]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/rmap.c
mm anon rmap: remove anon_vma_moveto_tail
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
3d48ae45 26 * mapping->i_mmap_mutex
2b575eb6 27 * anon_vma->mutex
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
250df6ed 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 38 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 39 *
9b679320
PZ
40 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
6a46079c 42 * pte map lock
1da177e4
LT
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
5ad64688 51#include <linux/ksm.h>
1da177e4
LT
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
b95f1b31 54#include <linux/export.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
64cdd548 57#include <linux/migrate.h>
0fe6e20b 58#include <linux/hugetlb.h>
1da177e4
LT
59
60#include <asm/tlbflush.h>
61
b291f000
NP
62#include "internal.h"
63
fdd2e5f8 64static struct kmem_cache *anon_vma_cachep;
5beb4930 65static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
66
67static inline struct anon_vma *anon_vma_alloc(void)
68{
01d8b20d
PZ
69 struct anon_vma *anon_vma;
70
71 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
72 if (anon_vma) {
73 atomic_set(&anon_vma->refcount, 1);
74 /*
75 * Initialise the anon_vma root to point to itself. If called
76 * from fork, the root will be reset to the parents anon_vma.
77 */
78 anon_vma->root = anon_vma;
79 }
80
81 return anon_vma;
fdd2e5f8
AB
82}
83
01d8b20d 84static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 85{
01d8b20d 86 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
87
88 /*
89 * Synchronize against page_lock_anon_vma() such that
90 * we can safely hold the lock without the anon_vma getting
91 * freed.
92 *
93 * Relies on the full mb implied by the atomic_dec_and_test() from
94 * put_anon_vma() against the acquire barrier implied by
95 * mutex_trylock() from page_lock_anon_vma(). This orders:
96 *
97 * page_lock_anon_vma() VS put_anon_vma()
98 * mutex_trylock() atomic_dec_and_test()
99 * LOCK MB
100 * atomic_read() mutex_is_locked()
101 *
102 * LOCK should suffice since the actual taking of the lock must
103 * happen _before_ what follows.
104 */
105 if (mutex_is_locked(&anon_vma->root->mutex)) {
106 anon_vma_lock(anon_vma);
107 anon_vma_unlock(anon_vma);
108 }
109
fdd2e5f8
AB
110 kmem_cache_free(anon_vma_cachep, anon_vma);
111}
1da177e4 112
dd34739c 113static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 114{
dd34739c 115 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
116}
117
e574b5fd 118static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
119{
120 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
121}
122
6583a843
KC
123static void anon_vma_chain_link(struct vm_area_struct *vma,
124 struct anon_vma_chain *avc,
125 struct anon_vma *anon_vma)
126{
127 avc->vma = vma;
128 avc->anon_vma = anon_vma;
129 list_add(&avc->same_vma, &vma->anon_vma_chain);
130
131 /*
132 * It's critical to add new vmas to the tail of the anon_vma,
133 * see comment in huge_memory.c:__split_huge_page().
134 */
135 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
136}
137
d9d332e0
LT
138/**
139 * anon_vma_prepare - attach an anon_vma to a memory region
140 * @vma: the memory region in question
141 *
142 * This makes sure the memory mapping described by 'vma' has
143 * an 'anon_vma' attached to it, so that we can associate the
144 * anonymous pages mapped into it with that anon_vma.
145 *
146 * The common case will be that we already have one, but if
23a0790a 147 * not we either need to find an adjacent mapping that we
d9d332e0
LT
148 * can re-use the anon_vma from (very common when the only
149 * reason for splitting a vma has been mprotect()), or we
150 * allocate a new one.
151 *
152 * Anon-vma allocations are very subtle, because we may have
153 * optimistically looked up an anon_vma in page_lock_anon_vma()
154 * and that may actually touch the spinlock even in the newly
155 * allocated vma (it depends on RCU to make sure that the
156 * anon_vma isn't actually destroyed).
157 *
158 * As a result, we need to do proper anon_vma locking even
159 * for the new allocation. At the same time, we do not want
160 * to do any locking for the common case of already having
161 * an anon_vma.
162 *
163 * This must be called with the mmap_sem held for reading.
164 */
1da177e4
LT
165int anon_vma_prepare(struct vm_area_struct *vma)
166{
167 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 168 struct anon_vma_chain *avc;
1da177e4
LT
169
170 might_sleep();
171 if (unlikely(!anon_vma)) {
172 struct mm_struct *mm = vma->vm_mm;
d9d332e0 173 struct anon_vma *allocated;
1da177e4 174
dd34739c 175 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
176 if (!avc)
177 goto out_enomem;
178
1da177e4 179 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
180 allocated = NULL;
181 if (!anon_vma) {
1da177e4
LT
182 anon_vma = anon_vma_alloc();
183 if (unlikely(!anon_vma))
5beb4930 184 goto out_enomem_free_avc;
1da177e4 185 allocated = anon_vma;
1da177e4
LT
186 }
187
cba48b98 188 anon_vma_lock(anon_vma);
1da177e4
LT
189 /* page_table_lock to protect against threads */
190 spin_lock(&mm->page_table_lock);
191 if (likely(!vma->anon_vma)) {
192 vma->anon_vma = anon_vma;
6583a843 193 anon_vma_chain_link(vma, avc, anon_vma);
1da177e4 194 allocated = NULL;
31f2b0eb 195 avc = NULL;
1da177e4
LT
196 }
197 spin_unlock(&mm->page_table_lock);
cba48b98 198 anon_vma_unlock(anon_vma);
31f2b0eb
ON
199
200 if (unlikely(allocated))
01d8b20d 201 put_anon_vma(allocated);
31f2b0eb 202 if (unlikely(avc))
5beb4930 203 anon_vma_chain_free(avc);
1da177e4
LT
204 }
205 return 0;
5beb4930
RR
206
207 out_enomem_free_avc:
208 anon_vma_chain_free(avc);
209 out_enomem:
210 return -ENOMEM;
1da177e4
LT
211}
212
bb4aa396
LT
213/*
214 * This is a useful helper function for locking the anon_vma root as
215 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
216 * have the same vma.
217 *
218 * Such anon_vma's should have the same root, so you'd expect to see
219 * just a single mutex_lock for the whole traversal.
220 */
221static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
222{
223 struct anon_vma *new_root = anon_vma->root;
224 if (new_root != root) {
225 if (WARN_ON_ONCE(root))
226 mutex_unlock(&root->mutex);
227 root = new_root;
228 mutex_lock(&root->mutex);
229 }
230 return root;
231}
232
233static inline void unlock_anon_vma_root(struct anon_vma *root)
234{
235 if (root)
236 mutex_unlock(&root->mutex);
237}
238
5beb4930
RR
239/*
240 * Attach the anon_vmas from src to dst.
241 * Returns 0 on success, -ENOMEM on failure.
242 */
243int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 244{
5beb4930 245 struct anon_vma_chain *avc, *pavc;
bb4aa396 246 struct anon_vma *root = NULL;
5beb4930 247
646d87b4 248 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
249 struct anon_vma *anon_vma;
250
dd34739c
LT
251 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
252 if (unlikely(!avc)) {
253 unlock_anon_vma_root(root);
254 root = NULL;
255 avc = anon_vma_chain_alloc(GFP_KERNEL);
256 if (!avc)
257 goto enomem_failure;
258 }
bb4aa396
LT
259 anon_vma = pavc->anon_vma;
260 root = lock_anon_vma_root(root, anon_vma);
261 anon_vma_chain_link(dst, avc, anon_vma);
5beb4930 262 }
bb4aa396 263 unlock_anon_vma_root(root);
5beb4930 264 return 0;
1da177e4 265
5beb4930
RR
266 enomem_failure:
267 unlink_anon_vmas(dst);
268 return -ENOMEM;
1da177e4
LT
269}
270
5beb4930
RR
271/*
272 * Attach vma to its own anon_vma, as well as to the anon_vmas that
273 * the corresponding VMA in the parent process is attached to.
274 * Returns 0 on success, non-zero on failure.
275 */
276int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 277{
5beb4930
RR
278 struct anon_vma_chain *avc;
279 struct anon_vma *anon_vma;
1da177e4 280
5beb4930
RR
281 /* Don't bother if the parent process has no anon_vma here. */
282 if (!pvma->anon_vma)
283 return 0;
284
285 /*
286 * First, attach the new VMA to the parent VMA's anon_vmas,
287 * so rmap can find non-COWed pages in child processes.
288 */
289 if (anon_vma_clone(vma, pvma))
290 return -ENOMEM;
291
292 /* Then add our own anon_vma. */
293 anon_vma = anon_vma_alloc();
294 if (!anon_vma)
295 goto out_error;
dd34739c 296 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
297 if (!avc)
298 goto out_error_free_anon_vma;
5c341ee1
RR
299
300 /*
301 * The root anon_vma's spinlock is the lock actually used when we
302 * lock any of the anon_vmas in this anon_vma tree.
303 */
304 anon_vma->root = pvma->anon_vma->root;
76545066 305 /*
01d8b20d
PZ
306 * With refcounts, an anon_vma can stay around longer than the
307 * process it belongs to. The root anon_vma needs to be pinned until
308 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
309 */
310 get_anon_vma(anon_vma->root);
5beb4930
RR
311 /* Mark this anon_vma as the one where our new (COWed) pages go. */
312 vma->anon_vma = anon_vma;
bb4aa396 313 anon_vma_lock(anon_vma);
5c341ee1 314 anon_vma_chain_link(vma, avc, anon_vma);
bb4aa396 315 anon_vma_unlock(anon_vma);
5beb4930
RR
316
317 return 0;
318
319 out_error_free_anon_vma:
01d8b20d 320 put_anon_vma(anon_vma);
5beb4930 321 out_error:
4946d54c 322 unlink_anon_vmas(vma);
5beb4930 323 return -ENOMEM;
1da177e4
LT
324}
325
5beb4930
RR
326void unlink_anon_vmas(struct vm_area_struct *vma)
327{
328 struct anon_vma_chain *avc, *next;
eee2acba 329 struct anon_vma *root = NULL;
5beb4930 330
5c341ee1
RR
331 /*
332 * Unlink each anon_vma chained to the VMA. This list is ordered
333 * from newest to oldest, ensuring the root anon_vma gets freed last.
334 */
5beb4930 335 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
336 struct anon_vma *anon_vma = avc->anon_vma;
337
338 root = lock_anon_vma_root(root, anon_vma);
339 list_del(&avc->same_anon_vma);
340
341 /*
342 * Leave empty anon_vmas on the list - we'll need
343 * to free them outside the lock.
344 */
345 if (list_empty(&anon_vma->head))
346 continue;
347
348 list_del(&avc->same_vma);
349 anon_vma_chain_free(avc);
350 }
351 unlock_anon_vma_root(root);
352
353 /*
354 * Iterate the list once more, it now only contains empty and unlinked
355 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
356 * needing to acquire the anon_vma->root->mutex.
357 */
358 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
359 struct anon_vma *anon_vma = avc->anon_vma;
360
361 put_anon_vma(anon_vma);
362
5beb4930
RR
363 list_del(&avc->same_vma);
364 anon_vma_chain_free(avc);
365 }
366}
367
51cc5068 368static void anon_vma_ctor(void *data)
1da177e4 369{
a35afb83 370 struct anon_vma *anon_vma = data;
1da177e4 371
2b575eb6 372 mutex_init(&anon_vma->mutex);
83813267 373 atomic_set(&anon_vma->refcount, 0);
a35afb83 374 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
375}
376
377void __init anon_vma_init(void)
378{
379 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 380 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 381 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
382}
383
384/*
6111e4ca
PZ
385 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
386 *
387 * Since there is no serialization what so ever against page_remove_rmap()
388 * the best this function can do is return a locked anon_vma that might
389 * have been relevant to this page.
390 *
391 * The page might have been remapped to a different anon_vma or the anon_vma
392 * returned may already be freed (and even reused).
393 *
bc658c96
PZ
394 * In case it was remapped to a different anon_vma, the new anon_vma will be a
395 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
396 * ensure that any anon_vma obtained from the page will still be valid for as
397 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
398 *
6111e4ca
PZ
399 * All users of this function must be very careful when walking the anon_vma
400 * chain and verify that the page in question is indeed mapped in it
401 * [ something equivalent to page_mapped_in_vma() ].
402 *
403 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
404 * that the anon_vma pointer from page->mapping is valid if there is a
405 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 406 */
746b18d4 407struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 408{
746b18d4 409 struct anon_vma *anon_vma = NULL;
1da177e4
LT
410 unsigned long anon_mapping;
411
412 rcu_read_lock();
80e14822 413 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 414 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
415 goto out;
416 if (!page_mapped(page))
417 goto out;
418
419 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
420 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
421 anon_vma = NULL;
422 goto out;
423 }
f1819427
HD
424
425 /*
426 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
427 * freed. But if it has been unmapped, we have no security against the
428 * anon_vma structure being freed and reused (for another anon_vma:
429 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
430 * above cannot corrupt).
f1819427 431 */
746b18d4
PZ
432 if (!page_mapped(page)) {
433 put_anon_vma(anon_vma);
434 anon_vma = NULL;
435 }
1da177e4
LT
436out:
437 rcu_read_unlock();
746b18d4
PZ
438
439 return anon_vma;
440}
441
88c22088
PZ
442/*
443 * Similar to page_get_anon_vma() except it locks the anon_vma.
444 *
445 * Its a little more complex as it tries to keep the fast path to a single
446 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
447 * reference like with page_get_anon_vma() and then block on the mutex.
448 */
746b18d4
PZ
449struct anon_vma *page_lock_anon_vma(struct page *page)
450{
88c22088 451 struct anon_vma *anon_vma = NULL;
eee0f252 452 struct anon_vma *root_anon_vma;
88c22088 453 unsigned long anon_mapping;
746b18d4 454
88c22088
PZ
455 rcu_read_lock();
456 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
457 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
458 goto out;
459 if (!page_mapped(page))
460 goto out;
461
462 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
eee0f252
HD
463 root_anon_vma = ACCESS_ONCE(anon_vma->root);
464 if (mutex_trylock(&root_anon_vma->mutex)) {
88c22088 465 /*
eee0f252
HD
466 * If the page is still mapped, then this anon_vma is still
467 * its anon_vma, and holding the mutex ensures that it will
bc658c96 468 * not go away, see anon_vma_free().
88c22088 469 */
eee0f252
HD
470 if (!page_mapped(page)) {
471 mutex_unlock(&root_anon_vma->mutex);
88c22088
PZ
472 anon_vma = NULL;
473 }
474 goto out;
475 }
746b18d4 476
88c22088
PZ
477 /* trylock failed, we got to sleep */
478 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
479 anon_vma = NULL;
480 goto out;
481 }
482
483 if (!page_mapped(page)) {
484 put_anon_vma(anon_vma);
485 anon_vma = NULL;
486 goto out;
487 }
488
489 /* we pinned the anon_vma, its safe to sleep */
490 rcu_read_unlock();
491 anon_vma_lock(anon_vma);
492
493 if (atomic_dec_and_test(&anon_vma->refcount)) {
494 /*
495 * Oops, we held the last refcount, release the lock
496 * and bail -- can't simply use put_anon_vma() because
497 * we'll deadlock on the anon_vma_lock() recursion.
498 */
499 anon_vma_unlock(anon_vma);
500 __put_anon_vma(anon_vma);
501 anon_vma = NULL;
502 }
503
504 return anon_vma;
505
506out:
507 rcu_read_unlock();
746b18d4 508 return anon_vma;
34bbd704
ON
509}
510
10be22df 511void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704 512{
cba48b98 513 anon_vma_unlock(anon_vma);
1da177e4
LT
514}
515
516/*
3ad33b24
LS
517 * At what user virtual address is page expected in @vma?
518 * Returns virtual address or -EFAULT if page's index/offset is not
519 * within the range mapped the @vma.
1da177e4 520 */
71e3aac0 521inline unsigned long
1da177e4
LT
522vma_address(struct page *page, struct vm_area_struct *vma)
523{
524 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
525 unsigned long address;
526
0fe6e20b
NH
527 if (unlikely(is_vm_hugetlb_page(vma)))
528 pgoff = page->index << huge_page_order(page_hstate(page));
1da177e4
LT
529 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
530 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 531 /* page should be within @vma mapping range */
1da177e4
LT
532 return -EFAULT;
533 }
534 return address;
535}
536
537/*
bf89c8c8 538 * At what user virtual address is page expected in vma?
ab941e0f 539 * Caller should check the page is actually part of the vma.
1da177e4
LT
540 */
541unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
542{
21d0d443 543 if (PageAnon(page)) {
4829b906
HD
544 struct anon_vma *page__anon_vma = page_anon_vma(page);
545 /*
546 * Note: swapoff's unuse_vma() is more efficient with this
547 * check, and needs it to match anon_vma when KSM is active.
548 */
549 if (!vma->anon_vma || !page__anon_vma ||
550 vma->anon_vma->root != page__anon_vma->root)
21d0d443
AA
551 return -EFAULT;
552 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
553 if (!vma->vm_file ||
554 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
555 return -EFAULT;
556 } else
557 return -EFAULT;
558 return vma_address(page, vma);
559}
560
81b4082d
ND
561/*
562 * Check that @page is mapped at @address into @mm.
563 *
479db0bf
NP
564 * If @sync is false, page_check_address may perform a racy check to avoid
565 * the page table lock when the pte is not present (helpful when reclaiming
566 * highly shared pages).
567 *
b8072f09 568 * On success returns with pte mapped and locked.
81b4082d 569 */
e9a81a82 570pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 571 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
572{
573 pgd_t *pgd;
574 pud_t *pud;
575 pmd_t *pmd;
576 pte_t *pte;
c0718806 577 spinlock_t *ptl;
81b4082d 578
0fe6e20b
NH
579 if (unlikely(PageHuge(page))) {
580 pte = huge_pte_offset(mm, address);
581 ptl = &mm->page_table_lock;
582 goto check;
583 }
584
81b4082d 585 pgd = pgd_offset(mm, address);
c0718806
HD
586 if (!pgd_present(*pgd))
587 return NULL;
588
589 pud = pud_offset(pgd, address);
590 if (!pud_present(*pud))
591 return NULL;
592
593 pmd = pmd_offset(pud, address);
594 if (!pmd_present(*pmd))
595 return NULL;
71e3aac0
AA
596 if (pmd_trans_huge(*pmd))
597 return NULL;
c0718806
HD
598
599 pte = pte_offset_map(pmd, address);
600 /* Make a quick check before getting the lock */
479db0bf 601 if (!sync && !pte_present(*pte)) {
c0718806
HD
602 pte_unmap(pte);
603 return NULL;
604 }
605
4c21e2f2 606 ptl = pte_lockptr(mm, pmd);
0fe6e20b 607check:
c0718806
HD
608 spin_lock(ptl);
609 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
610 *ptlp = ptl;
611 return pte;
81b4082d 612 }
c0718806
HD
613 pte_unmap_unlock(pte, ptl);
614 return NULL;
81b4082d
ND
615}
616
b291f000
NP
617/**
618 * page_mapped_in_vma - check whether a page is really mapped in a VMA
619 * @page: the page to test
620 * @vma: the VMA to test
621 *
622 * Returns 1 if the page is mapped into the page tables of the VMA, 0
623 * if the page is not mapped into the page tables of this VMA. Only
624 * valid for normal file or anonymous VMAs.
625 */
6a46079c 626int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
627{
628 unsigned long address;
629 pte_t *pte;
630 spinlock_t *ptl;
631
632 address = vma_address(page, vma);
633 if (address == -EFAULT) /* out of vma range */
634 return 0;
635 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
636 if (!pte) /* the page is not in this mm */
637 return 0;
638 pte_unmap_unlock(pte, ptl);
639
640 return 1;
641}
642
1da177e4
LT
643/*
644 * Subfunctions of page_referenced: page_referenced_one called
645 * repeatedly from either page_referenced_anon or page_referenced_file.
646 */
5ad64688
HD
647int page_referenced_one(struct page *page, struct vm_area_struct *vma,
648 unsigned long address, unsigned int *mapcount,
649 unsigned long *vm_flags)
1da177e4
LT
650{
651 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
652 int referenced = 0;
653
71e3aac0
AA
654 if (unlikely(PageTransHuge(page))) {
655 pmd_t *pmd;
656
657 spin_lock(&mm->page_table_lock);
2da28bfd
AA
658 /*
659 * rmap might return false positives; we must filter
660 * these out using page_check_address_pmd().
661 */
71e3aac0
AA
662 pmd = page_check_address_pmd(page, mm, address,
663 PAGE_CHECK_ADDRESS_PMD_FLAG);
2da28bfd
AA
664 if (!pmd) {
665 spin_unlock(&mm->page_table_lock);
666 goto out;
667 }
668
669 if (vma->vm_flags & VM_LOCKED) {
670 spin_unlock(&mm->page_table_lock);
671 *mapcount = 0; /* break early from loop */
672 *vm_flags |= VM_LOCKED;
673 goto out;
674 }
675
676 /* go ahead even if the pmd is pmd_trans_splitting() */
677 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0
AA
678 referenced++;
679 spin_unlock(&mm->page_table_lock);
680 } else {
681 pte_t *pte;
682 spinlock_t *ptl;
683
2da28bfd
AA
684 /*
685 * rmap might return false positives; we must filter
686 * these out using page_check_address().
687 */
71e3aac0
AA
688 pte = page_check_address(page, mm, address, &ptl, 0);
689 if (!pte)
690 goto out;
691
2da28bfd
AA
692 if (vma->vm_flags & VM_LOCKED) {
693 pte_unmap_unlock(pte, ptl);
694 *mapcount = 0; /* break early from loop */
695 *vm_flags |= VM_LOCKED;
696 goto out;
697 }
698
71e3aac0
AA
699 if (ptep_clear_flush_young_notify(vma, address, pte)) {
700 /*
701 * Don't treat a reference through a sequentially read
702 * mapping as such. If the page has been used in
703 * another mapping, we will catch it; if this other
704 * mapping is already gone, the unmap path will have
705 * set PG_referenced or activated the page.
706 */
707 if (likely(!VM_SequentialReadHint(vma)))
708 referenced++;
709 }
710 pte_unmap_unlock(pte, ptl);
711 }
712
c0718806 713 (*mapcount)--;
273f047e 714
6fe6b7e3
WF
715 if (referenced)
716 *vm_flags |= vma->vm_flags;
273f047e 717out:
1da177e4
LT
718 return referenced;
719}
720
bed7161a 721static int page_referenced_anon(struct page *page,
72835c86 722 struct mem_cgroup *memcg,
6fe6b7e3 723 unsigned long *vm_flags)
1da177e4
LT
724{
725 unsigned int mapcount;
726 struct anon_vma *anon_vma;
5beb4930 727 struct anon_vma_chain *avc;
1da177e4
LT
728 int referenced = 0;
729
730 anon_vma = page_lock_anon_vma(page);
731 if (!anon_vma)
732 return referenced;
733
734 mapcount = page_mapcount(page);
5beb4930
RR
735 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
736 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
737 unsigned long address = vma_address(page, vma);
738 if (address == -EFAULT)
739 continue;
bed7161a
BS
740 /*
741 * If we are reclaiming on behalf of a cgroup, skip
742 * counting on behalf of references from different
743 * cgroups
744 */
72835c86 745 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
bed7161a 746 continue;
1cb1729b 747 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 748 &mapcount, vm_flags);
1da177e4
LT
749 if (!mapcount)
750 break;
751 }
34bbd704
ON
752
753 page_unlock_anon_vma(anon_vma);
1da177e4
LT
754 return referenced;
755}
756
757/**
758 * page_referenced_file - referenced check for object-based rmap
759 * @page: the page we're checking references on.
72835c86 760 * @memcg: target memory control group
6fe6b7e3 761 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
762 *
763 * For an object-based mapped page, find all the places it is mapped and
764 * check/clear the referenced flag. This is done by following the page->mapping
765 * pointer, then walking the chain of vmas it holds. It returns the number
766 * of references it found.
767 *
768 * This function is only called from page_referenced for object-based pages.
769 */
bed7161a 770static int page_referenced_file(struct page *page,
72835c86 771 struct mem_cgroup *memcg,
6fe6b7e3 772 unsigned long *vm_flags)
1da177e4
LT
773{
774 unsigned int mapcount;
775 struct address_space *mapping = page->mapping;
776 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
777 struct vm_area_struct *vma;
1da177e4
LT
778 int referenced = 0;
779
780 /*
781 * The caller's checks on page->mapping and !PageAnon have made
782 * sure that this is a file page: the check for page->mapping
783 * excludes the case just before it gets set on an anon page.
784 */
785 BUG_ON(PageAnon(page));
786
787 /*
788 * The page lock not only makes sure that page->mapping cannot
789 * suddenly be NULLified by truncation, it makes sure that the
790 * structure at mapping cannot be freed and reused yet,
3d48ae45 791 * so we can safely take mapping->i_mmap_mutex.
1da177e4
LT
792 */
793 BUG_ON(!PageLocked(page));
794
3d48ae45 795 mutex_lock(&mapping->i_mmap_mutex);
1da177e4
LT
796
797 /*
3d48ae45 798 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
1da177e4
LT
799 * is more likely to be accurate if we note it after spinning.
800 */
801 mapcount = page_mapcount(page);
802
6b2dbba8 803 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
804 unsigned long address = vma_address(page, vma);
805 if (address == -EFAULT)
806 continue;
bed7161a
BS
807 /*
808 * If we are reclaiming on behalf of a cgroup, skip
809 * counting on behalf of references from different
810 * cgroups
811 */
72835c86 812 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
bed7161a 813 continue;
1cb1729b 814 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 815 &mapcount, vm_flags);
1da177e4
LT
816 if (!mapcount)
817 break;
818 }
819
3d48ae45 820 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
821 return referenced;
822}
823
824/**
825 * page_referenced - test if the page was referenced
826 * @page: the page to test
827 * @is_locked: caller holds lock on the page
72835c86 828 * @memcg: target memory cgroup
6fe6b7e3 829 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
830 *
831 * Quick test_and_clear_referenced for all mappings to a page,
832 * returns the number of ptes which referenced the page.
833 */
6fe6b7e3
WF
834int page_referenced(struct page *page,
835 int is_locked,
72835c86 836 struct mem_cgroup *memcg,
6fe6b7e3 837 unsigned long *vm_flags)
1da177e4
LT
838{
839 int referenced = 0;
5ad64688 840 int we_locked = 0;
1da177e4 841
6fe6b7e3 842 *vm_flags = 0;
3ca7b3c5 843 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
844 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
845 we_locked = trylock_page(page);
846 if (!we_locked) {
847 referenced++;
848 goto out;
849 }
850 }
851 if (unlikely(PageKsm(page)))
72835c86 852 referenced += page_referenced_ksm(page, memcg,
5ad64688
HD
853 vm_flags);
854 else if (PageAnon(page))
72835c86 855 referenced += page_referenced_anon(page, memcg,
6fe6b7e3 856 vm_flags);
5ad64688 857 else if (page->mapping)
72835c86 858 referenced += page_referenced_file(page, memcg,
6fe6b7e3 859 vm_flags);
5ad64688 860 if (we_locked)
1da177e4 861 unlock_page(page);
50a15981
MS
862
863 if (page_test_and_clear_young(page_to_pfn(page)))
864 referenced++;
1da177e4 865 }
5ad64688 866out:
1da177e4
LT
867 return referenced;
868}
869
1cb1729b
HD
870static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
871 unsigned long address)
d08b3851
PZ
872{
873 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 874 pte_t *pte;
d08b3851
PZ
875 spinlock_t *ptl;
876 int ret = 0;
877
479db0bf 878 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
879 if (!pte)
880 goto out;
881
c2fda5fe
PZ
882 if (pte_dirty(*pte) || pte_write(*pte)) {
883 pte_t entry;
d08b3851 884
c2fda5fe 885 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 886 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
887 entry = pte_wrprotect(entry);
888 entry = pte_mkclean(entry);
d6e88e67 889 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
890 ret = 1;
891 }
d08b3851 892
d08b3851
PZ
893 pte_unmap_unlock(pte, ptl);
894out:
895 return ret;
896}
897
898static int page_mkclean_file(struct address_space *mapping, struct page *page)
899{
900 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
901 struct vm_area_struct *vma;
d08b3851
PZ
902 int ret = 0;
903
904 BUG_ON(PageAnon(page));
905
3d48ae45 906 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 907 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
908 if (vma->vm_flags & VM_SHARED) {
909 unsigned long address = vma_address(page, vma);
910 if (address == -EFAULT)
911 continue;
912 ret += page_mkclean_one(page, vma, address);
913 }
d08b3851 914 }
3d48ae45 915 mutex_unlock(&mapping->i_mmap_mutex);
d08b3851
PZ
916 return ret;
917}
918
919int page_mkclean(struct page *page)
920{
921 int ret = 0;
922
923 BUG_ON(!PageLocked(page));
924
925 if (page_mapped(page)) {
926 struct address_space *mapping = page_mapping(page);
ce7e9fae 927 if (mapping) {
d08b3851 928 ret = page_mkclean_file(mapping, page);
2d42552d 929 if (page_test_and_clear_dirty(page_to_pfn(page), 1))
ce7e9fae 930 ret = 1;
6c210482 931 }
d08b3851
PZ
932 }
933
934 return ret;
935}
60b59bea 936EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 937
c44b6743
RR
938/**
939 * page_move_anon_rmap - move a page to our anon_vma
940 * @page: the page to move to our anon_vma
941 * @vma: the vma the page belongs to
942 * @address: the user virtual address mapped
943 *
944 * When a page belongs exclusively to one process after a COW event,
945 * that page can be moved into the anon_vma that belongs to just that
946 * process, so the rmap code will not search the parent or sibling
947 * processes.
948 */
949void page_move_anon_rmap(struct page *page,
950 struct vm_area_struct *vma, unsigned long address)
951{
952 struct anon_vma *anon_vma = vma->anon_vma;
953
954 VM_BUG_ON(!PageLocked(page));
955 VM_BUG_ON(!anon_vma);
956 VM_BUG_ON(page->index != linear_page_index(vma, address));
957
958 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
959 page->mapping = (struct address_space *) anon_vma;
960}
961
9617d95e 962/**
4e1c1975
AK
963 * __page_set_anon_rmap - set up new anonymous rmap
964 * @page: Page to add to rmap
965 * @vma: VM area to add page to.
966 * @address: User virtual address of the mapping
e8a03feb 967 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
968 */
969static void __page_set_anon_rmap(struct page *page,
e8a03feb 970 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 971{
e8a03feb 972 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 973
e8a03feb 974 BUG_ON(!anon_vma);
ea90002b 975
4e1c1975
AK
976 if (PageAnon(page))
977 return;
978
ea90002b 979 /*
e8a03feb
RR
980 * If the page isn't exclusively mapped into this vma,
981 * we must use the _oldest_ possible anon_vma for the
982 * page mapping!
ea90002b 983 */
4e1c1975 984 if (!exclusive)
288468c3 985 anon_vma = anon_vma->root;
9617d95e 986
9617d95e
NP
987 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
988 page->mapping = (struct address_space *) anon_vma;
9617d95e 989 page->index = linear_page_index(vma, address);
9617d95e
NP
990}
991
c97a9e10 992/**
43d8eac4 993 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
994 * @page: the page to add the mapping to
995 * @vma: the vm area in which the mapping is added
996 * @address: the user virtual address mapped
997 */
998static void __page_check_anon_rmap(struct page *page,
999 struct vm_area_struct *vma, unsigned long address)
1000{
1001#ifdef CONFIG_DEBUG_VM
1002 /*
1003 * The page's anon-rmap details (mapping and index) are guaranteed to
1004 * be set up correctly at this point.
1005 *
1006 * We have exclusion against page_add_anon_rmap because the caller
1007 * always holds the page locked, except if called from page_dup_rmap,
1008 * in which case the page is already known to be setup.
1009 *
1010 * We have exclusion against page_add_new_anon_rmap because those pages
1011 * are initially only visible via the pagetables, and the pte is locked
1012 * over the call to page_add_new_anon_rmap.
1013 */
44ab57a0 1014 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
1015 BUG_ON(page->index != linear_page_index(vma, address));
1016#endif
1017}
1018
1da177e4
LT
1019/**
1020 * page_add_anon_rmap - add pte mapping to an anonymous page
1021 * @page: the page to add the mapping to
1022 * @vma: the vm area in which the mapping is added
1023 * @address: the user virtual address mapped
1024 *
5ad64688 1025 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1026 * the anon_vma case: to serialize mapping,index checking after setting,
1027 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1028 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1029 */
1030void page_add_anon_rmap(struct page *page,
1031 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
1032{
1033 do_page_add_anon_rmap(page, vma, address, 0);
1034}
1035
1036/*
1037 * Special version of the above for do_swap_page, which often runs
1038 * into pages that are exclusively owned by the current process.
1039 * Everybody else should continue to use page_add_anon_rmap above.
1040 */
1041void do_page_add_anon_rmap(struct page *page,
1042 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 1043{
5ad64688 1044 int first = atomic_inc_and_test(&page->_mapcount);
79134171
AA
1045 if (first) {
1046 if (!PageTransHuge(page))
1047 __inc_zone_page_state(page, NR_ANON_PAGES);
1048 else
1049 __inc_zone_page_state(page,
1050 NR_ANON_TRANSPARENT_HUGEPAGES);
1051 }
5ad64688
HD
1052 if (unlikely(PageKsm(page)))
1053 return;
1054
c97a9e10 1055 VM_BUG_ON(!PageLocked(page));
5dbe0af4 1056 /* address might be in next vma when migration races vma_adjust */
5ad64688 1057 if (first)
ad8c2ee8 1058 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1059 else
c97a9e10 1060 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1061}
1062
43d8eac4 1063/**
9617d95e
NP
1064 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1065 * @page: the page to add the mapping to
1066 * @vma: the vm area in which the mapping is added
1067 * @address: the user virtual address mapped
1068 *
1069 * Same as page_add_anon_rmap but must only be called on *new* pages.
1070 * This means the inc-and-test can be bypassed.
c97a9e10 1071 * Page does not have to be locked.
9617d95e
NP
1072 */
1073void page_add_new_anon_rmap(struct page *page,
1074 struct vm_area_struct *vma, unsigned long address)
1075{
b5934c53 1076 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
1077 SetPageSwapBacked(page);
1078 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
79134171
AA
1079 if (!PageTransHuge(page))
1080 __inc_zone_page_state(page, NR_ANON_PAGES);
1081 else
1082 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
e8a03feb 1083 __page_set_anon_rmap(page, vma, address, 1);
b5934c53 1084 if (page_evictable(page, vma))
cbf84b7a 1085 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
1086 else
1087 add_page_to_unevictable_list(page);
9617d95e
NP
1088}
1089
1da177e4
LT
1090/**
1091 * page_add_file_rmap - add pte mapping to a file page
1092 * @page: the page to add the mapping to
1093 *
b8072f09 1094 * The caller needs to hold the pte lock.
1da177e4
LT
1095 */
1096void page_add_file_rmap(struct page *page)
1097{
89c06bd5
KH
1098 bool locked;
1099 unsigned long flags;
1100
1101 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
d69b042f 1102 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1103 __inc_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1104 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
d69b042f 1105 }
89c06bd5 1106 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1da177e4
LT
1107}
1108
1109/**
1110 * page_remove_rmap - take down pte mapping from a page
1111 * @page: page to remove mapping from
1112 *
b8072f09 1113 * The caller needs to hold the pte lock.
1da177e4 1114 */
edc315fd 1115void page_remove_rmap(struct page *page)
1da177e4 1116{
89c06bd5
KH
1117 bool anon = PageAnon(page);
1118 bool locked;
1119 unsigned long flags;
1120
1121 /*
1122 * The anon case has no mem_cgroup page_stat to update; but may
1123 * uncharge_page() below, where the lock ordering can deadlock if
1124 * we hold the lock against page_stat move: so avoid it on anon.
1125 */
1126 if (!anon)
1127 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1128
b904dcfe
KM
1129 /* page still mapped by someone else? */
1130 if (!atomic_add_negative(-1, &page->_mapcount))
89c06bd5 1131 goto out;
b904dcfe
KM
1132
1133 /*
1134 * Now that the last pte has gone, s390 must transfer dirty
1135 * flag from storage key to struct page. We can usually skip
1136 * this if the page is anon, so about to be freed; but perhaps
1137 * not if it's in swapcache - there might be another pte slot
1138 * containing the swap entry, but page not yet written to swap.
1139 */
89c06bd5 1140 if ((!anon || PageSwapCache(page)) &&
2d42552d 1141 page_test_and_clear_dirty(page_to_pfn(page), 1))
b904dcfe 1142 set_page_dirty(page);
0fe6e20b
NH
1143 /*
1144 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1145 * and not charged by memcg for now.
1146 */
1147 if (unlikely(PageHuge(page)))
89c06bd5
KH
1148 goto out;
1149 if (anon) {
b904dcfe 1150 mem_cgroup_uncharge_page(page);
79134171
AA
1151 if (!PageTransHuge(page))
1152 __dec_zone_page_state(page, NR_ANON_PAGES);
1153 else
1154 __dec_zone_page_state(page,
1155 NR_ANON_TRANSPARENT_HUGEPAGES);
b904dcfe
KM
1156 } else {
1157 __dec_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1158 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
b904dcfe 1159 }
b904dcfe
KM
1160 /*
1161 * It would be tidy to reset the PageAnon mapping here,
1162 * but that might overwrite a racing page_add_anon_rmap
1163 * which increments mapcount after us but sets mapping
1164 * before us: so leave the reset to free_hot_cold_page,
1165 * and remember that it's only reliable while mapped.
1166 * Leaving it set also helps swapoff to reinstate ptes
1167 * faster for those pages still in swapcache.
1168 */
89c06bd5
KH
1169out:
1170 if (!anon)
1171 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1da177e4
LT
1172}
1173
1174/*
1175 * Subfunctions of try_to_unmap: try_to_unmap_one called
99ef0315 1176 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1da177e4 1177 */
5ad64688
HD
1178int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1179 unsigned long address, enum ttu_flags flags)
1da177e4
LT
1180{
1181 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1182 pte_t *pte;
1183 pte_t pteval;
c0718806 1184 spinlock_t *ptl;
1da177e4
LT
1185 int ret = SWAP_AGAIN;
1186
479db0bf 1187 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1188 if (!pte)
81b4082d 1189 goto out;
1da177e4
LT
1190
1191 /*
1192 * If the page is mlock()d, we cannot swap it out.
1193 * If it's recently referenced (perhaps page_referenced
1194 * skipped over this mm) then we should reactivate it.
1195 */
14fa31b8 1196 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1197 if (vma->vm_flags & VM_LOCKED)
1198 goto out_mlock;
1199
af8e3354 1200 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 1201 goto out_unmap;
14fa31b8
AK
1202 }
1203 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1204 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1205 ret = SWAP_FAIL;
1206 goto out_unmap;
1207 }
1208 }
1da177e4 1209
1da177e4
LT
1210 /* Nuke the page table entry. */
1211 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 1212 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1213
1214 /* Move the dirty bit to the physical page now the pte is gone. */
1215 if (pte_dirty(pteval))
1216 set_page_dirty(page);
1217
365e9c87
HD
1218 /* Update high watermark before we lower rss */
1219 update_hiwater_rss(mm);
1220
888b9f7c
AK
1221 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1222 if (PageAnon(page))
d559db08 1223 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 1224 else
d559db08 1225 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
1226 set_pte_at(mm, address, pte,
1227 swp_entry_to_pte(make_hwpoison_entry(page)));
1228 } else if (PageAnon(page)) {
4c21e2f2 1229 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
1230
1231 if (PageSwapCache(page)) {
1232 /*
1233 * Store the swap location in the pte.
1234 * See handle_pte_fault() ...
1235 */
570a335b
HD
1236 if (swap_duplicate(entry) < 0) {
1237 set_pte_at(mm, address, pte, pteval);
1238 ret = SWAP_FAIL;
1239 goto out_unmap;
1240 }
0697212a
CL
1241 if (list_empty(&mm->mmlist)) {
1242 spin_lock(&mmlist_lock);
1243 if (list_empty(&mm->mmlist))
1244 list_add(&mm->mmlist, &init_mm.mmlist);
1245 spin_unlock(&mmlist_lock);
1246 }
d559db08 1247 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1248 inc_mm_counter(mm, MM_SWAPENTS);
ce1744f4 1249 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
0697212a
CL
1250 /*
1251 * Store the pfn of the page in a special migration
1252 * pte. do_swap_page() will wait until the migration
1253 * pte is removed and then restart fault handling.
1254 */
14fa31b8 1255 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 1256 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
1257 }
1258 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1259 BUG_ON(pte_file(*pte));
ce1744f4
KK
1260 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1261 (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
1262 /* Establish migration entry for a file page */
1263 swp_entry_t entry;
1264 entry = make_migration_entry(page, pte_write(pteval));
1265 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1266 } else
d559db08 1267 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1268
edc315fd 1269 page_remove_rmap(page);
1da177e4
LT
1270 page_cache_release(page);
1271
1272out_unmap:
c0718806 1273 pte_unmap_unlock(pte, ptl);
caed0f48
KM
1274out:
1275 return ret;
53f79acb 1276
caed0f48
KM
1277out_mlock:
1278 pte_unmap_unlock(pte, ptl);
1279
1280
1281 /*
1282 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1283 * unstable result and race. Plus, We can't wait here because
2b575eb6 1284 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
caed0f48
KM
1285 * if trylock failed, the page remain in evictable lru and later
1286 * vmscan could retry to move the page to unevictable lru if the
1287 * page is actually mlocked.
1288 */
1289 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1290 if (vma->vm_flags & VM_LOCKED) {
1291 mlock_vma_page(page);
1292 ret = SWAP_MLOCK;
53f79acb 1293 }
caed0f48 1294 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1295 }
1da177e4
LT
1296 return ret;
1297}
1298
1299/*
1300 * objrmap doesn't work for nonlinear VMAs because the assumption that
1301 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1302 * Consequently, given a particular page and its ->index, we cannot locate the
1303 * ptes which are mapping that page without an exhaustive linear search.
1304 *
1305 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1306 * maps the file to which the target page belongs. The ->vm_private_data field
1307 * holds the current cursor into that scan. Successive searches will circulate
1308 * around the vma's virtual address space.
1309 *
1310 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1311 * more scanning pressure is placed against them as well. Eventually pages
1312 * will become fully unmapped and are eligible for eviction.
1313 *
1314 * For very sparsely populated VMAs this is a little inefficient - chances are
1315 * there there won't be many ptes located within the scan cluster. In this case
1316 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1317 *
1318 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1319 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1320 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1321 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1322 */
1323#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1324#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1325
b291f000
NP
1326static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1327 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1328{
1329 struct mm_struct *mm = vma->vm_mm;
1330 pgd_t *pgd;
1331 pud_t *pud;
1332 pmd_t *pmd;
c0718806 1333 pte_t *pte;
1da177e4 1334 pte_t pteval;
c0718806 1335 spinlock_t *ptl;
1da177e4
LT
1336 struct page *page;
1337 unsigned long address;
1338 unsigned long end;
b291f000
NP
1339 int ret = SWAP_AGAIN;
1340 int locked_vma = 0;
1da177e4 1341
1da177e4
LT
1342 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1343 end = address + CLUSTER_SIZE;
1344 if (address < vma->vm_start)
1345 address = vma->vm_start;
1346 if (end > vma->vm_end)
1347 end = vma->vm_end;
1348
1349 pgd = pgd_offset(mm, address);
1350 if (!pgd_present(*pgd))
b291f000 1351 return ret;
1da177e4
LT
1352
1353 pud = pud_offset(pgd, address);
1354 if (!pud_present(*pud))
b291f000 1355 return ret;
1da177e4
LT
1356
1357 pmd = pmd_offset(pud, address);
1358 if (!pmd_present(*pmd))
b291f000
NP
1359 return ret;
1360
1361 /*
af8e3354 1362 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1363 * keep the sem while scanning the cluster for mlocking pages.
1364 */
af8e3354 1365 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1366 locked_vma = (vma->vm_flags & VM_LOCKED);
1367 if (!locked_vma)
1368 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1369 }
c0718806
HD
1370
1371 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1372
365e9c87
HD
1373 /* Update high watermark before we lower rss */
1374 update_hiwater_rss(mm);
1375
c0718806 1376 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1377 if (!pte_present(*pte))
1378 continue;
6aab341e
LT
1379 page = vm_normal_page(vma, address, *pte);
1380 BUG_ON(!page || PageAnon(page));
1da177e4 1381
b291f000
NP
1382 if (locked_vma) {
1383 mlock_vma_page(page); /* no-op if already mlocked */
1384 if (page == check_page)
1385 ret = SWAP_MLOCK;
1386 continue; /* don't unmap */
1387 }
1388
cddb8a5c 1389 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1390 continue;
1391
1392 /* Nuke the page table entry. */
eca35133 1393 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 1394 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1395
1396 /* If nonlinear, store the file page offset in the pte. */
1397 if (page->index != linear_page_index(vma, address))
1398 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1399
1400 /* Move the dirty bit to the physical page now the pte is gone. */
1401 if (pte_dirty(pteval))
1402 set_page_dirty(page);
1403
edc315fd 1404 page_remove_rmap(page);
1da177e4 1405 page_cache_release(page);
d559db08 1406 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1407 (*mapcount)--;
1408 }
c0718806 1409 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1410 if (locked_vma)
1411 up_read(&vma->vm_mm->mmap_sem);
1412 return ret;
1da177e4
LT
1413}
1414
71e3aac0 1415bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1416{
1417 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1418
1419 if (!maybe_stack)
1420 return false;
1421
1422 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1423 VM_STACK_INCOMPLETE_SETUP)
1424 return true;
1425
1426 return false;
1427}
1428
b291f000
NP
1429/**
1430 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1431 * rmap method
1432 * @page: the page to unmap/unlock
8051be5e 1433 * @flags: action and flags
b291f000
NP
1434 *
1435 * Find all the mappings of a page using the mapping pointer and the vma chains
1436 * contained in the anon_vma struct it points to.
1437 *
1438 * This function is only called from try_to_unmap/try_to_munlock for
1439 * anonymous pages.
1440 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1441 * where the page was found will be held for write. So, we won't recheck
1442 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1443 * 'LOCKED.
1444 */
14fa31b8 1445static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1446{
1447 struct anon_vma *anon_vma;
5beb4930 1448 struct anon_vma_chain *avc;
1da177e4 1449 int ret = SWAP_AGAIN;
b291f000 1450
1da177e4
LT
1451 anon_vma = page_lock_anon_vma(page);
1452 if (!anon_vma)
1453 return ret;
1454
5beb4930
RR
1455 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1456 struct vm_area_struct *vma = avc->vma;
a8bef8ff
MG
1457 unsigned long address;
1458
1459 /*
1460 * During exec, a temporary VMA is setup and later moved.
1461 * The VMA is moved under the anon_vma lock but not the
1462 * page tables leading to a race where migration cannot
1463 * find the migration ptes. Rather than increasing the
1464 * locking requirements of exec(), migration skips
1465 * temporary VMAs until after exec() completes.
1466 */
ce1744f4 1467 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
a8bef8ff
MG
1468 is_vma_temporary_stack(vma))
1469 continue;
1470
1471 address = vma_address(page, vma);
1cb1729b
HD
1472 if (address == -EFAULT)
1473 continue;
1474 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1475 if (ret != SWAP_AGAIN || !page_mapped(page))
1476 break;
1da177e4 1477 }
34bbd704
ON
1478
1479 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1480 return ret;
1481}
1482
1483/**
b291f000
NP
1484 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1485 * @page: the page to unmap/unlock
14fa31b8 1486 * @flags: action and flags
1da177e4
LT
1487 *
1488 * Find all the mappings of a page using the mapping pointer and the vma chains
1489 * contained in the address_space struct it points to.
1490 *
b291f000
NP
1491 * This function is only called from try_to_unmap/try_to_munlock for
1492 * object-based pages.
1493 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1494 * where the page was found will be held for write. So, we won't recheck
1495 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1496 * 'LOCKED.
1da177e4 1497 */
14fa31b8 1498static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1499{
1500 struct address_space *mapping = page->mapping;
1501 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1502 struct vm_area_struct *vma;
1da177e4
LT
1503 int ret = SWAP_AGAIN;
1504 unsigned long cursor;
1505 unsigned long max_nl_cursor = 0;
1506 unsigned long max_nl_size = 0;
1507 unsigned int mapcount;
1508
3d48ae45 1509 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 1510 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1511 unsigned long address = vma_address(page, vma);
1512 if (address == -EFAULT)
1513 continue;
1514 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1515 if (ret != SWAP_AGAIN || !page_mapped(page))
1516 goto out;
1da177e4
LT
1517 }
1518
1519 if (list_empty(&mapping->i_mmap_nonlinear))
1520 goto out;
1521
53f79acb
HD
1522 /*
1523 * We don't bother to try to find the munlocked page in nonlinears.
1524 * It's costly. Instead, later, page reclaim logic may call
1525 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1526 */
1527 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1528 goto out;
1529
1da177e4 1530 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
6b2dbba8 1531 shared.nonlinear) {
1da177e4
LT
1532 cursor = (unsigned long) vma->vm_private_data;
1533 if (cursor > max_nl_cursor)
1534 max_nl_cursor = cursor;
1535 cursor = vma->vm_end - vma->vm_start;
1536 if (cursor > max_nl_size)
1537 max_nl_size = cursor;
1538 }
1539
b291f000 1540 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1541 ret = SWAP_FAIL;
1542 goto out;
1543 }
1544
1545 /*
1546 * We don't try to search for this page in the nonlinear vmas,
1547 * and page_referenced wouldn't have found it anyway. Instead
1548 * just walk the nonlinear vmas trying to age and unmap some.
1549 * The mapcount of the page we came in with is irrelevant,
1550 * but even so use it as a guide to how hard we should try?
1551 */
1552 mapcount = page_mapcount(page);
1553 if (!mapcount)
1554 goto out;
3d48ae45 1555 cond_resched();
1da177e4
LT
1556
1557 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1558 if (max_nl_cursor == 0)
1559 max_nl_cursor = CLUSTER_SIZE;
1560
1561 do {
1562 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
6b2dbba8 1563 shared.nonlinear) {
1da177e4 1564 cursor = (unsigned long) vma->vm_private_data;
839b9685 1565 while ( cursor < max_nl_cursor &&
1da177e4 1566 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1567 if (try_to_unmap_cluster(cursor, &mapcount,
1568 vma, page) == SWAP_MLOCK)
1569 ret = SWAP_MLOCK;
1da177e4
LT
1570 cursor += CLUSTER_SIZE;
1571 vma->vm_private_data = (void *) cursor;
1572 if ((int)mapcount <= 0)
1573 goto out;
1574 }
1575 vma->vm_private_data = (void *) max_nl_cursor;
1576 }
3d48ae45 1577 cond_resched();
1da177e4
LT
1578 max_nl_cursor += CLUSTER_SIZE;
1579 } while (max_nl_cursor <= max_nl_size);
1580
1581 /*
1582 * Don't loop forever (perhaps all the remaining pages are
1583 * in locked vmas). Reset cursor on all unreserved nonlinear
1584 * vmas, now forgetting on which ones it had fallen behind.
1585 */
6b2dbba8 1586 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
101d2be7 1587 vma->vm_private_data = NULL;
1da177e4 1588out:
3d48ae45 1589 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
1590 return ret;
1591}
1592
1593/**
1594 * try_to_unmap - try to remove all page table mappings to a page
1595 * @page: the page to get unmapped
14fa31b8 1596 * @flags: action and flags
1da177e4
LT
1597 *
1598 * Tries to remove all the page table entries which are mapping this
1599 * page, used in the pageout path. Caller must hold the page lock.
1600 * Return values are:
1601 *
1602 * SWAP_SUCCESS - we succeeded in removing all mappings
1603 * SWAP_AGAIN - we missed a mapping, try again later
1604 * SWAP_FAIL - the page is unswappable
b291f000 1605 * SWAP_MLOCK - page is mlocked.
1da177e4 1606 */
14fa31b8 1607int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1608{
1609 int ret;
1610
1da177e4 1611 BUG_ON(!PageLocked(page));
91600e9e 1612 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1da177e4 1613
5ad64688
HD
1614 if (unlikely(PageKsm(page)))
1615 ret = try_to_unmap_ksm(page, flags);
1616 else if (PageAnon(page))
14fa31b8 1617 ret = try_to_unmap_anon(page, flags);
1da177e4 1618 else
14fa31b8 1619 ret = try_to_unmap_file(page, flags);
b291f000 1620 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1621 ret = SWAP_SUCCESS;
1622 return ret;
1623}
81b4082d 1624
b291f000
NP
1625/**
1626 * try_to_munlock - try to munlock a page
1627 * @page: the page to be munlocked
1628 *
1629 * Called from munlock code. Checks all of the VMAs mapping the page
1630 * to make sure nobody else has this page mlocked. The page will be
1631 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1632 *
1633 * Return values are:
1634 *
53f79acb 1635 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1636 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1637 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1638 * SWAP_MLOCK - page is now mlocked.
1639 */
1640int try_to_munlock(struct page *page)
1641{
1642 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1643
5ad64688
HD
1644 if (unlikely(PageKsm(page)))
1645 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1646 else if (PageAnon(page))
14fa31b8 1647 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1648 else
14fa31b8 1649 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1650}
e9995ef9 1651
01d8b20d 1652void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1653{
01d8b20d 1654 struct anon_vma *root = anon_vma->root;
76545066 1655
01d8b20d
PZ
1656 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1657 anon_vma_free(root);
76545066 1658
01d8b20d 1659 anon_vma_free(anon_vma);
76545066 1660}
76545066 1661
e9995ef9
HD
1662#ifdef CONFIG_MIGRATION
1663/*
1664 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1665 * Called by migrate.c to remove migration ptes, but might be used more later.
1666 */
1667static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1668 struct vm_area_struct *, unsigned long, void *), void *arg)
1669{
1670 struct anon_vma *anon_vma;
5beb4930 1671 struct anon_vma_chain *avc;
e9995ef9
HD
1672 int ret = SWAP_AGAIN;
1673
1674 /*
1675 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1676 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1677 * are holding mmap_sem. Users without mmap_sem are required to
1678 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1679 */
1680 anon_vma = page_anon_vma(page);
1681 if (!anon_vma)
1682 return ret;
cba48b98 1683 anon_vma_lock(anon_vma);
5beb4930
RR
1684 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1685 struct vm_area_struct *vma = avc->vma;
e9995ef9
HD
1686 unsigned long address = vma_address(page, vma);
1687 if (address == -EFAULT)
1688 continue;
1689 ret = rmap_one(page, vma, address, arg);
1690 if (ret != SWAP_AGAIN)
1691 break;
1692 }
cba48b98 1693 anon_vma_unlock(anon_vma);
e9995ef9
HD
1694 return ret;
1695}
1696
1697static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1698 struct vm_area_struct *, unsigned long, void *), void *arg)
1699{
1700 struct address_space *mapping = page->mapping;
1701 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1702 struct vm_area_struct *vma;
e9995ef9
HD
1703 int ret = SWAP_AGAIN;
1704
1705 if (!mapping)
1706 return ret;
3d48ae45 1707 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 1708 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9
HD
1709 unsigned long address = vma_address(page, vma);
1710 if (address == -EFAULT)
1711 continue;
1712 ret = rmap_one(page, vma, address, arg);
1713 if (ret != SWAP_AGAIN)
1714 break;
1715 }
1716 /*
1717 * No nonlinear handling: being always shared, nonlinear vmas
1718 * never contain migration ptes. Decide what to do about this
1719 * limitation to linear when we need rmap_walk() on nonlinear.
1720 */
3d48ae45 1721 mutex_unlock(&mapping->i_mmap_mutex);
e9995ef9
HD
1722 return ret;
1723}
1724
1725int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1726 struct vm_area_struct *, unsigned long, void *), void *arg)
1727{
1728 VM_BUG_ON(!PageLocked(page));
1729
1730 if (unlikely(PageKsm(page)))
1731 return rmap_walk_ksm(page, rmap_one, arg);
1732 else if (PageAnon(page))
1733 return rmap_walk_anon(page, rmap_one, arg);
1734 else
1735 return rmap_walk_file(page, rmap_one, arg);
1736}
1737#endif /* CONFIG_MIGRATION */
0fe6e20b 1738
e3390f67 1739#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1740/*
1741 * The following three functions are for anonymous (private mapped) hugepages.
1742 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1743 * and no lru code, because we handle hugepages differently from common pages.
1744 */
1745static void __hugepage_set_anon_rmap(struct page *page,
1746 struct vm_area_struct *vma, unsigned long address, int exclusive)
1747{
1748 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1749
0fe6e20b 1750 BUG_ON(!anon_vma);
433abed6
NH
1751
1752 if (PageAnon(page))
1753 return;
1754 if (!exclusive)
1755 anon_vma = anon_vma->root;
1756
0fe6e20b
NH
1757 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1758 page->mapping = (struct address_space *) anon_vma;
1759 page->index = linear_page_index(vma, address);
1760}
1761
1762void hugepage_add_anon_rmap(struct page *page,
1763 struct vm_area_struct *vma, unsigned long address)
1764{
1765 struct anon_vma *anon_vma = vma->anon_vma;
1766 int first;
a850ea30
NH
1767
1768 BUG_ON(!PageLocked(page));
0fe6e20b 1769 BUG_ON(!anon_vma);
5dbe0af4 1770 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1771 first = atomic_inc_and_test(&page->_mapcount);
1772 if (first)
1773 __hugepage_set_anon_rmap(page, vma, address, 0);
1774}
1775
1776void hugepage_add_new_anon_rmap(struct page *page,
1777 struct vm_area_struct *vma, unsigned long address)
1778{
1779 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1780 atomic_set(&page->_mapcount, 0);
1781 __hugepage_set_anon_rmap(page, vma, address, 1);
1782}
e3390f67 1783#endif /* CONFIG_HUGETLB_PAGE */