 return false;
3866
3867 /* this guy won't enter reclaim */
3868 if (current->flags & PF_MEMALLOC)
3869 return false;
3870
3871 /* We're only interested __GFP_FS allocations for now */
3872 if (!(gfp_mask & __GFP_FS))
3873 return false;
3874
3875 if (gfp_mask & __GFP_NOLOCKDEP)
3876 return false;
3877
3878 return true;
3879 }
3880
3881 void __fs_reclaim_acquire(void)
3882 {
3883 lock_map_acquire(&__fs_reclaim_map);
3884 }
3885
3886 void __fs_reclaim_release(void)
3887 {
3888 lock_map_release(&__fs_reclaim_map);
3889 }
3890
3891 void fs_reclaim_acquire(gfp_t gfp_mask)
3892 {
3893 if (__need_fs_reclaim(gfp_mask))
3894 __fs_reclaim_acquire();
3895 }
3896 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3897
3898 void fs_reclaim_release(gfp_t gfp_mask)
3899 {
3900 if (__need_fs_reclaim(gfp_mask))
3901 __fs_reclaim_release();
3902 }
3903 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3904 #endif
3905
3906 /* Perform direct synchronous page reclaim */
3907 static int
3908 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3909 const struct alloc_context *ac)
3910 {
3911 struct reclaim_state reclaim_state;
3912 int progress;
3913 unsigned int noreclaim_flag;
3914 unsigned long pflags;
3915
3916 cond_resched();
3917
3918 /* We now go into synchronous reclaim */
3919 cpuset_memory_pressure_bump();
3920 psi_memstall_enter(&pflags);
3921 fs_reclaim_acquire(gfp_mask);
3922 noreclaim_flag = memalloc_noreclaim_save();
3923 reclaim_state.reclaimed_slab = 0;
3924 current->reclaim_state = &reclaim_state;
3925
3926 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3927 ac->nodemask);
3928
3929 current->reclaim_state = NULL;
3930 memalloc_noreclaim_restore(noreclaim_flag);
3931 fs_reclaim_release(gfp_mask);
3932 psi_memstall_leave(&pflags);
3933
3934 cond_resched();
3935
3936 return progress;
3937 }
3938
3939 /* The really slow allocator path where we enter direct reclaim */
3940 static inline struct page *
3941 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3942 unsigned int alloc_flags, const struct alloc_context *ac,
3943 unsigned long *did_some_progress)
3944 {
3945 struct page *page = NULL;
3946 bool drained = false;
3947
3948 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3949 if (unlikely(!(*did_some_progress)))
3950 return NULL;
3951
3952 retry:
3953 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3954
3955 /*
3956 * If an allocation failed after direct reclaim, it could be because
3957 * pages are pinned on the per-cpu lists or in high alloc reserves.
3958 * Shrink them them and try again
3959 */
3960 if (!page && !drained) {
3961 unreserve_highatomic_pageblock(ac, false);
3962 drain_all_pages(NULL);
3963 drained = true;
3964 goto retry;
3965 }
3966
3967 return page;
3968 }
3969
3970 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3971 const struct alloc_context *ac)
3972 {
3973 struct zoneref *z;
3974 struct zone *zone;
3975 pg_data_t *last_pgdat = NULL;
3976 enum zone_type high_zoneidx = ac->high_zoneidx;
3977
3978 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3979 ac->nodemask) {
3980 if (last_pgdat != zone->zone_pgdat)
3981 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3982 last_pgdat = zone->zone_pgdat;
3983 }
3984 }
3985
3986 static inline unsigned int
3987 gfp_to_alloc_flags(gfp_t gfp_mask)
3988 {
3989 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3990
3991 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3992 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3993
3994 /*
3995 * The caller may dip into page reserves a bit more if the caller
3996 * cannot run direct reclaim, or if the caller has realtime scheduling
3997 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3998 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3999 */
4000 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4001
4002 if (gfp_mask & __GFP_ATOMIC) {
4003 /*
4004 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4005 * if it can't schedule.
4006 */
4007 if (!(gfp_mask & __GFP_NOMEMALLOC))
4008 alloc_flags |= ALLOC_HARDER;
4009 /*
4010 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4011 * comment for __cpuset_node_allowed().
4012 */
4013 alloc_flags &= ~ALLOC_CPUSET;
4014 } else if (unlikely(rt_task(current)) && !in_interrupt())
4015 alloc_flags |= ALLOC_HARDER;
4016
4017 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4018 alloc_flags |= ALLOC_KSWAPD;
4019
4020 #ifdef CONFIG_CMA
4021 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4022 alloc_flags |= ALLOC_CMA;
4023 #endif
4024 return alloc_flags;
4025 }
4026
4027 static bool oom_reserves_allowed(struct task_struct *tsk)
4028 {
4029 if (!tsk_is_oom_victim(tsk))
4030 return false;
4031
4032 /*
4033 * !MMU doesn't have oom reaper so give access to memory reserves
4034 * only to the thread with TIF_MEMDIE set
4035 */
4036 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4037 return false;
4038
4039 return true;
4040 }
4041
4042 /*
4043 * Distinguish requests which really need access to full memory
4044 * reserves from oom victims which can live with a portion of it
4045 */
4046 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4047 {
4048 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4049 return 0;
4050 if (gfp_mask & __GFP_MEMALLOC)
4051 return ALLOC_NO_WATERMARKS;
4052 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4053 return ALLOC_NO_WATERMARKS;
4054 if (!in_interrupt()) {
4055 if (current->flags & PF_MEMALLOC)
4056 return ALLOC_NO_WATERMARKS;
4057 else if (oom_reserves_allowed(current))
4058 return ALLOC_OOM;
4059 }
4060
4061 return 0;
4062 }
4063
4064 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4065 {
4066 return !!__gfp_pfmemalloc_flags(gfp_mask);
4067 }
4068
4069 /*
4070 * Checks whether it makes sense to retry the reclaim to make a forward progress
4071 * for the given allocation request.
4072 *
4073 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4074 * without success, or when we couldn't even meet the watermark if we
4075 * reclaimed all remaining pages on the LRU lists.
4076 *
4077 * Returns true if a retry is viable or false to enter the oom path.
4078 */
4079 static inline bool
4080 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4081 struct alloc_context *ac, int alloc_flags,
4082 bool did_some_progress, int *no_progress_loops)
4083 {
4084 struct zone *zone;
4085 struct zoneref *z;
4086 bool ret = false;
4087
4088 /*
4089 * Costly allocations might have made a progress but this doesn't mean
4090 * their order will become available due to high fragmentation so
4091 * always increment the no progress counter for them
4092 */
4093 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4094 *no_progress_loops = 0;
4095 else
4096 (*no_progress_loops)++;
4097
4098 /*
4099 * Make sure we converge to OOM if we cannot make any progress
4100 * several times in the row.
4101 */
4102 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4103 /* Before OOM, exhaust highatomic_reserve */
4104 return unreserve_highatomic_pageblock(ac, true);
4105 }
4106
4107 /*
4108 * Keep reclaiming pages while there is a chance this will lead
4109 * somewhere. If none of the target zones can satisfy our allocation
4110 * request even if all reclaimable pages are considered then we are
4111 * screwed and have to go OOM.
4112 */
4113 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4114 ac->nodemask) {
4115 unsigned long available;
4116 unsigned long reclaimable;
4117 unsigned long min_wmark = min_wmark_pages(zone);
4118 bool wmark;
4119
4120 available = reclaimable = zone_reclaimable_pages(zone);
4121 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4122
4123 /*
4124 * Would the allocation succeed if we reclaimed all
4125 * reclaimable pages?
4126 */
4127 wmark = __zone_watermark_ok(zone, order, min_wmark,
4128 ac_classzone_idx(ac), alloc_flags, available);
4129 trace_reclaim_retry_zone(z, order, reclaimable,
4130 available, min_wmark, *no_progress_loops, wmark);
4131 if (wmark) {
4132 /*
4133 * If we didn't make any progress and have a lot of
4134 * dirty + writeback pages then we should wait for
4135 * an IO to complete to slow down the reclaim and
4136 * prevent from pre mature OOM
4137 */
4138 if (!did_some_progress) {
4139 unsigned long write_pending;
4140
4141 write_pending = zone_page_state_snapshot(zone,
4142 NR_ZONE_WRITE_PENDING);
4143
4144 if (2 * write_pending > reclaimable) {
4145 congestion_wait(BLK_RW_ASYNC, HZ/10);
4146 return true;
4147 }
4148 }
4149
4150 ret = true;
4151 goto out;
4152 }
4153 }
4154
4155 out:
4156 /*
4157 * Memory allocation/reclaim might be called from a WQ context and the
4158 * current implementation of the WQ concurrency control doesn't
4159 * recognize that a particular WQ is congested if the worker thread is
4160 * looping without ever sleeping. Therefore we have to do a short sleep
4161 * here rather than calling cond_resched().
4162 */
4163 if (current->flags & PF_WQ_WORKER)
4164 schedule_timeout_uninterruptible(1);
4165 else
4166 cond_resched();
4167 return ret;
4168 }
4169
4170 static inline bool
4171 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4172 {
4173 /*
4174 * It's possible that cpuset's mems_allowed and the nodemask from
4175 * mempolicy don't intersect. This should be normally dealt with by
4176 * policy_nodemask(), but it's possible to race with cpuset update in
4177 * such a way the check therein was true, and then it became false
4178 * before we got our cpuset_mems_cookie here.
4179 * This assumes that for all allocations, ac->nodemask can come only
4180 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4181 * when it does not intersect with the cpuset restrictions) or the
4182 * caller can deal with a violated nodemask.
4183 */
4184 if (cpusets_enabled() && ac->nodemask &&
4185 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4186 ac->nodemask = NULL;
4187 return true;
4188 }
4189
4190 /*
4191 * When updating a task's mems_allowed or mempolicy nodemask, it is
4192 * possible to race with parallel threads in such a way that our
4193 * allocation can fail while the mask is being updated. If we are about
4194 * to fail, check if the cpuset changed during allocation and if so,
4195 * retry.
4196 */
4197 if (read_mems_allowed_retry(cpuset_mems_cookie))
4198 return true;
4199
4200 return false;
4201 }
4202
4203 static inline struct page *
4204 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4205 struct alloc_context *ac)
4206 {
4207 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4208 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4209 struct page *page = NULL;
4210 unsigned int alloc_flags;
4211 unsigned long did_some_progress;
4212 enum compact_priority compact_priority;
4213 enum compact_result compact_result;
4214 int compaction_retries;
4215 int no_progress_loops;
4216 unsigned int cpuset_mems_cookie;
4217 int reserve_flags;
4218
4219 /*
4220 * We also sanity check to catch abuse of atomic reserves being used by
4221 * callers that are not in atomic context.
4222 */
4223 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4224 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4225 gfp_mask &= ~__GFP_ATOMIC;
4226
4227 retry_cpuset:
4228 compaction_retries = 0;
4229 no_progress_loops = 0;
4230 compact_priority = DEF_COMPACT_PRIORITY;
4231 cpuset_mems_cookie = read_mems_allowed_begin();
4232
4233 /*
4234 * The fast path uses conservative alloc_flags to succeed only until
4235 * kswapd needs to be woken up, and to avoid the cost of setting up
4236 * alloc_flags precisely. So we do that now.
4237 */
4238 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4239
4240 /*
4241 * We need to recalculate the starting point for the zonelist iterator
4242 * because we might have used different nodemask in the fast path, or
4243 * there was a cpuset modification and we are retrying - otherwise we
4244 * could end up iterating over non-eligible zones endlessly.
4245 */
4246 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4247 ac->high_zoneidx, ac->nodemask);
4248 if (!ac->preferred_zoneref->zone)
4249 goto nopage;
4250
4251 if (alloc_flags & ALLOC_KSWAPD)
4252 wake_all_kswapds(order, gfp_mask, ac);
4253
4254 /*
4255 * The adjusted alloc_flags might result in immediate success, so try
4256 * that first
4257 */
4258 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4259 if (page)
4260 goto got_pg;
4261
4262 /*
4263 * For costly allocations, try direct compaction first, as it's likely
4264 * that we have enough base pages and don't need to reclaim. For non-
4265 * movable high-order allocations, do that as well, as compaction will
4266 * try prevent permanent fragmentation by migrating from blocks of the
4267 * same migratetype.
4268 * Don't try this for allocations that are allowed to ignore
4269 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4270 */
4271 if (can_direct_reclaim &&
4272 (costly_order ||
4273 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4274 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4275 page = __alloc_pages_direct_compact(gfp_mask, order,
4276 alloc_flags, ac,
4277 INIT_COMPACT_PRIORITY,
4278 &compact_result);
4279 if (page)
4280 goto got_pg;
4281
4282 /*
4283 * Checks for costly allocations with __GFP_NORETRY, which
4284 * includes THP page fault allocations
4285 */
4286 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4287 /*
4288 * If compaction is deferred for high-order allocations,
4289 * it is because sync compaction recently failed. If
4290 * this is the case and the caller requested a THP
4291 * allocation, we do not want to heavily disrupt the
4292 * system, so we fail the allocation instead of entering
4293 * direct reclaim.
4294 */
4295 if (compact_result == COMPACT_DEFERRED)
4296 goto nopage;
4297
4298 /*
4299 * Looks like reclaim/compaction is worth trying, but
4300 * sync compaction could be very expensive, so keep
4301 * using async compaction.
4302 */
4303 compact_priority = INIT_COMPACT_PRIORITY;
4304 }
4305 }
4306
4307 retry:
4308 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4309 if (alloc_flags & ALLOC_KSWAPD)
4310 wake_all_kswapds(order, gfp_mask, ac);
4311
4312 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4313 if (reserve_flags)
4314 alloc_flags = reserve_flags;
4315
4316 /*
4317 * Reset the nodemask and zonelist iterators if memory policies can be
4318 * ignored. These allocations are high priority and system rather than
4319 * user oriented.
4320 */
4321 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4322 ac->nodemask = NULL;
4323 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4324 ac->high_zoneidx, ac->nodemask);
4325 }
4326
4327 /* Attempt with potentially adjusted zonelist and alloc_flags */
4328 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4329 if (page)
4330 goto got_pg;
4331
4332 /* Caller is not willing to reclaim, we can't balance anything */
4333 if (!can_direct_reclaim)
4334 goto nopage;
4335
4336 /* Avoid recursion of direct reclaim */
4337 if (current->flags & PF_MEMALLOC)
4338 goto nopage;
4339
4340 /* Try direct reclaim and then allocating */
4341 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4342 &did_some_progress);
4343 if (page)
4344 goto got_pg;
4345
4346 /* Try direct compaction and then allocating */
4347 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4348 compact_priority, &compact_result);
4349 if (page)
4350 goto got_pg;
4351
4352 /* Do not loop if specifically requested */
4353 if (gfp_mask & __GFP_NORETRY)
4354 goto nopage;
4355
4356 /*
4357 * Do not retry costly high order allocations unless they are
4358 * __GFP_RETRY_MAYFAIL
4359 */
4360 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4361 goto nopage;
4362
4363 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4364 did_some_progress > 0, &no_progress_loops))
4365 goto retry;
4366
4367 /*
4368 * It doesn't make any sense to retry for the compaction if the order-0
4369 * reclaim is not able to make any progress because the current
4370 * implementation of the compaction depends on the sufficient amount
4371 * of free memory (see __compaction_suitable)
4372 */
4373 if (did_some_progress > 0 &&
4374 should_compact_retry(ac, order, alloc_flags,
4375 compact_result, &compact_priority,
4376 &compaction_retries))
4377 goto retry;
4378
4379
4380 /* Deal with possible cpuset update races before we start OOM killing */
4381 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4382 goto retry_cpuset;
4383
4384 /* Reclaim has failed us, start killing things */
4385 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4386 if (page)
4387 goto got_pg;
4388
4389 /* Avoid allocations with no watermarks from looping endlessly */
4390 if (tsk_is_oom_victim(current) &&
4391 (alloc_flags == ALLOC_OOM ||
4392 (gfp_mask & __GFP_NOMEMALLOC)))
4393 goto nopage;
4394
4395 /* Retry as long as the OOM killer is making progress */
4396 if (did_some_progress) {
4397 no_progress_loops = 0;
4398 goto retry;
4399 }
4400
4401 nopage:
4402 /* Deal with possible cpuset update races before we fail */
4403 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4404 goto retry_cpuset;
4405
4406 /*
4407 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4408 * we always retry
4409 */
4410 if (gfp_mask & __GFP_NOFAIL) {
4411 /*
4412 * All existing users of the __GFP_NOFAIL are blockable, so warn
4413 * of any new users that actually require GFP_NOWAIT
4414 */
4415 if (WARN_ON_ONCE(!can_direct_reclaim))
4416 goto fail;
4417
4418 /*
4419 * PF_MEMALLOC request from this context is rather bizarre
4420 * because we cannot reclaim anything and only can loop waiting
4421 * for somebody to do a work for us
4422 */
4423 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4424
4425 /*
4426 * non failing costly orders are a hard requirement which we
4427 * are not prepared for much so let's warn about these users
4428 * so that we can identify them and convert them to something
4429 * else.
4430 */
4431 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4432
4433 /*
4434 * Help non-failing allocations by giving them access to memory
4435 * reserves but do not use ALLOC_NO_WATERMARKS because this
4436 * could deplete whole memory reserves which would just make
4437 * the situation worse
4438 */
4439 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4440 if (page)
4441 goto got_pg;
4442
4443 cond_resched();
4444 goto retry;
4445 }
4446 fail:
4447 warn_alloc(gfp_mask, ac->nodemask,
4448 "page allocation failure: order:%u", order);
4449 got_pg:
4450 return page;
4451 }
4452
4453 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4454 int preferred_nid, nodemask_t *nodemask,
4455 struct alloc_context *ac, gfp_t *alloc_mask,
4456 unsigned int *alloc_flags)
4457 {
4458 ac->high_zoneidx = gfp_zone(gfp_mask);
4459 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4460 ac->nodemask = nodemask;
4461 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4462
4463 if (cpusets_enabled()) {
4464 *alloc_mask |= __GFP_HARDWALL;
4465 if (!ac->nodemask)
4466 ac->nodemask = &cpuset_current_mems_allowed;
4467 else
4468 *alloc_flags |= ALLOC_CPUSET;
4469 }
4470
4471 fs_reclaim_acquire(gfp_mask);
4472 fs_reclaim_release(gfp_mask);
4473
4474 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4475
4476 if (should_fail_alloc_page(gfp_mask, order))
4477 return false;
4478
4479 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4480 *alloc_flags |= ALLOC_CMA;
4481
4482 return true;
4483 }
4484
4485 /* Determine whether to spread dirty pages and what the first usable zone */
4486 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4487 {
4488 /* Dirty zone balancing only done in the fast path */
4489 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4490
4491 /*
4492 * The preferred zone is used for statistics but crucially it is
4493 * also used as the starting point for the zonelist iterator. It
4494 * may get reset for allocations that ignore memory policies.
4495 */
4496 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4497 ac->high_zoneidx, ac->nodemask);
4498 }
4499
4500 /*
4501 * This is the 'heart' of the zoned buddy allocator.
4502 */
4503 struct page *
4504 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4505 nodemask_t *nodemask)
4506 {
4507 struct page *page;
4508 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4509 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4510 struct alloc_context ac = { };
4511
4512 /*
4513 * There are several places where we assume that the order value is sane
4514 * so bail out early if the request is out of bound.
4515 */
4516 if (unlikely(order >= MAX_ORDER)) {
4517 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4518 return NULL;
4519 }
4520
4521 gfp_mask &= gfp_allowed_mask;
4522 alloc_mask = gfp_mask;
4523 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4524 return NULL;
4525
4526 finalise_ac(gfp_mask, &ac);
4527
4528 /*
4529 * Forbid the first pass from falling back to types that fragment
4530 * memory until all local zones are considered.
4531 */
4532 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4533
4534 /* First allocation attempt */
4535 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4536 if (likely(page))
4537 goto out;
4538
4539 /*
4540 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4541 * resp. GFP_NOIO which has to be inherited for all allocation requests
4542 * from a particular context which has been marked by
4543 * memalloc_no{fs,io}_{save,restore}.
4544 */
4545 alloc_mask = current_gfp_context(gfp_mask);
4546 ac.spread_dirty_pages = false;
4547
4548 /*
4549 * Restore the original nodemask if it was potentially replaced with
4550 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4551 */
4552 if (unlikely(ac.nodemask != nodemask))
4553 ac.nodemask = nodemask;
4554
4555 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4556
4557 out:
4558 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4559 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4560 __free_pages(page, order);
4561 page = NULL;
4562 }
4563
4564 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4565
4566 return page;
4567 }
4568 EXPORT_SYMBOL(__alloc_pages_nodemask);
4569
4570 /*
4571 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4572 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4573 * you need to access high mem.
4574 */
4575 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4576 {
4577 struct page *page;
4578
4579 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4580 if (!page)
4581 return 0;
4582 return (unsigned long) page_address(page);
4583 }
4584 EXPORT_SYMBOL(__get_free_pages);
4585
4586 unsigned long get_zeroed_page(gfp_t gfp_mask)
4587 {
4588 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4589 }
4590 EXPORT_SYMBOL(get_zeroed_page);
4591
4592 static inline void free_the_page(struct page *page, unsigned int order)
4593 {
4594 if (order == 0) /* Via pcp? */
4595 free_unref_page(page);
4596 else
4597 __free_pages_ok(page, order);
4598 }
4599
4600 void __free_pages(struct page *page, unsigned int order)
4601 {
4602 if (put_page_testzero(page))
4603 free_the_page(page, order);
4604 }
4605 EXPORT_SYMBOL(__free_pages);
4606
4607 void free_pages(unsigned long addr, unsigned int order)
4608 {
4609 if (addr != 0) {
4610 VM_BUG_ON(!virt_addr_valid((void *)addr));
4611 __free_pages(virt_to_page((void *)addr), order);
4612 }
4613 }
4614
4615 EXPORT_SYMBOL(free_pages);
4616
4617 /*
4618 * Page Fragment:
4619 * An arbitrary-length arbitrary-offset area of memory which resides
4620 * within a 0 or higher order page. Multiple fragments within that page
4621 * are individually refcounted, in the page's reference counter.
4622 *
4623 * The page_frag functions below provide a simple allocation framework for
4624 * page fragments. This is used by the network stack and network device
4625 * drivers to provide a backing region of memory for use as either an
4626 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4627 */
4628 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4629 gfp_t gfp_mask)
4630 {
4631 struct page *page = NULL;
4632 gfp_t gfp = gfp_mask;
4633
4634 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4635 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4636 __GFP_NOMEMALLOC;
4637 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4638 PAGE_FRAG_CACHE_MAX_ORDER);
4639 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4640 #endif
4641 if (unlikely(!page))
4642 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4643
4644 nc->va = page ? page_address(page) : NULL;
4645
4646 return page;
4647 }
4648
4649 void __page_frag_cache_drain(struct page *page, unsigned int count)
4650 {
4651 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4652
4653 if (page_ref_sub_and_test(page, count))
4654 free_the_page(page, compound_order(page));
4655 }
4656 EXPORT_SYMBOL(__page_frag_cache_drain);
4657
4658 void *page_frag_alloc(struct page_frag_cache *nc,
4659 unsigned int fragsz, gfp_t gfp_mask)
4660 {
4661 unsigned int size = PAGE_SIZE;
4662 struct page *page;
4663 int offset;
4664
4665 if (unlikely(!nc->va)) {
4666 refill:
4667 page = __page_frag_cache_refill(nc, gfp_mask);
4668 if (!page)
4669 return NULL;
4670
4671 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4672 /* if size can vary use size else just use PAGE_SIZE */
4673 size = nc->size;
4674 #endif
4675 /* Even if we own the page, we do not use atomic_set().
4676 * This would break get_page_unless_zero() users.
4677 */
4678 page_ref_add(page, size);
4679
4680 /* reset page count bias and offset to start of new frag */
4681 nc->pfmemalloc = page_is_pfmemalloc(page);
4682 nc->pagecnt_bias = size + 1;
4683 nc->offset = size;
4684 }
4685
4686 offset = nc->offset - fragsz;
4687 if (unlikely(offset < 0)) {
4688 page = virt_to_page(nc->va);
4689
4690 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4691 goto refill;
4692
4693 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4694 /* if size can vary use size else just use PAGE_SIZE */
4695 size = nc->size;
4696 #endif
4697 /* OK, page count is 0, we can safely set it */
4698 set_page_count(page, size + 1);
4699
4700 /* reset page count bias and offset to start of new frag */
4701 nc->pagecnt_bias = size + 1;
4702 offset = size - fragsz;
4703 }
4704
4705 nc->pagecnt_bias--;
4706 nc->offset = offset;
4707
4708 return nc->va + offset;
4709 }
4710 EXPORT_SYMBOL(page_frag_alloc);
4711
4712 /*
4713 * Frees a page fragment allocated out of either a compound or order 0 page.
4714 */
4715 void page_frag_free(void *addr)
4716 {
4717 struct page *page = virt_to_head_page(addr);
4718
4719 if (unlikely(put_page_testzero(page)))
4720 free_the_page(page, compound_order(page));
4721 }
4722 EXPORT_SYMBOL(page_frag_free);
4723
4724 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4725 size_t size)
4726 {
4727 if (addr) {
4728 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4729 unsigned long used = addr + PAGE_ALIGN(size);
4730
4731 split_page(virt_to_page((void *)addr), order);
4732 while (used < alloc_end) {
4733 free_page(used);
4734 used += PAGE_SIZE;
4735 }
4736 }
4737 return (void *)addr;
4738 }
4739
4740 /**
4741 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4742 * @size: the number of bytes to allocate
4743 * @gfp_mask: GFP flags for the allocation
4744 *
4745 * This function is similar to alloc_pages(), except that it allocates the
4746 * minimum number of pages to satisfy the request. alloc_pages() can only
4747 * allocate memory in power-of-two pages.
4748 *
4749 * This function is also limited by MAX_ORDER.
4750 *
4751 * Memory allocated by this function must be released by free_pages_exact().
4752 */
4753 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4754 {
4755 unsigned int order = get_order(size);
4756 unsigned long addr;
4757
4758 addr = __get_free_pages(gfp_mask, order);
4759 return make_alloc_exact(addr, order, size);
4760 }
4761 EXPORT_SYMBOL(alloc_pages_exact);
4762
4763 /**
4764 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4765 * pages on a node.
4766 * @nid: the preferred node ID where memory should be allocated
4767 * @size: the number of bytes to allocate
4768 * @gfp_mask: GFP flags for the allocation
4769 *
4770 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4771 * back.
4772 */
4773 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4774 {
4775 unsigned int order = get_order(size);
4776 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4777 if (!p)
4778 return NULL;
4779 return make_alloc_exact((unsigned long)page_address(p), order, size);
4780 }
4781
4782 /**
4783 * free_pages_exact - release memory allocated via alloc_pages_exact()
4784 * @virt: the value returned by alloc_pages_exact.
4785 * @size: size of allocation, same value as passed to alloc_pages_exact().
4786 *
4787 * Release the memory allocated by a previous call to alloc_pages_exact.
4788 */
4789 void free_pages_exact(void *virt, size_t size)
4790 {
4791 unsigned long addr = (unsigned long)virt;
4792 unsigned long end = addr + PAGE_ALIGN(size);
4793
4794 while (addr < end) {
4795 free_page(addr);
4796 addr += PAGE_SIZE;
4797 }
4798 }
4799 EXPORT_SYMBOL(free_pages_exact);
4800
4801 /**
4802 * nr_free_zone_pages - count number of pages beyond high watermark
4803 * @offset: The zone index of the highest zone
4804 *
4805 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4806 * high watermark within all zones at or below a given zone index. For each
4807 * zone, the number of pages is calculated as:
4808 *
4809 * nr_free_zone_pages = managed_pages - high_pages
4810 */
4811 static unsigned long nr_free_zone_pages(int offset)
4812 {
4813 struct zoneref *z;
4814 struct zone *zone;
4815
4816 /* Just pick one node, since fallback list is circular */
4817 unsigned long sum = 0;
4818
4819 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4820
4821 for_each_zone_zonelist(zone, z, zonelist, offset) {
4822 unsigned long size = zone_managed_pages(zone);
4823 unsigned long high = high_wmark_pages(zone);
4824 if (size > high)
4825 sum += size - high;
4826 }
4827
4828 return sum;
4829 }
4830
4831 /**
4832 * nr_free_buffer_pages - count number of pages beyond high watermark
4833 *
4834 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4835 * watermark within ZONE_DMA and ZONE_NORMAL.
4836 */
4837 unsigned long nr_free_buffer_pages(void)
4838 {
4839 return nr_free_zone_pages(gfp_zone(GFP_USER));
4840 }
4841 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4842
4843 /**
4844 * nr_free_pagecache_pages - count number of pages beyond high watermark
4845 *
4846 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4847 * high watermark within all zones.
4848 */
4849 unsigned long nr_free_pagecache_pages(void)
4850 {
4851 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4852 }
4853
4854 static inline void show_node(struct zone *zone)
4855 {
4856 if (IS_ENABLED(CONFIG_NUMA))
4857 printk("Node %d ", zone_to_nid(zone));
4858 }
4859
4860 long si_mem_available(void)
4861 {
4862 long available;
4863 unsigned long pagecache;
4864 unsigned long wmark_low = 0;
4865 unsigned long pages[NR_LRU_LISTS];
4866 unsigned long reclaimable;
4867 struct zone *zone;
4868 int lru;
4869
4870 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4871 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4872
4873 for_each_zone(zone)
4874 wmark_low += low_wmark_pages(zone);
4875
4876 /*
4877 * Estimate the amount of memory available for userspace allocations,
4878 * without causing swapping.
4879 */
4880 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4881
4882 /*
4883 * Not all the page cache can be freed, otherwise the system will
4884 * start swapping. Assume at least half of the page cache, or the
4885 * low watermark worth of cache, needs to stay.
4886 */
4887 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4888 pagecache -= min(pagecache / 2, wmark_low);
4889 available += pagecache;
4890
4891 /*
4892 * Part of the reclaimable slab and other kernel memory consists of
4893 * items that are in use, and cannot be freed. Cap this estimate at the
4894 * low watermark.
4895 */
4896 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4897 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4898 available += reclaimable - min(reclaimable / 2, wmark_low);
4899
4900 if (available < 0)
4901 available = 0;
4902 return available;
4903 }
4904 EXPORT_SYMBOL_GPL(si_mem_available);
4905
4906 void si_meminfo(struct sysinfo *val)
4907 {
4908 val->totalram = totalram_pages();
4909 val->sharedram = global_node_page_state(NR_SHMEM);
4910 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4911 val->bufferram = nr_blockdev_pages();
4912 val->totalhigh = totalhigh_pages();
4913 val->freehigh = nr_free_highpages();
4914 val->mem_unit = PAGE_SIZE;
4915 }
4916
4917 EXPORT_SYMBOL(si_meminfo);
4918
4919 #ifdef CONFIG_NUMA
4920 void si_meminfo_node(struct sysinfo *val, int nid)
4921 {
4922 int zone_type; /* needs to be signed */
4923 unsigned long managed_pages = 0;
4924 unsigned long managed_highpages = 0;
4925 unsigned long free_highpages = 0;
4926 pg_data_t *pgdat = NODE_DATA(nid);
4927
4928 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4929 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
4930 val->totalram = managed_pages;
4931 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4932 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4933 #ifdef CONFIG_HIGHMEM
4934 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4935 struct zone *zone = &pgdat->node_zones[zone_type];
4936
4937 if (is_highmem(zone)) {
4938 managed_highpages += zone_managed_pages(zone);
4939 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4940 }
4941 }
4942 val->totalhigh = managed_highpages;
4943 val->freehigh = free_highpages;
4944 #else
4945 val->totalhigh = managed_highpages;
4946 val->freehigh = free_highpages;
4947 #endif
4948 val->mem_unit = PAGE_SIZE;
4949 }
4950 #endif
4951
4952 /*
4953 * Determine whether the node should be displayed or not, depending on whether
4954 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4955 */
4956 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4957 {
4958 if (!(flags & SHOW_MEM_FILTER_NODES))
4959 return false;
4960
4961 /*
4962 * no node mask - aka implicit memory numa policy. Do not bother with
4963 * the synchronization - read_mems_allowed_begin - because we do not
4964 * have to be precise here.
4965 */
4966 if (!nodemask)
4967 nodemask = &cpuset_current_mems_allowed;
4968
4969 return !node_isset(nid, *nodemask);
4970 }
4971
4972 #define K(x) ((x) << (PAGE_SHIFT-10))
4973
4974 static void show_migration_types(unsigned char type)
4975 {
4976 static const char types[MIGRATE_TYPES] = {
4977 [MIGRATE_UNMOVABLE] = 'U',
4978 [MIGRATE_MOVABLE] = 'M',
4979 [MIGRATE_RECLAIMABLE] = 'E',
4980 [MIGRATE_HIGHATOMIC] = 'H',
4981 #ifdef CONFIG_CMA
4982 [MIGRATE_CMA] = 'C',
4983 #endif
4984 #ifdef CONFIG_MEMORY_ISOLATION
4985 [MIGRATE_ISOLATE] = 'I',
4986 #endif
4987 };
4988 char tmp[MIGRATE_TYPES + 1];
4989 char *p = tmp;
4990 int i;
4991
4992 for (i = 0; i < MIGRATE_TYPES; i++) {
4993 if (type & (1 << i))
4994 *p++ = types[i];
4995 }
4996
4997 *p = '\0';
4998 printk(KERN_CONT "(%s) ", tmp);
4999 }
5000
5001 /*
5002 * Show free area list (used inside shift_scroll-lock stuff)
5003 * We also calculate the percentage fragmentation. We do this by counting the
5004 * memory on each free list with the exception of the first item on the list.
5005 *
5006 * Bits in @filter:
5007 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5008 * cpuset.
5009 */
5010 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5011 {
5012 unsigned long free_pcp = 0;
5013 int cpu;
5014 struct zone *zone;
5015 pg_data_t *pgdat;
5016
5017 for_each_populated_zone(zone) {
5018 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5019 continue;
5020
5021 for_each_online_cpu(cpu)
5022 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5023 }
5024
5025 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5026 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5027 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5028 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5029 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5030 " free:%lu free_pcp:%lu free_cma:%lu\n",
5031 global_node_page_state(NR_ACTIVE_ANON),
5032 global_node_page_state(NR_INACTIVE_ANON),
5033 global_node_page_state(NR_ISOLATED_ANON),
5034 global_node_page_state(NR_ACTIVE_FILE),
5035 global_node_page_state(NR_INACTIVE_FILE),
5036 global_node_page_state(NR_ISOLATED_FILE),
5037 global_node_page_state(NR_UNEVICTABLE),
5038 global_node_page_state(NR_FILE_DIRTY),
5039 global_node_page_state(NR_WRITEBACK),
5040 global_node_page_state(NR_UNSTABLE_NFS),
5041 global_node_page_state(NR_SLAB_RECLAIMABLE),
5042 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5043 global_node_page_state(NR_FILE_MAPPED),
5044 global_node_page_state(NR_SHMEM),
5045 global_zone_page_state(NR_PAGETABLE),
5046 global_zone_page_state(NR_BOUNCE),
5047 global_zone_page_state(NR_FREE_PAGES),
5048 free_pcp,
5049 global_zone_page_state(NR_FREE_CMA_PAGES));
5050
5051 for_each_online_pgdat(pgdat) {
5052 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5053 continue;
5054
5055 printk("Node %d"
5056 " active_anon:%lukB"
5057 " inactive_anon:%lukB"
5058 " active_file:%lukB"
5059 " inactive_file:%lukB"
5060 " unevictable:%lukB"
5061 " isolated(anon):%lukB"
5062 " isolated(file):%lukB"
5063 " mapped:%lukB"
5064 " dirty:%lukB"
5065 " writeback:%lukB"
5066 " shmem:%lukB"
5067 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5068 " shmem_thp: %lukB"
5069 " shmem_pmdmapped: %lukB"
5070 " anon_thp: %lukB"
5071 #endif
5072 " writeback_tmp:%lukB"
5073 " unstable:%lukB"
5074 " all_unreclaimable? %s"
5075 "\n",
5076 pgdat->node_id,
5077 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5078 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5079 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5080 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5081 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5082 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5083 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5084 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5085 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5086 K(node_page_state(pgdat, NR_WRITEBACK)),
5087 K(node_page_state(pgdat, NR_SHMEM)),
5088 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5089 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5090 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5091 * HPAGE_PMD_NR),
5092 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5093 #endif
5094 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5095 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5096 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5097 "yes" : "no");
5098 }
5099
5100 for_each_populated_zone(zone) {
5101 int i;
5102
5103 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5104 continue;
5105
5106 free_pcp = 0;
5107 for_each_online_cpu(cpu)
5108 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5109
5110 show_node(zone);
5111 printk(KERN_CONT
5112 "%s"
5113 " free:%lukB"
5114 " min:%lukB"
5115 " low:%lukB"
5116 " high:%lukB"
5117 " active_anon:%lukB"
5118 " inactive_anon:%lukB"
5119 " active_file:%lukB"
5120 " inactive_file:%lukB"
5121 " unevictable:%lukB"
5122 " writepending:%lukB"
5123 " present:%lukB"
5124 " managed:%lukB"
5125 " mlocked:%lukB"
5126 " kernel_stack:%lukB"
5127 " pagetables:%lukB"
5128 " bounce:%lukB"
5129 " free_pcp:%lukB"
5130 " local_pcp:%ukB"
5131 " free_cma:%lukB"
5132 "\n",
5133 zone->name,
5134 K(zone_page_state(zone, NR_FREE_PAGES)),
5135 K(min_wmark_pages(zone)),
5136 K(low_wmark_pages(zone)),
5137 K(high_wmark_pages(zone)),
5138 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5139 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5140 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5141 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5142 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5143 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5144 K(zone->present_pages),
5145 K(zone_managed_pages(zone)),
5146 K(zone_page_state(zone, NR_MLOCK)),
5147 zone_page_state(zone, NR_KERNEL_STACK_KB),
5148 K(zone_page_state(zone, NR_PAGETABLE)),
5149 K(zone_page_state(zone, NR_BOUNCE)),
5150 K(free_pcp),
5151 K(this_cpu_read(zone->pageset->pcp.count)),
5152 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5153 printk("lowmem_reserve[]:");
5154 for (i = 0; i < MAX_NR_ZONES; i++)
5155 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5156 printk(KERN_CONT "\n");
5157 }
5158
5159 for_each_populated_zone(zone) {
5160 unsigned int order;
5161 unsigned long nr[MAX_ORDER], flags, total = 0;
5162 unsigned char types[MAX_ORDER];
5163
5164 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5165 continue;
5166 show_node(zone);
5167 printk(KERN_CONT "%s: ", zone->name);
5168
5169 spin_lock_irqsave(&zone->lock, flags);
5170 for (order = 0; order < MAX_ORDER; order++) {
5171 struct free_area *area = &zone->free_area[order];
5172 int type;
5173
5174 nr[order] = area->nr_free;
5175 total += nr[order] << order;
5176
5177 types[order] = 0;
5178 for (type = 0; type < MIGRATE_TYPES; type++) {
5179 if (!list_empty(&area->free_list[type]))
5180 types[order] |= 1 << type;
5181 }
5182 }
5183 spin_unlock_irqrestore(&zone->lock, flags);
5184 for (order = 0; order < MAX_ORDER; order++) {
5185 printk(KERN_CONT "%lu*%lukB ",
5186 nr[order], K(1UL) << order);
5187 if (nr[order])
5188 show_migration_types(types[order]);
5189 }
5190 printk(KERN_CONT "= %lukB\n", K(total));
5191 }
5192
5193 hugetlb_show_meminfo();
5194
5195 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5196
5197 show_swap_cache_info();
5198 }
5199
5200 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5201 {
5202 zoneref->zone = zone;
5203 zoneref->zone_idx = zone_idx(zone);
5204 }
5205
5206 /*
5207 * Builds allocation fallback zone lists.
5208 *
5209 * Add all populated zones of a node to the zonelist.
5210 */
5211 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5212 {
5213 struct zone *zone;
5214 enum zone_type zone_type = MAX_NR_ZONES;
5215 int nr_zones = 0;
5216
5217 do {
5218 zone_type--;
5219 zone = pgdat->node_zones + zone_type;
5220 if (managed_zone(zone)) {
5221 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5222 check_highest_zone(zone_type);
5223 }
5224 } while (zone_type);
5225
5226 return nr_zones;
5227 }
5228
5229 #ifdef CONFIG_NUMA
5230
5231 static int __parse_numa_zonelist_order(char *s)
5232 {
5233 /*
5234 * We used to support different zonlists modes but they turned
5235 * out to be just not useful. Let's keep the warning in place
5236 * if somebody still use the cmd line parameter so that we do
5237 * not fail it silently
5238 */
5239 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5240 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5241 return -EINVAL;
5242 }
5243 return 0;
5244 }
5245
5246 static __init int setup_numa_zonelist_order(char *s)
5247 {
5248 if (!s)
5249 return 0;
5250
5251 return __parse_numa_zonelist_order(s);
5252 }
5253 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5254
5255 char numa_zonelist_order[] = "Node";
5256
5257 /*
5258 * sysctl handler for numa_zonelist_order
5259 */
5260 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5261 void __user *buffer, size_t *length,
5262 loff_t *ppos)
5263 {
5264 char *str;
5265 int ret;
5266
5267 if (!write)
5268 return proc_dostring(table, write, buffer, length, ppos);
5269 str = memdup_user_nul(buffer, 16);
5270 if (IS_ERR(str))
5271 return PTR_ERR(str);
5272
5273 ret = __parse_numa_zonelist_order(str);
5274 kfree(str);
5275 return ret;
5276 }
5277
5278
5279 #define MAX_NODE_LOAD (nr_online_nodes)
5280 static int node_load[MAX_NUMNODES];
5281
5282 /**
5283 * find_next_best_node - find the next node that should appear in a given node's fallback list
5284 * @node: node whose fallback list we're appending
5285 * @used_node_mask: nodemask_t of already used nodes
5286 *
5287 * We use a number of factors to determine which is the next node that should
5288 * appear on a given node's fallback list. The node should not have appeared
5289 * already in @node's fallback list, and it should be the next closest node
5290 * according to the distance array (which contains arbitrary distance values
5291 * from each node to each node in the system), and should also prefer nodes
5292 * with no CPUs, since presumably they'll have very little allocation pressure
5293 * on them otherwise.
5294 * It returns -1 if no node is found.
5295 */
5296 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5297 {
5298 int n, val;
5299 int min_val = INT_MAX;
5300 int best_node = NUMA_NO_NODE;
5301 const struct cpumask *tmp = cpumask_of_node(0);
5302
5303 /* Use the local node if we haven't already */
5304 if (!node_isset(node, *used_node_mask)) {
5305 node_set(node, *used_node_mask);
5306 return node;
5307 }
5308
5309 for_each_node_state(n, N_MEMORY) {
5310
5311 /* Don't want a node to appear more than once */
5312 if (node_isset(n, *used_node_mask))
5313 continue;
5314
5315 /* Use the distance array to find the distance */
5316 val = node_distance(node, n);
5317
5318 /* Penalize nodes under us ("prefer the next node") */
5319 val += (n < node);
5320
5321 /* Give preference to headless and unused nodes */
5322 tmp = cpumask_of_node(n);
5323 if (!cpumask_empty(tmp))
5324 val += PENALTY_FOR_NODE_WITH_CPUS;
5325
5326 /* Slight preference for less loaded node */
5327 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5328 val += node_load[n];
5329
5330 if (val < min_val) {
5331 min_val = val;
5332 best_node = n;
5333 }
5334 }
5335
5336 if (best_node >= 0)
5337 node_set(best_node, *used_node_mask);
5338
5339 return best_node;
5340 }
5341
5342
5343 /*
5344 * Build zonelists ordered by node and zones within node.
5345 * This results in maximum locality--normal zone overflows into local
5346 * DMA zone, if any--but risks exhausting DMA zone.
5347 */
5348 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5349 unsigned nr_nodes)
5350 {
5351 struct zoneref *zonerefs;
5352 int i;
5353
5354 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5355
5356 for (i = 0; i < nr_nodes; i++) {
5357 int nr_zones;
5358
5359 pg_data_t *node = NODE_DATA(node_order[i]);
5360
5361 nr_zones = build_zonerefs_node(node, zonerefs);
5362 zonerefs += nr_zones;
5363 }
5364 zonerefs->zone = NULL;
5365 zonerefs->zone_idx = 0;
5366 }
5367
5368 /*
5369 * Build gfp_thisnode zonelists
5370 */
5371 static void build_thisnode_zonelists(pg_data_t *pgdat)
5372 {
5373 struct zoneref *zonerefs;
5374 int nr_zones;
5375
5376 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5377 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5378 zonerefs += nr_zones;
5379 zonerefs->zone = NULL;
5380 zonerefs->zone_idx = 0;
5381 }
5382
5383 /*
5384 * Build zonelists ordered by zone and nodes within zones.
5385 * This results in conserving DMA zone[s] until all Normal memory is
5386 * exhausted, but results in overflowing to remote node while memory
5387 * may still exist in local DMA zone.
5388 */
5389
5390 static void build_zonelists(pg_data_t *pgdat)
5391 {
5392 static int node_order[MAX_NUMNODES];
5393 int node, load, nr_nodes = 0;
5394 nodemask_t used_mask;
5395 int local_node, prev_node;
5396
5397 /* NUMA-aware ordering of nodes */
5398 local_node = pgdat->node_id;
5399 load = nr_online_nodes;
5400 prev_node = local_node;
5401 nodes_clear(used_mask);
5402
5403 memset(node_order, 0, sizeof(node_order));
5404 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5405 /*
5406 * We don't want to pressure a particular node.
5407 * So adding penalty to the first node in same
5408 * distance group to make it round-robin.
5409 */
5410 if (node_distance(local_node, node) !=
5411 node_distance(local_node, prev_node))
5412 node_load[node] = load;
5413
5414 node_order[nr_nodes++] = node;
5415 prev_node = node;
5416 load--;
5417 }
5418
5419 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5420 build_thisnode_zonelists(pgdat);
5421 }
5422
5423 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5424 /*
5425 * Return node id of node used for "local" allocations.
5426 * I.e., first node id of first zone in arg node's generic zonelist.
5427 * Used for initializing percpu 'numa_mem', which is used primarily
5428 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5429 */
5430 int local_memory_node(int node)
5431 {
5432 struct zoneref *z;
5433
5434 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5435 gfp_zone(GFP_KERNEL),
5436 NULL);
5437 return zone_to_nid(z->zone);
5438 }
5439 #endif
5440
5441 static void setup_min_unmapped_ratio(void);
5442 static void setup_min_slab_ratio(void);
5443 #else /* CONFIG_NUMA */
5444
5445 static void build_zonelists(pg_data_t *pgdat)
5446 {
5447 int node, local_node;
5448 struct zoneref *zonerefs;
5449 int nr_zones;
5450
5451 local_node = pgdat->node_id;
5452
5453 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5454 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5455 zonerefs += nr_zones;
5456
5457 /*
5458 * Now we build the zonelist so that it contains the zones
5459 * of all the other nodes.
5460 * We don't want to pressure a particular node, so when
5461 * building the zones for node N, we make sure that the
5462 * zones coming right after the local ones are those from
5463 * node N+1 (modulo N)
5464 */
5465 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5466 if (!node_online(node))
5467 continue;
5468 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5469 zonerefs += nr_zones;
5470 }
5471 for (node = 0; node < local_node; node++) {
5472 if (!node_online(node))
5473 continue;
5474 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5475 zonerefs += nr_zones;
5476 }
5477
5478 zonerefs->zone = NULL;
5479 zonerefs->zone_idx = 0;
5480 }
5481
5482 #endif /* CONFIG_NUMA */
5483
5484 /*
5485 * Boot pageset table. One per cpu which is going to be used for all
5486 * zones and all nodes. The parameters will be set in such a way
5487 * that an item put on a list will immediately be handed over to
5488 * the buddy list. This is safe since pageset manipulation is done
5489 * with interrupts disabled.
5490 *
5491 * The boot_pagesets must be kept even after bootup is complete for
5492 * unused processors and/or zones. They do play a role for bootstrapping
5493 * hotplugged processors.
5494 *
5495 * zoneinfo_show() and maybe other functions do
5496 * not check if the processor is online before following the pageset pointer.
5497 * Other parts of the kernel may not check if the zone is available.
5498 */
5499 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5500 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5501 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5502
5503 static void __build_all_zonelists(void *data)
5504 {
5505 int nid;
5506 int __maybe_unused cpu;
5507 pg_data_t *self = data;
5508 static DEFINE_SPINLOCK(lock);
5509
5510 spin_lock(&lock);
5511
5512 #ifdef CONFIG_NUMA
5513 memset(node_load, 0, sizeof(node_load));
5514 #endif
5515
5516 /*
5517 * This node is hotadded and no memory is yet present. So just
5518 * building zonelists is fine - no need to touch other nodes.
5519 */
5520 if (self && !node_online(self->node_id)) {
5521 build_zonelists(self);
5522 } else {
5523 for_each_online_node(nid) {
5524 pg_data_t *pgdat = NODE_DATA(nid);
5525
5526 build_zonelists(pgdat);
5527 }
5528
5529 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5530 /*
5531 * We now know the "local memory node" for each node--
5532 * i.e., the node of the first zone in the generic zonelist.
5533 * Set up numa_mem percpu variable for on-line cpus. During
5534 * boot, only the boot cpu should be on-line; we'll init the
5535 * secondary cpus' numa_mem as they come on-line. During
5536 * node/memory hotplug, we'll fixup all on-line cpus.
5537 */
5538 for_each_online_cpu(cpu)
5539 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5540 #endif
5541 }
5542
5543 spin_unlock(&lock);
5544 }
5545
5546 static noinline void __init
5547 build_all_zonelists_init(void)
5548 {
5549 int cpu;
5550
5551 __build_all_zonelists(NULL);
5552
5553 /*
5554 * Initialize the boot_pagesets that are going to be used
5555 * for bootstrapping processors. The real pagesets for
5556 * each zone will be allocated later when the per cpu
5557 * allocator is available.
5558 *
5559 * boot_pagesets are used also for bootstrapping offline
5560 * cpus if the system is already booted because the pagesets
5561 * are needed to initialize allocators on a specific cpu too.
5562 * F.e. the percpu allocator needs the page allocator which
5563 * needs the percpu allocator in order to allocate its pagesets
5564 * (a chicken-egg dilemma).
5565 */
5566 for_each_possible_cpu(cpu)
5567 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5568
5569 mminit_verify_zonelist();
5570 cpuset_init_current_mems_allowed();
5571 }
5572
5573 /*
5574 * unless system_state == SYSTEM_BOOTING.
5575 *
5576 * __ref due to call of __init annotated helper build_all_zonelists_init
5577 * [protected by SYSTEM_BOOTING].
5578 */
5579 void __ref build_all_zonelists(pg_data_t *pgdat)
5580 {
5581 if (system_state == SYSTEM_BOOTING) {
5582 build_all_zonelists_init();
5583 } else {
5584 __build_all_zonelists(pgdat);
5585 /* cpuset refresh routine should be here */
5586 }
5587 vm_total_pages = nr_free_pagecache_pages();
5588 /*
5589 * Disable grouping by mobility if the number of pages in the
5590 * system is too low to allow the mechanism to work. It would be
5591 * more accurate, but expensive to check per-zone. This check is
5592 * made on memory-hotadd so a system can start with mobility
5593 * disabled and enable it later
5594 */
5595 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5596 page_group_by_mobility_disabled = 1;
5597 else
5598 page_group_by_mobility_disabled = 0;
5599
5600 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5601 nr_online_nodes,
5602 page_group_by_mobility_disabled ? "off" : "on",
5603 vm_total_pages);
5604 #ifdef CONFIG_NUMA
5605 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5606 #endif
5607 }
5608
5609 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5610 static bool __meminit
5611 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5612 {
5613 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5614 static struct memblock_region *r;
5615
5616 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5617 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5618 for_each_memblock(memory, r) {
5619 if (*pfn < memblock_region_memory_end_pfn(r))
5620 break;
5621 }
5622 }
5623 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5624 memblock_is_mirror(r)) {
5625 *pfn = memblock_region_memory_end_pfn(r);
5626 return true;
5627 }
5628 }
5629 #endif
5630 return false;
5631 }
5632
5633 /*
5634 * Initially all pages are reserved - free ones are freed
5635 * up by memblock_free_all() once the early boot process is
5636 * done. Non-atomic initialization, single-pass.
5637 */
5638 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5639 unsigned long start_pfn, enum memmap_context context,
5640 struct vmem_altmap *altmap)
5641 {
5642 unsigned long pfn, end_pfn = start_pfn + size;
5643 struct page *page;
5644
5645 if (highest_memmap_pfn < end_pfn - 1)
5646 highest_memmap_pfn = end_pfn - 1;
5647
5648 #ifdef CONFIG_ZONE_DEVICE
5649 /*
5650 * Honor reservation requested by the driver for this ZONE_DEVICE
5651 * memory. We limit the total number of pages to initialize to just
5652 * those that might contain the memory mapping. We will defer the
5653 * ZONE_DEVICE page initialization until after we have released
5654 * the hotplug lock.
5655 */
5656 if (zone == ZONE_DEVICE) {
5657 if (!altmap)
5658 return;
5659
5660 if (start_pfn == altmap->base_pfn)
5661 start_pfn += altmap->reserve;
5662 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5663 }
5664 #endif
5665
5666 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5667 /*
5668 * There can be holes in boot-time mem_map[]s handed to this
5669 * function. They do not exist on hotplugged memory.
5670 */
5671 if (context == MEMMAP_EARLY) {
5672 if (!early_pfn_valid(pfn))
5673 continue;
5674 if (!early_pfn_in_nid(pfn, nid))
5675 continue;
5676 if (overlap_memmap_init(zone, &pfn))
5677 continue;
5678 if (defer_init(nid, pfn, end_pfn))
5679 break;
5680 }
5681
5682 page = pfn_to_page(pfn);
5683 __init_single_page(page, pfn, zone, nid);
5684 if (context == MEMMAP_HOTPLUG)
5685 __SetPageReserved(page);
5686
5687 /*
5688 * Mark the block movable so that blocks are reserved for
5689 * movable at startup. This will force kernel allocations
5690 * to reserve their blocks rather than leaking throughout
5691 * the address space during boot when many long-lived
5692 * kernel allocations are made.
5693 *
5694 * bitmap is created for zone's valid pfn range. but memmap
5695 * can be created for invalid pages (for alignment)
5696 * check here not to call set_pageblock_migratetype() against
5697 * pfn out of zone.
5698 */
5699 if (!(pfn & (pageblock_nr_pages - 1))) {
5700 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5701 cond_resched();
5702 }
5703 }
5704 }
5705
5706 #ifdef CONFIG_ZONE_DEVICE
5707 void __ref memmap_init_zone_device(struct zone *zone,
5708 unsigned long start_pfn,
5709 unsigned long size,
5710 struct dev_pagemap *pgmap)
5711 {
5712 unsigned long pfn, end_pfn = start_pfn + size;
5713 struct pglist_data *pgdat = zone->zone_pgdat;
5714 unsigned long zone_idx = zone_idx(zone);
5715 unsigned long start = jiffies;
5716 int nid = pgdat->node_id;
5717
5718 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5719 return;
5720
5721 /*
5722 * The call to memmap_init_zone should have already taken care
5723 * of the pages reserved for the memmap, so we can just jump to
5724 * the end of that region and start processing the device pages.
5725 */
5726 if (pgmap->altmap_valid) {
5727 struct vmem_altmap *altmap = &pgmap->altmap;
5728
5729 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5730 size = end_pfn - start_pfn;
5731 }
5732
5733 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5734 struct page *page = pfn_to_page(pfn);
5735
5736 __init_single_page(page, pfn, zone_idx, nid);
5737
5738 /*
5739 * Mark page reserved as it will need to wait for onlining
5740 * phase for it to be fully associated with a zone.
5741 *
5742 * We can use the non-atomic __set_bit operation for setting
5743 * the flag as we are still initializing the pages.
5744 */
5745 __SetPageReserved(page);
5746
5747 /*
5748 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5749 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5750 * page is ever freed or placed on a driver-private list.
5751 */
5752 page->pgmap = pgmap;
5753 page->hmm_data = 0;
5754
5755 /*
5756 * Mark the block movable so that blocks are reserved for
5757 * movable at startup. This will force kernel allocations
5758 * to reserve their blocks rather than leaking throughout
5759 * the address space during boot when many long-lived
5760 * kernel allocations are made.
5761 *
5762 * bitmap is created for zone's valid pfn range. but memmap
5763 * can be created for invalid pages (for alignment)
5764 * check here not to call set_pageblock_migratetype() against
5765 * pfn out of zone.
5766 *
5767 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5768 * because this is done early in sparse_add_one_section
5769 */
5770 if (!(pfn & (pageblock_nr_pages - 1))) {
5771 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5772 cond_resched();
5773 }
5774 }
5775
5776 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5777 size, jiffies_to_msecs(jiffies - start));
5778 }
5779
5780 #endif
5781 static void __meminit zone_init_free_lists(struct zone *zone)
5782 {
5783 unsigned int order, t;
5784 for_each_migratetype_order(order, t) {
5785 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5786 zone->free_area[order].nr_free = 0;
5787 }
5788 }
5789
5790 void __meminit __weak memmap_init(unsigned long size, int nid,
5791 unsigned long zone, unsigned long start_pfn)
5792 {
5793 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5794 }
5795
5796 static int zone_batchsize(struct zone *zone)
5797 {
5798 #ifdef CONFIG_MMU
5799 int batch;
5800
5801 /*
5802 * The per-cpu-pages pools are set to around 1000th of the
5803 * size of the zone.
5804 */
5805 batch = zone_managed_pages(zone) / 1024;
5806 /* But no more than a meg. */
5807 if (batch * PAGE_SIZE > 1024 * 1024)
5808 batch = (1024 * 1024) / PAGE_SIZE;
5809 batch /= 4; /* We effectively *= 4 below */
5810 if (batch < 1)
5811 batch = 1;
5812
5813 /*
5814 * Clamp the batch to a 2^n - 1 value. Having a power
5815 * of 2 value was found to be more likely to have
5816 * suboptimal cache aliasing properties in some cases.
5817 *
5818 * For example if 2 tasks are alternately allocating
5819 * batches of pages, one task can end up with a lot
5820 * of pages of one half of the possible page colors
5821 * and the other with pages of the other colors.
5822 */
5823 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5824
5825 return batch;
5826
5827 #else
5828 /* The deferral and batching of frees should be suppressed under NOMMU
5829 * conditions.
5830 *
5831 * The problem is that NOMMU needs to be able to allocate large chunks
5832 * of contiguous memory as there's no hardware page translation to
5833 * assemble apparent contiguous memory from discontiguous pages.
5834 *
5835 * Queueing large contiguous runs of pages for batching, however,
5836 * causes the pages to actually be freed in smaller chunks. As there
5837 * can be a significant delay between the individual batches being
5838 * recycled, this leads to the once large chunks of space being
5839 * fragmented and becoming unavailable for high-order allocations.
5840 */
5841 return 0;
5842 #endif
5843 }
5844
5845 /*
5846 * pcp->high and pcp->batch values are related and dependent on one another:
5847 * ->batch must never be higher then ->high.
5848 * The following function updates them in a safe manner without read side
5849 * locking.
5850 *
5851 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5852 * those fields changing asynchronously (acording the the above rule).
5853 *
5854 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5855 * outside of boot time (or some other assurance that no concurrent updaters
5856 * exist).
5857 */
5858 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5859 unsigned long batch)
5860 {
5861 /* start with a fail safe value for batch */
5862 pcp->batch = 1;
5863 smp_wmb();
5864
5865 /* Update high, then batch, in order */
5866 pcp->high = high;
5867 smp_wmb();
5868
5869 pcp->batch = batch;
5870 }
5871
5872 /* a companion to pageset_set_high() */
5873 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5874 {
5875 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5876 }
5877
5878 static void pageset_init(struct per_cpu_pageset *p)
5879 {
5880 struct per_cpu_pages *pcp;
5881 int migratetype;
5882
5883 memset(p, 0, sizeof(*p));
5884
5885 pcp = &p->pcp;
5886 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5887 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5888 }
5889
5890 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5891 {
5892 pageset_init(p);
5893 pageset_set_batch(p, batch);
5894 }
5895
5896 /*
5897 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5898 * to the value high for the pageset p.
5899 */
5900 static void pageset_set_high(struct per_cpu_pageset *p,
5901 unsigned long high)
5902 {
5903 unsigned long batch = max(1UL, high / 4);
5904 if ((high / 4) > (PAGE_SHIFT * 8))
5905 batch = PAGE_SHIFT * 8;
5906
5907 pageset_update(&p->pcp, high, batch);
5908 }
5909
5910 static void pageset_set_high_and_batch(struct zone *zone,
5911 struct per_cpu_pageset *pcp)
5912 {
5913 if (percpu_pagelist_fraction)
5914 pageset_set_high(pcp,
5915 (zone_managed_pages(zone) /
5916 percpu_pagelist_fraction));
5917 else
5918 pageset_set_batch(pcp, zone_batchsize(zone));
5919 }
5920
5921 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5922 {
5923 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5924
5925 pageset_init(pcp);
5926 pageset_set_high_and_batch(zone, pcp);
5927 }
5928
5929 void __meminit setup_zone_pageset(struct zone *zone)
5930 {
5931 int cpu;
5932 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5933 for_each_possible_cpu(cpu)
5934 zone_pageset_init(zone, cpu);
5935 }
5936
5937 /*
5938 * Allocate per cpu pagesets and initialize them.
5939 * Before this call only boot pagesets were available.
5940 */
5941 void __init setup_per_cpu_pageset(void)
5942 {
5943 struct pglist_data *pgdat;
5944 struct zone *zone;
5945
5946 for_each_populated_zone(zone)
5947 setup_zone_pageset(zone);
5948
5949 for_each_online_pgdat(pgdat)
5950 pgdat->per_cpu_nodestats =
5951 alloc_percpu(struct per_cpu_nodestat);
5952 }
5953
5954 static __meminit void zone_pcp_init(struct zone *zone)
5955 {
5956 /*
5957 * per cpu subsystem is not up at this point. The following code
5958 * relies on the ability of the linker to provide the
5959 * offset of a (static) per cpu variable into the per cpu area.
5960 */
5961 zone->pageset = &boot_pageset;
5962
5963 if (populated_zone(zone))
5964 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5965 zone->name, zone->present_pages,
5966 zone_batchsize(zone));
5967 }
5968
5969 void __meminit init_currently_empty_zone(struct zone *zone,
5970 unsigned long zone_start_pfn,
5971 unsigned long size)
5972 {
5973 struct pglist_data *pgdat = zone->zone_pgdat;
5974 int zone_idx = zone_idx(zone) + 1;
5975
5976 if (zone_idx > pgdat->nr_zones)
5977 pgdat->nr_zones = zone_idx;
5978
5979 zone->zone_start_pfn = zone_start_pfn;
5980
5981 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5982 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5983 pgdat->node_id,
5984 (unsigned long)zone_idx(zone),
5985 zone_start_pfn, (zone_start_pfn + size));
5986
5987 zone_init_free_lists(zone);
5988 zone->initialized = 1;
5989 }
5990
5991 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5992 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5993
5994 /*
5995 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5996 */
5997 int __meminit __early_pfn_to_nid(unsigned long pfn,
5998 struct mminit_pfnnid_cache *state)
5999 {
6000 unsigned long start_pfn, end_pfn;
6001 int nid;
6002
6003 if (state->last_start <= pfn && pfn < state->last_end)
6004 return state->last_nid;
6005
6006 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6007 if (nid != -1) {
6008 state->last_start = start_pfn;
6009 state->last_end = end_pfn;
6010 state->last_nid = nid;
6011 }
6012
6013 return nid;
6014 }
6015 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6016
6017 /**
6018 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6019 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6020 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6021 *
6022 * If an architecture guarantees that all ranges registered contain no holes
6023 * and may be freed, this this function may be used instead of calling
6024 * memblock_free_early_nid() manually.
6025 */
6026 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6027 {
6028 unsigned long start_pfn, end_pfn;
6029 int i, this_nid;
6030
6031 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6032 start_pfn = min(start_pfn, max_low_pfn);
6033 end_pfn = min(end_pfn, max_low_pfn);
6034
6035 if (start_pfn < end_pfn)
6036 memblock_free_early_nid(PFN_PHYS(start_pfn),
6037 (end_pfn - start_pfn) << PAGE_SHIFT,
6038 this_nid);
6039 }
6040 }
6041
6042 /**
6043 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6044 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6045 *
6046 * If an architecture guarantees that all ranges registered contain no holes and may
6047 * be freed, this function may be used instead of calling memory_present() manually.
6048 */
6049 void __init sparse_memory_present_with_active_regions(int nid)
6050 {
6051 unsigned long start_pfn, end_pfn;
6052 int i, this_nid;
6053
6054 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6055 memory_present(this_nid, start_pfn, end_pfn);
6056 }
6057
6058 /**
6059 * get_pfn_range_for_nid - Return the start and end page frames for a node
6060 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6061 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6062 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6063 *
6064 * It returns the start and end page frame of a node based on information
6065 * provided by memblock_set_node(). If called for a node
6066 * with no available memory, a warning is printed and the start and end
6067 * PFNs will be 0.
6068 */
6069 void __init get_pfn_range_for_nid(unsigned int nid,
6070 unsigned long *start_pfn, unsigned long *end_pfn)
6071 {
6072 unsigned long this_start_pfn, this_end_pfn;
6073 int i;
6074
6075 *start_pfn = -1UL;
6076 *end_pfn = 0;
6077
6078 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6079 *start_pfn = min(*start_pfn, this_start_pfn);
6080 *end_pfn = max(*end_pfn, this_end_pfn);
6081 }
6082
6083 if (*start_pfn == -1UL)
6084 *start_pfn = 0;
6085 }
6086
6087 /*
6088 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6089 * assumption is made that zones within a node are ordered in monotonic
6090 * increasing memory addresses so that the "highest" populated zone is used
6091 */
6092 static void __init find_usable_zone_for_movable(void)
6093 {
6094 int zone_index;
6095 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6096 if (zone_index == ZONE_MOVABLE)
6097 continue;
6098
6099 if (arch_zone_highest_possible_pfn[zone_index] >
6100 arch_zone_lowest_possible_pfn[zone_index])
6101 break;
6102 }
6103
6104 VM_BUG_ON(zone_index == -1);
6105 movable_zone = zone_index;
6106 }
6107
6108 /*
6109 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6110 * because it is sized independent of architecture. Unlike the other zones,
6111 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6112 * in each node depending on the size of each node and how evenly kernelcore
6113 * is distributed. This helper function adjusts the zone ranges
6114 * provided by the architecture for a given node by using the end of the
6115 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6116 * zones within a node are in order of monotonic increases memory addresses
6117 */
6118 static void __init adjust_zone_range_for_zone_movable(int nid,
6119 unsigned long zone_type,
6120 unsigned long node_start_pfn,
6121 unsigned long node_end_pfn,
6122 unsigned long *zone_start_pfn,
6123 unsigned long *zone_end_pfn)
6124 {
6125 /* Only adjust if ZONE_MOVABLE is on this node */
6126 if (zone_movable_pfn[nid]) {
6127 /* Size ZONE_MOVABLE */
6128 if (zone_type == ZONE_MOVABLE) {
6129 *zone_start_pfn = zone_movable_pfn[nid];
6130 *zone_end_pfn = min(node_end_pfn,
6131 arch_zone_highest_possible_pfn[movable_zone]);
6132
6133 /* Adjust for ZONE_MOVABLE starting within this range */
6134 } else if (!mirrored_kernelcore &&
6135 *zone_start_pfn < zone_movable_pfn[nid] &&
6136 *zone_end_pfn > zone_movable_pfn[nid]) {
6137 *zone_end_pfn = zone_movable_pfn[nid];
6138
6139 /* Check if this whole range is within ZONE_MOVABLE */
6140 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6141 *zone_start_pfn = *zone_end_pfn;
6142 }
6143 }
6144
6145 /*
6146 * Return the number of pages a zone spans in a node, including holes
6147 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6148 */
6149 static unsigned long __init zone_spanned_pages_in_node(int nid,
6150 unsigned long zone_type,
6151 unsigned long node_start_pfn,
6152 unsigned long node_end_pfn,
6153 unsigned long *zone_start_pfn,
6154 unsigned long *zone_end_pfn,
6155 unsigned long *ignored)
6156 {
6157 /* When hotadd a new node from cpu_up(), the node should be empty */
6158 if (!node_start_pfn && !node_end_pfn)
6159 return 0;
6160
6161 /* Get the start and end of the zone */
6162 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6163 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
6164 adjust_zone_range_for_zone_movable(nid, zone_type,
6165 node_start_pfn, node_end_pfn,
6166 zone_start_pfn, zone_end_pfn);
6167
6168 /* Check that this node has pages within the zone's required range */
6169 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6170 return 0;
6171
6172 /* Move the zone boundaries inside the node if necessary */
6173 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6174 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6175
6176 /* Return the spanned pages */
6177 return *zone_end_pfn - *zone_start_pfn;
6178 }
6179
6180 /*
6181 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6182 * then all holes in the requested range will be accounted for.
6183 */
6184 unsigned long __init __absent_pages_in_range(int nid,
6185 unsigned long range_start_pfn,
6186 unsigned long range_end_pfn)
6187 {
6188 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6189 unsigned long start_pfn, end_pfn;
6190 int i;
6191
6192 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6193 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6194 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6195 nr_absent -= end_pfn - start_pfn;
6196 }
6197 return nr_absent;
6198 }
6199
6200 /**
6201 * absent_pages_in_range - Return number of page frames in holes within a range
6202 * @start_pfn: The start PFN to start searching for holes
6203 * @end_pfn: The end PFN to stop searching for holes
6204 *
6205 * It returns the number of pages frames in memory holes within a range.
6206 */
6207 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6208 unsigned long end_pfn)
6209 {
6210 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6211 }
6212
6213 /* Return the number of page frames in holes in a zone on a node */
6214 static unsigned long __init zone_absent_pages_in_node(int nid,
6215 unsigned long zone_type,
6216 unsigned long node_start_pfn,
6217 unsigned long node_end_pfn,
6218 unsigned long *ignored)
6219 {
6220 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6221 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6222 unsigned long zone_start_pfn, zone_end_pfn;
6223 unsigned long nr_absent;
6224
6225 /* When hotadd a new node from cpu_up(), the node should be empty */
6226 if (!node_start_pfn && !node_end_pfn)
6227 return 0;
6228
6229 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6230 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6231
6232 adjust_zone_range_for_zone_movable(nid, zone_type,
6233 node_start_pfn, node_end_pfn,
6234 &zone_start_pfn, &zone_end_pfn);
6235 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6236
6237 /*
6238 * ZONE_MOVABLE handling.
6239 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6240 * and vice versa.
6241 */
6242 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6243 unsigned long start_pfn, end_pfn;
6244 struct memblock_region *r;
6245
6246 for_each_memblock(memory, r) {
6247 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6248 zone_start_pfn, zone_end_pfn);
6249 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6250 zone_start_pfn, zone_end_pfn);
6251
6252 if (zone_type == ZONE_MOVABLE &&
6253 memblock_is_mirror(r))
6254 nr_absent += end_pfn - start_pfn;
6255
6256 if (zone_type == ZONE_NORMAL &&
6257 !memblock_is_mirror(r))
6258 nr_absent += end_pfn - start_pfn;
6259 }
6260 }
6261
6262 return nr_absent;
6263 }
6264
6265 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6266 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6267 unsigned long zone_type,
6268 unsigned long node_start_pfn,
6269 unsigned long node_end_pfn,
6270 unsigned long *zone_start_pfn,
6271 unsigned long *zone_end_pfn,
6272 unsigned long *zones_size)
6273 {
6274 unsigned int zone;
6275
6276 *zone_start_pfn = node_start_pfn;
6277 for (zone = 0; zone < zone_type; zone++)
6278 *zone_start_pfn += zones_size[zone];
6279
6280 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6281
6282 return zones_size[zone_type];
6283 }
6284
6285 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6286 unsigned long zone_type,
6287 unsigned long node_start_pfn,
6288 unsigned long node_end_pfn,
6289 unsigned long *zholes_size)
6290 {
6291 if (!zholes_size)
6292 return 0;
6293
6294 return zholes_size[zone_type];
6295 }
6296
6297 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6298
6299 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6300 unsigned long node_start_pfn,
6301 unsigned long node_end_pfn,
6302 unsigned long *zones_size,
6303 unsigned long *zholes_size)
6304 {
6305 unsigned long realtotalpages = 0, totalpages = 0;
6306 enum zone_type i;
6307
6308 for (i = 0; i < MAX_NR_ZONES; i++) {
6309 struct zone *zone = pgdat->node_zones + i;
6310 unsigned long zone_start_pfn, zone_end_pfn;
6311 unsigned long size, real_size;
6312
6313 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6314 node_start_pfn,
6315 node_end_pfn,
6316 &zone_start_pfn,
6317 &zone_end_pfn,
6318 zones_size);
6319 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6320 node_start_pfn, node_end_pfn,
6321 zholes_size);
6322 if (size)
6323 zone->zone_start_pfn = zone_start_pfn;
6324 else
6325 zone->zone_start_pfn = 0;
6326 zone->spanned_pages = size;
6327 zone->present_pages = real_size;
6328
6329 totalpages += size;
6330 realtotalpages += real_size;
6331 }
6332
6333 pgdat->node_spanned_pages = totalpages;
6334 pgdat->node_present_pages = realtotalpages;
6335 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6336 realtotalpages);
6337 }
6338
6339 #ifndef CONFIG_SPARSEMEM
6340 /*
6341 * Calculate the size of the zone->blockflags rounded to an unsigned long
6342 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6343 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6344 * round what is now in bits to nearest long in bits, then return it in
6345 * bytes.
6346 */
6347 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6348 {
6349 unsigned long usemapsize;
6350
6351 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6352 usemapsize = roundup(zonesize, pageblock_nr_pages);
6353 usemapsize = usemapsize >> pageblock_order;
6354 usemapsize *= NR_PAGEBLOCK_BITS;
6355 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6356
6357 return usemapsize / 8;
6358 }
6359
6360 static void __ref setup_usemap(struct pglist_data *pgdat,
6361 struct zone *zone,
6362 unsigned long zone_start_pfn,
6363 unsigned long zonesize)
6364 {
6365 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6366 zone->pageblock_flags = NULL;
6367 if (usemapsize)
6368 zone->pageblock_flags =
6369 memblock_alloc_node_nopanic(usemapsize,
6370 pgdat->node_id);
6371 }
6372 #else
6373 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6374 unsigned long zone_start_pfn, unsigned long zonesize) {}
6375 #endif /* CONFIG_SPARSEMEM */
6376
6377 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6378
6379 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6380 void __init set_pageblock_order(void)
6381 {
6382 unsigned int order;
6383
6384 /* Check that pageblock_nr_pages has not already been setup */
6385 if (pageblock_order)
6386 return;
6387
6388 if (HPAGE_SHIFT > PAGE_SHIFT)
6389 order = HUGETLB_PAGE_ORDER;
6390 else
6391 order = MAX_ORDER - 1;
6392
6393 /*
6394 * Assume the largest contiguous order of interest is a huge page.
6395 * This value may be variable depending on boot parameters on IA64 and
6396 * powerpc.
6397 */
6398 pageblock_order = order;
6399 }
6400 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6401
6402 /*
6403 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6404 * is unused as pageblock_order is set at compile-time. See
6405 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6406 * the kernel config
6407 */
6408 void __init set_pageblock_order(void)
6409 {
6410 }
6411
6412 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6413
6414 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6415 unsigned long present_pages)
6416 {
6417 unsigned long pages = spanned_pages;
6418
6419 /*
6420 * Provide a more accurate estimation if there are holes within
6421 * the zone and SPARSEMEM is in use. If there are holes within the
6422 * zone, each populated memory region may cost us one or two extra
6423 * memmap pages due to alignment because memmap pages for each
6424 * populated regions may not be naturally aligned on page boundary.
6425 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6426 */
6427 if (spanned_pages > present_pages + (present_pages >> 4) &&
6428 IS_ENABLED(CONFIG_SPARSEMEM))
6429 pages = present_pages;
6430
6431 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6432 }
6433
6434 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6435 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6436 {
6437 spin_lock_init(&pgdat->split_queue_lock);
6438 INIT_LIST_HEAD(&pgdat->split_queue);
6439 pgdat->split_queue_len = 0;
6440 }
6441 #else
6442 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6443 #endif
6444
6445 #ifdef CONFIG_COMPACTION
6446 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6447 {
6448 init_waitqueue_head(&pgdat->kcompactd_wait);
6449 }
6450 #else
6451 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6452 #endif
6453
6454 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6455 {
6456 pgdat_resize_init(pgdat);
6457
6458 pgdat_init_split_queue(pgdat);
6459 pgdat_init_kcompactd(pgdat);
6460
6461 init_waitqueue_head(&pgdat->kswapd_wait);
6462 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6463
6464 pgdat_page_ext_init(pgdat);
6465 spin_lock_init(&pgdat->lru_lock);
6466 lruvec_init(node_lruvec(pgdat));
6467 }
6468
6469 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6470 unsigned long remaining_pages)
6471 {
6472 atomic_long_set(&zone->managed_pages, remaining_pages);
6473 zone_set_nid(zone, nid);
6474 zone->name = zone_names[idx];
6475 zone->zone_pgdat = NODE_DATA(nid);
6476 spin_lock_init(&zone->lock);
6477 zone_seqlock_init(zone);
6478 zone_pcp_init(zone);
6479 }
6480
6481 /*
6482 * Set up the zone data structures
6483 * - init pgdat internals
6484 * - init all zones belonging to this node
6485 *
6486 * NOTE: this function is only called during memory hotplug
6487 */
6488 #ifdef CONFIG_MEMORY_HOTPLUG
6489 void __ref free_area_init_core_hotplug(int nid)
6490 {
6491 enum zone_type z;
6492 pg_data_t *pgdat = NODE_DATA(nid);
6493
6494 pgdat_init_internals(pgdat);
6495 for (z = 0; z < MAX_NR_ZONES; z++)
6496 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6497 }
6498 #endif
6499
6500 /*
6501 * Set up the zone data structures:
6502 * - mark all pages reserved
6503 * - mark all memory queues empty
6504 * - clear the memory bitmaps
6505 *
6506 * NOTE: pgdat should get zeroed by caller.
6507 * NOTE: this function is only called during early init.
6508 */
6509 static void __init free_area_init_core(struct pglist_data *pgdat)
6510 {
6511 enum zone_type j;
6512 int nid = pgdat->node_id;
6513
6514 pgdat_init_internals(pgdat);
6515 pgdat->per_cpu_nodestats = &boot_nodestats;
6516
6517 for (j = 0; j < MAX_NR_ZONES; j++) {
6518 struct zone *zone = pgdat->node_zones + j;
6519 unsigned long size, freesize, memmap_pages;
6520 unsigned long zone_start_pfn = zone->zone_start_pfn;
6521
6522 size = zone->spanned_pages;
6523 freesize = zone->present_pages;
6524
6525 /*
6526 * Adjust freesize so that it accounts for how much memory
6527 * is used by this zone for memmap. This affects the watermark
6528 * and per-cpu initialisations
6529 */
6530 memmap_pages = calc_memmap_size(size, freesize);
6531 if (!is_highmem_idx(j)) {
6532 if (freesize >= memmap_pages) {
6533 freesize -= memmap_pages;
6534 if (memmap_pages)
6535 printk(KERN_DEBUG
6536 " %s zone: %lu pages used for memmap\n",
6537 zone_names[j], memmap_pages);
6538 } else
6539 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6540 zone_names[j], memmap_pages, freesize);
6541 }
6542
6543 /* Account for reserved pages */
6544 if (j == 0 && freesize > dma_reserve) {
6545 freesize -= dma_reserve;
6546 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6547 zone_names[0], dma_reserve);
6548 }
6549
6550 if (!is_highmem_idx(j))
6551 nr_kernel_pages += freesize;
6552 /* Charge for highmem memmap if there are enough kernel pages */
6553 else if (nr_kernel_pages > memmap_pages * 2)
6554 nr_kernel_pages -= memmap_pages;
6555 nr_all_pages += freesize;
6556
6557 /*
6558 * Set an approximate value for lowmem here, it will be adjusted
6559 * when the bootmem allocator frees pages into the buddy system.
6560 * And all highmem pages will be managed by the buddy system.
6561 */
6562 zone_init_internals(zone, j, nid, freesize);
6563
6564 if (!size)
6565 continue;
6566
6567 set_pageblock_order();
6568 setup_usemap(pgdat, zone, zone_start_pfn, size);
6569 init_currently_empty_zone(zone, zone_start_pfn, size);
6570 memmap_init(size, nid, j, zone_start_pfn);
6571 }
6572 }
6573
6574 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6575 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6576 {
6577 unsigned long __maybe_unused start = 0;
6578 unsigned long __maybe_unused offset = 0;
6579
6580 /* Skip empty nodes */
6581 if (!pgdat->node_spanned_pages)
6582 return;
6583
6584 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6585 offset = pgdat->node_start_pfn - start;
6586 /* ia64 gets its own node_mem_map, before this, without bootmem */
6587 if (!pgdat->node_mem_map) {
6588 unsigned long size, end;
6589 struct page *map;
6590
6591 /*
6592 * The zone's endpoints aren't required to be MAX_ORDER
6593 * aligned but the node_mem_map endpoints must be in order
6594 * for the buddy allocator to function correctly.
6595 */
6596 end = pgdat_end_pfn(pgdat);
6597 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6598 size = (end - start) * sizeof(struct page);
6599 map = memblock_alloc_node_nopanic(size, pgdat->node_id);
6600 pgdat->node_mem_map = map + offset;
6601 }
6602 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6603 __func__, pgdat->node_id, (unsigned long)pgdat,
6604 (unsigned long)pgdat->node_mem_map);
6605 #ifndef CONFIG_NEED_MULTIPLE_NODES
6606 /*
6607 * With no DISCONTIG, the global mem_map is just set as node 0's
6608 */
6609 if (pgdat == NODE_DATA(0)) {
6610 mem_map = NODE_DATA(0)->node_mem_map;
6611 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6612 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6613 mem_map -= offset;
6614 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6615 }
6616 #endif
6617 }
6618 #else
6619 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6620 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6621
6622 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6623 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6624 {
6625 pgdat->first_deferred_pfn = ULONG_MAX;
6626 }
6627 #else
6628 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6629 #endif
6630
6631 void __init free_area_init_node(int nid, unsigned long *zones_size,
6632 unsigned long node_start_pfn,
6633 unsigned long *zholes_size)
6634 {
6635 pg_data_t *pgdat = NODE_DATA(nid);
6636 unsigned long start_pfn = 0;
6637 unsigned long end_pfn = 0;
6638
6639 /* pg_data_t should be reset to zero when it's allocated */
6640 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6641
6642 pgdat->node_id = nid;
6643 pgdat->node_start_pfn = node_start_pfn;
6644 pgdat->per_cpu_nodestats = NULL;
6645 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6646 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6647 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6648 (u64)start_pfn << PAGE_SHIFT,
6649 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6650 #else
6651 start_pfn = node_start_pfn;
6652 #endif
6653 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6654 zones_size, zholes_size);
6655
6656 alloc_node_mem_map(pgdat);
6657 pgdat_set_deferred_range(pgdat);
6658
6659 free_area_init_core(pgdat);
6660 }
6661
6662 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6663 /*
6664 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6665 * pages zeroed
6666 */
6667 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6668 {
6669 unsigned long pfn;
6670 u64 pgcnt = 0;
6671
6672 for (pfn = spfn; pfn < epfn; pfn++) {
6673 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6674 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6675 + pageblock_nr_pages - 1;
6676 continue;
6677 }
6678 mm_zero_struct_page(pfn_to_page(pfn));
6679 pgcnt++;
6680 }
6681
6682 return pgcnt;
6683 }
6684
6685 /*
6686 * Only struct pages that are backed by physical memory are zeroed and
6687 * initialized by going through __init_single_page(). But, there are some
6688 * struct pages which are reserved in memblock allocator and their fields
6689 * may be accessed (for example page_to_pfn() on some configuration accesses
6690 * flags). We must explicitly zero those struct pages.
6691 *
6692 * This function also addresses a similar issue where struct pages are left
6693 * uninitialized because the physical address range is not covered by
6694 * memblock.memory or memblock.reserved. That could happen when memblock
6695 * layout is manually configured via memmap=.
6696 */
6697 void __init zero_resv_unavail(void)
6698 {
6699 phys_addr_t start, end;
6700 u64 i, pgcnt;
6701 phys_addr_t next = 0;
6702
6703 /*
6704 * Loop through unavailable ranges not covered by memblock.memory.
6705 */
6706 pgcnt = 0;
6707 for_each_mem_range(i, &memblock.memory, NULL,
6708 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6709 if (next < start)
6710 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6711 next = end;
6712 }
6713 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6714
6715 /*
6716 * Struct pages that do not have backing memory. This could be because
6717 * firmware is using some of this memory, or for some other reasons.
6718 */
6719 if (pgcnt)
6720 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6721 }
6722 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6723
6724 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6725
6726 #if MAX_NUMNODES > 1
6727 /*
6728 * Figure out the number of possible node ids.
6729 */
6730 void __init setup_nr_node_ids(void)
6731 {
6732 unsigned int highest;
6733
6734 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6735 nr_node_ids = highest + 1;
6736 }
6737 #endif
6738
6739 /**
6740 * node_map_pfn_alignment - determine the maximum internode alignment
6741 *
6742 * This function should be called after node map is populated and sorted.
6743 * It calculates the maximum power of two alignment which can distinguish
6744 * all the nodes.
6745 *
6746 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6747 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6748 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6749 * shifted, 1GiB is enough and this function will indicate so.
6750 *
6751 * This is used to test whether pfn -> nid mapping of the chosen memory
6752 * model has fine enough granularity to avoid incorrect mapping for the
6753 * populated node map.
6754 *
6755 * Returns the determined alignment in pfn's. 0 if there is no alignment
6756 * requirement (single node).
6757 */
6758 unsigned long __init node_map_pfn_alignment(void)
6759 {
6760 unsigned long accl_mask = 0, last_end = 0;
6761 unsigned long start, end, mask;
6762 int last_nid = -1;
6763 int i, nid;
6764
6765 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6766 if (!start || last_nid < 0 || last_nid == nid) {
6767 last_nid = nid;
6768 last_end = end;
6769 continue;
6770 }
6771
6772 /*
6773 * Start with a mask granular enough to pin-point to the
6774 * start pfn and tick off bits one-by-one until it becomes
6775 * too coarse to separate the current node from the last.
6776 */
6777 mask = ~((1 << __ffs(start)) - 1);
6778 while (mask && last_end <= (start & (mask << 1)))
6779 mask <<= 1;
6780
6781 /* accumulate all internode masks */
6782 accl_mask |= mask;
6783 }
6784
6785 /* convert mask to number of pages */
6786 return ~accl_mask + 1;
6787 }
6788
6789 /* Find the lowest pfn for a node */
6790 static unsigned long __init find_min_pfn_for_node(int nid)
6791 {
6792 unsigned long min_pfn = ULONG_MAX;
6793 unsigned long start_pfn;
6794 int i;
6795
6796 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6797 min_pfn = min(min_pfn, start_pfn);
6798
6799 if (min_pfn == ULONG_MAX) {
6800 pr_warn("Could not find start_pfn for node %d\n", nid);
6801 return 0;
6802 }
6803
6804 return min_pfn;
6805 }
6806
6807 /**
6808 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6809 *
6810 * It returns the minimum PFN based on information provided via
6811 * memblock_set_node().
6812 */
6813 unsigned long __init find_min_pfn_with_active_regions(void)
6814 {
6815 return find_min_pfn_for_node(MAX_NUMNODES);
6816 }
6817
6818 /*
6819 * early_calculate_totalpages()
6820 * Sum pages in active regions for movable zone.
6821 * Populate N_MEMORY for calculating usable_nodes.
6822 */
6823 static unsigned long __init early_calculate_totalpages(void)
6824 {
6825 unsigned long totalpages = 0;
6826 unsigned long start_pfn, end_pfn;
6827 int i, nid;
6828
6829 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6830 unsigned long pages = end_pfn - start_pfn;
6831
6832 totalpages += pages;
6833 if (pages)
6834 node_set_state(nid, N_MEMORY);
6835 }
6836 return totalpages;
6837 }
6838
6839 /*
6840 * Find the PFN the Movable zone begins in each node. Kernel memory
6841 * is spread evenly between nodes as long as the nodes have enough
6842 * memory. When they don't, some nodes will have more kernelcore than
6843 * others
6844 */
6845 static void __init find_zone_movable_pfns_for_nodes(void)
6846 {
6847 int i, nid;
6848 unsigned long usable_startpfn;
6849 unsigned long kernelcore_node, kernelcore_remaining;
6850 /* save the state before borrow the nodemask */
6851 nodemask_t saved_node_state = node_states[N_MEMORY];
6852 unsigned long totalpages = early_calculate_totalpages();
6853 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6854 struct memblock_region *r;
6855
6856 /* Need to find movable_zone earlier when movable_node is specified. */
6857 find_usable_zone_for_movable();
6858
6859 /*
6860 * If movable_node is specified, ignore kernelcore and movablecore
6861 * options.
6862 */
6863 if (movable_node_is_enabled()) {
6864 for_each_memblock(memory, r) {
6865 if (!memblock_is_hotpluggable(r))
6866 continue;
6867
6868 nid = r->nid;
6869
6870 usable_startpfn = PFN_DOWN(r->base);
6871 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6872 min(usable_startpfn, zone_movable_pfn[nid]) :
6873 usable_startpfn;
6874 }
6875
6876 goto out2;
6877 }
6878
6879 /*
6880 * If kernelcore=mirror is specified, ignore movablecore option
6881 */
6882 if (mirrored_kernelcore) {
6883 bool mem_below_4gb_not_mirrored = false;
6884
6885 for_each_memblock(memory, r) {
6886 if (memblock_is_mirror(r))
6887 continue;
6888
6889 nid = r->nid;
6890
6891 usable_startpfn = memblock_region_memory_base_pfn(r);
6892
6893 if (usable_startpfn < 0x100000) {
6894 mem_below_4gb_not_mirrored = true;
6895 continue;
6896 }
6897
6898 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6899 min(usable_startpfn, zone_movable_pfn[nid]) :
6900 usable_startpfn;
6901 }
6902
6903 if (mem_below_4gb_not_mirrored)
6904 pr_warn("This configuration results in unmirrored kernel memory.");
6905
6906 goto out2;
6907 }
6908
6909 /*
6910 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6911 * amount of necessary memory.
6912 */
6913 if (required_kernelcore_percent)
6914 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6915 10000UL;
6916 if (required_movablecore_percent)
6917 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6918 10000UL;
6919
6920 /*
6921 * If movablecore= was specified, calculate what size of
6922 * kernelcore that corresponds so that memory usable for
6923 * any allocation type is evenly spread. If both kernelcore
6924 * and movablecore are specified, then the value of kernelcore
6925 * will be used for required_kernelcore if it's greater than
6926 * what movablecore would have allowed.
6927 */
6928 if (required_movablecore) {
6929 unsigned long corepages;
6930
6931 /*
6932 * Round-up so that ZONE_MOVABLE is at least as large as what
6933 * was requested by the user
6934 */
6935 required_movablecore =
6936 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6937 required_movablecore = min(totalpages, required_movablecore);
6938 corepages = totalpages - required_movablecore;
6939
6940 required_kernelcore = max(required_kernelcore, corepages);
6941 }
6942
6943 /*
6944 * If kernelcore was not specified or kernelcore size is larger
6945 * than totalpages, there is no ZONE_MOVABLE.
6946 */
6947 if (!required_kernelcore || required_kernelcore >= totalpages)
6948 goto out;
6949
6950 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6951 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6952
6953 restart:
6954 /* Spread kernelcore memory as evenly as possible throughout nodes */
6955 kernelcore_node = required_kernelcore / usable_nodes;
6956 for_each_node_state(nid, N_MEMORY) {
6957 unsigned long start_pfn, end_pfn;
6958
6959 /*
6960 * Recalculate kernelcore_node if the division per node
6961 * now exceeds what is necessary to satisfy the requested
6962 * amount of memory for the kernel
6963 */
6964 if (required_kernelcore < kernelcore_node)
6965 kernelcore_node = required_kernelcore / usable_nodes;
6966
6967 /*
6968 * As the map is walked, we track how much memory is usable
6969 * by the kernel using kernelcore_remaining. When it is
6970 * 0, the rest of the node is usable by ZONE_MOVABLE
6971 */
6972 kernelcore_remaining = kernelcore_node;
6973
6974 /* Go through each range of PFNs within this node */
6975 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6976 unsigned long size_pages;
6977
6978 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6979 if (start_pfn >= end_pfn)
6980 continue;
6981
6982 /* Account for what is only usable for kernelcore */
6983 if (start_pfn < usable_startpfn) {
6984 unsigned long kernel_pages;
6985 kernel_pages = min(end_pfn, usable_startpfn)
6986 - start_pfn;
6987
6988 kernelcore_remaining -= min(kernel_pages,
6989 kernelcore_remaining);
6990 required_kernelcore -= min(kernel_pages,
6991 required_kernelcore);
6992
6993 /* Continue if range is now fully accounted */
6994 if (end_pfn <= usable_startpfn) {
6995
6996 /*
6997 * Push zone_movable_pfn to the end so
6998 * that if we have to rebalance
6999 * kernelcore across nodes, we will
7000 * not double account here
7001 */
7002 zone_movable_pfn[nid] = end_pfn;
7003 continue;
7004 }
7005 start_pfn = usable_startpfn;
7006 }
7007
7008 /*
7009 * The usable PFN range for ZONE_MOVABLE is from
7010 * start_pfn->end_pfn. Calculate size_pages as the
7011 * number of pages used as kernelcore
7012 */
7013 size_pages = end_pfn - start_pfn;
7014 if (size_pages > kernelcore_remaining)
7015 size_pages = kernelcore_remaining;
7016 zone_movable_pfn[nid] = start_pfn + size_pages;
7017
7018 /*
7019 * Some kernelcore has been met, update counts and
7020 * break if the kernelcore for this node has been
7021 * satisfied
7022 */
7023 required_kernelcore -= min(required_kernelcore,
7024 size_pages);
7025 kernelcore_remaining -= size_pages;
7026 if (!kernelcore_remaining)
7027 break;
7028 }
7029 }
7030
7031 /*
7032 * If there is still required_kernelcore, we do another pass with one
7033 * less node in the count. This will push zone_movable_pfn[nid] further
7034 * along on the nodes that still have memory until kernelcore is
7035 * satisfied
7036 */
7037 usable_nodes--;
7038 if (usable_nodes && required_kernelcore > usable_nodes)
7039 goto restart;
7040
7041 out2:
7042 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7043 for (nid = 0; nid < MAX_NUMNODES; nid++)
7044 zone_movable_pfn[nid] =
7045 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7046
7047 out:
7048 /* restore the node_state */
7049 node_states[N_MEMORY] = saved_node_state;
7050 }
7051
7052 /* Any regular or high memory on that node ? */
7053 static void check_for_memory(pg_data_t *pgdat, int nid)
7054 {
7055 enum zone_type zone_type;
7056
7057 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7058 struct zone *zone = &pgdat->node_zones[zone_type];
7059 if (populated_zone(zone)) {
7060 if (IS_ENABLED(CONFIG_HIGHMEM))
7061 node_set_state(nid, N_HIGH_MEMORY);
7062 if (zone_type <= ZONE_NORMAL)
7063 node_set_state(nid, N_NORMAL_MEMORY);
7064 break;
7065 }
7066 }
7067 }
7068
7069 /**
7070 * free_area_init_nodes - Initialise all pg_data_t and zone data
7071 * @max_zone_pfn: an array of max PFNs for each zone
7072 *
7073 * This will call free_area_init_node() for each active node in the system.
7074 * Using the page ranges provided by memblock_set_node(), the size of each
7075 * zone in each node and their holes is calculated. If the maximum PFN
7076 * between two adjacent zones match, it is assumed that the zone is empty.
7077 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7078 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7079 * starts where the previous one ended. For example, ZONE_DMA32 starts
7080 * at arch_max_dma_pfn.
7081 */
7082 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7083 {
7084 unsigned long start_pfn, end_pfn;
7085 int i, nid;
7086
7087 /* Record where the zone boundaries are */
7088 memset(arch_zone_lowest_possible_pfn, 0,
7089 sizeof(arch_zone_lowest_possible_pfn));
7090 memset(arch_zone_highest_possible_pfn, 0,
7091 sizeof(arch_zone_highest_possible_pfn));
7092
7093 start_pfn = find_min_pfn_with_active_regions();
7094
7095 for (i = 0; i < MAX_NR_ZONES; i++) {
7096 if (i == ZONE_MOVABLE)
7097 continue;
7098
7099 end_pfn = max(max_zone_pfn[i], start_pfn);
7100 arch_zone_lowest_possible_pfn[i] = start_pfn;
7101 arch_zone_highest_possible_pfn[i] = end_pfn;
7102
7103 start_pfn = end_pfn;
7104 }
7105
7106 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7107 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7108 find_zone_movable_pfns_for_nodes();
7109
7110 /* Print out the zone ranges */
7111 pr_info("Zone ranges:\n");
7112 for (i = 0; i < MAX_NR_ZONES; i++) {
7113 if (i == ZONE_MOVABLE)
7114 continue;
7115 pr_info(" %-8s ", zone_names[i]);
7116 if (arch_zone_lowest_possible_pfn[i] ==
7117 arch_zone_highest_possible_pfn[i])
7118 pr_cont("empty\n");
7119 else
7120 pr_cont("[mem %#018Lx-%#018Lx]\n",
7121 (u64)arch_zone_lowest_possible_pfn[i]
7122 << PAGE_SHIFT,
7123 ((u64)arch_zone_highest_possible_pfn[i]
7124 << PAGE_SHIFT) - 1);
7125 }
7126
7127 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7128 pr_info("Movable zone start for each node\n");
7129 for (i = 0; i < MAX_NUMNODES; i++) {
7130 if (zone_movable_pfn[i])
7131 pr_info(" Node %d: %#018Lx\n", i,
7132 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7133 }
7134
7135 /* Print out the early node map */
7136 pr_info("Early memory node ranges\n");
7137 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7138 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7139 (u64)start_pfn << PAGE_SHIFT,
7140 ((u64)end_pfn << PAGE_SHIFT) - 1);
7141
7142 /* Initialise every node */
7143 mminit_verify_pageflags_layout();
7144 setup_nr_node_ids();
7145 zero_resv_unavail();
7146 for_each_online_node(nid) {
7147 pg_data_t *pgdat = NODE_DATA(nid);
7148 free_area_init_node(nid, NULL,
7149 find_min_pfn_for_node(nid), NULL);
7150
7151 /* Any memory on that node */
7152 if (pgdat->node_present_pages)
7153 node_set_state(nid, N_MEMORY);
7154 check_for_memory(pgdat, nid);
7155 }
7156 }
7157
7158 static int __init cmdline_parse_core(char *p, unsigned long *core,
7159 unsigned long *percent)
7160 {
7161 unsigned long long coremem;
7162 char *endptr;
7163
7164 if (!p)
7165 return -EINVAL;
7166
7167 /* Value may be a percentage of total memory, otherwise bytes */
7168 coremem = simple_strtoull(p, &endptr, 0);
7169 if (*endptr == '%') {
7170 /* Paranoid check for percent values greater than 100 */
7171 WARN_ON(coremem > 100);
7172
7173 *percent = coremem;
7174 } else {
7175 coremem = memparse(p, &p);
7176 /* Paranoid check that UL is enough for the coremem value */
7177 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7178
7179 *core = coremem >> PAGE_SHIFT;
7180 *percent = 0UL;
7181 }
7182 return 0;
7183 }
7184
7185 /*
7186 * kernelcore=size sets the amount of memory for use for allocations that
7187 * cannot be reclaimed or migrated.
7188 */
7189 static int __init cmdline_parse_kernelcore(char *p)
7190 {
7191 /* parse kernelcore=mirror */
7192 if (parse_option_str(p, "mirror")) {
7193 mirrored_kernelcore = true;
7194 return 0;
7195 }
7196
7197 return cmdline_parse_core(p, &required_kernelcore,
7198 &required_kernelcore_percent);
7199 }
7200
7201 /*
7202 * movablecore=size sets the amount of memory for use for allocations that
7203 * can be reclaimed or migrated.
7204 */
7205 static int __init cmdline_parse_movablecore(char *p)
7206 {
7207 return cmdline_parse_core(p, &required_movablecore,
7208 &required_movablecore_percent);
7209 }
7210
7211 early_param("kernelcore", cmdline_parse_kernelcore);
7212 early_param("movablecore", cmdline_parse_movablecore);
7213
7214 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7215
7216 void adjust_managed_page_count(struct page *page, long count)
7217 {
7218 atomic_long_add(count, &page_zone(page)->managed_pages);
7219 totalram_pages_add(count);
7220 #ifdef CONFIG_HIGHMEM
7221 if (PageHighMem(page))
7222 totalhigh_pages_add(count);
7223 #endif
7224 }
7225 EXPORT_SYMBOL(adjust_managed_page_count);
7226
7227 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7228 {
7229 void *pos;
7230 unsigned long pages = 0;
7231
7232 start = (void *)PAGE_ALIGN((unsigned long)start);
7233 end = (void *)((unsigned long)end & PAGE_MASK);
7234 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7235 struct page *page = virt_to_page(pos);
7236 void *direct_map_addr;
7237
7238 /*
7239 * 'direct_map_addr' might be different from 'pos'
7240 * because some architectures' virt_to_page()
7241 * work with aliases. Getting the direct map
7242 * address ensures that we get a _writeable_
7243 * alias for the memset().
7244 */
7245 direct_map_addr = page_address(page);
7246 if ((unsigned int)poison <= 0xFF)
7247 memset(direct_map_addr, poison, PAGE_SIZE);
7248
7249 free_reserved_page(page);
7250 }
7251
7252 if (pages && s)
7253 pr_info("Freeing %s memory: %ldK\n",
7254 s, pages << (PAGE_SHIFT - 10));
7255
7256 return pages;
7257 }
7258 EXPORT_SYMBOL(free_reserved_area);
7259
7260 #ifdef CONFIG_HIGHMEM
7261 void free_highmem_page(struct page *page)
7262 {
7263 __free_reserved_page(page);
7264 totalram_pages_inc();
7265 atomic_long_inc(&page_zone(page)->managed_pages);
7266 totalhigh_pages_inc();
7267 }
7268 #endif
7269
7270
7271 void __init mem_init_print_info(const char *str)
7272 {
7273 unsigned long physpages, codesize, datasize, rosize, bss_size;
7274 unsigned long init_code_size, init_data_size;
7275
7276 physpages = get_num_physpages();
7277 codesize = _etext - _stext;
7278 datasize = _edata - _sdata;
7279 rosize = __end_rodata - __start_rodata;
7280 bss_size = __bss_stop - __bss_start;
7281 init_data_size = __init_end - __init_begin;
7282 init_code_size = _einittext - _sinittext;
7283
7284 /*
7285 * Detect special cases and adjust section sizes accordingly:
7286 * 1) .init.* may be embedded into .data sections
7287 * 2) .init.text.* may be out of [__init_begin, __init_end],
7288 * please refer to arch/tile/kernel/vmlinux.lds.S.
7289 * 3) .rodata.* may be embedded into .text or .data sections.
7290 */
7291 #define adj_init_size(start, end, size, pos, adj) \
7292 do { \
7293 if (start <= pos && pos < end && size > adj) \
7294 size -= adj; \
7295 } while (0)
7296
7297 adj_init_size(__init_begin, __init_end, init_data_size,
7298 _sinittext, init_code_size);
7299 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7300 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7301 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7302 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7303
7304 #undef adj_init_size
7305
7306 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7307 #ifdef CONFIG_HIGHMEM
7308 ", %luK highmem"
7309 #endif
7310 "%s%s)\n",
7311 nr_free_pages() << (PAGE_SHIFT - 10),
7312 physpages << (PAGE_SHIFT - 10),
7313 codesize >> 10, datasize >> 10, rosize >> 10,
7314 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7315 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7316 totalcma_pages << (PAGE_SHIFT - 10),
7317 #ifdef CONFIG_HIGHMEM
7318 totalhigh_pages() << (PAGE_SHIFT - 10),
7319 #endif
7320 str ? ", " : "", str ? str : "");
7321 }
7322
7323 /**
7324 * set_dma_reserve - set the specified number of pages reserved in the first zone
7325 * @new_dma_reserve: The number of pages to mark reserved
7326 *
7327 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7328 * In the DMA zone, a significant percentage may be consumed by kernel image
7329 * and other unfreeable allocations which can skew the watermarks badly. This
7330 * function may optionally be used to account for unfreeable pages in the
7331 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7332 * smaller per-cpu batchsize.
7333 */
7334 void __init set_dma_reserve(unsigned long new_dma_reserve)
7335 {
7336 dma_reserve = new_dma_reserve;
7337 }
7338
7339 void __init free_area_init(unsigned long *zones_size)
7340 {
7341 zero_resv_unavail();
7342 free_area_init_node(0, zones_size,
7343 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7344 }
7345
7346 static int page_alloc_cpu_dead(unsigned int cpu)
7347 {
7348
7349 lru_add_drain_cpu(cpu);
7350 drain_pages(cpu);
7351
7352 /*
7353 * Spill the event counters of the dead processor
7354 * into the current processors event counters.
7355 * This artificially elevates the count of the current
7356 * processor.
7357 */
7358 vm_events_fold_cpu(cpu);
7359
7360 /*
7361 * Zero the differential counters of the dead processor
7362 * so that the vm statistics are consistent.
7363 *
7364 * This is only okay since the processor is dead and cannot
7365 * race with what we are doing.
7366 */
7367 cpu_vm_stats_fold(cpu);
7368 return 0;
7369 }
7370
7371 void __init page_alloc_init(void)
7372 {
7373 int ret;
7374
7375 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7376 "mm/page_alloc:dead", NULL,
7377 page_alloc_cpu_dead);
7378 WARN_ON(ret < 0);
7379 }
7380
7381 /*
7382 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7383 * or min_free_kbytes changes.
7384 */
7385 static void calculate_totalreserve_pages(void)
7386 {
7387 struct pglist_data *pgdat;
7388 unsigned long reserve_pages = 0;
7389 enum zone_type i, j;
7390
7391 for_each_online_pgdat(pgdat) {
7392
7393 pgdat->totalreserve_pages = 0;
7394
7395 for (i = 0; i < MAX_NR_ZONES; i++) {
7396 struct zone *zone = pgdat->node_zones + i;
7397 long max = 0;
7398 unsigned long managed_pages = zone_managed_pages(zone);
7399
7400 /* Find valid and maximum lowmem_reserve in the zone */
7401 for (j = i; j < MAX_NR_ZONES; j++) {
7402 if (zone->lowmem_reserve[j] > max)
7403 max = zone->lowmem_reserve[j];
7404 }
7405
7406 /* we treat the high watermark as reserved pages. */
7407 max += high_wmark_pages(zone);
7408
7409 if (max > managed_pages)
7410 max = managed_pages;
7411
7412 pgdat->totalreserve_pages += max;
7413
7414 reserve_pages += max;
7415 }
7416 }
7417 totalreserve_pages = reserve_pages;
7418 }
7419
7420 /*
7421 * setup_per_zone_lowmem_reserve - called whenever
7422 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7423 * has a correct pages reserved value, so an adequate number of
7424 * pages are left in the zone after a successful __alloc_pages().
7425 */
7426 static void setup_per_zone_lowmem_reserve(void)
7427 {
7428 struct pglist_data *pgdat;
7429 enum zone_type j, idx;
7430
7431 for_each_online_pgdat(pgdat) {
7432 for (j = 0; j < MAX_NR_ZONES; j++) {
7433 struct zone *zone = pgdat->node_zones + j;
7434 unsigned long managed_pages = zone_managed_pages(zone);
7435
7436 zone->lowmem_reserve[j] = 0;
7437
7438 idx = j;
7439 while (idx) {
7440 struct zone *lower_zone;
7441
7442 idx--;
7443 lower_zone = pgdat->node_zones + idx;
7444
7445 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7446 sysctl_lowmem_reserve_ratio[idx] = 0;
7447 lower_zone->lowmem_reserve[j] = 0;
7448 } else {
7449 lower_zone->lowmem_reserve[j] =
7450 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7451 }
7452 managed_pages += zone_managed_pages(lower_zone);
7453 }
7454 }
7455 }
7456
7457 /* update totalreserve_pages */
7458 calculate_totalreserve_pages();
7459 }
7460
7461 static void __setup_per_zone_wmarks(void)
7462 {
7463 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7464 unsigned long lowmem_pages = 0;
7465 struct zone *zone;
7466 unsigned long flags;
7467
7468 /* Calculate total number of !ZONE_HIGHMEM pages */
7469 for_each_zone(zone) {
7470 if (!is_highmem(zone))
7471 lowmem_pages += zone_managed_pages(zone);
7472 }
7473
7474 for_each_zone(zone) {
7475 u64 tmp;
7476
7477 spin_lock_irqsave(&zone->lock, flags);
7478 tmp = (u64)pages_min * zone_managed_pages(zone);
7479 do_div(tmp, lowmem_pages);
7480 if (is_highmem(zone)) {
7481 /*
7482 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7483 * need highmem pages, so cap pages_min to a small
7484 * value here.
7485 *
7486 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7487 * deltas control asynch page reclaim, and so should
7488 * not be capped for highmem.
7489 */
7490 unsigned long min_pages;
7491
7492 min_pages = zone_managed_pages(zone) / 1024;
7493 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7494 zone->_watermark[WMARK_MIN] = min_pages;
7495 } else {
7496 /*
7497 * If it's a lowmem zone, reserve a number of pages
7498 * proportionate to the zone's size.
7499 */
7500 zone->_watermark[WMARK_MIN] = tmp;
7501 }
7502
7503 /*
7504 * Set the kswapd watermarks distance according to the
7505 * scale factor in proportion to available memory, but
7506 * ensure a minimum size on small systems.
7507 */
7508 tmp = max_t(u64, tmp >> 2,
7509 mult_frac(zone_managed_pages(zone),
7510 watermark_scale_factor, 10000));
7511
7512 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7513 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7514 zone->watermark_boost = 0;
7515
7516 spin_unlock_irqrestore(&zone->lock, flags);
7517 }
7518
7519 /* update totalreserve_pages */
7520 calculate_totalreserve_pages();
7521 }
7522
7523 /**
7524 * setup_per_zone_wmarks - called when min_free_kbytes changes
7525 * or when memory is hot-{added|removed}
7526 *
7527 * Ensures that the watermark[min,low,high] values for each zone are set
7528 * correctly with respect to min_free_kbytes.
7529 */
7530 void setup_per_zone_wmarks(void)
7531 {
7532 static DEFINE_SPINLOCK(lock);
7533
7534 spin_lock(&lock);
7535 __setup_per_zone_wmarks();
7536 spin_unlock(&lock);
7537 }
7538
7539 /*
7540 * Initialise min_free_kbytes.
7541 *
7542 * For small machines we want it small (128k min). For large machines
7543 * we want it large (64MB max). But it is not linear, because network
7544 * bandwidth does not increase linearly with machine size. We use
7545 *
7546 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7547 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7548 *
7549 * which yields
7550 *
7551 * 16MB: 512k
7552 * 32MB: 724k
7553 * 64MB: 1024k
7554 * 128MB: 1448k
7555 * 256MB: 2048k
7556 * 512MB: 2896k
7557 * 1024MB: 4096k
7558 * 2048MB: 5792k
7559 * 4096MB: 8192k
7560 * 8192MB: 11584k
7561 * 16384MB: 16384k
7562 */
7563 int __meminit init_per_zone_wmark_min(void)
7564 {
7565 unsigned long lowmem_kbytes;
7566 int new_min_free_kbytes;
7567
7568 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7569 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7570
7571 if (new_min_free_kbytes > user_min_free_kbytes) {
7572 min_free_kbytes = new_min_free_kbytes;
7573 if (min_free_kbytes < 128)
7574 min_free_kbytes = 128;
7575 if (min_free_kbytes > 65536)
7576 min_free_kbytes = 65536;
7577 } else {
7578 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7579 new_min_free_kbytes, user_min_free_kbytes);
7580 }
7581 setup_per_zone_wmarks();
7582 refresh_zone_stat_thresholds();
7583 setup_per_zone_lowmem_reserve();
7584
7585 #ifdef CONFIG_NUMA
7586 setup_min_unmapped_ratio();
7587 setup_min_slab_ratio();
7588 #endif
7589
7590 return 0;
7591 }
7592 core_initcall(init_per_zone_wmark_min)
7593
7594 /*
7595 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7596 * that we can call two helper functions whenever min_free_kbytes
7597 * changes.
7598 */
7599 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7600 void __user *buffer, size_t *length, loff_t *ppos)
7601 {
7602 int rc;
7603
7604 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7605 if (rc)
7606 return rc;
7607
7608 if (write) {
7609 user_min_free_kbytes = min_free_kbytes;
7610 setup_per_zone_wmarks();
7611 }
7612 return 0;
7613 }
7614
7615 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7616 void __user *buffer, size_t *length, loff_t *ppos)
7617 {
7618 int rc;
7619
7620 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7621 if (rc)
7622 return rc;
7623
7624 return 0;
7625 }
7626
7627 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7628 void __user *buffer, size_t *length, loff_t *ppos)
7629 {
7630 int rc;
7631
7632 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7633 if (rc)
7634 return rc;
7635
7636 if (write)
7637 setup_per_zone_wmarks();
7638
7639 return 0;
7640 }
7641
7642 #ifdef CONFIG_NUMA
7643 static void setup_min_unmapped_ratio(void)
7644 {
7645 pg_data_t *pgdat;
7646 struct zone *zone;
7647
7648 for_each_online_pgdat(pgdat)
7649 pgdat->min_unmapped_pages = 0;
7650
7651 for_each_zone(zone)
7652 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7653 sysctl_min_unmapped_ratio) / 100;
7654 }
7655
7656
7657 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7658 void __user *buffer, size_t *length, loff_t *ppos)
7659 {
7660 int rc;
7661
7662 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7663 if (rc)
7664 return rc;
7665
7666 setup_min_unmapped_ratio();
7667
7668 return 0;
7669 }
7670
7671 static void setup_min_slab_ratio(void)
7672 {
7673 pg_data_t *pgdat;
7674 struct zone *zone;
7675
7676 for_each_online_pgdat(pgdat)
7677 pgdat->min_slab_pages = 0;
7678
7679 for_each_zone(zone)
7680 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7681 sysctl_min_slab_ratio) / 100;
7682 }
7683
7684 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7685 void __user *buffer, size_t *length, loff_t *ppos)
7686 {
7687 int rc;
7688
7689 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7690 if (rc)
7691 return rc;
7692
7693 setup_min_slab_ratio();
7694
7695 return 0;
7696 }
7697 #endif
7698
7699 /*
7700 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7701 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7702 * whenever sysctl_lowmem_reserve_ratio changes.
7703 *
7704 * The reserve ratio obviously has absolutely no relation with the
7705 * minimum watermarks. The lowmem reserve ratio can only make sense
7706 * if in function of the boot time zone sizes.
7707 */
7708 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7709 void __user *buffer, size_t *length, loff_t *ppos)
7710 {
7711 proc_dointvec_minmax(table, write, buffer, length, ppos);
7712 setup_per_zone_lowmem_reserve();
7713 return 0;
7714 }
7715
7716 /*
7717 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7718 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7719 * pagelist can have before it gets flushed back to buddy allocator.
7720 */
7721 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7722 void __user *buffer, size_t *length, loff_t *ppos)
7723 {
7724 struct zone *zone;
7725 int old_percpu_pagelist_fraction;
7726 int ret;
7727
7728 mutex_lock(&pcp_batch_high_lock);
7729 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7730
7731 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7732 if (!write || ret < 0)
7733 goto out;
7734
7735 /* Sanity checking to avoid pcp imbalance */
7736 if (percpu_pagelist_fraction &&
7737 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7738 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7739 ret = -EINVAL;
7740 goto out;
7741 }
7742
7743 /* No change? */
7744 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7745 goto out;
7746
7747 for_each_populated_zone(zone) {
7748 unsigned int cpu;
7749
7750 for_each_possible_cpu(cpu)
7751 pageset_set_high_and_batch(zone,
7752 per_cpu_ptr(zone->pageset, cpu));
7753 }
7754 out:
7755 mutex_unlock(&pcp_batch_high_lock);
7756 return ret;
7757 }
7758
7759 #ifdef CONFIG_NUMA
7760 int hashdist = HASHDIST_DEFAULT;
7761
7762 static int __init set_hashdist(char *str)
7763 {
7764 if (!str)
7765 return 0;
7766 hashdist = simple_strtoul(str, &str, 0);
7767 return 1;
7768 }
7769 __setup("hashdist=", set_hashdist);
7770 #endif
7771
7772 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7773 /*
7774 * Returns the number of pages that arch has reserved but
7775 * is not known to alloc_large_system_hash().
7776 */
7777 static unsigned long __init arch_reserved_kernel_pages(void)
7778 {
7779 return 0;
7780 }
7781 #endif
7782
7783 /*
7784 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7785 * machines. As memory size is increased the scale is also increased but at
7786 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7787 * quadruples the scale is increased by one, which means the size of hash table
7788 * only doubles, instead of quadrupling as well.
7789 * Because 32-bit systems cannot have large physical memory, where this scaling
7790 * makes sense, it is disabled on such platforms.
7791 */
7792 #if __BITS_PER_LONG > 32
7793 #define ADAPT_SCALE_BASE (64ul << 30)
7794 #define ADAPT_SCALE_SHIFT 2
7795 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7796 #endif
7797
7798 /*
7799 * allocate a large system hash table from bootmem
7800 * - it is assumed that the hash table must contain an exact power-of-2
7801 * quantity of entries
7802 * - limit is the number of hash buckets, not the total allocation size
7803 */
7804 void *__init alloc_large_system_hash(const char *tablename,
7805 unsigned long bucketsize,
7806 unsigned long numentries,
7807 int scale,
7808 int flags,
7809 unsigned int *_hash_shift,
7810 unsigned int *_hash_mask,
7811 unsigned long low_limit,
7812 unsigned long high_limit)
7813 {
7814 unsigned long long max = high_limit;
7815 unsigned long log2qty, size;
7816 void *table = NULL;
7817 gfp_t gfp_flags;
7818
7819 /* allow the kernel cmdline to have a say */
7820 if (!numentries) {
7821 /* round applicable memory size up to nearest megabyte */
7822 numentries = nr_kernel_pages;
7823 numentries -= arch_reserved_kernel_pages();
7824
7825 /* It isn't necessary when PAGE_SIZE >= 1MB */
7826 if (PAGE_SHIFT < 20)
7827 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7828
7829 #if __BITS_PER_LONG > 32
7830 if (!high_limit) {
7831 unsigned long adapt;
7832
7833 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7834 adapt <<= ADAPT_SCALE_SHIFT)
7835 scale++;
7836 }
7837 #endif
7838
7839 /* limit to 1 bucket per 2^scale bytes of low memory */
7840 if (scale > PAGE_SHIFT)
7841 numentries >>= (scale - PAGE_SHIFT);
7842 else
7843 numentries <<= (PAGE_SHIFT - scale);
7844
7845 /* Make sure we've got at least a 0-order allocation.. */
7846 if (unlikely(flags & HASH_SMALL)) {
7847 /* Makes no sense without HASH_EARLY */
7848 WARN_ON(!(flags & HASH_EARLY));
7849 if (!(numentries >> *_hash_shift)) {
7850 numentries = 1UL << *_hash_shift;
7851 BUG_ON(!numentries);
7852 }
7853 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7854 numentries = PAGE_SIZE / bucketsize;
7855 }
7856 numentries = roundup_pow_of_two(numentries);
7857
7858 /* limit allocation size to 1/16 total memory by default */
7859 if (max == 0) {
7860 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7861 do_div(max, bucketsize);
7862 }
7863 max = min(max, 0x80000000ULL);
7864
7865 if (numentries < low_limit)
7866 numentries = low_limit;
7867 if (numentries > max)
7868 numentries = max;
7869
7870 log2qty = ilog2(numentries);
7871
7872 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7873 do {
7874 size = bucketsize << log2qty;
7875 if (flags & HASH_EARLY) {
7876 if (flags & HASH_ZERO)
7877 table = memblock_alloc_nopanic(size,
7878 SMP_CACHE_BYTES);
7879 else
7880 table = memblock_alloc_raw(size,
7881 SMP_CACHE_BYTES);
7882 } else if (hashdist) {
7883 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7884 } else {
7885 /*
7886 * If bucketsize is not a power-of-two, we may free
7887 * some pages at the end of hash table which
7888 * alloc_pages_exact() automatically does
7889 */
7890 if (get_order(size) < MAX_ORDER) {
7891 table = alloc_pages_exact(size, gfp_flags);
7892 kmemleak_alloc(table, size, 1, gfp_flags);
7893 }
7894 }
7895 } while (!table && size > PAGE_SIZE && --log2qty);
7896
7897 if (!table)
7898 panic("Failed to allocate %s hash table\n", tablename);
7899
7900 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7901 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7902
7903 if (_hash_shift)
7904 *_hash_shift = log2qty;
7905 if (_hash_mask)
7906 *_hash_mask = (1 << log2qty) - 1;
7907
7908 return table;
7909 }
7910
7911 /*
7912 * This function checks whether pageblock includes unmovable pages or not.
7913 * If @count is not zero, it is okay to include less @count unmovable pages
7914 *
7915 * PageLRU check without isolation or lru_lock could race so that
7916 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7917 * check without lock_page also may miss some movable non-lru pages at
7918 * race condition. So you can't expect this function should be exact.
7919 */
7920 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7921 int migratetype, int flags)
7922 {
7923 unsigned long pfn, iter, found;
7924
7925 /*
7926 * TODO we could make this much more efficient by not checking every
7927 * page in the range if we know all of them are in MOVABLE_ZONE and
7928 * that the movable zone guarantees that pages are migratable but
7929 * the later is not the case right now unfortunatelly. E.g. movablecore
7930 * can still lead to having bootmem allocations in zone_movable.
7931 */
7932
7933 /*
7934 * CMA allocations (alloc_contig_range) really need to mark isolate
7935 * CMA pageblocks even when they are not movable in fact so consider
7936 * them movable here.
7937 */
7938 if (is_migrate_cma(migratetype) &&
7939 is_migrate_cma(get_pageblock_migratetype(page)))
7940 return false;
7941
7942 pfn = page_to_pfn(page);
7943 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7944 unsigned long check = pfn + iter;
7945
7946 if (!pfn_valid_within(check))
7947 continue;
7948
7949 page = pfn_to_page(check);
7950
7951 if (PageReserved(page))
7952 goto unmovable;
7953
7954 /*
7955 * If the zone is movable and we have ruled out all reserved
7956 * pages then it should be reasonably safe to assume the rest
7957 * is movable.
7958 */
7959 if (zone_idx(zone) == ZONE_MOVABLE)
7960 continue;
7961
7962 /*
7963 * Hugepages are not in LRU lists, but they're movable.
7964 * We need not scan over tail pages bacause we don't
7965 * handle each tail page individually in migration.
7966 */
7967 if (PageHuge(page)) {
7968 struct page *head = compound_head(page);
7969 unsigned int skip_pages;
7970
7971 if (!hugepage_migration_supported(page_hstate(head)))
7972 goto unmovable;
7973
7974 skip_pages = (1 << compound_order(head)) - (page - head);
7975 iter += skip_pages - 1;
7976 continue;
7977 }
7978
7979 /*
7980 * We can't use page_count without pin a page
7981 * because another CPU can free compound page.
7982 * This check already skips compound tails of THP
7983 * because their page->_refcount is zero at all time.
7984 */
7985 if (!page_ref_count(page)) {
7986 if (PageBuddy(page))
7987 iter += (1 << page_order(page)) - 1;
7988 continue;
7989 }
7990
7991 /*
7992 * The HWPoisoned page may be not in buddy system, and
7993 * page_count() is not 0.
7994 */
7995 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
7996 continue;
7997
7998 if (__PageMovable(page))
7999 continue;
8000
8001 if (!PageLRU(page))
8002 found++;
8003 /*
8004 * If there are RECLAIMABLE pages, we need to check
8005 * it. But now, memory offline itself doesn't call
8006 * shrink_node_slabs() and it still to be fixed.
8007 */
8008 /*
8009 * If the page is not RAM, page_count()should be 0.
8010 * we don't need more check. This is an _used_ not-movable page.
8011 *
8012 * The problematic thing here is PG_reserved pages. PG_reserved
8013 * is set to both of a memory hole page and a _used_ kernel
8014 * page at boot.
8015 */
8016 if (found > count)
8017 goto unmovable;
8018 }
8019 return false;
8020 unmovable:
8021 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8022 if (flags & REPORT_FAILURE)
8023 dump_page(pfn_to_page(pfn+iter), "unmovable page");
8024 return true;
8025 }
8026
8027 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
8028
8029 static unsigned long pfn_max_align_down(unsigned long pfn)
8030 {
8031 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8032 pageblock_nr_pages) - 1);
8033 }
8034
8035 static unsigned long pfn_max_align_up(unsigned long pfn)
8036 {
8037 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8038 pageblock_nr_pages));
8039 }
8040
8041 /* [start, end) must belong to a single zone. */
8042 static int __alloc_contig_migrate_range(struct compact_control *cc,
8043 unsigned long start, unsigned long end)
8044 {
8045 /* This function is based on compact_zone() from compaction.c. */
8046 unsigned long nr_reclaimed;
8047 unsigned long pfn = start;
8048 unsigned int tries = 0;
8049 int ret = 0;
8050
8051 migrate_prep();
8052
8053 while (pfn < end || !list_empty(&cc->migratepages)) {
8054 if (fatal_signal_pending(current)) {
8055 ret = -EINTR;
8056 break;
8057 }
8058
8059 if (list_empty(&cc->migratepages)) {
8060 cc->nr_migratepages = 0;
8061 pfn = isolate_migratepages_range(cc, pfn, end);
8062 if (!pfn) {
8063 ret = -EINTR;
8064 break;
8065 }
8066 tries = 0;
8067 } else if (++tries == 5) {
8068 ret = ret < 0 ? ret : -EBUSY;
8069 break;
8070 }
8071
8072 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8073 &cc->migratepages);
8074 cc->nr_migratepages -= nr_reclaimed;
8075
8076 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8077 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8078 }
8079 if (ret < 0) {
8080 putback_movable_pages(&cc->migratepages);
8081 return ret;
8082 }
8083 return 0;
8084 }
8085
8086 /**
8087 * alloc_contig_range() -- tries to allocate given range of pages
8088 * @start: start PFN to allocate
8089 * @end: one-past-the-last PFN to allocate
8090 * @migratetype: migratetype of the underlaying pageblocks (either
8091 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8092 * in range must have the same migratetype and it must
8093 * be either of the two.
8094 * @gfp_mask: GFP mask to use during compaction
8095 *
8096 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8097 * aligned. The PFN range must belong to a single zone.
8098 *
8099 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8100 * pageblocks in the range. Once isolated, the pageblocks should not
8101 * be modified by others.
8102 *
8103 * Returns zero on success or negative error code. On success all
8104 * pages which PFN is in [start, end) are allocated for the caller and
8105 * need to be freed with free_contig_range().
8106 */
8107 int alloc_contig_range(unsigned long start, unsigned long end,
8108 unsigned migratetype, gfp_t gfp_mask)
8109 {
8110 unsigned long outer_start, outer_end;
8111 unsigned int order;
8112 int ret = 0;
8113
8114 struct compact_control cc = {
8115 .nr_migratepages = 0,
8116 .order = -1,
8117 .zone = page_zone(pfn_to_page(start)),
8118 .mode = MIGRATE_SYNC,
8119 .ignore_skip_hint = true,
8120 .no_set_skip_hint = true,
8121 .gfp_mask = current_gfp_context(gfp_mask),
8122 };
8123 INIT_LIST_HEAD(&cc.migratepages);
8124
8125 /*
8126 * What we do here is we mark all pageblocks in range as
8127 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8128 * have different sizes, and due to the way page allocator
8129 * work, we align the range to biggest of the two pages so
8130 * that page allocator won't try to merge buddies from
8131 * different pageblocks and change MIGRATE_ISOLATE to some
8132 * other migration type.
8133 *
8134 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8135 * migrate the pages from an unaligned range (ie. pages that
8136 * we are interested in). This will put all the pages in
8137 * range back to page allocator as MIGRATE_ISOLATE.
8138 *
8139 * When this is done, we take the pages in range from page
8140 * allocator removing them from the buddy system. This way
8141 * page allocator will never consider using them.
8142 *
8143 * This lets us mark the pageblocks back as
8144 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8145 * aligned range but not in the unaligned, original range are
8146 * put back to page allocator so that buddy can use them.
8147 */
8148
8149 ret = start_isolate_page_range(pfn_max_align_down(start),
8150 pfn_max_align_up(end), migratetype, 0);
8151 if (ret)
8152 return ret;
8153
8154 /*
8155 * In case of -EBUSY, we'd like to know which page causes problem.
8156 * So, just fall through. test_pages_isolated() has a tracepoint
8157 * which will report the busy page.
8158 *
8159 * It is possible that busy pages could become available before
8160 * the call to test_pages_isolated, and the range will actually be
8161 * allocated. So, if we fall through be sure to clear ret so that
8162 * -EBUSY is not accidentally used or returned to caller.
8163 */
8164 ret = __alloc_contig_migrate_range(&cc, start, end);
8165 if (ret && ret != -EBUSY)
8166 goto done;
8167 ret =0;
8168
8169 /*
8170 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8171 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8172 * more, all pages in [start, end) are free in page allocator.
8173 * What we are going to do is to allocate all pages from
8174 * [start, end) (that is remove them from page allocator).
8175 *
8176 * The only problem is that pages at the beginning and at the
8177 * end of interesting range may be not aligned with pages that
8178 * page allocator holds, ie. they can be part of higher order
8179 * pages. Because of this, we reserve the bigger range and
8180 * once this is done free the pages we are not interested in.
8181 *
8182 * We don't have to hold zone->lock here because the pages are
8183 * isolated thus they won't get removed from buddy.
8184 */
8185
8186 lru_add_drain_all();
8187 drain_all_pages(cc.zone);
8188
8189 order = 0;
8190 outer_start = start;
8191 while (!PageBuddy(pfn_to_page(outer_start))) {
8192 if (++order >= MAX_ORDER) {
8193 outer_start = start;
8194 break;
8195 }
8196 outer_start &= ~0UL << order;
8197 }
8198
8199 if (outer_start != start) {
8200 order = page_order(pfn_to_page(outer_start));
8201
8202 /*
8203 * outer_start page could be small order buddy page and
8204 * it doesn't include start page. Adjust outer_start
8205 * in this case to report failed page properly
8206 * on tracepoint in test_pages_isolated()
8207 */
8208 if (outer_start + (1UL << order) <= start)
8209 outer_start = start;
8210 }
8211
8212 /* Make sure the range is really isolated. */
8213 if (test_pages_isolated(outer_start, end, false)) {
8214 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8215 __func__, outer_start, end);
8216 ret = -EBUSY;
8217 goto done;
8218 }
8219
8220 /* Grab isolated pages from freelists. */
8221 outer_end = isolate_freepages_range(&cc, outer_start, end);
8222 if (!outer_end) {
8223 ret = -EBUSY;
8224 goto done;
8225 }
8226
8227 /* Free head and tail (if any) */
8228 if (start != outer_start)
8229 free_contig_range(outer_start, start - outer_start);
8230 if (end != outer_end)
8231 free_contig_range(end, outer_end - end);
8232
8233 done:
8234 undo_isolate_page_range(pfn_max_align_down(start),
8235 pfn_max_align_up(end), migratetype);
8236 return ret;
8237 }
8238
8239 void free_contig_range(unsigned long pfn, unsigned nr_pages)
8240 {
8241 unsigned int count = 0;
8242
8243 for (; nr_pages--; pfn++) {
8244 struct page *page = pfn_to_page(pfn);
8245
8246 count += page_count(page) != 1;
8247 __free_page(page);
8248 }
8249 WARN(count != 0, "%d pages are still in use!\n", count);
8250 }
8251 #endif
8252
8253 #ifdef CONFIG_MEMORY_HOTPLUG
8254 /*
8255 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8256 * page high values need to be recalulated.
8257 */
8258 void __meminit zone_pcp_update(struct zone *zone)
8259 {
8260 unsigned cpu;
8261 mutex_lock(&pcp_batch_high_lock);
8262 for_each_possible_cpu(cpu)
8263 pageset_set_high_and_batch(zone,
8264 per_cpu_ptr(zone->pageset, cpu));
8265 mutex_unlock(&pcp_batch_high_lock);
8266 }
8267 #endif
8268
8269 void zone_pcp_reset(struct zone *zone)
8270 {
8271 unsigned long flags;
8272 int cpu;
8273 struct per_cpu_pageset *pset;
8274
8275 /* avoid races with drain_pages() */
8276 local_irq_save(flags);
8277 if (zone->pageset != &boot_pageset) {
8278 for_each_online_cpu(cpu) {
8279 pset = per_cpu_ptr(zone->pageset, cpu);
8280 drain_zonestat(zone, pset);
8281 }
8282 free_percpu(zone->pageset);
8283 zone->pageset = &boot_pageset;
8284 }
8285 local_irq_restore(flags);
8286 }
8287
8288 #ifdef CONFIG_MEMORY_HOTREMOVE
8289 /*
8290 * All pages in the range must be in a single zone and isolated
8291 * before calling this.
8292 */
8293 void
8294 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8295 {
8296 struct page *page;
8297 struct zone *zone;
8298 unsigned int order, i;
8299 unsigned long pfn;
8300 unsigned long flags;
8301 /* find the first valid pfn */
8302 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8303 if (pfn_valid(pfn))
8304 break;
8305 if (pfn == end_pfn)
8306 return;
8307 offline_mem_sections(pfn, end_pfn);
8308 zone = page_zone(pfn_to_page(pfn));
8309 spin_lock_irqsave(&zone->lock, flags);
8310 pfn = start_pfn;
8311 while (pfn < end_pfn) {
8312 if (!pfn_valid(pfn)) {
8313 pfn++;
8314 continue;
8315 }
8316 page = pfn_to_page(pfn);
8317 /*
8318 * The HWPoisoned page may be not in buddy system, and
8319 * page_count() is not 0.
8320 */
8321 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8322 pfn++;
8323 SetPageReserved(page);
8324 continue;
8325 }
8326
8327 BUG_ON(page_count(page));
8328 BUG_ON(!PageBuddy(page));
8329 order = page_order(page);
8330 #ifdef CONFIG_DEBUG_VM
8331 pr_info("remove from free list %lx %d %lx\n",
8332 pfn, 1 << order, end_pfn);
8333 #endif
8334 list_del(&page->lru);
8335 rmv_page_order(page);
8336 zone->free_area[order].nr_free--;
8337 for (i = 0; i < (1 << order); i++)
8338 SetPageReserved((page+i));
8339 pfn += (1 << order);
8340 }
8341 spin_unlock_irqrestore(&zone->lock, flags);
8342 }
8343 #endif
8344
8345 bool is_free_buddy_page(struct page *page)
8346 {
8347 struct zone *zone = page_zone(page);
8348 unsigned long pfn = page_to_pfn(page);
8349 unsigned long flags;
8350 unsigned int order;
8351
8352 spin_lock_irqsave(&zone->lock, flags);
8353 for (order = 0; order < MAX_ORDER; order++) {
8354 struct page *page_head = page - (pfn & ((1 << order) - 1));
8355
8356 if (PageBuddy(page_head) && page_order(page_head) >= order)
8357 break;
8358 }
8359 spin_unlock_irqrestore(&zone->lock, flags);
8360
8361 return order < MAX_ORDER;
8362 }
8363
8364 #ifdef CONFIG_MEMORY_FAILURE
8365 /*
8366 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8367 * test is performed under the zone lock to prevent a race against page
8368 * allocation.
8369 */
8370 bool set_hwpoison_free_buddy_page(struct page *page)
8371 {
8372 struct zone *zone = page_zone(page);
8373 unsigned long pfn = page_to_pfn(page);
8374 unsigned long flags;
8375 unsigned int order;
8376 bool hwpoisoned = false;
8377
8378 spin_lock_irqsave(&zone->lock, flags);
8379 for (order = 0; order < MAX_ORDER; order++) {
8380 struct page *page_head = page - (pfn & ((1 << order) - 1));
8381
8382 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8383 if (!TestSetPageHWPoison(page))
8384 hwpoisoned = true;
8385 break;
8386 }
8387 }
8388 spin_unlock_irqrestore(&zone->lock, flags);
8389
8390 return hwpoisoned;
8391 }
8392 #endif