]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/rmap.c
anon_vma: clone the anon_vma chain in the right order
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
6a46079c
AK
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
1da177e4
LT
44 */
45
46#include <linux/mm.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/slab.h>
51#include <linux/init.h>
5ad64688 52#include <linux/ksm.h>
1da177e4
LT
53#include <linux/rmap.h>
54#include <linux/rcupdate.h>
a48d07af 55#include <linux/module.h>
8a9f3ccd 56#include <linux/memcontrol.h>
cddb8a5c 57#include <linux/mmu_notifier.h>
64cdd548 58#include <linux/migrate.h>
1da177e4
LT
59
60#include <asm/tlbflush.h>
61
b291f000
NP
62#include "internal.h"
63
fdd2e5f8 64static struct kmem_cache *anon_vma_cachep;
5beb4930 65static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
66
67static inline struct anon_vma *anon_vma_alloc(void)
68{
69 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
70}
71
db114b83 72void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8
AB
73{
74 kmem_cache_free(anon_vma_cachep, anon_vma);
75}
1da177e4 76
5beb4930
RR
77static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
78{
79 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
80}
81
82void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
83{
84 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
85}
86
d9d332e0
LT
87/**
88 * anon_vma_prepare - attach an anon_vma to a memory region
89 * @vma: the memory region in question
90 *
91 * This makes sure the memory mapping described by 'vma' has
92 * an 'anon_vma' attached to it, so that we can associate the
93 * anonymous pages mapped into it with that anon_vma.
94 *
95 * The common case will be that we already have one, but if
96 * if not we either need to find an adjacent mapping that we
97 * can re-use the anon_vma from (very common when the only
98 * reason for splitting a vma has been mprotect()), or we
99 * allocate a new one.
100 *
101 * Anon-vma allocations are very subtle, because we may have
102 * optimistically looked up an anon_vma in page_lock_anon_vma()
103 * and that may actually touch the spinlock even in the newly
104 * allocated vma (it depends on RCU to make sure that the
105 * anon_vma isn't actually destroyed).
106 *
107 * As a result, we need to do proper anon_vma locking even
108 * for the new allocation. At the same time, we do not want
109 * to do any locking for the common case of already having
110 * an anon_vma.
111 *
112 * This must be called with the mmap_sem held for reading.
113 */
1da177e4
LT
114int anon_vma_prepare(struct vm_area_struct *vma)
115{
116 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 117 struct anon_vma_chain *avc;
1da177e4
LT
118
119 might_sleep();
120 if (unlikely(!anon_vma)) {
121 struct mm_struct *mm = vma->vm_mm;
d9d332e0 122 struct anon_vma *allocated;
1da177e4 123
5beb4930
RR
124 avc = anon_vma_chain_alloc();
125 if (!avc)
126 goto out_enomem;
127
1da177e4 128 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
129 allocated = NULL;
130 if (!anon_vma) {
1da177e4
LT
131 anon_vma = anon_vma_alloc();
132 if (unlikely(!anon_vma))
5beb4930 133 goto out_enomem_free_avc;
1da177e4 134 allocated = anon_vma;
1da177e4 135 }
d9d332e0 136 spin_lock(&anon_vma->lock);
1da177e4
LT
137
138 /* page_table_lock to protect against threads */
139 spin_lock(&mm->page_table_lock);
140 if (likely(!vma->anon_vma)) {
141 vma->anon_vma = anon_vma;
5beb4930
RR
142 avc->anon_vma = anon_vma;
143 avc->vma = vma;
144 list_add(&avc->same_vma, &vma->anon_vma_chain);
145 list_add(&avc->same_anon_vma, &anon_vma->head);
1da177e4
LT
146 allocated = NULL;
147 }
148 spin_unlock(&mm->page_table_lock);
149
d9d332e0 150 spin_unlock(&anon_vma->lock);
5beb4930 151 if (unlikely(allocated)) {
1da177e4 152 anon_vma_free(allocated);
5beb4930
RR
153 anon_vma_chain_free(avc);
154 }
1da177e4
LT
155 }
156 return 0;
5beb4930
RR
157
158 out_enomem_free_avc:
159 anon_vma_chain_free(avc);
160 out_enomem:
161 return -ENOMEM;
1da177e4
LT
162}
163
5beb4930
RR
164static void anon_vma_chain_link(struct vm_area_struct *vma,
165 struct anon_vma_chain *avc,
166 struct anon_vma *anon_vma)
1da177e4 167{
5beb4930
RR
168 avc->vma = vma;
169 avc->anon_vma = anon_vma;
170 list_add(&avc->same_vma, &vma->anon_vma_chain);
171
172 spin_lock(&anon_vma->lock);
173 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
174 spin_unlock(&anon_vma->lock);
1da177e4
LT
175}
176
5beb4930
RR
177/*
178 * Attach the anon_vmas from src to dst.
179 * Returns 0 on success, -ENOMEM on failure.
180 */
181int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 182{
5beb4930
RR
183 struct anon_vma_chain *avc, *pavc;
184
646d87b4 185 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
5beb4930
RR
186 avc = anon_vma_chain_alloc();
187 if (!avc)
188 goto enomem_failure;
189 anon_vma_chain_link(dst, avc, pavc->anon_vma);
190 }
191 return 0;
1da177e4 192
5beb4930
RR
193 enomem_failure:
194 unlink_anon_vmas(dst);
195 return -ENOMEM;
1da177e4
LT
196}
197
5beb4930
RR
198/*
199 * Attach vma to its own anon_vma, as well as to the anon_vmas that
200 * the corresponding VMA in the parent process is attached to.
201 * Returns 0 on success, non-zero on failure.
202 */
203int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 204{
5beb4930
RR
205 struct anon_vma_chain *avc;
206 struct anon_vma *anon_vma;
1da177e4 207
5beb4930
RR
208 /* Don't bother if the parent process has no anon_vma here. */
209 if (!pvma->anon_vma)
210 return 0;
211
212 /*
213 * First, attach the new VMA to the parent VMA's anon_vmas,
214 * so rmap can find non-COWed pages in child processes.
215 */
216 if (anon_vma_clone(vma, pvma))
217 return -ENOMEM;
218
219 /* Then add our own anon_vma. */
220 anon_vma = anon_vma_alloc();
221 if (!anon_vma)
222 goto out_error;
223 avc = anon_vma_chain_alloc();
224 if (!avc)
225 goto out_error_free_anon_vma;
226 anon_vma_chain_link(vma, avc, anon_vma);
227 /* Mark this anon_vma as the one where our new (COWed) pages go. */
228 vma->anon_vma = anon_vma;
229
230 return 0;
231
232 out_error_free_anon_vma:
233 anon_vma_free(anon_vma);
234 out_error:
4946d54c 235 unlink_anon_vmas(vma);
5beb4930 236 return -ENOMEM;
1da177e4
LT
237}
238
5beb4930 239static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
1da177e4 240{
5beb4930 241 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
1da177e4
LT
242 int empty;
243
5beb4930 244 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
1da177e4
LT
245 if (!anon_vma)
246 return;
247
248 spin_lock(&anon_vma->lock);
5beb4930 249 list_del(&anon_vma_chain->same_anon_vma);
1da177e4
LT
250
251 /* We must garbage collect the anon_vma if it's empty */
db114b83 252 empty = list_empty(&anon_vma->head) && !ksm_refcount(anon_vma);
1da177e4
LT
253 spin_unlock(&anon_vma->lock);
254
255 if (empty)
256 anon_vma_free(anon_vma);
257}
258
5beb4930
RR
259void unlink_anon_vmas(struct vm_area_struct *vma)
260{
261 struct anon_vma_chain *avc, *next;
262
263 /* Unlink each anon_vma chained to the VMA. */
264 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
265 anon_vma_unlink(avc);
266 list_del(&avc->same_vma);
267 anon_vma_chain_free(avc);
268 }
269}
270
51cc5068 271static void anon_vma_ctor(void *data)
1da177e4 272{
a35afb83 273 struct anon_vma *anon_vma = data;
1da177e4 274
a35afb83 275 spin_lock_init(&anon_vma->lock);
db114b83 276 ksm_refcount_init(anon_vma);
a35afb83 277 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
278}
279
280void __init anon_vma_init(void)
281{
282 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 283 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 284 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
285}
286
287/*
288 * Getting a lock on a stable anon_vma from a page off the LRU is
289 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
290 */
10be22df 291struct anon_vma *page_lock_anon_vma(struct page *page)
1da177e4 292{
34bbd704 293 struct anon_vma *anon_vma;
1da177e4
LT
294 unsigned long anon_mapping;
295
296 rcu_read_lock();
80e14822 297 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 298 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
299 goto out;
300 if (!page_mapped(page))
301 goto out;
302
303 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
304 spin_lock(&anon_vma->lock);
34bbd704 305 return anon_vma;
1da177e4
LT
306out:
307 rcu_read_unlock();
34bbd704
ON
308 return NULL;
309}
310
10be22df 311void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704
ON
312{
313 spin_unlock(&anon_vma->lock);
314 rcu_read_unlock();
1da177e4
LT
315}
316
317/*
3ad33b24
LS
318 * At what user virtual address is page expected in @vma?
319 * Returns virtual address or -EFAULT if page's index/offset is not
320 * within the range mapped the @vma.
1da177e4
LT
321 */
322static inline unsigned long
323vma_address(struct page *page, struct vm_area_struct *vma)
324{
325 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
326 unsigned long address;
327
328 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
329 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 330 /* page should be within @vma mapping range */
1da177e4
LT
331 return -EFAULT;
332 }
333 return address;
334}
335
336/*
bf89c8c8
HS
337 * At what user virtual address is page expected in vma?
338 * checking that the page matches the vma.
1da177e4
LT
339 */
340unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
341{
342 if (PageAnon(page)) {
3ca7b3c5 343 if (vma->anon_vma != page_anon_vma(page))
1da177e4
LT
344 return -EFAULT;
345 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
346 if (!vma->vm_file ||
347 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
348 return -EFAULT;
349 } else
350 return -EFAULT;
351 return vma_address(page, vma);
352}
353
81b4082d
ND
354/*
355 * Check that @page is mapped at @address into @mm.
356 *
479db0bf
NP
357 * If @sync is false, page_check_address may perform a racy check to avoid
358 * the page table lock when the pte is not present (helpful when reclaiming
359 * highly shared pages).
360 *
b8072f09 361 * On success returns with pte mapped and locked.
81b4082d 362 */
ceffc078 363pte_t *page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 364 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
365{
366 pgd_t *pgd;
367 pud_t *pud;
368 pmd_t *pmd;
369 pte_t *pte;
c0718806 370 spinlock_t *ptl;
81b4082d 371
81b4082d 372 pgd = pgd_offset(mm, address);
c0718806
HD
373 if (!pgd_present(*pgd))
374 return NULL;
375
376 pud = pud_offset(pgd, address);
377 if (!pud_present(*pud))
378 return NULL;
379
380 pmd = pmd_offset(pud, address);
381 if (!pmd_present(*pmd))
382 return NULL;
383
384 pte = pte_offset_map(pmd, address);
385 /* Make a quick check before getting the lock */
479db0bf 386 if (!sync && !pte_present(*pte)) {
c0718806
HD
387 pte_unmap(pte);
388 return NULL;
389 }
390
4c21e2f2 391 ptl = pte_lockptr(mm, pmd);
c0718806
HD
392 spin_lock(ptl);
393 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
394 *ptlp = ptl;
395 return pte;
81b4082d 396 }
c0718806
HD
397 pte_unmap_unlock(pte, ptl);
398 return NULL;
81b4082d
ND
399}
400
b291f000
NP
401/**
402 * page_mapped_in_vma - check whether a page is really mapped in a VMA
403 * @page: the page to test
404 * @vma: the VMA to test
405 *
406 * Returns 1 if the page is mapped into the page tables of the VMA, 0
407 * if the page is not mapped into the page tables of this VMA. Only
408 * valid for normal file or anonymous VMAs.
409 */
6a46079c 410int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
411{
412 unsigned long address;
413 pte_t *pte;
414 spinlock_t *ptl;
415
416 address = vma_address(page, vma);
417 if (address == -EFAULT) /* out of vma range */
418 return 0;
419 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
420 if (!pte) /* the page is not in this mm */
421 return 0;
422 pte_unmap_unlock(pte, ptl);
423
424 return 1;
425}
426
1da177e4
LT
427/*
428 * Subfunctions of page_referenced: page_referenced_one called
429 * repeatedly from either page_referenced_anon or page_referenced_file.
430 */
5ad64688
HD
431int page_referenced_one(struct page *page, struct vm_area_struct *vma,
432 unsigned long address, unsigned int *mapcount,
433 unsigned long *vm_flags)
1da177e4
LT
434{
435 struct mm_struct *mm = vma->vm_mm;
1da177e4 436 pte_t *pte;
c0718806 437 spinlock_t *ptl;
1da177e4
LT
438 int referenced = 0;
439
479db0bf 440 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806
HD
441 if (!pte)
442 goto out;
1da177e4 443
b291f000
NP
444 /*
445 * Don't want to elevate referenced for mlocked page that gets this far,
446 * in order that it progresses to try_to_unmap and is moved to the
447 * unevictable list.
448 */
5a9bbdcd 449 if (vma->vm_flags & VM_LOCKED) {
5a9bbdcd 450 *mapcount = 1; /* break early from loop */
03ef83af 451 *vm_flags |= VM_LOCKED;
b291f000
NP
452 goto out_unmap;
453 }
454
4917e5d0
JW
455 if (ptep_clear_flush_young_notify(vma, address, pte)) {
456 /*
457 * Don't treat a reference through a sequentially read
458 * mapping as such. If the page has been used in
459 * another mapping, we will catch it; if this other
460 * mapping is already gone, the unmap path will have
461 * set PG_referenced or activated the page.
462 */
463 if (likely(!VM_SequentialReadHint(vma)))
464 referenced++;
465 }
1da177e4 466
c0718806
HD
467 /* Pretend the page is referenced if the task has the
468 swap token and is in the middle of a page fault. */
f7b7fd8f 469 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
470 rwsem_is_locked(&mm->mmap_sem))
471 referenced++;
472
b291f000 473out_unmap:
c0718806
HD
474 (*mapcount)--;
475 pte_unmap_unlock(pte, ptl);
273f047e 476
6fe6b7e3
WF
477 if (referenced)
478 *vm_flags |= vma->vm_flags;
273f047e 479out:
1da177e4
LT
480 return referenced;
481}
482
bed7161a 483static int page_referenced_anon(struct page *page,
6fe6b7e3
WF
484 struct mem_cgroup *mem_cont,
485 unsigned long *vm_flags)
1da177e4
LT
486{
487 unsigned int mapcount;
488 struct anon_vma *anon_vma;
5beb4930 489 struct anon_vma_chain *avc;
1da177e4
LT
490 int referenced = 0;
491
492 anon_vma = page_lock_anon_vma(page);
493 if (!anon_vma)
494 return referenced;
495
496 mapcount = page_mapcount(page);
5beb4930
RR
497 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
498 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
499 unsigned long address = vma_address(page, vma);
500 if (address == -EFAULT)
501 continue;
bed7161a
BS
502 /*
503 * If we are reclaiming on behalf of a cgroup, skip
504 * counting on behalf of references from different
505 * cgroups
506 */
bd845e38 507 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 508 continue;
1cb1729b 509 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 510 &mapcount, vm_flags);
1da177e4
LT
511 if (!mapcount)
512 break;
513 }
34bbd704
ON
514
515 page_unlock_anon_vma(anon_vma);
1da177e4
LT
516 return referenced;
517}
518
519/**
520 * page_referenced_file - referenced check for object-based rmap
521 * @page: the page we're checking references on.
43d8eac4 522 * @mem_cont: target memory controller
6fe6b7e3 523 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
524 *
525 * For an object-based mapped page, find all the places it is mapped and
526 * check/clear the referenced flag. This is done by following the page->mapping
527 * pointer, then walking the chain of vmas it holds. It returns the number
528 * of references it found.
529 *
530 * This function is only called from page_referenced for object-based pages.
531 */
bed7161a 532static int page_referenced_file(struct page *page,
6fe6b7e3
WF
533 struct mem_cgroup *mem_cont,
534 unsigned long *vm_flags)
1da177e4
LT
535{
536 unsigned int mapcount;
537 struct address_space *mapping = page->mapping;
538 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
539 struct vm_area_struct *vma;
540 struct prio_tree_iter iter;
541 int referenced = 0;
542
543 /*
544 * The caller's checks on page->mapping and !PageAnon have made
545 * sure that this is a file page: the check for page->mapping
546 * excludes the case just before it gets set on an anon page.
547 */
548 BUG_ON(PageAnon(page));
549
550 /*
551 * The page lock not only makes sure that page->mapping cannot
552 * suddenly be NULLified by truncation, it makes sure that the
553 * structure at mapping cannot be freed and reused yet,
554 * so we can safely take mapping->i_mmap_lock.
555 */
556 BUG_ON(!PageLocked(page));
557
558 spin_lock(&mapping->i_mmap_lock);
559
560 /*
561 * i_mmap_lock does not stabilize mapcount at all, but mapcount
562 * is more likely to be accurate if we note it after spinning.
563 */
564 mapcount = page_mapcount(page);
565
566 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
567 unsigned long address = vma_address(page, vma);
568 if (address == -EFAULT)
569 continue;
bed7161a
BS
570 /*
571 * If we are reclaiming on behalf of a cgroup, skip
572 * counting on behalf of references from different
573 * cgroups
574 */
bd845e38 575 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 576 continue;
1cb1729b 577 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 578 &mapcount, vm_flags);
1da177e4
LT
579 if (!mapcount)
580 break;
581 }
582
583 spin_unlock(&mapping->i_mmap_lock);
584 return referenced;
585}
586
587/**
588 * page_referenced - test if the page was referenced
589 * @page: the page to test
590 * @is_locked: caller holds lock on the page
43d8eac4 591 * @mem_cont: target memory controller
6fe6b7e3 592 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
593 *
594 * Quick test_and_clear_referenced for all mappings to a page,
595 * returns the number of ptes which referenced the page.
596 */
6fe6b7e3
WF
597int page_referenced(struct page *page,
598 int is_locked,
599 struct mem_cgroup *mem_cont,
600 unsigned long *vm_flags)
1da177e4
LT
601{
602 int referenced = 0;
5ad64688 603 int we_locked = 0;
1da177e4 604
6fe6b7e3 605 *vm_flags = 0;
3ca7b3c5 606 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
607 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
608 we_locked = trylock_page(page);
609 if (!we_locked) {
610 referenced++;
611 goto out;
612 }
613 }
614 if (unlikely(PageKsm(page)))
615 referenced += page_referenced_ksm(page, mem_cont,
616 vm_flags);
617 else if (PageAnon(page))
6fe6b7e3
WF
618 referenced += page_referenced_anon(page, mem_cont,
619 vm_flags);
5ad64688 620 else if (page->mapping)
6fe6b7e3
WF
621 referenced += page_referenced_file(page, mem_cont,
622 vm_flags);
5ad64688 623 if (we_locked)
1da177e4 624 unlock_page(page);
1da177e4 625 }
5ad64688 626out:
5b7baf05
CB
627 if (page_test_and_clear_young(page))
628 referenced++;
629
1da177e4
LT
630 return referenced;
631}
632
1cb1729b
HD
633static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
634 unsigned long address)
d08b3851
PZ
635{
636 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 637 pte_t *pte;
d08b3851
PZ
638 spinlock_t *ptl;
639 int ret = 0;
640
479db0bf 641 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
642 if (!pte)
643 goto out;
644
c2fda5fe
PZ
645 if (pte_dirty(*pte) || pte_write(*pte)) {
646 pte_t entry;
d08b3851 647
c2fda5fe 648 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 649 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
650 entry = pte_wrprotect(entry);
651 entry = pte_mkclean(entry);
d6e88e67 652 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
653 ret = 1;
654 }
d08b3851 655
d08b3851
PZ
656 pte_unmap_unlock(pte, ptl);
657out:
658 return ret;
659}
660
661static int page_mkclean_file(struct address_space *mapping, struct page *page)
662{
663 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
664 struct vm_area_struct *vma;
665 struct prio_tree_iter iter;
666 int ret = 0;
667
668 BUG_ON(PageAnon(page));
669
670 spin_lock(&mapping->i_mmap_lock);
671 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
672 if (vma->vm_flags & VM_SHARED) {
673 unsigned long address = vma_address(page, vma);
674 if (address == -EFAULT)
675 continue;
676 ret += page_mkclean_one(page, vma, address);
677 }
d08b3851
PZ
678 }
679 spin_unlock(&mapping->i_mmap_lock);
680 return ret;
681}
682
683int page_mkclean(struct page *page)
684{
685 int ret = 0;
686
687 BUG_ON(!PageLocked(page));
688
689 if (page_mapped(page)) {
690 struct address_space *mapping = page_mapping(page);
ce7e9fae 691 if (mapping) {
d08b3851 692 ret = page_mkclean_file(mapping, page);
ce7e9fae
CB
693 if (page_test_dirty(page)) {
694 page_clear_dirty(page);
695 ret = 1;
696 }
6c210482 697 }
d08b3851
PZ
698 }
699
700 return ret;
701}
60b59bea 702EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 703
c44b6743
RR
704/**
705 * page_move_anon_rmap - move a page to our anon_vma
706 * @page: the page to move to our anon_vma
707 * @vma: the vma the page belongs to
708 * @address: the user virtual address mapped
709 *
710 * When a page belongs exclusively to one process after a COW event,
711 * that page can be moved into the anon_vma that belongs to just that
712 * process, so the rmap code will not search the parent or sibling
713 * processes.
714 */
715void page_move_anon_rmap(struct page *page,
716 struct vm_area_struct *vma, unsigned long address)
717{
718 struct anon_vma *anon_vma = vma->anon_vma;
719
720 VM_BUG_ON(!PageLocked(page));
721 VM_BUG_ON(!anon_vma);
722 VM_BUG_ON(page->index != linear_page_index(vma, address));
723
724 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
725 page->mapping = (struct address_space *) anon_vma;
726}
727
9617d95e 728/**
43d8eac4 729 * __page_set_anon_rmap - setup new anonymous rmap
9617d95e
NP
730 * @page: the page to add the mapping to
731 * @vma: the vm area in which the mapping is added
732 * @address: the user virtual address mapped
733 */
734static void __page_set_anon_rmap(struct page *page,
735 struct vm_area_struct *vma, unsigned long address)
736{
737 struct anon_vma *anon_vma = vma->anon_vma;
738
739 BUG_ON(!anon_vma);
740 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
741 page->mapping = (struct address_space *) anon_vma;
9617d95e 742 page->index = linear_page_index(vma, address);
9617d95e
NP
743}
744
c97a9e10 745/**
43d8eac4 746 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
747 * @page: the page to add the mapping to
748 * @vma: the vm area in which the mapping is added
749 * @address: the user virtual address mapped
750 */
751static void __page_check_anon_rmap(struct page *page,
752 struct vm_area_struct *vma, unsigned long address)
753{
754#ifdef CONFIG_DEBUG_VM
755 /*
756 * The page's anon-rmap details (mapping and index) are guaranteed to
757 * be set up correctly at this point.
758 *
759 * We have exclusion against page_add_anon_rmap because the caller
760 * always holds the page locked, except if called from page_dup_rmap,
761 * in which case the page is already known to be setup.
762 *
763 * We have exclusion against page_add_new_anon_rmap because those pages
764 * are initially only visible via the pagetables, and the pte is locked
765 * over the call to page_add_new_anon_rmap.
766 */
c97a9e10
NP
767 BUG_ON(page->index != linear_page_index(vma, address));
768#endif
769}
770
1da177e4
LT
771/**
772 * page_add_anon_rmap - add pte mapping to an anonymous page
773 * @page: the page to add the mapping to
774 * @vma: the vm area in which the mapping is added
775 * @address: the user virtual address mapped
776 *
5ad64688 777 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
778 * the anon_vma case: to serialize mapping,index checking after setting,
779 * and to ensure that PageAnon is not being upgraded racily to PageKsm
780 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
781 */
782void page_add_anon_rmap(struct page *page,
783 struct vm_area_struct *vma, unsigned long address)
784{
5ad64688
HD
785 int first = atomic_inc_and_test(&page->_mapcount);
786 if (first)
787 __inc_zone_page_state(page, NR_ANON_PAGES);
788 if (unlikely(PageKsm(page)))
789 return;
790
c97a9e10
NP
791 VM_BUG_ON(!PageLocked(page));
792 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
5ad64688 793 if (first)
9617d95e 794 __page_set_anon_rmap(page, vma, address);
69029cd5 795 else
c97a9e10 796 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
797}
798
43d8eac4 799/**
9617d95e
NP
800 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
801 * @page: the page to add the mapping to
802 * @vma: the vm area in which the mapping is added
803 * @address: the user virtual address mapped
804 *
805 * Same as page_add_anon_rmap but must only be called on *new* pages.
806 * This means the inc-and-test can be bypassed.
c97a9e10 807 * Page does not have to be locked.
9617d95e
NP
808 */
809void page_add_new_anon_rmap(struct page *page,
810 struct vm_area_struct *vma, unsigned long address)
811{
b5934c53 812 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
813 SetPageSwapBacked(page);
814 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
5ad64688 815 __inc_zone_page_state(page, NR_ANON_PAGES);
9617d95e 816 __page_set_anon_rmap(page, vma, address);
b5934c53 817 if (page_evictable(page, vma))
cbf84b7a 818 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
819 else
820 add_page_to_unevictable_list(page);
9617d95e
NP
821}
822
1da177e4
LT
823/**
824 * page_add_file_rmap - add pte mapping to a file page
825 * @page: the page to add the mapping to
826 *
b8072f09 827 * The caller needs to hold the pte lock.
1da177e4
LT
828 */
829void page_add_file_rmap(struct page *page)
830{
d69b042f 831 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 832 __inc_zone_page_state(page, NR_FILE_MAPPED);
d8046582 833 mem_cgroup_update_file_mapped(page, 1);
d69b042f 834 }
1da177e4
LT
835}
836
837/**
838 * page_remove_rmap - take down pte mapping from a page
839 * @page: page to remove mapping from
840 *
b8072f09 841 * The caller needs to hold the pte lock.
1da177e4 842 */
edc315fd 843void page_remove_rmap(struct page *page)
1da177e4 844{
b904dcfe
KM
845 /* page still mapped by someone else? */
846 if (!atomic_add_negative(-1, &page->_mapcount))
847 return;
848
849 /*
850 * Now that the last pte has gone, s390 must transfer dirty
851 * flag from storage key to struct page. We can usually skip
852 * this if the page is anon, so about to be freed; but perhaps
853 * not if it's in swapcache - there might be another pte slot
854 * containing the swap entry, but page not yet written to swap.
855 */
856 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
857 page_clear_dirty(page);
858 set_page_dirty(page);
1da177e4 859 }
b904dcfe
KM
860 if (PageAnon(page)) {
861 mem_cgroup_uncharge_page(page);
862 __dec_zone_page_state(page, NR_ANON_PAGES);
863 } else {
864 __dec_zone_page_state(page, NR_FILE_MAPPED);
d8046582 865 mem_cgroup_update_file_mapped(page, -1);
b904dcfe 866 }
b904dcfe
KM
867 /*
868 * It would be tidy to reset the PageAnon mapping here,
869 * but that might overwrite a racing page_add_anon_rmap
870 * which increments mapcount after us but sets mapping
871 * before us: so leave the reset to free_hot_cold_page,
872 * and remember that it's only reliable while mapped.
873 * Leaving it set also helps swapoff to reinstate ptes
874 * faster for those pages still in swapcache.
875 */
1da177e4
LT
876}
877
878/*
879 * Subfunctions of try_to_unmap: try_to_unmap_one called
880 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
881 */
5ad64688
HD
882int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
883 unsigned long address, enum ttu_flags flags)
1da177e4
LT
884{
885 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
886 pte_t *pte;
887 pte_t pteval;
c0718806 888 spinlock_t *ptl;
1da177e4
LT
889 int ret = SWAP_AGAIN;
890
479db0bf 891 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 892 if (!pte)
81b4082d 893 goto out;
1da177e4
LT
894
895 /*
896 * If the page is mlock()d, we cannot swap it out.
897 * If it's recently referenced (perhaps page_referenced
898 * skipped over this mm) then we should reactivate it.
899 */
14fa31b8 900 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
901 if (vma->vm_flags & VM_LOCKED)
902 goto out_mlock;
903
af8e3354 904 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 905 goto out_unmap;
14fa31b8
AK
906 }
907 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
908 if (ptep_clear_flush_young_notify(vma, address, pte)) {
909 ret = SWAP_FAIL;
910 goto out_unmap;
911 }
912 }
1da177e4 913
1da177e4
LT
914 /* Nuke the page table entry. */
915 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 916 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
917
918 /* Move the dirty bit to the physical page now the pte is gone. */
919 if (pte_dirty(pteval))
920 set_page_dirty(page);
921
365e9c87
HD
922 /* Update high watermark before we lower rss */
923 update_hiwater_rss(mm);
924
888b9f7c
AK
925 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
926 if (PageAnon(page))
d559db08 927 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 928 else
d559db08 929 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
930 set_pte_at(mm, address, pte,
931 swp_entry_to_pte(make_hwpoison_entry(page)));
932 } else if (PageAnon(page)) {
4c21e2f2 933 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
934
935 if (PageSwapCache(page)) {
936 /*
937 * Store the swap location in the pte.
938 * See handle_pte_fault() ...
939 */
570a335b
HD
940 if (swap_duplicate(entry) < 0) {
941 set_pte_at(mm, address, pte, pteval);
942 ret = SWAP_FAIL;
943 goto out_unmap;
944 }
0697212a
CL
945 if (list_empty(&mm->mmlist)) {
946 spin_lock(&mmlist_lock);
947 if (list_empty(&mm->mmlist))
948 list_add(&mm->mmlist, &init_mm.mmlist);
949 spin_unlock(&mmlist_lock);
950 }
d559db08 951 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 952 inc_mm_counter(mm, MM_SWAPENTS);
64cdd548 953 } else if (PAGE_MIGRATION) {
0697212a
CL
954 /*
955 * Store the pfn of the page in a special migration
956 * pte. do_swap_page() will wait until the migration
957 * pte is removed and then restart fault handling.
958 */
14fa31b8 959 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 960 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
961 }
962 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
963 BUG_ON(pte_file(*pte));
14fa31b8 964 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
965 /* Establish migration entry for a file page */
966 swp_entry_t entry;
967 entry = make_migration_entry(page, pte_write(pteval));
968 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
969 } else
d559db08 970 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 971
edc315fd 972 page_remove_rmap(page);
1da177e4
LT
973 page_cache_release(page);
974
975out_unmap:
c0718806 976 pte_unmap_unlock(pte, ptl);
caed0f48
KM
977out:
978 return ret;
53f79acb 979
caed0f48
KM
980out_mlock:
981 pte_unmap_unlock(pte, ptl);
982
983
984 /*
985 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
986 * unstable result and race. Plus, We can't wait here because
987 * we now hold anon_vma->lock or mapping->i_mmap_lock.
988 * if trylock failed, the page remain in evictable lru and later
989 * vmscan could retry to move the page to unevictable lru if the
990 * page is actually mlocked.
991 */
992 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
993 if (vma->vm_flags & VM_LOCKED) {
994 mlock_vma_page(page);
995 ret = SWAP_MLOCK;
53f79acb 996 }
caed0f48 997 up_read(&vma->vm_mm->mmap_sem);
53f79acb 998 }
1da177e4
LT
999 return ret;
1000}
1001
1002/*
1003 * objrmap doesn't work for nonlinear VMAs because the assumption that
1004 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1005 * Consequently, given a particular page and its ->index, we cannot locate the
1006 * ptes which are mapping that page without an exhaustive linear search.
1007 *
1008 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1009 * maps the file to which the target page belongs. The ->vm_private_data field
1010 * holds the current cursor into that scan. Successive searches will circulate
1011 * around the vma's virtual address space.
1012 *
1013 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1014 * more scanning pressure is placed against them as well. Eventually pages
1015 * will become fully unmapped and are eligible for eviction.
1016 *
1017 * For very sparsely populated VMAs this is a little inefficient - chances are
1018 * there there won't be many ptes located within the scan cluster. In this case
1019 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1020 *
1021 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1022 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1023 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1024 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1025 */
1026#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1027#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1028
b291f000
NP
1029static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1030 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1031{
1032 struct mm_struct *mm = vma->vm_mm;
1033 pgd_t *pgd;
1034 pud_t *pud;
1035 pmd_t *pmd;
c0718806 1036 pte_t *pte;
1da177e4 1037 pte_t pteval;
c0718806 1038 spinlock_t *ptl;
1da177e4
LT
1039 struct page *page;
1040 unsigned long address;
1041 unsigned long end;
b291f000
NP
1042 int ret = SWAP_AGAIN;
1043 int locked_vma = 0;
1da177e4 1044
1da177e4
LT
1045 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1046 end = address + CLUSTER_SIZE;
1047 if (address < vma->vm_start)
1048 address = vma->vm_start;
1049 if (end > vma->vm_end)
1050 end = vma->vm_end;
1051
1052 pgd = pgd_offset(mm, address);
1053 if (!pgd_present(*pgd))
b291f000 1054 return ret;
1da177e4
LT
1055
1056 pud = pud_offset(pgd, address);
1057 if (!pud_present(*pud))
b291f000 1058 return ret;
1da177e4
LT
1059
1060 pmd = pmd_offset(pud, address);
1061 if (!pmd_present(*pmd))
b291f000
NP
1062 return ret;
1063
1064 /*
af8e3354 1065 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1066 * keep the sem while scanning the cluster for mlocking pages.
1067 */
af8e3354 1068 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1069 locked_vma = (vma->vm_flags & VM_LOCKED);
1070 if (!locked_vma)
1071 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1072 }
c0718806
HD
1073
1074 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1075
365e9c87
HD
1076 /* Update high watermark before we lower rss */
1077 update_hiwater_rss(mm);
1078
c0718806 1079 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1080 if (!pte_present(*pte))
1081 continue;
6aab341e
LT
1082 page = vm_normal_page(vma, address, *pte);
1083 BUG_ON(!page || PageAnon(page));
1da177e4 1084
b291f000
NP
1085 if (locked_vma) {
1086 mlock_vma_page(page); /* no-op if already mlocked */
1087 if (page == check_page)
1088 ret = SWAP_MLOCK;
1089 continue; /* don't unmap */
1090 }
1091
cddb8a5c 1092 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1093 continue;
1094
1095 /* Nuke the page table entry. */
eca35133 1096 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 1097 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1098
1099 /* If nonlinear, store the file page offset in the pte. */
1100 if (page->index != linear_page_index(vma, address))
1101 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1102
1103 /* Move the dirty bit to the physical page now the pte is gone. */
1104 if (pte_dirty(pteval))
1105 set_page_dirty(page);
1106
edc315fd 1107 page_remove_rmap(page);
1da177e4 1108 page_cache_release(page);
d559db08 1109 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1110 (*mapcount)--;
1111 }
c0718806 1112 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1113 if (locked_vma)
1114 up_read(&vma->vm_mm->mmap_sem);
1115 return ret;
1da177e4
LT
1116}
1117
b291f000
NP
1118/**
1119 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1120 * rmap method
1121 * @page: the page to unmap/unlock
8051be5e 1122 * @flags: action and flags
b291f000
NP
1123 *
1124 * Find all the mappings of a page using the mapping pointer and the vma chains
1125 * contained in the anon_vma struct it points to.
1126 *
1127 * This function is only called from try_to_unmap/try_to_munlock for
1128 * anonymous pages.
1129 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1130 * where the page was found will be held for write. So, we won't recheck
1131 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1132 * 'LOCKED.
1133 */
14fa31b8 1134static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1135{
1136 struct anon_vma *anon_vma;
5beb4930 1137 struct anon_vma_chain *avc;
1da177e4 1138 int ret = SWAP_AGAIN;
b291f000 1139
1da177e4
LT
1140 anon_vma = page_lock_anon_vma(page);
1141 if (!anon_vma)
1142 return ret;
1143
5beb4930
RR
1144 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1145 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
1146 unsigned long address = vma_address(page, vma);
1147 if (address == -EFAULT)
1148 continue;
1149 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1150 if (ret != SWAP_AGAIN || !page_mapped(page))
1151 break;
1da177e4 1152 }
34bbd704
ON
1153
1154 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1155 return ret;
1156}
1157
1158/**
b291f000
NP
1159 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1160 * @page: the page to unmap/unlock
14fa31b8 1161 * @flags: action and flags
1da177e4
LT
1162 *
1163 * Find all the mappings of a page using the mapping pointer and the vma chains
1164 * contained in the address_space struct it points to.
1165 *
b291f000
NP
1166 * This function is only called from try_to_unmap/try_to_munlock for
1167 * object-based pages.
1168 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1169 * where the page was found will be held for write. So, we won't recheck
1170 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1171 * 'LOCKED.
1da177e4 1172 */
14fa31b8 1173static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1174{
1175 struct address_space *mapping = page->mapping;
1176 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1177 struct vm_area_struct *vma;
1178 struct prio_tree_iter iter;
1179 int ret = SWAP_AGAIN;
1180 unsigned long cursor;
1181 unsigned long max_nl_cursor = 0;
1182 unsigned long max_nl_size = 0;
1183 unsigned int mapcount;
1184
1185 spin_lock(&mapping->i_mmap_lock);
1186 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1187 unsigned long address = vma_address(page, vma);
1188 if (address == -EFAULT)
1189 continue;
1190 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1191 if (ret != SWAP_AGAIN || !page_mapped(page))
1192 goto out;
1da177e4
LT
1193 }
1194
1195 if (list_empty(&mapping->i_mmap_nonlinear))
1196 goto out;
1197
53f79acb
HD
1198 /*
1199 * We don't bother to try to find the munlocked page in nonlinears.
1200 * It's costly. Instead, later, page reclaim logic may call
1201 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1202 */
1203 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1204 goto out;
1205
1da177e4
LT
1206 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1207 shared.vm_set.list) {
1da177e4
LT
1208 cursor = (unsigned long) vma->vm_private_data;
1209 if (cursor > max_nl_cursor)
1210 max_nl_cursor = cursor;
1211 cursor = vma->vm_end - vma->vm_start;
1212 if (cursor > max_nl_size)
1213 max_nl_size = cursor;
1214 }
1215
b291f000 1216 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1217 ret = SWAP_FAIL;
1218 goto out;
1219 }
1220
1221 /*
1222 * We don't try to search for this page in the nonlinear vmas,
1223 * and page_referenced wouldn't have found it anyway. Instead
1224 * just walk the nonlinear vmas trying to age and unmap some.
1225 * The mapcount of the page we came in with is irrelevant,
1226 * but even so use it as a guide to how hard we should try?
1227 */
1228 mapcount = page_mapcount(page);
1229 if (!mapcount)
1230 goto out;
1231 cond_resched_lock(&mapping->i_mmap_lock);
1232
1233 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1234 if (max_nl_cursor == 0)
1235 max_nl_cursor = CLUSTER_SIZE;
1236
1237 do {
1238 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1239 shared.vm_set.list) {
1da177e4 1240 cursor = (unsigned long) vma->vm_private_data;
839b9685 1241 while ( cursor < max_nl_cursor &&
1da177e4 1242 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1243 if (try_to_unmap_cluster(cursor, &mapcount,
1244 vma, page) == SWAP_MLOCK)
1245 ret = SWAP_MLOCK;
1da177e4
LT
1246 cursor += CLUSTER_SIZE;
1247 vma->vm_private_data = (void *) cursor;
1248 if ((int)mapcount <= 0)
1249 goto out;
1250 }
1251 vma->vm_private_data = (void *) max_nl_cursor;
1252 }
1253 cond_resched_lock(&mapping->i_mmap_lock);
1254 max_nl_cursor += CLUSTER_SIZE;
1255 } while (max_nl_cursor <= max_nl_size);
1256
1257 /*
1258 * Don't loop forever (perhaps all the remaining pages are
1259 * in locked vmas). Reset cursor on all unreserved nonlinear
1260 * vmas, now forgetting on which ones it had fallen behind.
1261 */
101d2be7
HD
1262 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1263 vma->vm_private_data = NULL;
1da177e4
LT
1264out:
1265 spin_unlock(&mapping->i_mmap_lock);
1266 return ret;
1267}
1268
1269/**
1270 * try_to_unmap - try to remove all page table mappings to a page
1271 * @page: the page to get unmapped
14fa31b8 1272 * @flags: action and flags
1da177e4
LT
1273 *
1274 * Tries to remove all the page table entries which are mapping this
1275 * page, used in the pageout path. Caller must hold the page lock.
1276 * Return values are:
1277 *
1278 * SWAP_SUCCESS - we succeeded in removing all mappings
1279 * SWAP_AGAIN - we missed a mapping, try again later
1280 * SWAP_FAIL - the page is unswappable
b291f000 1281 * SWAP_MLOCK - page is mlocked.
1da177e4 1282 */
14fa31b8 1283int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1284{
1285 int ret;
1286
1da177e4
LT
1287 BUG_ON(!PageLocked(page));
1288
5ad64688
HD
1289 if (unlikely(PageKsm(page)))
1290 ret = try_to_unmap_ksm(page, flags);
1291 else if (PageAnon(page))
14fa31b8 1292 ret = try_to_unmap_anon(page, flags);
1da177e4 1293 else
14fa31b8 1294 ret = try_to_unmap_file(page, flags);
b291f000 1295 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1296 ret = SWAP_SUCCESS;
1297 return ret;
1298}
81b4082d 1299
b291f000
NP
1300/**
1301 * try_to_munlock - try to munlock a page
1302 * @page: the page to be munlocked
1303 *
1304 * Called from munlock code. Checks all of the VMAs mapping the page
1305 * to make sure nobody else has this page mlocked. The page will be
1306 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1307 *
1308 * Return values are:
1309 *
53f79acb 1310 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1311 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1312 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1313 * SWAP_MLOCK - page is now mlocked.
1314 */
1315int try_to_munlock(struct page *page)
1316{
1317 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1318
5ad64688
HD
1319 if (unlikely(PageKsm(page)))
1320 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1321 else if (PageAnon(page))
14fa31b8 1322 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1323 else
14fa31b8 1324 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1325}
e9995ef9
HD
1326
1327#ifdef CONFIG_MIGRATION
1328/*
1329 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1330 * Called by migrate.c to remove migration ptes, but might be used more later.
1331 */
1332static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1333 struct vm_area_struct *, unsigned long, void *), void *arg)
1334{
1335 struct anon_vma *anon_vma;
5beb4930 1336 struct anon_vma_chain *avc;
e9995ef9
HD
1337 int ret = SWAP_AGAIN;
1338
1339 /*
1340 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1341 * because that depends on page_mapped(); but not all its usages
1342 * are holding mmap_sem, which also gave the necessary guarantee
1343 * (that this anon_vma's slab has not already been destroyed).
1344 * This needs to be reviewed later: avoiding page_lock_anon_vma()
1345 * is risky, and currently limits the usefulness of rmap_walk().
1346 */
1347 anon_vma = page_anon_vma(page);
1348 if (!anon_vma)
1349 return ret;
1350 spin_lock(&anon_vma->lock);
5beb4930
RR
1351 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1352 struct vm_area_struct *vma = avc->vma;
e9995ef9
HD
1353 unsigned long address = vma_address(page, vma);
1354 if (address == -EFAULT)
1355 continue;
1356 ret = rmap_one(page, vma, address, arg);
1357 if (ret != SWAP_AGAIN)
1358 break;
1359 }
1360 spin_unlock(&anon_vma->lock);
1361 return ret;
1362}
1363
1364static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1365 struct vm_area_struct *, unsigned long, void *), void *arg)
1366{
1367 struct address_space *mapping = page->mapping;
1368 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1369 struct vm_area_struct *vma;
1370 struct prio_tree_iter iter;
1371 int ret = SWAP_AGAIN;
1372
1373 if (!mapping)
1374 return ret;
1375 spin_lock(&mapping->i_mmap_lock);
1376 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1377 unsigned long address = vma_address(page, vma);
1378 if (address == -EFAULT)
1379 continue;
1380 ret = rmap_one(page, vma, address, arg);
1381 if (ret != SWAP_AGAIN)
1382 break;
1383 }
1384 /*
1385 * No nonlinear handling: being always shared, nonlinear vmas
1386 * never contain migration ptes. Decide what to do about this
1387 * limitation to linear when we need rmap_walk() on nonlinear.
1388 */
1389 spin_unlock(&mapping->i_mmap_lock);
1390 return ret;
1391}
1392
1393int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1394 struct vm_area_struct *, unsigned long, void *), void *arg)
1395{
1396 VM_BUG_ON(!PageLocked(page));
1397
1398 if (unlikely(PageKsm(page)))
1399 return rmap_walk_ksm(page, rmap_one, arg);
1400 else if (PageAnon(page))
1401 return rmap_walk_anon(page, rmap_one, arg);
1402 else
1403 return rmap_walk_file(page, rmap_one, arg);
1404}
1405#endif /* CONFIG_MIGRATION */