]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/rmap.c
mm: move anon_vma ref out from under CONFIG_foo
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
6a46079c
AK
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
1da177e4
LT
44 */
45
46#include <linux/mm.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/slab.h>
51#include <linux/init.h>
5ad64688 52#include <linux/ksm.h>
1da177e4
LT
53#include <linux/rmap.h>
54#include <linux/rcupdate.h>
a48d07af 55#include <linux/module.h>
8a9f3ccd 56#include <linux/memcontrol.h>
cddb8a5c 57#include <linux/mmu_notifier.h>
64cdd548 58#include <linux/migrate.h>
0fe6e20b 59#include <linux/hugetlb.h>
1da177e4
LT
60
61#include <asm/tlbflush.h>
62
b291f000
NP
63#include "internal.h"
64
fdd2e5f8 65static struct kmem_cache *anon_vma_cachep;
5beb4930 66static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
70 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
71}
72
db114b83 73void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8
AB
74{
75 kmem_cache_free(anon_vma_cachep, anon_vma);
76}
1da177e4 77
5beb4930
RR
78static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
79{
80 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
81}
82
e574b5fd 83static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
84{
85 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
86}
87
d9d332e0
LT
88/**
89 * anon_vma_prepare - attach an anon_vma to a memory region
90 * @vma: the memory region in question
91 *
92 * This makes sure the memory mapping described by 'vma' has
93 * an 'anon_vma' attached to it, so that we can associate the
94 * anonymous pages mapped into it with that anon_vma.
95 *
96 * The common case will be that we already have one, but if
23a0790a 97 * not we either need to find an adjacent mapping that we
d9d332e0
LT
98 * can re-use the anon_vma from (very common when the only
99 * reason for splitting a vma has been mprotect()), or we
100 * allocate a new one.
101 *
102 * Anon-vma allocations are very subtle, because we may have
103 * optimistically looked up an anon_vma in page_lock_anon_vma()
104 * and that may actually touch the spinlock even in the newly
105 * allocated vma (it depends on RCU to make sure that the
106 * anon_vma isn't actually destroyed).
107 *
108 * As a result, we need to do proper anon_vma locking even
109 * for the new allocation. At the same time, we do not want
110 * to do any locking for the common case of already having
111 * an anon_vma.
112 *
113 * This must be called with the mmap_sem held for reading.
114 */
1da177e4
LT
115int anon_vma_prepare(struct vm_area_struct *vma)
116{
117 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 118 struct anon_vma_chain *avc;
1da177e4
LT
119
120 might_sleep();
121 if (unlikely(!anon_vma)) {
122 struct mm_struct *mm = vma->vm_mm;
d9d332e0 123 struct anon_vma *allocated;
1da177e4 124
5beb4930
RR
125 avc = anon_vma_chain_alloc();
126 if (!avc)
127 goto out_enomem;
128
1da177e4 129 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
130 allocated = NULL;
131 if (!anon_vma) {
1da177e4
LT
132 anon_vma = anon_vma_alloc();
133 if (unlikely(!anon_vma))
5beb4930 134 goto out_enomem_free_avc;
1da177e4 135 allocated = anon_vma;
5c341ee1
RR
136 /*
137 * This VMA had no anon_vma yet. This anon_vma is
138 * the root of any anon_vma tree that might form.
139 */
140 anon_vma->root = anon_vma;
1da177e4
LT
141 }
142
cba48b98 143 anon_vma_lock(anon_vma);
1da177e4
LT
144 /* page_table_lock to protect against threads */
145 spin_lock(&mm->page_table_lock);
146 if (likely(!vma->anon_vma)) {
147 vma->anon_vma = anon_vma;
5beb4930
RR
148 avc->anon_vma = anon_vma;
149 avc->vma = vma;
150 list_add(&avc->same_vma, &vma->anon_vma_chain);
26ba0cb6 151 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
1da177e4 152 allocated = NULL;
31f2b0eb 153 avc = NULL;
1da177e4
LT
154 }
155 spin_unlock(&mm->page_table_lock);
cba48b98 156 anon_vma_unlock(anon_vma);
31f2b0eb
ON
157
158 if (unlikely(allocated))
1da177e4 159 anon_vma_free(allocated);
31f2b0eb 160 if (unlikely(avc))
5beb4930 161 anon_vma_chain_free(avc);
1da177e4
LT
162 }
163 return 0;
5beb4930
RR
164
165 out_enomem_free_avc:
166 anon_vma_chain_free(avc);
167 out_enomem:
168 return -ENOMEM;
1da177e4
LT
169}
170
5beb4930
RR
171static void anon_vma_chain_link(struct vm_area_struct *vma,
172 struct anon_vma_chain *avc,
173 struct anon_vma *anon_vma)
1da177e4 174{
5beb4930
RR
175 avc->vma = vma;
176 avc->anon_vma = anon_vma;
177 list_add(&avc->same_vma, &vma->anon_vma_chain);
178
cba48b98 179 anon_vma_lock(anon_vma);
05759d38
AA
180 /*
181 * It's critical to add new vmas to the tail of the anon_vma,
182 * see comment in huge_memory.c:__split_huge_page().
183 */
5beb4930 184 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
cba48b98 185 anon_vma_unlock(anon_vma);
1da177e4
LT
186}
187
5beb4930
RR
188/*
189 * Attach the anon_vmas from src to dst.
190 * Returns 0 on success, -ENOMEM on failure.
191 */
192int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 193{
5beb4930
RR
194 struct anon_vma_chain *avc, *pavc;
195
646d87b4 196 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
5beb4930
RR
197 avc = anon_vma_chain_alloc();
198 if (!avc)
199 goto enomem_failure;
200 anon_vma_chain_link(dst, avc, pavc->anon_vma);
201 }
202 return 0;
1da177e4 203
5beb4930
RR
204 enomem_failure:
205 unlink_anon_vmas(dst);
206 return -ENOMEM;
1da177e4
LT
207}
208
5beb4930
RR
209/*
210 * Attach vma to its own anon_vma, as well as to the anon_vmas that
211 * the corresponding VMA in the parent process is attached to.
212 * Returns 0 on success, non-zero on failure.
213 */
214int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 215{
5beb4930
RR
216 struct anon_vma_chain *avc;
217 struct anon_vma *anon_vma;
1da177e4 218
5beb4930
RR
219 /* Don't bother if the parent process has no anon_vma here. */
220 if (!pvma->anon_vma)
221 return 0;
222
223 /*
224 * First, attach the new VMA to the parent VMA's anon_vmas,
225 * so rmap can find non-COWed pages in child processes.
226 */
227 if (anon_vma_clone(vma, pvma))
228 return -ENOMEM;
229
230 /* Then add our own anon_vma. */
231 anon_vma = anon_vma_alloc();
232 if (!anon_vma)
233 goto out_error;
234 avc = anon_vma_chain_alloc();
235 if (!avc)
236 goto out_error_free_anon_vma;
5c341ee1
RR
237
238 /*
239 * The root anon_vma's spinlock is the lock actually used when we
240 * lock any of the anon_vmas in this anon_vma tree.
241 */
242 anon_vma->root = pvma->anon_vma->root;
76545066
RR
243 /*
244 * With KSM refcounts, an anon_vma can stay around longer than the
245 * process it belongs to. The root anon_vma needs to be pinned
246 * until this anon_vma is freed, because the lock lives in the root.
247 */
248 get_anon_vma(anon_vma->root);
5beb4930
RR
249 /* Mark this anon_vma as the one where our new (COWed) pages go. */
250 vma->anon_vma = anon_vma;
5c341ee1 251 anon_vma_chain_link(vma, avc, anon_vma);
5beb4930
RR
252
253 return 0;
254
255 out_error_free_anon_vma:
256 anon_vma_free(anon_vma);
257 out_error:
4946d54c 258 unlink_anon_vmas(vma);
5beb4930 259 return -ENOMEM;
1da177e4
LT
260}
261
5beb4930 262static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
1da177e4 263{
5beb4930 264 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
1da177e4
LT
265 int empty;
266
5beb4930 267 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
1da177e4
LT
268 if (!anon_vma)
269 return;
270
cba48b98 271 anon_vma_lock(anon_vma);
5beb4930 272 list_del(&anon_vma_chain->same_anon_vma);
1da177e4
LT
273
274 /* We must garbage collect the anon_vma if it's empty */
83813267 275 empty = list_empty(&anon_vma->head) && !atomic_read(&anon_vma->refcount);
cba48b98 276 anon_vma_unlock(anon_vma);
1da177e4 277
76545066
RR
278 if (empty) {
279 /* We no longer need the root anon_vma */
280 if (anon_vma->root != anon_vma)
9e60109f 281 put_anon_vma(anon_vma->root);
1da177e4 282 anon_vma_free(anon_vma);
76545066 283 }
1da177e4
LT
284}
285
5beb4930
RR
286void unlink_anon_vmas(struct vm_area_struct *vma)
287{
288 struct anon_vma_chain *avc, *next;
289
5c341ee1
RR
290 /*
291 * Unlink each anon_vma chained to the VMA. This list is ordered
292 * from newest to oldest, ensuring the root anon_vma gets freed last.
293 */
5beb4930
RR
294 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
295 anon_vma_unlink(avc);
296 list_del(&avc->same_vma);
297 anon_vma_chain_free(avc);
298 }
299}
300
51cc5068 301static void anon_vma_ctor(void *data)
1da177e4 302{
a35afb83 303 struct anon_vma *anon_vma = data;
1da177e4 304
a35afb83 305 spin_lock_init(&anon_vma->lock);
83813267 306 atomic_set(&anon_vma->refcount, 0);
a35afb83 307 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
308}
309
310void __init anon_vma_init(void)
311{
312 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 313 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 314 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
315}
316
317/*
318 * Getting a lock on a stable anon_vma from a page off the LRU is
319 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
320 */
ea4525b6 321struct anon_vma *__page_lock_anon_vma(struct page *page)
1da177e4 322{
f1819427 323 struct anon_vma *anon_vma, *root_anon_vma;
1da177e4
LT
324 unsigned long anon_mapping;
325
326 rcu_read_lock();
80e14822 327 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 328 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
329 goto out;
330 if (!page_mapped(page))
331 goto out;
332
333 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
f1819427
HD
334 root_anon_vma = ACCESS_ONCE(anon_vma->root);
335 spin_lock(&root_anon_vma->lock);
336
337 /*
338 * If this page is still mapped, then its anon_vma cannot have been
339 * freed. But if it has been unmapped, we have no security against
340 * the anon_vma structure being freed and reused (for another anon_vma:
341 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
342 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
343 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
344 */
345 if (page_mapped(page))
346 return anon_vma;
347
348 spin_unlock(&root_anon_vma->lock);
1da177e4
LT
349out:
350 rcu_read_unlock();
34bbd704
ON
351 return NULL;
352}
353
10be22df 354void page_unlock_anon_vma(struct anon_vma *anon_vma)
ea4525b6
NK
355 __releases(&anon_vma->root->lock)
356 __releases(RCU)
34bbd704 357{
cba48b98 358 anon_vma_unlock(anon_vma);
34bbd704 359 rcu_read_unlock();
1da177e4
LT
360}
361
362/*
3ad33b24
LS
363 * At what user virtual address is page expected in @vma?
364 * Returns virtual address or -EFAULT if page's index/offset is not
365 * within the range mapped the @vma.
1da177e4 366 */
71e3aac0 367inline unsigned long
1da177e4
LT
368vma_address(struct page *page, struct vm_area_struct *vma)
369{
370 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
371 unsigned long address;
372
0fe6e20b
NH
373 if (unlikely(is_vm_hugetlb_page(vma)))
374 pgoff = page->index << huge_page_order(page_hstate(page));
1da177e4
LT
375 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
376 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 377 /* page should be within @vma mapping range */
1da177e4
LT
378 return -EFAULT;
379 }
380 return address;
381}
382
383/*
bf89c8c8 384 * At what user virtual address is page expected in vma?
ab941e0f 385 * Caller should check the page is actually part of the vma.
1da177e4
LT
386 */
387unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
388{
21d0d443 389 if (PageAnon(page)) {
4829b906
HD
390 struct anon_vma *page__anon_vma = page_anon_vma(page);
391 /*
392 * Note: swapoff's unuse_vma() is more efficient with this
393 * check, and needs it to match anon_vma when KSM is active.
394 */
395 if (!vma->anon_vma || !page__anon_vma ||
396 vma->anon_vma->root != page__anon_vma->root)
21d0d443
AA
397 return -EFAULT;
398 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
399 if (!vma->vm_file ||
400 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
401 return -EFAULT;
402 } else
403 return -EFAULT;
404 return vma_address(page, vma);
405}
406
81b4082d
ND
407/*
408 * Check that @page is mapped at @address into @mm.
409 *
479db0bf
NP
410 * If @sync is false, page_check_address may perform a racy check to avoid
411 * the page table lock when the pte is not present (helpful when reclaiming
412 * highly shared pages).
413 *
b8072f09 414 * On success returns with pte mapped and locked.
81b4082d 415 */
e9a81a82 416pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 417 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
418{
419 pgd_t *pgd;
420 pud_t *pud;
421 pmd_t *pmd;
422 pte_t *pte;
c0718806 423 spinlock_t *ptl;
81b4082d 424
0fe6e20b
NH
425 if (unlikely(PageHuge(page))) {
426 pte = huge_pte_offset(mm, address);
427 ptl = &mm->page_table_lock;
428 goto check;
429 }
430
81b4082d 431 pgd = pgd_offset(mm, address);
c0718806
HD
432 if (!pgd_present(*pgd))
433 return NULL;
434
435 pud = pud_offset(pgd, address);
436 if (!pud_present(*pud))
437 return NULL;
438
439 pmd = pmd_offset(pud, address);
440 if (!pmd_present(*pmd))
441 return NULL;
71e3aac0
AA
442 if (pmd_trans_huge(*pmd))
443 return NULL;
c0718806
HD
444
445 pte = pte_offset_map(pmd, address);
446 /* Make a quick check before getting the lock */
479db0bf 447 if (!sync && !pte_present(*pte)) {
c0718806
HD
448 pte_unmap(pte);
449 return NULL;
450 }
451
4c21e2f2 452 ptl = pte_lockptr(mm, pmd);
0fe6e20b 453check:
c0718806
HD
454 spin_lock(ptl);
455 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
456 *ptlp = ptl;
457 return pte;
81b4082d 458 }
c0718806
HD
459 pte_unmap_unlock(pte, ptl);
460 return NULL;
81b4082d
ND
461}
462
b291f000
NP
463/**
464 * page_mapped_in_vma - check whether a page is really mapped in a VMA
465 * @page: the page to test
466 * @vma: the VMA to test
467 *
468 * Returns 1 if the page is mapped into the page tables of the VMA, 0
469 * if the page is not mapped into the page tables of this VMA. Only
470 * valid for normal file or anonymous VMAs.
471 */
6a46079c 472int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
473{
474 unsigned long address;
475 pte_t *pte;
476 spinlock_t *ptl;
477
478 address = vma_address(page, vma);
479 if (address == -EFAULT) /* out of vma range */
480 return 0;
481 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
482 if (!pte) /* the page is not in this mm */
483 return 0;
484 pte_unmap_unlock(pte, ptl);
485
486 return 1;
487}
488
1da177e4
LT
489/*
490 * Subfunctions of page_referenced: page_referenced_one called
491 * repeatedly from either page_referenced_anon or page_referenced_file.
492 */
5ad64688
HD
493int page_referenced_one(struct page *page, struct vm_area_struct *vma,
494 unsigned long address, unsigned int *mapcount,
495 unsigned long *vm_flags)
1da177e4
LT
496{
497 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
498 int referenced = 0;
499
71e3aac0
AA
500 if (unlikely(PageTransHuge(page))) {
501 pmd_t *pmd;
502
503 spin_lock(&mm->page_table_lock);
2da28bfd
AA
504 /*
505 * rmap might return false positives; we must filter
506 * these out using page_check_address_pmd().
507 */
71e3aac0
AA
508 pmd = page_check_address_pmd(page, mm, address,
509 PAGE_CHECK_ADDRESS_PMD_FLAG);
2da28bfd
AA
510 if (!pmd) {
511 spin_unlock(&mm->page_table_lock);
512 goto out;
513 }
514
515 if (vma->vm_flags & VM_LOCKED) {
516 spin_unlock(&mm->page_table_lock);
517 *mapcount = 0; /* break early from loop */
518 *vm_flags |= VM_LOCKED;
519 goto out;
520 }
521
522 /* go ahead even if the pmd is pmd_trans_splitting() */
523 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0
AA
524 referenced++;
525 spin_unlock(&mm->page_table_lock);
526 } else {
527 pte_t *pte;
528 spinlock_t *ptl;
529
2da28bfd
AA
530 /*
531 * rmap might return false positives; we must filter
532 * these out using page_check_address().
533 */
71e3aac0
AA
534 pte = page_check_address(page, mm, address, &ptl, 0);
535 if (!pte)
536 goto out;
537
2da28bfd
AA
538 if (vma->vm_flags & VM_LOCKED) {
539 pte_unmap_unlock(pte, ptl);
540 *mapcount = 0; /* break early from loop */
541 *vm_flags |= VM_LOCKED;
542 goto out;
543 }
544
71e3aac0
AA
545 if (ptep_clear_flush_young_notify(vma, address, pte)) {
546 /*
547 * Don't treat a reference through a sequentially read
548 * mapping as such. If the page has been used in
549 * another mapping, we will catch it; if this other
550 * mapping is already gone, the unmap path will have
551 * set PG_referenced or activated the page.
552 */
553 if (likely(!VM_SequentialReadHint(vma)))
554 referenced++;
555 }
556 pte_unmap_unlock(pte, ptl);
557 }
558
2da28bfd
AA
559 /* Pretend the page is referenced if the task has the
560 swap token and is in the middle of a page fault. */
561 if (mm != current->mm && has_swap_token(mm) &&
562 rwsem_is_locked(&mm->mmap_sem))
563 referenced++;
564
c0718806 565 (*mapcount)--;
273f047e 566
6fe6b7e3
WF
567 if (referenced)
568 *vm_flags |= vma->vm_flags;
273f047e 569out:
1da177e4
LT
570 return referenced;
571}
572
bed7161a 573static int page_referenced_anon(struct page *page,
6fe6b7e3
WF
574 struct mem_cgroup *mem_cont,
575 unsigned long *vm_flags)
1da177e4
LT
576{
577 unsigned int mapcount;
578 struct anon_vma *anon_vma;
5beb4930 579 struct anon_vma_chain *avc;
1da177e4
LT
580 int referenced = 0;
581
582 anon_vma = page_lock_anon_vma(page);
583 if (!anon_vma)
584 return referenced;
585
586 mapcount = page_mapcount(page);
5beb4930
RR
587 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
588 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
589 unsigned long address = vma_address(page, vma);
590 if (address == -EFAULT)
591 continue;
bed7161a
BS
592 /*
593 * If we are reclaiming on behalf of a cgroup, skip
594 * counting on behalf of references from different
595 * cgroups
596 */
bd845e38 597 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 598 continue;
1cb1729b 599 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 600 &mapcount, vm_flags);
1da177e4
LT
601 if (!mapcount)
602 break;
603 }
34bbd704
ON
604
605 page_unlock_anon_vma(anon_vma);
1da177e4
LT
606 return referenced;
607}
608
609/**
610 * page_referenced_file - referenced check for object-based rmap
611 * @page: the page we're checking references on.
43d8eac4 612 * @mem_cont: target memory controller
6fe6b7e3 613 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
614 *
615 * For an object-based mapped page, find all the places it is mapped and
616 * check/clear the referenced flag. This is done by following the page->mapping
617 * pointer, then walking the chain of vmas it holds. It returns the number
618 * of references it found.
619 *
620 * This function is only called from page_referenced for object-based pages.
621 */
bed7161a 622static int page_referenced_file(struct page *page,
6fe6b7e3
WF
623 struct mem_cgroup *mem_cont,
624 unsigned long *vm_flags)
1da177e4
LT
625{
626 unsigned int mapcount;
627 struct address_space *mapping = page->mapping;
628 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
629 struct vm_area_struct *vma;
630 struct prio_tree_iter iter;
631 int referenced = 0;
632
633 /*
634 * The caller's checks on page->mapping and !PageAnon have made
635 * sure that this is a file page: the check for page->mapping
636 * excludes the case just before it gets set on an anon page.
637 */
638 BUG_ON(PageAnon(page));
639
640 /*
641 * The page lock not only makes sure that page->mapping cannot
642 * suddenly be NULLified by truncation, it makes sure that the
643 * structure at mapping cannot be freed and reused yet,
644 * so we can safely take mapping->i_mmap_lock.
645 */
646 BUG_ON(!PageLocked(page));
647
648 spin_lock(&mapping->i_mmap_lock);
649
650 /*
651 * i_mmap_lock does not stabilize mapcount at all, but mapcount
652 * is more likely to be accurate if we note it after spinning.
653 */
654 mapcount = page_mapcount(page);
655
656 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
657 unsigned long address = vma_address(page, vma);
658 if (address == -EFAULT)
659 continue;
bed7161a
BS
660 /*
661 * If we are reclaiming on behalf of a cgroup, skip
662 * counting on behalf of references from different
663 * cgroups
664 */
bd845e38 665 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 666 continue;
1cb1729b 667 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 668 &mapcount, vm_flags);
1da177e4
LT
669 if (!mapcount)
670 break;
671 }
672
673 spin_unlock(&mapping->i_mmap_lock);
674 return referenced;
675}
676
677/**
678 * page_referenced - test if the page was referenced
679 * @page: the page to test
680 * @is_locked: caller holds lock on the page
43d8eac4 681 * @mem_cont: target memory controller
6fe6b7e3 682 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
683 *
684 * Quick test_and_clear_referenced for all mappings to a page,
685 * returns the number of ptes which referenced the page.
686 */
6fe6b7e3
WF
687int page_referenced(struct page *page,
688 int is_locked,
689 struct mem_cgroup *mem_cont,
690 unsigned long *vm_flags)
1da177e4
LT
691{
692 int referenced = 0;
5ad64688 693 int we_locked = 0;
1da177e4 694
6fe6b7e3 695 *vm_flags = 0;
3ca7b3c5 696 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
697 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
698 we_locked = trylock_page(page);
699 if (!we_locked) {
700 referenced++;
701 goto out;
702 }
703 }
704 if (unlikely(PageKsm(page)))
705 referenced += page_referenced_ksm(page, mem_cont,
706 vm_flags);
707 else if (PageAnon(page))
6fe6b7e3
WF
708 referenced += page_referenced_anon(page, mem_cont,
709 vm_flags);
5ad64688 710 else if (page->mapping)
6fe6b7e3
WF
711 referenced += page_referenced_file(page, mem_cont,
712 vm_flags);
5ad64688 713 if (we_locked)
1da177e4 714 unlock_page(page);
1da177e4 715 }
5ad64688 716out:
5b7baf05
CB
717 if (page_test_and_clear_young(page))
718 referenced++;
719
1da177e4
LT
720 return referenced;
721}
722
1cb1729b
HD
723static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
724 unsigned long address)
d08b3851
PZ
725{
726 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 727 pte_t *pte;
d08b3851
PZ
728 spinlock_t *ptl;
729 int ret = 0;
730
479db0bf 731 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
732 if (!pte)
733 goto out;
734
c2fda5fe
PZ
735 if (pte_dirty(*pte) || pte_write(*pte)) {
736 pte_t entry;
d08b3851 737
c2fda5fe 738 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 739 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
740 entry = pte_wrprotect(entry);
741 entry = pte_mkclean(entry);
d6e88e67 742 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
743 ret = 1;
744 }
d08b3851 745
d08b3851
PZ
746 pte_unmap_unlock(pte, ptl);
747out:
748 return ret;
749}
750
751static int page_mkclean_file(struct address_space *mapping, struct page *page)
752{
753 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
754 struct vm_area_struct *vma;
755 struct prio_tree_iter iter;
756 int ret = 0;
757
758 BUG_ON(PageAnon(page));
759
760 spin_lock(&mapping->i_mmap_lock);
761 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
762 if (vma->vm_flags & VM_SHARED) {
763 unsigned long address = vma_address(page, vma);
764 if (address == -EFAULT)
765 continue;
766 ret += page_mkclean_one(page, vma, address);
767 }
d08b3851
PZ
768 }
769 spin_unlock(&mapping->i_mmap_lock);
770 return ret;
771}
772
773int page_mkclean(struct page *page)
774{
775 int ret = 0;
776
777 BUG_ON(!PageLocked(page));
778
779 if (page_mapped(page)) {
780 struct address_space *mapping = page_mapping(page);
ce7e9fae 781 if (mapping) {
d08b3851 782 ret = page_mkclean_file(mapping, page);
ce7e9fae 783 if (page_test_dirty(page)) {
e2b8d7af 784 page_clear_dirty(page, 1);
ce7e9fae
CB
785 ret = 1;
786 }
6c210482 787 }
d08b3851
PZ
788 }
789
790 return ret;
791}
60b59bea 792EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 793
c44b6743
RR
794/**
795 * page_move_anon_rmap - move a page to our anon_vma
796 * @page: the page to move to our anon_vma
797 * @vma: the vma the page belongs to
798 * @address: the user virtual address mapped
799 *
800 * When a page belongs exclusively to one process after a COW event,
801 * that page can be moved into the anon_vma that belongs to just that
802 * process, so the rmap code will not search the parent or sibling
803 * processes.
804 */
805void page_move_anon_rmap(struct page *page,
806 struct vm_area_struct *vma, unsigned long address)
807{
808 struct anon_vma *anon_vma = vma->anon_vma;
809
810 VM_BUG_ON(!PageLocked(page));
811 VM_BUG_ON(!anon_vma);
812 VM_BUG_ON(page->index != linear_page_index(vma, address));
813
814 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
815 page->mapping = (struct address_space *) anon_vma;
816}
817
9617d95e 818/**
4e1c1975
AK
819 * __page_set_anon_rmap - set up new anonymous rmap
820 * @page: Page to add to rmap
821 * @vma: VM area to add page to.
822 * @address: User virtual address of the mapping
e8a03feb 823 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
824 */
825static void __page_set_anon_rmap(struct page *page,
e8a03feb 826 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 827{
e8a03feb 828 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 829
e8a03feb 830 BUG_ON(!anon_vma);
ea90002b 831
4e1c1975
AK
832 if (PageAnon(page))
833 return;
834
ea90002b 835 /*
e8a03feb
RR
836 * If the page isn't exclusively mapped into this vma,
837 * we must use the _oldest_ possible anon_vma for the
838 * page mapping!
ea90002b 839 */
4e1c1975 840 if (!exclusive)
288468c3 841 anon_vma = anon_vma->root;
9617d95e 842
9617d95e
NP
843 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
844 page->mapping = (struct address_space *) anon_vma;
9617d95e 845 page->index = linear_page_index(vma, address);
9617d95e
NP
846}
847
c97a9e10 848/**
43d8eac4 849 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
850 * @page: the page to add the mapping to
851 * @vma: the vm area in which the mapping is added
852 * @address: the user virtual address mapped
853 */
854static void __page_check_anon_rmap(struct page *page,
855 struct vm_area_struct *vma, unsigned long address)
856{
857#ifdef CONFIG_DEBUG_VM
858 /*
859 * The page's anon-rmap details (mapping and index) are guaranteed to
860 * be set up correctly at this point.
861 *
862 * We have exclusion against page_add_anon_rmap because the caller
863 * always holds the page locked, except if called from page_dup_rmap,
864 * in which case the page is already known to be setup.
865 *
866 * We have exclusion against page_add_new_anon_rmap because those pages
867 * are initially only visible via the pagetables, and the pte is locked
868 * over the call to page_add_new_anon_rmap.
869 */
44ab57a0 870 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
871 BUG_ON(page->index != linear_page_index(vma, address));
872#endif
873}
874
1da177e4
LT
875/**
876 * page_add_anon_rmap - add pte mapping to an anonymous page
877 * @page: the page to add the mapping to
878 * @vma: the vm area in which the mapping is added
879 * @address: the user virtual address mapped
880 *
5ad64688 881 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
882 * the anon_vma case: to serialize mapping,index checking after setting,
883 * and to ensure that PageAnon is not being upgraded racily to PageKsm
884 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
885 */
886void page_add_anon_rmap(struct page *page,
887 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
888{
889 do_page_add_anon_rmap(page, vma, address, 0);
890}
891
892/*
893 * Special version of the above for do_swap_page, which often runs
894 * into pages that are exclusively owned by the current process.
895 * Everybody else should continue to use page_add_anon_rmap above.
896 */
897void do_page_add_anon_rmap(struct page *page,
898 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 899{
5ad64688 900 int first = atomic_inc_and_test(&page->_mapcount);
79134171
AA
901 if (first) {
902 if (!PageTransHuge(page))
903 __inc_zone_page_state(page, NR_ANON_PAGES);
904 else
905 __inc_zone_page_state(page,
906 NR_ANON_TRANSPARENT_HUGEPAGES);
907 }
5ad64688
HD
908 if (unlikely(PageKsm(page)))
909 return;
910
c97a9e10
NP
911 VM_BUG_ON(!PageLocked(page));
912 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
5ad64688 913 if (first)
ad8c2ee8 914 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 915 else
c97a9e10 916 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
917}
918
43d8eac4 919/**
9617d95e
NP
920 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
921 * @page: the page to add the mapping to
922 * @vma: the vm area in which the mapping is added
923 * @address: the user virtual address mapped
924 *
925 * Same as page_add_anon_rmap but must only be called on *new* pages.
926 * This means the inc-and-test can be bypassed.
c97a9e10 927 * Page does not have to be locked.
9617d95e
NP
928 */
929void page_add_new_anon_rmap(struct page *page,
930 struct vm_area_struct *vma, unsigned long address)
931{
b5934c53 932 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
933 SetPageSwapBacked(page);
934 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
79134171
AA
935 if (!PageTransHuge(page))
936 __inc_zone_page_state(page, NR_ANON_PAGES);
937 else
938 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
e8a03feb 939 __page_set_anon_rmap(page, vma, address, 1);
b5934c53 940 if (page_evictable(page, vma))
cbf84b7a 941 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
942 else
943 add_page_to_unevictable_list(page);
9617d95e
NP
944}
945
1da177e4
LT
946/**
947 * page_add_file_rmap - add pte mapping to a file page
948 * @page: the page to add the mapping to
949 *
b8072f09 950 * The caller needs to hold the pte lock.
1da177e4
LT
951 */
952void page_add_file_rmap(struct page *page)
953{
d69b042f 954 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 955 __inc_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 956 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
d69b042f 957 }
1da177e4
LT
958}
959
960/**
961 * page_remove_rmap - take down pte mapping from a page
962 * @page: page to remove mapping from
963 *
b8072f09 964 * The caller needs to hold the pte lock.
1da177e4 965 */
edc315fd 966void page_remove_rmap(struct page *page)
1da177e4 967{
b904dcfe
KM
968 /* page still mapped by someone else? */
969 if (!atomic_add_negative(-1, &page->_mapcount))
970 return;
971
972 /*
973 * Now that the last pte has gone, s390 must transfer dirty
974 * flag from storage key to struct page. We can usually skip
975 * this if the page is anon, so about to be freed; but perhaps
976 * not if it's in swapcache - there might be another pte slot
977 * containing the swap entry, but page not yet written to swap.
978 */
979 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
e2b8d7af 980 page_clear_dirty(page, 1);
b904dcfe 981 set_page_dirty(page);
1da177e4 982 }
0fe6e20b
NH
983 /*
984 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
985 * and not charged by memcg for now.
986 */
987 if (unlikely(PageHuge(page)))
988 return;
b904dcfe
KM
989 if (PageAnon(page)) {
990 mem_cgroup_uncharge_page(page);
79134171
AA
991 if (!PageTransHuge(page))
992 __dec_zone_page_state(page, NR_ANON_PAGES);
993 else
994 __dec_zone_page_state(page,
995 NR_ANON_TRANSPARENT_HUGEPAGES);
b904dcfe
KM
996 } else {
997 __dec_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 998 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
b904dcfe 999 }
b904dcfe
KM
1000 /*
1001 * It would be tidy to reset the PageAnon mapping here,
1002 * but that might overwrite a racing page_add_anon_rmap
1003 * which increments mapcount after us but sets mapping
1004 * before us: so leave the reset to free_hot_cold_page,
1005 * and remember that it's only reliable while mapped.
1006 * Leaving it set also helps swapoff to reinstate ptes
1007 * faster for those pages still in swapcache.
1008 */
1da177e4
LT
1009}
1010
1011/*
1012 * Subfunctions of try_to_unmap: try_to_unmap_one called
1013 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1014 */
5ad64688
HD
1015int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1016 unsigned long address, enum ttu_flags flags)
1da177e4
LT
1017{
1018 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1019 pte_t *pte;
1020 pte_t pteval;
c0718806 1021 spinlock_t *ptl;
1da177e4
LT
1022 int ret = SWAP_AGAIN;
1023
479db0bf 1024 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1025 if (!pte)
81b4082d 1026 goto out;
1da177e4
LT
1027
1028 /*
1029 * If the page is mlock()d, we cannot swap it out.
1030 * If it's recently referenced (perhaps page_referenced
1031 * skipped over this mm) then we should reactivate it.
1032 */
14fa31b8 1033 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1034 if (vma->vm_flags & VM_LOCKED)
1035 goto out_mlock;
1036
af8e3354 1037 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 1038 goto out_unmap;
14fa31b8
AK
1039 }
1040 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1041 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1042 ret = SWAP_FAIL;
1043 goto out_unmap;
1044 }
1045 }
1da177e4 1046
1da177e4
LT
1047 /* Nuke the page table entry. */
1048 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 1049 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1050
1051 /* Move the dirty bit to the physical page now the pte is gone. */
1052 if (pte_dirty(pteval))
1053 set_page_dirty(page);
1054
365e9c87
HD
1055 /* Update high watermark before we lower rss */
1056 update_hiwater_rss(mm);
1057
888b9f7c
AK
1058 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1059 if (PageAnon(page))
d559db08 1060 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 1061 else
d559db08 1062 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
1063 set_pte_at(mm, address, pte,
1064 swp_entry_to_pte(make_hwpoison_entry(page)));
1065 } else if (PageAnon(page)) {
4c21e2f2 1066 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
1067
1068 if (PageSwapCache(page)) {
1069 /*
1070 * Store the swap location in the pte.
1071 * See handle_pte_fault() ...
1072 */
570a335b
HD
1073 if (swap_duplicate(entry) < 0) {
1074 set_pte_at(mm, address, pte, pteval);
1075 ret = SWAP_FAIL;
1076 goto out_unmap;
1077 }
0697212a
CL
1078 if (list_empty(&mm->mmlist)) {
1079 spin_lock(&mmlist_lock);
1080 if (list_empty(&mm->mmlist))
1081 list_add(&mm->mmlist, &init_mm.mmlist);
1082 spin_unlock(&mmlist_lock);
1083 }
d559db08 1084 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1085 inc_mm_counter(mm, MM_SWAPENTS);
64cdd548 1086 } else if (PAGE_MIGRATION) {
0697212a
CL
1087 /*
1088 * Store the pfn of the page in a special migration
1089 * pte. do_swap_page() will wait until the migration
1090 * pte is removed and then restart fault handling.
1091 */
14fa31b8 1092 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 1093 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
1094 }
1095 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1096 BUG_ON(pte_file(*pte));
14fa31b8 1097 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
1098 /* Establish migration entry for a file page */
1099 swp_entry_t entry;
1100 entry = make_migration_entry(page, pte_write(pteval));
1101 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1102 } else
d559db08 1103 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1104
edc315fd 1105 page_remove_rmap(page);
1da177e4
LT
1106 page_cache_release(page);
1107
1108out_unmap:
c0718806 1109 pte_unmap_unlock(pte, ptl);
caed0f48
KM
1110out:
1111 return ret;
53f79acb 1112
caed0f48
KM
1113out_mlock:
1114 pte_unmap_unlock(pte, ptl);
1115
1116
1117 /*
1118 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1119 * unstable result and race. Plus, We can't wait here because
1120 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1121 * if trylock failed, the page remain in evictable lru and later
1122 * vmscan could retry to move the page to unevictable lru if the
1123 * page is actually mlocked.
1124 */
1125 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1126 if (vma->vm_flags & VM_LOCKED) {
1127 mlock_vma_page(page);
1128 ret = SWAP_MLOCK;
53f79acb 1129 }
caed0f48 1130 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1131 }
1da177e4
LT
1132 return ret;
1133}
1134
1135/*
1136 * objrmap doesn't work for nonlinear VMAs because the assumption that
1137 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1138 * Consequently, given a particular page and its ->index, we cannot locate the
1139 * ptes which are mapping that page without an exhaustive linear search.
1140 *
1141 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1142 * maps the file to which the target page belongs. The ->vm_private_data field
1143 * holds the current cursor into that scan. Successive searches will circulate
1144 * around the vma's virtual address space.
1145 *
1146 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1147 * more scanning pressure is placed against them as well. Eventually pages
1148 * will become fully unmapped and are eligible for eviction.
1149 *
1150 * For very sparsely populated VMAs this is a little inefficient - chances are
1151 * there there won't be many ptes located within the scan cluster. In this case
1152 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1153 *
1154 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1155 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1156 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1157 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1158 */
1159#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1160#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1161
b291f000
NP
1162static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1163 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1164{
1165 struct mm_struct *mm = vma->vm_mm;
1166 pgd_t *pgd;
1167 pud_t *pud;
1168 pmd_t *pmd;
c0718806 1169 pte_t *pte;
1da177e4 1170 pte_t pteval;
c0718806 1171 spinlock_t *ptl;
1da177e4
LT
1172 struct page *page;
1173 unsigned long address;
1174 unsigned long end;
b291f000
NP
1175 int ret = SWAP_AGAIN;
1176 int locked_vma = 0;
1da177e4 1177
1da177e4
LT
1178 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1179 end = address + CLUSTER_SIZE;
1180 if (address < vma->vm_start)
1181 address = vma->vm_start;
1182 if (end > vma->vm_end)
1183 end = vma->vm_end;
1184
1185 pgd = pgd_offset(mm, address);
1186 if (!pgd_present(*pgd))
b291f000 1187 return ret;
1da177e4
LT
1188
1189 pud = pud_offset(pgd, address);
1190 if (!pud_present(*pud))
b291f000 1191 return ret;
1da177e4
LT
1192
1193 pmd = pmd_offset(pud, address);
1194 if (!pmd_present(*pmd))
b291f000
NP
1195 return ret;
1196
1197 /*
af8e3354 1198 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1199 * keep the sem while scanning the cluster for mlocking pages.
1200 */
af8e3354 1201 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1202 locked_vma = (vma->vm_flags & VM_LOCKED);
1203 if (!locked_vma)
1204 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1205 }
c0718806
HD
1206
1207 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1208
365e9c87
HD
1209 /* Update high watermark before we lower rss */
1210 update_hiwater_rss(mm);
1211
c0718806 1212 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1213 if (!pte_present(*pte))
1214 continue;
6aab341e
LT
1215 page = vm_normal_page(vma, address, *pte);
1216 BUG_ON(!page || PageAnon(page));
1da177e4 1217
b291f000
NP
1218 if (locked_vma) {
1219 mlock_vma_page(page); /* no-op if already mlocked */
1220 if (page == check_page)
1221 ret = SWAP_MLOCK;
1222 continue; /* don't unmap */
1223 }
1224
cddb8a5c 1225 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1226 continue;
1227
1228 /* Nuke the page table entry. */
eca35133 1229 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 1230 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1231
1232 /* If nonlinear, store the file page offset in the pte. */
1233 if (page->index != linear_page_index(vma, address))
1234 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1235
1236 /* Move the dirty bit to the physical page now the pte is gone. */
1237 if (pte_dirty(pteval))
1238 set_page_dirty(page);
1239
edc315fd 1240 page_remove_rmap(page);
1da177e4 1241 page_cache_release(page);
d559db08 1242 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1243 (*mapcount)--;
1244 }
c0718806 1245 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1246 if (locked_vma)
1247 up_read(&vma->vm_mm->mmap_sem);
1248 return ret;
1da177e4
LT
1249}
1250
71e3aac0 1251bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1252{
1253 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1254
1255 if (!maybe_stack)
1256 return false;
1257
1258 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1259 VM_STACK_INCOMPLETE_SETUP)
1260 return true;
1261
1262 return false;
1263}
1264
b291f000
NP
1265/**
1266 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1267 * rmap method
1268 * @page: the page to unmap/unlock
8051be5e 1269 * @flags: action and flags
b291f000
NP
1270 *
1271 * Find all the mappings of a page using the mapping pointer and the vma chains
1272 * contained in the anon_vma struct it points to.
1273 *
1274 * This function is only called from try_to_unmap/try_to_munlock for
1275 * anonymous pages.
1276 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1277 * where the page was found will be held for write. So, we won't recheck
1278 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1279 * 'LOCKED.
1280 */
14fa31b8 1281static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1282{
1283 struct anon_vma *anon_vma;
5beb4930 1284 struct anon_vma_chain *avc;
1da177e4 1285 int ret = SWAP_AGAIN;
b291f000 1286
1da177e4
LT
1287 anon_vma = page_lock_anon_vma(page);
1288 if (!anon_vma)
1289 return ret;
1290
5beb4930
RR
1291 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1292 struct vm_area_struct *vma = avc->vma;
a8bef8ff
MG
1293 unsigned long address;
1294
1295 /*
1296 * During exec, a temporary VMA is setup and later moved.
1297 * The VMA is moved under the anon_vma lock but not the
1298 * page tables leading to a race where migration cannot
1299 * find the migration ptes. Rather than increasing the
1300 * locking requirements of exec(), migration skips
1301 * temporary VMAs until after exec() completes.
1302 */
1303 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1304 is_vma_temporary_stack(vma))
1305 continue;
1306
1307 address = vma_address(page, vma);
1cb1729b
HD
1308 if (address == -EFAULT)
1309 continue;
1310 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1311 if (ret != SWAP_AGAIN || !page_mapped(page))
1312 break;
1da177e4 1313 }
34bbd704
ON
1314
1315 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1316 return ret;
1317}
1318
1319/**
b291f000
NP
1320 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1321 * @page: the page to unmap/unlock
14fa31b8 1322 * @flags: action and flags
1da177e4
LT
1323 *
1324 * Find all the mappings of a page using the mapping pointer and the vma chains
1325 * contained in the address_space struct it points to.
1326 *
b291f000
NP
1327 * This function is only called from try_to_unmap/try_to_munlock for
1328 * object-based pages.
1329 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1330 * where the page was found will be held for write. So, we won't recheck
1331 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1332 * 'LOCKED.
1da177e4 1333 */
14fa31b8 1334static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1335{
1336 struct address_space *mapping = page->mapping;
1337 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1338 struct vm_area_struct *vma;
1339 struct prio_tree_iter iter;
1340 int ret = SWAP_AGAIN;
1341 unsigned long cursor;
1342 unsigned long max_nl_cursor = 0;
1343 unsigned long max_nl_size = 0;
1344 unsigned int mapcount;
1345
1346 spin_lock(&mapping->i_mmap_lock);
1347 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1348 unsigned long address = vma_address(page, vma);
1349 if (address == -EFAULT)
1350 continue;
1351 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1352 if (ret != SWAP_AGAIN || !page_mapped(page))
1353 goto out;
1da177e4
LT
1354 }
1355
1356 if (list_empty(&mapping->i_mmap_nonlinear))
1357 goto out;
1358
53f79acb
HD
1359 /*
1360 * We don't bother to try to find the munlocked page in nonlinears.
1361 * It's costly. Instead, later, page reclaim logic may call
1362 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1363 */
1364 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1365 goto out;
1366
1da177e4
LT
1367 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1368 shared.vm_set.list) {
1da177e4
LT
1369 cursor = (unsigned long) vma->vm_private_data;
1370 if (cursor > max_nl_cursor)
1371 max_nl_cursor = cursor;
1372 cursor = vma->vm_end - vma->vm_start;
1373 if (cursor > max_nl_size)
1374 max_nl_size = cursor;
1375 }
1376
b291f000 1377 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1378 ret = SWAP_FAIL;
1379 goto out;
1380 }
1381
1382 /*
1383 * We don't try to search for this page in the nonlinear vmas,
1384 * and page_referenced wouldn't have found it anyway. Instead
1385 * just walk the nonlinear vmas trying to age and unmap some.
1386 * The mapcount of the page we came in with is irrelevant,
1387 * but even so use it as a guide to how hard we should try?
1388 */
1389 mapcount = page_mapcount(page);
1390 if (!mapcount)
1391 goto out;
1392 cond_resched_lock(&mapping->i_mmap_lock);
1393
1394 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1395 if (max_nl_cursor == 0)
1396 max_nl_cursor = CLUSTER_SIZE;
1397
1398 do {
1399 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1400 shared.vm_set.list) {
1da177e4 1401 cursor = (unsigned long) vma->vm_private_data;
839b9685 1402 while ( cursor < max_nl_cursor &&
1da177e4 1403 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1404 if (try_to_unmap_cluster(cursor, &mapcount,
1405 vma, page) == SWAP_MLOCK)
1406 ret = SWAP_MLOCK;
1da177e4
LT
1407 cursor += CLUSTER_SIZE;
1408 vma->vm_private_data = (void *) cursor;
1409 if ((int)mapcount <= 0)
1410 goto out;
1411 }
1412 vma->vm_private_data = (void *) max_nl_cursor;
1413 }
1414 cond_resched_lock(&mapping->i_mmap_lock);
1415 max_nl_cursor += CLUSTER_SIZE;
1416 } while (max_nl_cursor <= max_nl_size);
1417
1418 /*
1419 * Don't loop forever (perhaps all the remaining pages are
1420 * in locked vmas). Reset cursor on all unreserved nonlinear
1421 * vmas, now forgetting on which ones it had fallen behind.
1422 */
101d2be7
HD
1423 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1424 vma->vm_private_data = NULL;
1da177e4
LT
1425out:
1426 spin_unlock(&mapping->i_mmap_lock);
1427 return ret;
1428}
1429
1430/**
1431 * try_to_unmap - try to remove all page table mappings to a page
1432 * @page: the page to get unmapped
14fa31b8 1433 * @flags: action and flags
1da177e4
LT
1434 *
1435 * Tries to remove all the page table entries which are mapping this
1436 * page, used in the pageout path. Caller must hold the page lock.
1437 * Return values are:
1438 *
1439 * SWAP_SUCCESS - we succeeded in removing all mappings
1440 * SWAP_AGAIN - we missed a mapping, try again later
1441 * SWAP_FAIL - the page is unswappable
b291f000 1442 * SWAP_MLOCK - page is mlocked.
1da177e4 1443 */
14fa31b8 1444int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1445{
1446 int ret;
1447
1da177e4 1448 BUG_ON(!PageLocked(page));
91600e9e 1449 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1da177e4 1450
5ad64688
HD
1451 if (unlikely(PageKsm(page)))
1452 ret = try_to_unmap_ksm(page, flags);
1453 else if (PageAnon(page))
14fa31b8 1454 ret = try_to_unmap_anon(page, flags);
1da177e4 1455 else
14fa31b8 1456 ret = try_to_unmap_file(page, flags);
b291f000 1457 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1458 ret = SWAP_SUCCESS;
1459 return ret;
1460}
81b4082d 1461
b291f000
NP
1462/**
1463 * try_to_munlock - try to munlock a page
1464 * @page: the page to be munlocked
1465 *
1466 * Called from munlock code. Checks all of the VMAs mapping the page
1467 * to make sure nobody else has this page mlocked. The page will be
1468 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1469 *
1470 * Return values are:
1471 *
53f79acb 1472 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1473 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1474 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1475 * SWAP_MLOCK - page is now mlocked.
1476 */
1477int try_to_munlock(struct page *page)
1478{
1479 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1480
5ad64688
HD
1481 if (unlikely(PageKsm(page)))
1482 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1483 else if (PageAnon(page))
14fa31b8 1484 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1485 else
14fa31b8 1486 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1487}
e9995ef9 1488
76545066
RR
1489/*
1490 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1491 * if necessary. Be careful to do all the tests under the lock. Once
1492 * we know we are the last user, nobody else can get a reference and we
1493 * can do the freeing without the lock.
1494 */
9e60109f 1495void put_anon_vma(struct anon_vma *anon_vma)
76545066 1496{
83813267
PZ
1497 BUG_ON(atomic_read(&anon_vma->refcount) <= 0);
1498 if (atomic_dec_and_lock(&anon_vma->refcount, &anon_vma->root->lock)) {
76545066
RR
1499 struct anon_vma *root = anon_vma->root;
1500 int empty = list_empty(&anon_vma->head);
1501 int last_root_user = 0;
1502 int root_empty = 0;
1503
1504 /*
1505 * The refcount on a non-root anon_vma got dropped. Drop
1506 * the refcount on the root and check if we need to free it.
1507 */
1508 if (empty && anon_vma != root) {
83813267
PZ
1509 BUG_ON(atomic_read(&root->refcount) <= 0);
1510 last_root_user = atomic_dec_and_test(&root->refcount);
76545066
RR
1511 root_empty = list_empty(&root->head);
1512 }
1513 anon_vma_unlock(anon_vma);
1514
1515 if (empty) {
1516 anon_vma_free(anon_vma);
1517 if (root_empty && last_root_user)
1518 anon_vma_free(root);
1519 }
1520 }
1521}
76545066 1522
e9995ef9
HD
1523#ifdef CONFIG_MIGRATION
1524/*
1525 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1526 * Called by migrate.c to remove migration ptes, but might be used more later.
1527 */
1528static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1529 struct vm_area_struct *, unsigned long, void *), void *arg)
1530{
1531 struct anon_vma *anon_vma;
5beb4930 1532 struct anon_vma_chain *avc;
e9995ef9
HD
1533 int ret = SWAP_AGAIN;
1534
1535 /*
1536 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1537 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1538 * are holding mmap_sem. Users without mmap_sem are required to
1539 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1540 */
1541 anon_vma = page_anon_vma(page);
1542 if (!anon_vma)
1543 return ret;
cba48b98 1544 anon_vma_lock(anon_vma);
5beb4930
RR
1545 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1546 struct vm_area_struct *vma = avc->vma;
e9995ef9
HD
1547 unsigned long address = vma_address(page, vma);
1548 if (address == -EFAULT)
1549 continue;
1550 ret = rmap_one(page, vma, address, arg);
1551 if (ret != SWAP_AGAIN)
1552 break;
1553 }
cba48b98 1554 anon_vma_unlock(anon_vma);
e9995ef9
HD
1555 return ret;
1556}
1557
1558static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1559 struct vm_area_struct *, unsigned long, void *), void *arg)
1560{
1561 struct address_space *mapping = page->mapping;
1562 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1563 struct vm_area_struct *vma;
1564 struct prio_tree_iter iter;
1565 int ret = SWAP_AGAIN;
1566
1567 if (!mapping)
1568 return ret;
1569 spin_lock(&mapping->i_mmap_lock);
1570 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1571 unsigned long address = vma_address(page, vma);
1572 if (address == -EFAULT)
1573 continue;
1574 ret = rmap_one(page, vma, address, arg);
1575 if (ret != SWAP_AGAIN)
1576 break;
1577 }
1578 /*
1579 * No nonlinear handling: being always shared, nonlinear vmas
1580 * never contain migration ptes. Decide what to do about this
1581 * limitation to linear when we need rmap_walk() on nonlinear.
1582 */
1583 spin_unlock(&mapping->i_mmap_lock);
1584 return ret;
1585}
1586
1587int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1588 struct vm_area_struct *, unsigned long, void *), void *arg)
1589{
1590 VM_BUG_ON(!PageLocked(page));
1591
1592 if (unlikely(PageKsm(page)))
1593 return rmap_walk_ksm(page, rmap_one, arg);
1594 else if (PageAnon(page))
1595 return rmap_walk_anon(page, rmap_one, arg);
1596 else
1597 return rmap_walk_file(page, rmap_one, arg);
1598}
1599#endif /* CONFIG_MIGRATION */
0fe6e20b 1600
e3390f67 1601#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1602/*
1603 * The following three functions are for anonymous (private mapped) hugepages.
1604 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1605 * and no lru code, because we handle hugepages differently from common pages.
1606 */
1607static void __hugepage_set_anon_rmap(struct page *page,
1608 struct vm_area_struct *vma, unsigned long address, int exclusive)
1609{
1610 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1611
0fe6e20b 1612 BUG_ON(!anon_vma);
433abed6
NH
1613
1614 if (PageAnon(page))
1615 return;
1616 if (!exclusive)
1617 anon_vma = anon_vma->root;
1618
0fe6e20b
NH
1619 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1620 page->mapping = (struct address_space *) anon_vma;
1621 page->index = linear_page_index(vma, address);
1622}
1623
1624void hugepage_add_anon_rmap(struct page *page,
1625 struct vm_area_struct *vma, unsigned long address)
1626{
1627 struct anon_vma *anon_vma = vma->anon_vma;
1628 int first;
a850ea30
NH
1629
1630 BUG_ON(!PageLocked(page));
0fe6e20b
NH
1631 BUG_ON(!anon_vma);
1632 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1633 first = atomic_inc_and_test(&page->_mapcount);
1634 if (first)
1635 __hugepage_set_anon_rmap(page, vma, address, 0);
1636}
1637
1638void hugepage_add_new_anon_rmap(struct page *page,
1639 struct vm_area_struct *vma, unsigned long address)
1640{
1641 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1642 atomic_set(&page->_mapcount, 0);
1643 __hugepage_set_anon_rmap(page, vma, address, 1);
1644}
e3390f67 1645#endif /* CONFIG_HUGETLB_PAGE */