]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/rmap.c
mm anon rmap: remove anon_vma_moveto_tail
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->mutex
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
39 *
40 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
43 */
44
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59
60 #include <asm/tlbflush.h>
61
62 #include "internal.h"
63
64 static struct kmem_cache *anon_vma_cachep;
65 static struct kmem_cache *anon_vma_chain_cachep;
66
67 static inline struct anon_vma *anon_vma_alloc(void)
68 {
69 struct anon_vma *anon_vma;
70
71 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
72 if (anon_vma) {
73 atomic_set(&anon_vma->refcount, 1);
74 /*
75 * Initialise the anon_vma root to point to itself. If called
76 * from fork, the root will be reset to the parents anon_vma.
77 */
78 anon_vma->root = anon_vma;
79 }
80
81 return anon_vma;
82 }
83
84 static inline void anon_vma_free(struct anon_vma *anon_vma)
85 {
86 VM_BUG_ON(atomic_read(&anon_vma->refcount));
87
88 /*
89 * Synchronize against page_lock_anon_vma() such that
90 * we can safely hold the lock without the anon_vma getting
91 * freed.
92 *
93 * Relies on the full mb implied by the atomic_dec_and_test() from
94 * put_anon_vma() against the acquire barrier implied by
95 * mutex_trylock() from page_lock_anon_vma(). This orders:
96 *
97 * page_lock_anon_vma() VS put_anon_vma()
98 * mutex_trylock() atomic_dec_and_test()
99 * LOCK MB
100 * atomic_read() mutex_is_locked()
101 *
102 * LOCK should suffice since the actual taking of the lock must
103 * happen _before_ what follows.
104 */
105 if (mutex_is_locked(&anon_vma->root->mutex)) {
106 anon_vma_lock(anon_vma);
107 anon_vma_unlock(anon_vma);
108 }
109
110 kmem_cache_free(anon_vma_cachep, anon_vma);
111 }
112
113 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
114 {
115 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
116 }
117
118 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
119 {
120 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
121 }
122
123 static void anon_vma_chain_link(struct vm_area_struct *vma,
124 struct anon_vma_chain *avc,
125 struct anon_vma *anon_vma)
126 {
127 avc->vma = vma;
128 avc->anon_vma = anon_vma;
129 list_add(&avc->same_vma, &vma->anon_vma_chain);
130
131 /*
132 * It's critical to add new vmas to the tail of the anon_vma,
133 * see comment in huge_memory.c:__split_huge_page().
134 */
135 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
136 }
137
138 /**
139 * anon_vma_prepare - attach an anon_vma to a memory region
140 * @vma: the memory region in question
141 *
142 * This makes sure the memory mapping described by 'vma' has
143 * an 'anon_vma' attached to it, so that we can associate the
144 * anonymous pages mapped into it with that anon_vma.
145 *
146 * The common case will be that we already have one, but if
147 * not we either need to find an adjacent mapping that we
148 * can re-use the anon_vma from (very common when the only
149 * reason for splitting a vma has been mprotect()), or we
150 * allocate a new one.
151 *
152 * Anon-vma allocations are very subtle, because we may have
153 * optimistically looked up an anon_vma in page_lock_anon_vma()
154 * and that may actually touch the spinlock even in the newly
155 * allocated vma (it depends on RCU to make sure that the
156 * anon_vma isn't actually destroyed).
157 *
158 * As a result, we need to do proper anon_vma locking even
159 * for the new allocation. At the same time, we do not want
160 * to do any locking for the common case of already having
161 * an anon_vma.
162 *
163 * This must be called with the mmap_sem held for reading.
164 */
165 int anon_vma_prepare(struct vm_area_struct *vma)
166 {
167 struct anon_vma *anon_vma = vma->anon_vma;
168 struct anon_vma_chain *avc;
169
170 might_sleep();
171 if (unlikely(!anon_vma)) {
172 struct mm_struct *mm = vma->vm_mm;
173 struct anon_vma *allocated;
174
175 avc = anon_vma_chain_alloc(GFP_KERNEL);
176 if (!avc)
177 goto out_enomem;
178
179 anon_vma = find_mergeable_anon_vma(vma);
180 allocated = NULL;
181 if (!anon_vma) {
182 anon_vma = anon_vma_alloc();
183 if (unlikely(!anon_vma))
184 goto out_enomem_free_avc;
185 allocated = anon_vma;
186 }
187
188 anon_vma_lock(anon_vma);
189 /* page_table_lock to protect against threads */
190 spin_lock(&mm->page_table_lock);
191 if (likely(!vma->anon_vma)) {
192 vma->anon_vma = anon_vma;
193 anon_vma_chain_link(vma, avc, anon_vma);
194 allocated = NULL;
195 avc = NULL;
196 }
197 spin_unlock(&mm->page_table_lock);
198 anon_vma_unlock(anon_vma);
199
200 if (unlikely(allocated))
201 put_anon_vma(allocated);
202 if (unlikely(avc))
203 anon_vma_chain_free(avc);
204 }
205 return 0;
206
207 out_enomem_free_avc:
208 anon_vma_chain_free(avc);
209 out_enomem:
210 return -ENOMEM;
211 }
212
213 /*
214 * This is a useful helper function for locking the anon_vma root as
215 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
216 * have the same vma.
217 *
218 * Such anon_vma's should have the same root, so you'd expect to see
219 * just a single mutex_lock for the whole traversal.
220 */
221 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
222 {
223 struct anon_vma *new_root = anon_vma->root;
224 if (new_root != root) {
225 if (WARN_ON_ONCE(root))
226 mutex_unlock(&root->mutex);
227 root = new_root;
228 mutex_lock(&root->mutex);
229 }
230 return root;
231 }
232
233 static inline void unlock_anon_vma_root(struct anon_vma *root)
234 {
235 if (root)
236 mutex_unlock(&root->mutex);
237 }
238
239 /*
240 * Attach the anon_vmas from src to dst.
241 * Returns 0 on success, -ENOMEM on failure.
242 */
243 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
244 {
245 struct anon_vma_chain *avc, *pavc;
246 struct anon_vma *root = NULL;
247
248 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
249 struct anon_vma *anon_vma;
250
251 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
252 if (unlikely(!avc)) {
253 unlock_anon_vma_root(root);
254 root = NULL;
255 avc = anon_vma_chain_alloc(GFP_KERNEL);
256 if (!avc)
257 goto enomem_failure;
258 }
259 anon_vma = pavc->anon_vma;
260 root = lock_anon_vma_root(root, anon_vma);
261 anon_vma_chain_link(dst, avc, anon_vma);
262 }
263 unlock_anon_vma_root(root);
264 return 0;
265
266 enomem_failure:
267 unlink_anon_vmas(dst);
268 return -ENOMEM;
269 }
270
271 /*
272 * Attach vma to its own anon_vma, as well as to the anon_vmas that
273 * the corresponding VMA in the parent process is attached to.
274 * Returns 0 on success, non-zero on failure.
275 */
276 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
277 {
278 struct anon_vma_chain *avc;
279 struct anon_vma *anon_vma;
280
281 /* Don't bother if the parent process has no anon_vma here. */
282 if (!pvma->anon_vma)
283 return 0;
284
285 /*
286 * First, attach the new VMA to the parent VMA's anon_vmas,
287 * so rmap can find non-COWed pages in child processes.
288 */
289 if (anon_vma_clone(vma, pvma))
290 return -ENOMEM;
291
292 /* Then add our own anon_vma. */
293 anon_vma = anon_vma_alloc();
294 if (!anon_vma)
295 goto out_error;
296 avc = anon_vma_chain_alloc(GFP_KERNEL);
297 if (!avc)
298 goto out_error_free_anon_vma;
299
300 /*
301 * The root anon_vma's spinlock is the lock actually used when we
302 * lock any of the anon_vmas in this anon_vma tree.
303 */
304 anon_vma->root = pvma->anon_vma->root;
305 /*
306 * With refcounts, an anon_vma can stay around longer than the
307 * process it belongs to. The root anon_vma needs to be pinned until
308 * this anon_vma is freed, because the lock lives in the root.
309 */
310 get_anon_vma(anon_vma->root);
311 /* Mark this anon_vma as the one where our new (COWed) pages go. */
312 vma->anon_vma = anon_vma;
313 anon_vma_lock(anon_vma);
314 anon_vma_chain_link(vma, avc, anon_vma);
315 anon_vma_unlock(anon_vma);
316
317 return 0;
318
319 out_error_free_anon_vma:
320 put_anon_vma(anon_vma);
321 out_error:
322 unlink_anon_vmas(vma);
323 return -ENOMEM;
324 }
325
326 void unlink_anon_vmas(struct vm_area_struct *vma)
327 {
328 struct anon_vma_chain *avc, *next;
329 struct anon_vma *root = NULL;
330
331 /*
332 * Unlink each anon_vma chained to the VMA. This list is ordered
333 * from newest to oldest, ensuring the root anon_vma gets freed last.
334 */
335 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
336 struct anon_vma *anon_vma = avc->anon_vma;
337
338 root = lock_anon_vma_root(root, anon_vma);
339 list_del(&avc->same_anon_vma);
340
341 /*
342 * Leave empty anon_vmas on the list - we'll need
343 * to free them outside the lock.
344 */
345 if (list_empty(&anon_vma->head))
346 continue;
347
348 list_del(&avc->same_vma);
349 anon_vma_chain_free(avc);
350 }
351 unlock_anon_vma_root(root);
352
353 /*
354 * Iterate the list once more, it now only contains empty and unlinked
355 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
356 * needing to acquire the anon_vma->root->mutex.
357 */
358 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
359 struct anon_vma *anon_vma = avc->anon_vma;
360
361 put_anon_vma(anon_vma);
362
363 list_del(&avc->same_vma);
364 anon_vma_chain_free(avc);
365 }
366 }
367
368 static void anon_vma_ctor(void *data)
369 {
370 struct anon_vma *anon_vma = data;
371
372 mutex_init(&anon_vma->mutex);
373 atomic_set(&anon_vma->refcount, 0);
374 INIT_LIST_HEAD(&anon_vma->head);
375 }
376
377 void __init anon_vma_init(void)
378 {
379 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
380 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
381 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
382 }
383
384 /*
385 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
386 *
387 * Since there is no serialization what so ever against page_remove_rmap()
388 * the best this function can do is return a locked anon_vma that might
389 * have been relevant to this page.
390 *
391 * The page might have been remapped to a different anon_vma or the anon_vma
392 * returned may already be freed (and even reused).
393 *
394 * In case it was remapped to a different anon_vma, the new anon_vma will be a
395 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
396 * ensure that any anon_vma obtained from the page will still be valid for as
397 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
398 *
399 * All users of this function must be very careful when walking the anon_vma
400 * chain and verify that the page in question is indeed mapped in it
401 * [ something equivalent to page_mapped_in_vma() ].
402 *
403 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
404 * that the anon_vma pointer from page->mapping is valid if there is a
405 * mapcount, we can dereference the anon_vma after observing those.
406 */
407 struct anon_vma *page_get_anon_vma(struct page *page)
408 {
409 struct anon_vma *anon_vma = NULL;
410 unsigned long anon_mapping;
411
412 rcu_read_lock();
413 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
414 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
415 goto out;
416 if (!page_mapped(page))
417 goto out;
418
419 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
420 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
421 anon_vma = NULL;
422 goto out;
423 }
424
425 /*
426 * If this page is still mapped, then its anon_vma cannot have been
427 * freed. But if it has been unmapped, we have no security against the
428 * anon_vma structure being freed and reused (for another anon_vma:
429 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
430 * above cannot corrupt).
431 */
432 if (!page_mapped(page)) {
433 put_anon_vma(anon_vma);
434 anon_vma = NULL;
435 }
436 out:
437 rcu_read_unlock();
438
439 return anon_vma;
440 }
441
442 /*
443 * Similar to page_get_anon_vma() except it locks the anon_vma.
444 *
445 * Its a little more complex as it tries to keep the fast path to a single
446 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
447 * reference like with page_get_anon_vma() and then block on the mutex.
448 */
449 struct anon_vma *page_lock_anon_vma(struct page *page)
450 {
451 struct anon_vma *anon_vma = NULL;
452 struct anon_vma *root_anon_vma;
453 unsigned long anon_mapping;
454
455 rcu_read_lock();
456 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
457 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
458 goto out;
459 if (!page_mapped(page))
460 goto out;
461
462 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
463 root_anon_vma = ACCESS_ONCE(anon_vma->root);
464 if (mutex_trylock(&root_anon_vma->mutex)) {
465 /*
466 * If the page is still mapped, then this anon_vma is still
467 * its anon_vma, and holding the mutex ensures that it will
468 * not go away, see anon_vma_free().
469 */
470 if (!page_mapped(page)) {
471 mutex_unlock(&root_anon_vma->mutex);
472 anon_vma = NULL;
473 }
474 goto out;
475 }
476
477 /* trylock failed, we got to sleep */
478 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
479 anon_vma = NULL;
480 goto out;
481 }
482
483 if (!page_mapped(page)) {
484 put_anon_vma(anon_vma);
485 anon_vma = NULL;
486 goto out;
487 }
488
489 /* we pinned the anon_vma, its safe to sleep */
490 rcu_read_unlock();
491 anon_vma_lock(anon_vma);
492
493 if (atomic_dec_and_test(&anon_vma->refcount)) {
494 /*
495 * Oops, we held the last refcount, release the lock
496 * and bail -- can't simply use put_anon_vma() because
497 * we'll deadlock on the anon_vma_lock() recursion.
498 */
499 anon_vma_unlock(anon_vma);
500 __put_anon_vma(anon_vma);
501 anon_vma = NULL;
502 }
503
504 return anon_vma;
505
506 out:
507 rcu_read_unlock();
508 return anon_vma;
509 }
510
511 void page_unlock_anon_vma(struct anon_vma *anon_vma)
512 {
513 anon_vma_unlock(anon_vma);
514 }
515
516 /*
517 * At what user virtual address is page expected in @vma?
518 * Returns virtual address or -EFAULT if page's index/offset is not
519 * within the range mapped the @vma.
520 */
521 inline unsigned long
522 vma_address(struct page *page, struct vm_area_struct *vma)
523 {
524 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
525 unsigned long address;
526
527 if (unlikely(is_vm_hugetlb_page(vma)))
528 pgoff = page->index << huge_page_order(page_hstate(page));
529 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
530 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
531 /* page should be within @vma mapping range */
532 return -EFAULT;
533 }
534 return address;
535 }
536
537 /*
538 * At what user virtual address is page expected in vma?
539 * Caller should check the page is actually part of the vma.
540 */
541 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
542 {
543 if (PageAnon(page)) {
544 struct anon_vma *page__anon_vma = page_anon_vma(page);
545 /*
546 * Note: swapoff's unuse_vma() is more efficient with this
547 * check, and needs it to match anon_vma when KSM is active.
548 */
549 if (!vma->anon_vma || !page__anon_vma ||
550 vma->anon_vma->root != page__anon_vma->root)
551 return -EFAULT;
552 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
553 if (!vma->vm_file ||
554 vma->vm_file->f_mapping != page->mapping)
555 return -EFAULT;
556 } else
557 return -EFAULT;
558 return vma_address(page, vma);
559 }
560
561 /*
562 * Check that @page is mapped at @address into @mm.
563 *
564 * If @sync is false, page_check_address may perform a racy check to avoid
565 * the page table lock when the pte is not present (helpful when reclaiming
566 * highly shared pages).
567 *
568 * On success returns with pte mapped and locked.
569 */
570 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
571 unsigned long address, spinlock_t **ptlp, int sync)
572 {
573 pgd_t *pgd;
574 pud_t *pud;
575 pmd_t *pmd;
576 pte_t *pte;
577 spinlock_t *ptl;
578
579 if (unlikely(PageHuge(page))) {
580 pte = huge_pte_offset(mm, address);
581 ptl = &mm->page_table_lock;
582 goto check;
583 }
584
585 pgd = pgd_offset(mm, address);
586 if (!pgd_present(*pgd))
587 return NULL;
588
589 pud = pud_offset(pgd, address);
590 if (!pud_present(*pud))
591 return NULL;
592
593 pmd = pmd_offset(pud, address);
594 if (!pmd_present(*pmd))
595 return NULL;
596 if (pmd_trans_huge(*pmd))
597 return NULL;
598
599 pte = pte_offset_map(pmd, address);
600 /* Make a quick check before getting the lock */
601 if (!sync && !pte_present(*pte)) {
602 pte_unmap(pte);
603 return NULL;
604 }
605
606 ptl = pte_lockptr(mm, pmd);
607 check:
608 spin_lock(ptl);
609 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
610 *ptlp = ptl;
611 return pte;
612 }
613 pte_unmap_unlock(pte, ptl);
614 return NULL;
615 }
616
617 /**
618 * page_mapped_in_vma - check whether a page is really mapped in a VMA
619 * @page: the page to test
620 * @vma: the VMA to test
621 *
622 * Returns 1 if the page is mapped into the page tables of the VMA, 0
623 * if the page is not mapped into the page tables of this VMA. Only
624 * valid for normal file or anonymous VMAs.
625 */
626 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
627 {
628 unsigned long address;
629 pte_t *pte;
630 spinlock_t *ptl;
631
632 address = vma_address(page, vma);
633 if (address == -EFAULT) /* out of vma range */
634 return 0;
635 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
636 if (!pte) /* the page is not in this mm */
637 return 0;
638 pte_unmap_unlock(pte, ptl);
639
640 return 1;
641 }
642
643 /*
644 * Subfunctions of page_referenced: page_referenced_one called
645 * repeatedly from either page_referenced_anon or page_referenced_file.
646 */
647 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
648 unsigned long address, unsigned int *mapcount,
649 unsigned long *vm_flags)
650 {
651 struct mm_struct *mm = vma->vm_mm;
652 int referenced = 0;
653
654 if (unlikely(PageTransHuge(page))) {
655 pmd_t *pmd;
656
657 spin_lock(&mm->page_table_lock);
658 /*
659 * rmap might return false positives; we must filter
660 * these out using page_check_address_pmd().
661 */
662 pmd = page_check_address_pmd(page, mm, address,
663 PAGE_CHECK_ADDRESS_PMD_FLAG);
664 if (!pmd) {
665 spin_unlock(&mm->page_table_lock);
666 goto out;
667 }
668
669 if (vma->vm_flags & VM_LOCKED) {
670 spin_unlock(&mm->page_table_lock);
671 *mapcount = 0; /* break early from loop */
672 *vm_flags |= VM_LOCKED;
673 goto out;
674 }
675
676 /* go ahead even if the pmd is pmd_trans_splitting() */
677 if (pmdp_clear_flush_young_notify(vma, address, pmd))
678 referenced++;
679 spin_unlock(&mm->page_table_lock);
680 } else {
681 pte_t *pte;
682 spinlock_t *ptl;
683
684 /*
685 * rmap might return false positives; we must filter
686 * these out using page_check_address().
687 */
688 pte = page_check_address(page, mm, address, &ptl, 0);
689 if (!pte)
690 goto out;
691
692 if (vma->vm_flags & VM_LOCKED) {
693 pte_unmap_unlock(pte, ptl);
694 *mapcount = 0; /* break early from loop */
695 *vm_flags |= VM_LOCKED;
696 goto out;
697 }
698
699 if (ptep_clear_flush_young_notify(vma, address, pte)) {
700 /*
701 * Don't treat a reference through a sequentially read
702 * mapping as such. If the page has been used in
703 * another mapping, we will catch it; if this other
704 * mapping is already gone, the unmap path will have
705 * set PG_referenced or activated the page.
706 */
707 if (likely(!VM_SequentialReadHint(vma)))
708 referenced++;
709 }
710 pte_unmap_unlock(pte, ptl);
711 }
712
713 (*mapcount)--;
714
715 if (referenced)
716 *vm_flags |= vma->vm_flags;
717 out:
718 return referenced;
719 }
720
721 static int page_referenced_anon(struct page *page,
722 struct mem_cgroup *memcg,
723 unsigned long *vm_flags)
724 {
725 unsigned int mapcount;
726 struct anon_vma *anon_vma;
727 struct anon_vma_chain *avc;
728 int referenced = 0;
729
730 anon_vma = page_lock_anon_vma(page);
731 if (!anon_vma)
732 return referenced;
733
734 mapcount = page_mapcount(page);
735 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
736 struct vm_area_struct *vma = avc->vma;
737 unsigned long address = vma_address(page, vma);
738 if (address == -EFAULT)
739 continue;
740 /*
741 * If we are reclaiming on behalf of a cgroup, skip
742 * counting on behalf of references from different
743 * cgroups
744 */
745 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
746 continue;
747 referenced += page_referenced_one(page, vma, address,
748 &mapcount, vm_flags);
749 if (!mapcount)
750 break;
751 }
752
753 page_unlock_anon_vma(anon_vma);
754 return referenced;
755 }
756
757 /**
758 * page_referenced_file - referenced check for object-based rmap
759 * @page: the page we're checking references on.
760 * @memcg: target memory control group
761 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
762 *
763 * For an object-based mapped page, find all the places it is mapped and
764 * check/clear the referenced flag. This is done by following the page->mapping
765 * pointer, then walking the chain of vmas it holds. It returns the number
766 * of references it found.
767 *
768 * This function is only called from page_referenced for object-based pages.
769 */
770 static int page_referenced_file(struct page *page,
771 struct mem_cgroup *memcg,
772 unsigned long *vm_flags)
773 {
774 unsigned int mapcount;
775 struct address_space *mapping = page->mapping;
776 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
777 struct vm_area_struct *vma;
778 int referenced = 0;
779
780 /*
781 * The caller's checks on page->mapping and !PageAnon have made
782 * sure that this is a file page: the check for page->mapping
783 * excludes the case just before it gets set on an anon page.
784 */
785 BUG_ON(PageAnon(page));
786
787 /*
788 * The page lock not only makes sure that page->mapping cannot
789 * suddenly be NULLified by truncation, it makes sure that the
790 * structure at mapping cannot be freed and reused yet,
791 * so we can safely take mapping->i_mmap_mutex.
792 */
793 BUG_ON(!PageLocked(page));
794
795 mutex_lock(&mapping->i_mmap_mutex);
796
797 /*
798 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
799 * is more likely to be accurate if we note it after spinning.
800 */
801 mapcount = page_mapcount(page);
802
803 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
804 unsigned long address = vma_address(page, vma);
805 if (address == -EFAULT)
806 continue;
807 /*
808 * If we are reclaiming on behalf of a cgroup, skip
809 * counting on behalf of references from different
810 * cgroups
811 */
812 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
813 continue;
814 referenced += page_referenced_one(page, vma, address,
815 &mapcount, vm_flags);
816 if (!mapcount)
817 break;
818 }
819
820 mutex_unlock(&mapping->i_mmap_mutex);
821 return referenced;
822 }
823
824 /**
825 * page_referenced - test if the page was referenced
826 * @page: the page to test
827 * @is_locked: caller holds lock on the page
828 * @memcg: target memory cgroup
829 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
830 *
831 * Quick test_and_clear_referenced for all mappings to a page,
832 * returns the number of ptes which referenced the page.
833 */
834 int page_referenced(struct page *page,
835 int is_locked,
836 struct mem_cgroup *memcg,
837 unsigned long *vm_flags)
838 {
839 int referenced = 0;
840 int we_locked = 0;
841
842 *vm_flags = 0;
843 if (page_mapped(page) && page_rmapping(page)) {
844 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
845 we_locked = trylock_page(page);
846 if (!we_locked) {
847 referenced++;
848 goto out;
849 }
850 }
851 if (unlikely(PageKsm(page)))
852 referenced += page_referenced_ksm(page, memcg,
853 vm_flags);
854 else if (PageAnon(page))
855 referenced += page_referenced_anon(page, memcg,
856 vm_flags);
857 else if (page->mapping)
858 referenced += page_referenced_file(page, memcg,
859 vm_flags);
860 if (we_locked)
861 unlock_page(page);
862
863 if (page_test_and_clear_young(page_to_pfn(page)))
864 referenced++;
865 }
866 out:
867 return referenced;
868 }
869
870 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
871 unsigned long address)
872 {
873 struct mm_struct *mm = vma->vm_mm;
874 pte_t *pte;
875 spinlock_t *ptl;
876 int ret = 0;
877
878 pte = page_check_address(page, mm, address, &ptl, 1);
879 if (!pte)
880 goto out;
881
882 if (pte_dirty(*pte) || pte_write(*pte)) {
883 pte_t entry;
884
885 flush_cache_page(vma, address, pte_pfn(*pte));
886 entry = ptep_clear_flush_notify(vma, address, pte);
887 entry = pte_wrprotect(entry);
888 entry = pte_mkclean(entry);
889 set_pte_at(mm, address, pte, entry);
890 ret = 1;
891 }
892
893 pte_unmap_unlock(pte, ptl);
894 out:
895 return ret;
896 }
897
898 static int page_mkclean_file(struct address_space *mapping, struct page *page)
899 {
900 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
901 struct vm_area_struct *vma;
902 int ret = 0;
903
904 BUG_ON(PageAnon(page));
905
906 mutex_lock(&mapping->i_mmap_mutex);
907 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
908 if (vma->vm_flags & VM_SHARED) {
909 unsigned long address = vma_address(page, vma);
910 if (address == -EFAULT)
911 continue;
912 ret += page_mkclean_one(page, vma, address);
913 }
914 }
915 mutex_unlock(&mapping->i_mmap_mutex);
916 return ret;
917 }
918
919 int page_mkclean(struct page *page)
920 {
921 int ret = 0;
922
923 BUG_ON(!PageLocked(page));
924
925 if (page_mapped(page)) {
926 struct address_space *mapping = page_mapping(page);
927 if (mapping) {
928 ret = page_mkclean_file(mapping, page);
929 if (page_test_and_clear_dirty(page_to_pfn(page), 1))
930 ret = 1;
931 }
932 }
933
934 return ret;
935 }
936 EXPORT_SYMBOL_GPL(page_mkclean);
937
938 /**
939 * page_move_anon_rmap - move a page to our anon_vma
940 * @page: the page to move to our anon_vma
941 * @vma: the vma the page belongs to
942 * @address: the user virtual address mapped
943 *
944 * When a page belongs exclusively to one process after a COW event,
945 * that page can be moved into the anon_vma that belongs to just that
946 * process, so the rmap code will not search the parent or sibling
947 * processes.
948 */
949 void page_move_anon_rmap(struct page *page,
950 struct vm_area_struct *vma, unsigned long address)
951 {
952 struct anon_vma *anon_vma = vma->anon_vma;
953
954 VM_BUG_ON(!PageLocked(page));
955 VM_BUG_ON(!anon_vma);
956 VM_BUG_ON(page->index != linear_page_index(vma, address));
957
958 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
959 page->mapping = (struct address_space *) anon_vma;
960 }
961
962 /**
963 * __page_set_anon_rmap - set up new anonymous rmap
964 * @page: Page to add to rmap
965 * @vma: VM area to add page to.
966 * @address: User virtual address of the mapping
967 * @exclusive: the page is exclusively owned by the current process
968 */
969 static void __page_set_anon_rmap(struct page *page,
970 struct vm_area_struct *vma, unsigned long address, int exclusive)
971 {
972 struct anon_vma *anon_vma = vma->anon_vma;
973
974 BUG_ON(!anon_vma);
975
976 if (PageAnon(page))
977 return;
978
979 /*
980 * If the page isn't exclusively mapped into this vma,
981 * we must use the _oldest_ possible anon_vma for the
982 * page mapping!
983 */
984 if (!exclusive)
985 anon_vma = anon_vma->root;
986
987 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
988 page->mapping = (struct address_space *) anon_vma;
989 page->index = linear_page_index(vma, address);
990 }
991
992 /**
993 * __page_check_anon_rmap - sanity check anonymous rmap addition
994 * @page: the page to add the mapping to
995 * @vma: the vm area in which the mapping is added
996 * @address: the user virtual address mapped
997 */
998 static void __page_check_anon_rmap(struct page *page,
999 struct vm_area_struct *vma, unsigned long address)
1000 {
1001 #ifdef CONFIG_DEBUG_VM
1002 /*
1003 * The page's anon-rmap details (mapping and index) are guaranteed to
1004 * be set up correctly at this point.
1005 *
1006 * We have exclusion against page_add_anon_rmap because the caller
1007 * always holds the page locked, except if called from page_dup_rmap,
1008 * in which case the page is already known to be setup.
1009 *
1010 * We have exclusion against page_add_new_anon_rmap because those pages
1011 * are initially only visible via the pagetables, and the pte is locked
1012 * over the call to page_add_new_anon_rmap.
1013 */
1014 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1015 BUG_ON(page->index != linear_page_index(vma, address));
1016 #endif
1017 }
1018
1019 /**
1020 * page_add_anon_rmap - add pte mapping to an anonymous page
1021 * @page: the page to add the mapping to
1022 * @vma: the vm area in which the mapping is added
1023 * @address: the user virtual address mapped
1024 *
1025 * The caller needs to hold the pte lock, and the page must be locked in
1026 * the anon_vma case: to serialize mapping,index checking after setting,
1027 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1028 * (but PageKsm is never downgraded to PageAnon).
1029 */
1030 void page_add_anon_rmap(struct page *page,
1031 struct vm_area_struct *vma, unsigned long address)
1032 {
1033 do_page_add_anon_rmap(page, vma, address, 0);
1034 }
1035
1036 /*
1037 * Special version of the above for do_swap_page, which often runs
1038 * into pages that are exclusively owned by the current process.
1039 * Everybody else should continue to use page_add_anon_rmap above.
1040 */
1041 void do_page_add_anon_rmap(struct page *page,
1042 struct vm_area_struct *vma, unsigned long address, int exclusive)
1043 {
1044 int first = atomic_inc_and_test(&page->_mapcount);
1045 if (first) {
1046 if (!PageTransHuge(page))
1047 __inc_zone_page_state(page, NR_ANON_PAGES);
1048 else
1049 __inc_zone_page_state(page,
1050 NR_ANON_TRANSPARENT_HUGEPAGES);
1051 }
1052 if (unlikely(PageKsm(page)))
1053 return;
1054
1055 VM_BUG_ON(!PageLocked(page));
1056 /* address might be in next vma when migration races vma_adjust */
1057 if (first)
1058 __page_set_anon_rmap(page, vma, address, exclusive);
1059 else
1060 __page_check_anon_rmap(page, vma, address);
1061 }
1062
1063 /**
1064 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1065 * @page: the page to add the mapping to
1066 * @vma: the vm area in which the mapping is added
1067 * @address: the user virtual address mapped
1068 *
1069 * Same as page_add_anon_rmap but must only be called on *new* pages.
1070 * This means the inc-and-test can be bypassed.
1071 * Page does not have to be locked.
1072 */
1073 void page_add_new_anon_rmap(struct page *page,
1074 struct vm_area_struct *vma, unsigned long address)
1075 {
1076 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1077 SetPageSwapBacked(page);
1078 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1079 if (!PageTransHuge(page))
1080 __inc_zone_page_state(page, NR_ANON_PAGES);
1081 else
1082 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1083 __page_set_anon_rmap(page, vma, address, 1);
1084 if (page_evictable(page, vma))
1085 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1086 else
1087 add_page_to_unevictable_list(page);
1088 }
1089
1090 /**
1091 * page_add_file_rmap - add pte mapping to a file page
1092 * @page: the page to add the mapping to
1093 *
1094 * The caller needs to hold the pte lock.
1095 */
1096 void page_add_file_rmap(struct page *page)
1097 {
1098 bool locked;
1099 unsigned long flags;
1100
1101 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1102 if (atomic_inc_and_test(&page->_mapcount)) {
1103 __inc_zone_page_state(page, NR_FILE_MAPPED);
1104 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1105 }
1106 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1107 }
1108
1109 /**
1110 * page_remove_rmap - take down pte mapping from a page
1111 * @page: page to remove mapping from
1112 *
1113 * The caller needs to hold the pte lock.
1114 */
1115 void page_remove_rmap(struct page *page)
1116 {
1117 bool anon = PageAnon(page);
1118 bool locked;
1119 unsigned long flags;
1120
1121 /*
1122 * The anon case has no mem_cgroup page_stat to update; but may
1123 * uncharge_page() below, where the lock ordering can deadlock if
1124 * we hold the lock against page_stat move: so avoid it on anon.
1125 */
1126 if (!anon)
1127 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1128
1129 /* page still mapped by someone else? */
1130 if (!atomic_add_negative(-1, &page->_mapcount))
1131 goto out;
1132
1133 /*
1134 * Now that the last pte has gone, s390 must transfer dirty
1135 * flag from storage key to struct page. We can usually skip
1136 * this if the page is anon, so about to be freed; but perhaps
1137 * not if it's in swapcache - there might be another pte slot
1138 * containing the swap entry, but page not yet written to swap.
1139 */
1140 if ((!anon || PageSwapCache(page)) &&
1141 page_test_and_clear_dirty(page_to_pfn(page), 1))
1142 set_page_dirty(page);
1143 /*
1144 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1145 * and not charged by memcg for now.
1146 */
1147 if (unlikely(PageHuge(page)))
1148 goto out;
1149 if (anon) {
1150 mem_cgroup_uncharge_page(page);
1151 if (!PageTransHuge(page))
1152 __dec_zone_page_state(page, NR_ANON_PAGES);
1153 else
1154 __dec_zone_page_state(page,
1155 NR_ANON_TRANSPARENT_HUGEPAGES);
1156 } else {
1157 __dec_zone_page_state(page, NR_FILE_MAPPED);
1158 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1159 }
1160 /*
1161 * It would be tidy to reset the PageAnon mapping here,
1162 * but that might overwrite a racing page_add_anon_rmap
1163 * which increments mapcount after us but sets mapping
1164 * before us: so leave the reset to free_hot_cold_page,
1165 * and remember that it's only reliable while mapped.
1166 * Leaving it set also helps swapoff to reinstate ptes
1167 * faster for those pages still in swapcache.
1168 */
1169 out:
1170 if (!anon)
1171 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1172 }
1173
1174 /*
1175 * Subfunctions of try_to_unmap: try_to_unmap_one called
1176 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1177 */
1178 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1179 unsigned long address, enum ttu_flags flags)
1180 {
1181 struct mm_struct *mm = vma->vm_mm;
1182 pte_t *pte;
1183 pte_t pteval;
1184 spinlock_t *ptl;
1185 int ret = SWAP_AGAIN;
1186
1187 pte = page_check_address(page, mm, address, &ptl, 0);
1188 if (!pte)
1189 goto out;
1190
1191 /*
1192 * If the page is mlock()d, we cannot swap it out.
1193 * If it's recently referenced (perhaps page_referenced
1194 * skipped over this mm) then we should reactivate it.
1195 */
1196 if (!(flags & TTU_IGNORE_MLOCK)) {
1197 if (vma->vm_flags & VM_LOCKED)
1198 goto out_mlock;
1199
1200 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1201 goto out_unmap;
1202 }
1203 if (!(flags & TTU_IGNORE_ACCESS)) {
1204 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1205 ret = SWAP_FAIL;
1206 goto out_unmap;
1207 }
1208 }
1209
1210 /* Nuke the page table entry. */
1211 flush_cache_page(vma, address, page_to_pfn(page));
1212 pteval = ptep_clear_flush_notify(vma, address, pte);
1213
1214 /* Move the dirty bit to the physical page now the pte is gone. */
1215 if (pte_dirty(pteval))
1216 set_page_dirty(page);
1217
1218 /* Update high watermark before we lower rss */
1219 update_hiwater_rss(mm);
1220
1221 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1222 if (PageAnon(page))
1223 dec_mm_counter(mm, MM_ANONPAGES);
1224 else
1225 dec_mm_counter(mm, MM_FILEPAGES);
1226 set_pte_at(mm, address, pte,
1227 swp_entry_to_pte(make_hwpoison_entry(page)));
1228 } else if (PageAnon(page)) {
1229 swp_entry_t entry = { .val = page_private(page) };
1230
1231 if (PageSwapCache(page)) {
1232 /*
1233 * Store the swap location in the pte.
1234 * See handle_pte_fault() ...
1235 */
1236 if (swap_duplicate(entry) < 0) {
1237 set_pte_at(mm, address, pte, pteval);
1238 ret = SWAP_FAIL;
1239 goto out_unmap;
1240 }
1241 if (list_empty(&mm->mmlist)) {
1242 spin_lock(&mmlist_lock);
1243 if (list_empty(&mm->mmlist))
1244 list_add(&mm->mmlist, &init_mm.mmlist);
1245 spin_unlock(&mmlist_lock);
1246 }
1247 dec_mm_counter(mm, MM_ANONPAGES);
1248 inc_mm_counter(mm, MM_SWAPENTS);
1249 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1250 /*
1251 * Store the pfn of the page in a special migration
1252 * pte. do_swap_page() will wait until the migration
1253 * pte is removed and then restart fault handling.
1254 */
1255 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1256 entry = make_migration_entry(page, pte_write(pteval));
1257 }
1258 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1259 BUG_ON(pte_file(*pte));
1260 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1261 (TTU_ACTION(flags) == TTU_MIGRATION)) {
1262 /* Establish migration entry for a file page */
1263 swp_entry_t entry;
1264 entry = make_migration_entry(page, pte_write(pteval));
1265 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1266 } else
1267 dec_mm_counter(mm, MM_FILEPAGES);
1268
1269 page_remove_rmap(page);
1270 page_cache_release(page);
1271
1272 out_unmap:
1273 pte_unmap_unlock(pte, ptl);
1274 out:
1275 return ret;
1276
1277 out_mlock:
1278 pte_unmap_unlock(pte, ptl);
1279
1280
1281 /*
1282 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1283 * unstable result and race. Plus, We can't wait here because
1284 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1285 * if trylock failed, the page remain in evictable lru and later
1286 * vmscan could retry to move the page to unevictable lru if the
1287 * page is actually mlocked.
1288 */
1289 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1290 if (vma->vm_flags & VM_LOCKED) {
1291 mlock_vma_page(page);
1292 ret = SWAP_MLOCK;
1293 }
1294 up_read(&vma->vm_mm->mmap_sem);
1295 }
1296 return ret;
1297 }
1298
1299 /*
1300 * objrmap doesn't work for nonlinear VMAs because the assumption that
1301 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1302 * Consequently, given a particular page and its ->index, we cannot locate the
1303 * ptes which are mapping that page without an exhaustive linear search.
1304 *
1305 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1306 * maps the file to which the target page belongs. The ->vm_private_data field
1307 * holds the current cursor into that scan. Successive searches will circulate
1308 * around the vma's virtual address space.
1309 *
1310 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1311 * more scanning pressure is placed against them as well. Eventually pages
1312 * will become fully unmapped and are eligible for eviction.
1313 *
1314 * For very sparsely populated VMAs this is a little inefficient - chances are
1315 * there there won't be many ptes located within the scan cluster. In this case
1316 * maybe we could scan further - to the end of the pte page, perhaps.
1317 *
1318 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1319 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1320 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1321 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1322 */
1323 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1324 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1325
1326 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1327 struct vm_area_struct *vma, struct page *check_page)
1328 {
1329 struct mm_struct *mm = vma->vm_mm;
1330 pgd_t *pgd;
1331 pud_t *pud;
1332 pmd_t *pmd;
1333 pte_t *pte;
1334 pte_t pteval;
1335 spinlock_t *ptl;
1336 struct page *page;
1337 unsigned long address;
1338 unsigned long end;
1339 int ret = SWAP_AGAIN;
1340 int locked_vma = 0;
1341
1342 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1343 end = address + CLUSTER_SIZE;
1344 if (address < vma->vm_start)
1345 address = vma->vm_start;
1346 if (end > vma->vm_end)
1347 end = vma->vm_end;
1348
1349 pgd = pgd_offset(mm, address);
1350 if (!pgd_present(*pgd))
1351 return ret;
1352
1353 pud = pud_offset(pgd, address);
1354 if (!pud_present(*pud))
1355 return ret;
1356
1357 pmd = pmd_offset(pud, address);
1358 if (!pmd_present(*pmd))
1359 return ret;
1360
1361 /*
1362 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1363 * keep the sem while scanning the cluster for mlocking pages.
1364 */
1365 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1366 locked_vma = (vma->vm_flags & VM_LOCKED);
1367 if (!locked_vma)
1368 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1369 }
1370
1371 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1372
1373 /* Update high watermark before we lower rss */
1374 update_hiwater_rss(mm);
1375
1376 for (; address < end; pte++, address += PAGE_SIZE) {
1377 if (!pte_present(*pte))
1378 continue;
1379 page = vm_normal_page(vma, address, *pte);
1380 BUG_ON(!page || PageAnon(page));
1381
1382 if (locked_vma) {
1383 mlock_vma_page(page); /* no-op if already mlocked */
1384 if (page == check_page)
1385 ret = SWAP_MLOCK;
1386 continue; /* don't unmap */
1387 }
1388
1389 if (ptep_clear_flush_young_notify(vma, address, pte))
1390 continue;
1391
1392 /* Nuke the page table entry. */
1393 flush_cache_page(vma, address, pte_pfn(*pte));
1394 pteval = ptep_clear_flush_notify(vma, address, pte);
1395
1396 /* If nonlinear, store the file page offset in the pte. */
1397 if (page->index != linear_page_index(vma, address))
1398 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1399
1400 /* Move the dirty bit to the physical page now the pte is gone. */
1401 if (pte_dirty(pteval))
1402 set_page_dirty(page);
1403
1404 page_remove_rmap(page);
1405 page_cache_release(page);
1406 dec_mm_counter(mm, MM_FILEPAGES);
1407 (*mapcount)--;
1408 }
1409 pte_unmap_unlock(pte - 1, ptl);
1410 if (locked_vma)
1411 up_read(&vma->vm_mm->mmap_sem);
1412 return ret;
1413 }
1414
1415 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1416 {
1417 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1418
1419 if (!maybe_stack)
1420 return false;
1421
1422 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1423 VM_STACK_INCOMPLETE_SETUP)
1424 return true;
1425
1426 return false;
1427 }
1428
1429 /**
1430 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1431 * rmap method
1432 * @page: the page to unmap/unlock
1433 * @flags: action and flags
1434 *
1435 * Find all the mappings of a page using the mapping pointer and the vma chains
1436 * contained in the anon_vma struct it points to.
1437 *
1438 * This function is only called from try_to_unmap/try_to_munlock for
1439 * anonymous pages.
1440 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1441 * where the page was found will be held for write. So, we won't recheck
1442 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1443 * 'LOCKED.
1444 */
1445 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1446 {
1447 struct anon_vma *anon_vma;
1448 struct anon_vma_chain *avc;
1449 int ret = SWAP_AGAIN;
1450
1451 anon_vma = page_lock_anon_vma(page);
1452 if (!anon_vma)
1453 return ret;
1454
1455 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1456 struct vm_area_struct *vma = avc->vma;
1457 unsigned long address;
1458
1459 /*
1460 * During exec, a temporary VMA is setup and later moved.
1461 * The VMA is moved under the anon_vma lock but not the
1462 * page tables leading to a race where migration cannot
1463 * find the migration ptes. Rather than increasing the
1464 * locking requirements of exec(), migration skips
1465 * temporary VMAs until after exec() completes.
1466 */
1467 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1468 is_vma_temporary_stack(vma))
1469 continue;
1470
1471 address = vma_address(page, vma);
1472 if (address == -EFAULT)
1473 continue;
1474 ret = try_to_unmap_one(page, vma, address, flags);
1475 if (ret != SWAP_AGAIN || !page_mapped(page))
1476 break;
1477 }
1478
1479 page_unlock_anon_vma(anon_vma);
1480 return ret;
1481 }
1482
1483 /**
1484 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1485 * @page: the page to unmap/unlock
1486 * @flags: action and flags
1487 *
1488 * Find all the mappings of a page using the mapping pointer and the vma chains
1489 * contained in the address_space struct it points to.
1490 *
1491 * This function is only called from try_to_unmap/try_to_munlock for
1492 * object-based pages.
1493 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1494 * where the page was found will be held for write. So, we won't recheck
1495 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1496 * 'LOCKED.
1497 */
1498 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1499 {
1500 struct address_space *mapping = page->mapping;
1501 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1502 struct vm_area_struct *vma;
1503 int ret = SWAP_AGAIN;
1504 unsigned long cursor;
1505 unsigned long max_nl_cursor = 0;
1506 unsigned long max_nl_size = 0;
1507 unsigned int mapcount;
1508
1509 mutex_lock(&mapping->i_mmap_mutex);
1510 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1511 unsigned long address = vma_address(page, vma);
1512 if (address == -EFAULT)
1513 continue;
1514 ret = try_to_unmap_one(page, vma, address, flags);
1515 if (ret != SWAP_AGAIN || !page_mapped(page))
1516 goto out;
1517 }
1518
1519 if (list_empty(&mapping->i_mmap_nonlinear))
1520 goto out;
1521
1522 /*
1523 * We don't bother to try to find the munlocked page in nonlinears.
1524 * It's costly. Instead, later, page reclaim logic may call
1525 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1526 */
1527 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1528 goto out;
1529
1530 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1531 shared.nonlinear) {
1532 cursor = (unsigned long) vma->vm_private_data;
1533 if (cursor > max_nl_cursor)
1534 max_nl_cursor = cursor;
1535 cursor = vma->vm_end - vma->vm_start;
1536 if (cursor > max_nl_size)
1537 max_nl_size = cursor;
1538 }
1539
1540 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1541 ret = SWAP_FAIL;
1542 goto out;
1543 }
1544
1545 /*
1546 * We don't try to search for this page in the nonlinear vmas,
1547 * and page_referenced wouldn't have found it anyway. Instead
1548 * just walk the nonlinear vmas trying to age and unmap some.
1549 * The mapcount of the page we came in with is irrelevant,
1550 * but even so use it as a guide to how hard we should try?
1551 */
1552 mapcount = page_mapcount(page);
1553 if (!mapcount)
1554 goto out;
1555 cond_resched();
1556
1557 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1558 if (max_nl_cursor == 0)
1559 max_nl_cursor = CLUSTER_SIZE;
1560
1561 do {
1562 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1563 shared.nonlinear) {
1564 cursor = (unsigned long) vma->vm_private_data;
1565 while ( cursor < max_nl_cursor &&
1566 cursor < vma->vm_end - vma->vm_start) {
1567 if (try_to_unmap_cluster(cursor, &mapcount,
1568 vma, page) == SWAP_MLOCK)
1569 ret = SWAP_MLOCK;
1570 cursor += CLUSTER_SIZE;
1571 vma->vm_private_data = (void *) cursor;
1572 if ((int)mapcount <= 0)
1573 goto out;
1574 }
1575 vma->vm_private_data = (void *) max_nl_cursor;
1576 }
1577 cond_resched();
1578 max_nl_cursor += CLUSTER_SIZE;
1579 } while (max_nl_cursor <= max_nl_size);
1580
1581 /*
1582 * Don't loop forever (perhaps all the remaining pages are
1583 * in locked vmas). Reset cursor on all unreserved nonlinear
1584 * vmas, now forgetting on which ones it had fallen behind.
1585 */
1586 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1587 vma->vm_private_data = NULL;
1588 out:
1589 mutex_unlock(&mapping->i_mmap_mutex);
1590 return ret;
1591 }
1592
1593 /**
1594 * try_to_unmap - try to remove all page table mappings to a page
1595 * @page: the page to get unmapped
1596 * @flags: action and flags
1597 *
1598 * Tries to remove all the page table entries which are mapping this
1599 * page, used in the pageout path. Caller must hold the page lock.
1600 * Return values are:
1601 *
1602 * SWAP_SUCCESS - we succeeded in removing all mappings
1603 * SWAP_AGAIN - we missed a mapping, try again later
1604 * SWAP_FAIL - the page is unswappable
1605 * SWAP_MLOCK - page is mlocked.
1606 */
1607 int try_to_unmap(struct page *page, enum ttu_flags flags)
1608 {
1609 int ret;
1610
1611 BUG_ON(!PageLocked(page));
1612 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1613
1614 if (unlikely(PageKsm(page)))
1615 ret = try_to_unmap_ksm(page, flags);
1616 else if (PageAnon(page))
1617 ret = try_to_unmap_anon(page, flags);
1618 else
1619 ret = try_to_unmap_file(page, flags);
1620 if (ret != SWAP_MLOCK && !page_mapped(page))
1621 ret = SWAP_SUCCESS;
1622 return ret;
1623 }
1624
1625 /**
1626 * try_to_munlock - try to munlock a page
1627 * @page: the page to be munlocked
1628 *
1629 * Called from munlock code. Checks all of the VMAs mapping the page
1630 * to make sure nobody else has this page mlocked. The page will be
1631 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1632 *
1633 * Return values are:
1634 *
1635 * SWAP_AGAIN - no vma is holding page mlocked, or,
1636 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1637 * SWAP_FAIL - page cannot be located at present
1638 * SWAP_MLOCK - page is now mlocked.
1639 */
1640 int try_to_munlock(struct page *page)
1641 {
1642 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1643
1644 if (unlikely(PageKsm(page)))
1645 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1646 else if (PageAnon(page))
1647 return try_to_unmap_anon(page, TTU_MUNLOCK);
1648 else
1649 return try_to_unmap_file(page, TTU_MUNLOCK);
1650 }
1651
1652 void __put_anon_vma(struct anon_vma *anon_vma)
1653 {
1654 struct anon_vma *root = anon_vma->root;
1655
1656 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1657 anon_vma_free(root);
1658
1659 anon_vma_free(anon_vma);
1660 }
1661
1662 #ifdef CONFIG_MIGRATION
1663 /*
1664 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1665 * Called by migrate.c to remove migration ptes, but might be used more later.
1666 */
1667 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1668 struct vm_area_struct *, unsigned long, void *), void *arg)
1669 {
1670 struct anon_vma *anon_vma;
1671 struct anon_vma_chain *avc;
1672 int ret = SWAP_AGAIN;
1673
1674 /*
1675 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1676 * because that depends on page_mapped(); but not all its usages
1677 * are holding mmap_sem. Users without mmap_sem are required to
1678 * take a reference count to prevent the anon_vma disappearing
1679 */
1680 anon_vma = page_anon_vma(page);
1681 if (!anon_vma)
1682 return ret;
1683 anon_vma_lock(anon_vma);
1684 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1685 struct vm_area_struct *vma = avc->vma;
1686 unsigned long address = vma_address(page, vma);
1687 if (address == -EFAULT)
1688 continue;
1689 ret = rmap_one(page, vma, address, arg);
1690 if (ret != SWAP_AGAIN)
1691 break;
1692 }
1693 anon_vma_unlock(anon_vma);
1694 return ret;
1695 }
1696
1697 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1698 struct vm_area_struct *, unsigned long, void *), void *arg)
1699 {
1700 struct address_space *mapping = page->mapping;
1701 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1702 struct vm_area_struct *vma;
1703 int ret = SWAP_AGAIN;
1704
1705 if (!mapping)
1706 return ret;
1707 mutex_lock(&mapping->i_mmap_mutex);
1708 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1709 unsigned long address = vma_address(page, vma);
1710 if (address == -EFAULT)
1711 continue;
1712 ret = rmap_one(page, vma, address, arg);
1713 if (ret != SWAP_AGAIN)
1714 break;
1715 }
1716 /*
1717 * No nonlinear handling: being always shared, nonlinear vmas
1718 * never contain migration ptes. Decide what to do about this
1719 * limitation to linear when we need rmap_walk() on nonlinear.
1720 */
1721 mutex_unlock(&mapping->i_mmap_mutex);
1722 return ret;
1723 }
1724
1725 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1726 struct vm_area_struct *, unsigned long, void *), void *arg)
1727 {
1728 VM_BUG_ON(!PageLocked(page));
1729
1730 if (unlikely(PageKsm(page)))
1731 return rmap_walk_ksm(page, rmap_one, arg);
1732 else if (PageAnon(page))
1733 return rmap_walk_anon(page, rmap_one, arg);
1734 else
1735 return rmap_walk_file(page, rmap_one, arg);
1736 }
1737 #endif /* CONFIG_MIGRATION */
1738
1739 #ifdef CONFIG_HUGETLB_PAGE
1740 /*
1741 * The following three functions are for anonymous (private mapped) hugepages.
1742 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1743 * and no lru code, because we handle hugepages differently from common pages.
1744 */
1745 static void __hugepage_set_anon_rmap(struct page *page,
1746 struct vm_area_struct *vma, unsigned long address, int exclusive)
1747 {
1748 struct anon_vma *anon_vma = vma->anon_vma;
1749
1750 BUG_ON(!anon_vma);
1751
1752 if (PageAnon(page))
1753 return;
1754 if (!exclusive)
1755 anon_vma = anon_vma->root;
1756
1757 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1758 page->mapping = (struct address_space *) anon_vma;
1759 page->index = linear_page_index(vma, address);
1760 }
1761
1762 void hugepage_add_anon_rmap(struct page *page,
1763 struct vm_area_struct *vma, unsigned long address)
1764 {
1765 struct anon_vma *anon_vma = vma->anon_vma;
1766 int first;
1767
1768 BUG_ON(!PageLocked(page));
1769 BUG_ON(!anon_vma);
1770 /* address might be in next vma when migration races vma_adjust */
1771 first = atomic_inc_and_test(&page->_mapcount);
1772 if (first)
1773 __hugepage_set_anon_rmap(page, vma, address, 0);
1774 }
1775
1776 void hugepage_add_new_anon_rmap(struct page *page,
1777 struct vm_area_struct *vma, unsigned long address)
1778 {
1779 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1780 atomic_set(&page->_mapcount, 0);
1781 __hugepage_set_anon_rmap(page, vma, address, 1);
1782 }
1783 #endif /* CONFIG_HUGETLB_PAGE */